1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/net/sunrpc/svc_xprt.c 4 * 5 * Author: Tom Tucker <tom@opengridcomputing.com> 6 */ 7 8 #include <linux/sched.h> 9 #include <linux/sched/mm.h> 10 #include <linux/errno.h> 11 #include <linux/freezer.h> 12 #include <linux/kthread.h> 13 #include <linux/slab.h> 14 #include <net/sock.h> 15 #include <linux/sunrpc/addr.h> 16 #include <linux/sunrpc/stats.h> 17 #include <linux/sunrpc/svc_xprt.h> 18 #include <linux/sunrpc/svcsock.h> 19 #include <linux/sunrpc/xprt.h> 20 #include <linux/module.h> 21 #include <linux/netdevice.h> 22 #include <trace/events/sunrpc.h> 23 24 #define RPCDBG_FACILITY RPCDBG_SVCXPRT 25 26 static unsigned int svc_rpc_per_connection_limit __read_mostly; 27 module_param(svc_rpc_per_connection_limit, uint, 0644); 28 29 30 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt); 31 static int svc_deferred_recv(struct svc_rqst *rqstp); 32 static struct cache_deferred_req *svc_defer(struct cache_req *req); 33 static void svc_age_temp_xprts(struct timer_list *t); 34 static void svc_delete_xprt(struct svc_xprt *xprt); 35 36 /* apparently the "standard" is that clients close 37 * idle connections after 5 minutes, servers after 38 * 6 minutes 39 * http://nfsv4bat.org/Documents/ConnectAThon/1996/nfstcp.pdf 40 */ 41 static int svc_conn_age_period = 6*60; 42 43 /* List of registered transport classes */ 44 static DEFINE_SPINLOCK(svc_xprt_class_lock); 45 static LIST_HEAD(svc_xprt_class_list); 46 47 /* SMP locking strategy: 48 * 49 * svc_pool->sp_lock protects most of the fields of that pool. 50 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt. 51 * when both need to be taken (rare), svc_serv->sv_lock is first. 52 * The "service mutex" protects svc_serv->sv_nrthread. 53 * svc_sock->sk_lock protects the svc_sock->sk_deferred list 54 * and the ->sk_info_authunix cache. 55 * 56 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being 57 * enqueued multiply. During normal transport processing this bit 58 * is set by svc_xprt_enqueue and cleared by svc_xprt_received. 59 * Providers should not manipulate this bit directly. 60 * 61 * Some flags can be set to certain values at any time 62 * providing that certain rules are followed: 63 * 64 * XPT_CONN, XPT_DATA: 65 * - Can be set or cleared at any time. 66 * - After a set, svc_xprt_enqueue must be called to enqueue 67 * the transport for processing. 68 * - After a clear, the transport must be read/accepted. 69 * If this succeeds, it must be set again. 70 * XPT_CLOSE: 71 * - Can set at any time. It is never cleared. 72 * XPT_DEAD: 73 * - Can only be set while XPT_BUSY is held which ensures 74 * that no other thread will be using the transport or will 75 * try to set XPT_DEAD. 76 */ 77 int svc_reg_xprt_class(struct svc_xprt_class *xcl) 78 { 79 struct svc_xprt_class *cl; 80 int res = -EEXIST; 81 82 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name); 83 84 INIT_LIST_HEAD(&xcl->xcl_list); 85 spin_lock(&svc_xprt_class_lock); 86 /* Make sure there isn't already a class with the same name */ 87 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) { 88 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0) 89 goto out; 90 } 91 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list); 92 res = 0; 93 out: 94 spin_unlock(&svc_xprt_class_lock); 95 return res; 96 } 97 EXPORT_SYMBOL_GPL(svc_reg_xprt_class); 98 99 void svc_unreg_xprt_class(struct svc_xprt_class *xcl) 100 { 101 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name); 102 spin_lock(&svc_xprt_class_lock); 103 list_del_init(&xcl->xcl_list); 104 spin_unlock(&svc_xprt_class_lock); 105 } 106 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class); 107 108 /** 109 * svc_print_xprts - Format the transport list for printing 110 * @buf: target buffer for formatted address 111 * @maxlen: length of target buffer 112 * 113 * Fills in @buf with a string containing a list of transport names, each name 114 * terminated with '\n'. If the buffer is too small, some entries may be 115 * missing, but it is guaranteed that all lines in the output buffer are 116 * complete. 117 * 118 * Returns positive length of the filled-in string. 119 */ 120 int svc_print_xprts(char *buf, int maxlen) 121 { 122 struct svc_xprt_class *xcl; 123 char tmpstr[80]; 124 int len = 0; 125 buf[0] = '\0'; 126 127 spin_lock(&svc_xprt_class_lock); 128 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { 129 int slen; 130 131 slen = snprintf(tmpstr, sizeof(tmpstr), "%s %d\n", 132 xcl->xcl_name, xcl->xcl_max_payload); 133 if (slen >= sizeof(tmpstr) || len + slen >= maxlen) 134 break; 135 len += slen; 136 strcat(buf, tmpstr); 137 } 138 spin_unlock(&svc_xprt_class_lock); 139 140 return len; 141 } 142 143 /** 144 * svc_xprt_deferred_close - Close a transport 145 * @xprt: transport instance 146 * 147 * Used in contexts that need to defer the work of shutting down 148 * the transport to an nfsd thread. 149 */ 150 void svc_xprt_deferred_close(struct svc_xprt *xprt) 151 { 152 if (!test_and_set_bit(XPT_CLOSE, &xprt->xpt_flags)) 153 svc_xprt_enqueue(xprt); 154 } 155 EXPORT_SYMBOL_GPL(svc_xprt_deferred_close); 156 157 static void svc_xprt_free(struct kref *kref) 158 { 159 struct svc_xprt *xprt = 160 container_of(kref, struct svc_xprt, xpt_ref); 161 struct module *owner = xprt->xpt_class->xcl_owner; 162 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags)) 163 svcauth_unix_info_release(xprt); 164 put_cred(xprt->xpt_cred); 165 put_net(xprt->xpt_net); 166 /* See comment on corresponding get in xs_setup_bc_tcp(): */ 167 if (xprt->xpt_bc_xprt) 168 xprt_put(xprt->xpt_bc_xprt); 169 if (xprt->xpt_bc_xps) 170 xprt_switch_put(xprt->xpt_bc_xps); 171 trace_svc_xprt_free(xprt); 172 xprt->xpt_ops->xpo_free(xprt); 173 module_put(owner); 174 } 175 176 void svc_xprt_put(struct svc_xprt *xprt) 177 { 178 kref_put(&xprt->xpt_ref, svc_xprt_free); 179 } 180 EXPORT_SYMBOL_GPL(svc_xprt_put); 181 182 /* 183 * Called by transport drivers to initialize the transport independent 184 * portion of the transport instance. 185 */ 186 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl, 187 struct svc_xprt *xprt, struct svc_serv *serv) 188 { 189 memset(xprt, 0, sizeof(*xprt)); 190 xprt->xpt_class = xcl; 191 xprt->xpt_ops = xcl->xcl_ops; 192 kref_init(&xprt->xpt_ref); 193 xprt->xpt_server = serv; 194 INIT_LIST_HEAD(&xprt->xpt_list); 195 INIT_LIST_HEAD(&xprt->xpt_ready); 196 INIT_LIST_HEAD(&xprt->xpt_deferred); 197 INIT_LIST_HEAD(&xprt->xpt_users); 198 mutex_init(&xprt->xpt_mutex); 199 spin_lock_init(&xprt->xpt_lock); 200 set_bit(XPT_BUSY, &xprt->xpt_flags); 201 xprt->xpt_net = get_net(net); 202 strcpy(xprt->xpt_remotebuf, "uninitialized"); 203 } 204 EXPORT_SYMBOL_GPL(svc_xprt_init); 205 206 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl, 207 struct svc_serv *serv, 208 struct net *net, 209 const int family, 210 const unsigned short port, 211 int flags) 212 { 213 struct sockaddr_in sin = { 214 .sin_family = AF_INET, 215 .sin_addr.s_addr = htonl(INADDR_ANY), 216 .sin_port = htons(port), 217 }; 218 #if IS_ENABLED(CONFIG_IPV6) 219 struct sockaddr_in6 sin6 = { 220 .sin6_family = AF_INET6, 221 .sin6_addr = IN6ADDR_ANY_INIT, 222 .sin6_port = htons(port), 223 }; 224 #endif 225 struct svc_xprt *xprt; 226 struct sockaddr *sap; 227 size_t len; 228 229 switch (family) { 230 case PF_INET: 231 sap = (struct sockaddr *)&sin; 232 len = sizeof(sin); 233 break; 234 #if IS_ENABLED(CONFIG_IPV6) 235 case PF_INET6: 236 sap = (struct sockaddr *)&sin6; 237 len = sizeof(sin6); 238 break; 239 #endif 240 default: 241 return ERR_PTR(-EAFNOSUPPORT); 242 } 243 244 xprt = xcl->xcl_ops->xpo_create(serv, net, sap, len, flags); 245 if (IS_ERR(xprt)) 246 trace_svc_xprt_create_err(serv->sv_program->pg_name, 247 xcl->xcl_name, sap, len, xprt); 248 return xprt; 249 } 250 251 /** 252 * svc_xprt_received - start next receiver thread 253 * @xprt: controlling transport 254 * 255 * The caller must hold the XPT_BUSY bit and must 256 * not thereafter touch transport data. 257 * 258 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or 259 * insufficient) data. 260 */ 261 void svc_xprt_received(struct svc_xprt *xprt) 262 { 263 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) { 264 WARN_ONCE(1, "xprt=0x%p already busy!", xprt); 265 return; 266 } 267 268 /* As soon as we clear busy, the xprt could be closed and 269 * 'put', so we need a reference to call svc_enqueue_xprt with: 270 */ 271 svc_xprt_get(xprt); 272 smp_mb__before_atomic(); 273 clear_bit(XPT_BUSY, &xprt->xpt_flags); 274 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt); 275 svc_xprt_put(xprt); 276 } 277 EXPORT_SYMBOL_GPL(svc_xprt_received); 278 279 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new) 280 { 281 clear_bit(XPT_TEMP, &new->xpt_flags); 282 spin_lock_bh(&serv->sv_lock); 283 list_add(&new->xpt_list, &serv->sv_permsocks); 284 spin_unlock_bh(&serv->sv_lock); 285 svc_xprt_received(new); 286 } 287 288 static int _svc_create_xprt(struct svc_serv *serv, const char *xprt_name, 289 struct net *net, const int family, 290 const unsigned short port, int flags, 291 const struct cred *cred) 292 { 293 struct svc_xprt_class *xcl; 294 295 spin_lock(&svc_xprt_class_lock); 296 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { 297 struct svc_xprt *newxprt; 298 unsigned short newport; 299 300 if (strcmp(xprt_name, xcl->xcl_name)) 301 continue; 302 303 if (!try_module_get(xcl->xcl_owner)) 304 goto err; 305 306 spin_unlock(&svc_xprt_class_lock); 307 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags); 308 if (IS_ERR(newxprt)) { 309 module_put(xcl->xcl_owner); 310 return PTR_ERR(newxprt); 311 } 312 newxprt->xpt_cred = get_cred(cred); 313 svc_add_new_perm_xprt(serv, newxprt); 314 newport = svc_xprt_local_port(newxprt); 315 return newport; 316 } 317 err: 318 spin_unlock(&svc_xprt_class_lock); 319 /* This errno is exposed to user space. Provide a reasonable 320 * perror msg for a bad transport. */ 321 return -EPROTONOSUPPORT; 322 } 323 324 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name, 325 struct net *net, const int family, 326 const unsigned short port, int flags, 327 const struct cred *cred) 328 { 329 int err; 330 331 err = _svc_create_xprt(serv, xprt_name, net, family, port, flags, cred); 332 if (err == -EPROTONOSUPPORT) { 333 request_module("svc%s", xprt_name); 334 err = _svc_create_xprt(serv, xprt_name, net, family, port, flags, cred); 335 } 336 return err; 337 } 338 EXPORT_SYMBOL_GPL(svc_create_xprt); 339 340 /* 341 * Copy the local and remote xprt addresses to the rqstp structure 342 */ 343 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt) 344 { 345 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen); 346 rqstp->rq_addrlen = xprt->xpt_remotelen; 347 348 /* 349 * Destination address in request is needed for binding the 350 * source address in RPC replies/callbacks later. 351 */ 352 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen); 353 rqstp->rq_daddrlen = xprt->xpt_locallen; 354 } 355 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs); 356 357 /** 358 * svc_print_addr - Format rq_addr field for printing 359 * @rqstp: svc_rqst struct containing address to print 360 * @buf: target buffer for formatted address 361 * @len: length of target buffer 362 * 363 */ 364 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len) 365 { 366 return __svc_print_addr(svc_addr(rqstp), buf, len); 367 } 368 EXPORT_SYMBOL_GPL(svc_print_addr); 369 370 static bool svc_xprt_slots_in_range(struct svc_xprt *xprt) 371 { 372 unsigned int limit = svc_rpc_per_connection_limit; 373 int nrqsts = atomic_read(&xprt->xpt_nr_rqsts); 374 375 return limit == 0 || (nrqsts >= 0 && nrqsts < limit); 376 } 377 378 static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt) 379 { 380 if (!test_bit(RQ_DATA, &rqstp->rq_flags)) { 381 if (!svc_xprt_slots_in_range(xprt)) 382 return false; 383 atomic_inc(&xprt->xpt_nr_rqsts); 384 set_bit(RQ_DATA, &rqstp->rq_flags); 385 } 386 return true; 387 } 388 389 static void svc_xprt_release_slot(struct svc_rqst *rqstp) 390 { 391 struct svc_xprt *xprt = rqstp->rq_xprt; 392 if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) { 393 atomic_dec(&xprt->xpt_nr_rqsts); 394 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */ 395 svc_xprt_enqueue(xprt); 396 } 397 } 398 399 static bool svc_xprt_ready(struct svc_xprt *xprt) 400 { 401 unsigned long xpt_flags; 402 403 /* 404 * If another cpu has recently updated xpt_flags, 405 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to 406 * know about it; otherwise it's possible that both that cpu and 407 * this one could call svc_xprt_enqueue() without either 408 * svc_xprt_enqueue() recognizing that the conditions below 409 * are satisfied, and we could stall indefinitely: 410 */ 411 smp_rmb(); 412 xpt_flags = READ_ONCE(xprt->xpt_flags); 413 414 if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE))) 415 return true; 416 if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) { 417 if (xprt->xpt_ops->xpo_has_wspace(xprt) && 418 svc_xprt_slots_in_range(xprt)) 419 return true; 420 trace_svc_xprt_no_write_space(xprt); 421 return false; 422 } 423 return false; 424 } 425 426 void svc_xprt_do_enqueue(struct svc_xprt *xprt) 427 { 428 struct svc_pool *pool; 429 struct svc_rqst *rqstp = NULL; 430 int cpu; 431 432 if (!svc_xprt_ready(xprt)) 433 return; 434 435 /* Mark transport as busy. It will remain in this state until 436 * the provider calls svc_xprt_received. We update XPT_BUSY 437 * atomically because it also guards against trying to enqueue 438 * the transport twice. 439 */ 440 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) 441 return; 442 443 cpu = get_cpu(); 444 pool = svc_pool_for_cpu(xprt->xpt_server, cpu); 445 446 atomic_long_inc(&pool->sp_stats.packets); 447 448 spin_lock_bh(&pool->sp_lock); 449 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets); 450 pool->sp_stats.sockets_queued++; 451 spin_unlock_bh(&pool->sp_lock); 452 453 /* find a thread for this xprt */ 454 rcu_read_lock(); 455 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) { 456 if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags)) 457 continue; 458 atomic_long_inc(&pool->sp_stats.threads_woken); 459 rqstp->rq_qtime = ktime_get(); 460 wake_up_process(rqstp->rq_task); 461 goto out_unlock; 462 } 463 set_bit(SP_CONGESTED, &pool->sp_flags); 464 rqstp = NULL; 465 out_unlock: 466 rcu_read_unlock(); 467 put_cpu(); 468 trace_svc_xprt_enqueue(xprt, rqstp); 469 } 470 EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue); 471 472 /* 473 * Queue up a transport with data pending. If there are idle nfsd 474 * processes, wake 'em up. 475 * 476 */ 477 void svc_xprt_enqueue(struct svc_xprt *xprt) 478 { 479 if (test_bit(XPT_BUSY, &xprt->xpt_flags)) 480 return; 481 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt); 482 } 483 EXPORT_SYMBOL_GPL(svc_xprt_enqueue); 484 485 /* 486 * Dequeue the first transport, if there is one. 487 */ 488 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool) 489 { 490 struct svc_xprt *xprt = NULL; 491 492 if (list_empty(&pool->sp_sockets)) 493 goto out; 494 495 spin_lock_bh(&pool->sp_lock); 496 if (likely(!list_empty(&pool->sp_sockets))) { 497 xprt = list_first_entry(&pool->sp_sockets, 498 struct svc_xprt, xpt_ready); 499 list_del_init(&xprt->xpt_ready); 500 svc_xprt_get(xprt); 501 } 502 spin_unlock_bh(&pool->sp_lock); 503 out: 504 return xprt; 505 } 506 507 /** 508 * svc_reserve - change the space reserved for the reply to a request. 509 * @rqstp: The request in question 510 * @space: new max space to reserve 511 * 512 * Each request reserves some space on the output queue of the transport 513 * to make sure the reply fits. This function reduces that reserved 514 * space to be the amount of space used already, plus @space. 515 * 516 */ 517 void svc_reserve(struct svc_rqst *rqstp, int space) 518 { 519 struct svc_xprt *xprt = rqstp->rq_xprt; 520 521 space += rqstp->rq_res.head[0].iov_len; 522 523 if (xprt && space < rqstp->rq_reserved) { 524 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved); 525 rqstp->rq_reserved = space; 526 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */ 527 svc_xprt_enqueue(xprt); 528 } 529 } 530 EXPORT_SYMBOL_GPL(svc_reserve); 531 532 static void svc_xprt_release(struct svc_rqst *rqstp) 533 { 534 struct svc_xprt *xprt = rqstp->rq_xprt; 535 536 xprt->xpt_ops->xpo_release_rqst(rqstp); 537 538 kfree(rqstp->rq_deferred); 539 rqstp->rq_deferred = NULL; 540 541 pagevec_release(&rqstp->rq_pvec); 542 svc_free_res_pages(rqstp); 543 rqstp->rq_res.page_len = 0; 544 rqstp->rq_res.page_base = 0; 545 546 /* Reset response buffer and release 547 * the reservation. 548 * But first, check that enough space was reserved 549 * for the reply, otherwise we have a bug! 550 */ 551 if ((rqstp->rq_res.len) > rqstp->rq_reserved) 552 printk(KERN_ERR "RPC request reserved %d but used %d\n", 553 rqstp->rq_reserved, 554 rqstp->rq_res.len); 555 556 rqstp->rq_res.head[0].iov_len = 0; 557 svc_reserve(rqstp, 0); 558 svc_xprt_release_slot(rqstp); 559 rqstp->rq_xprt = NULL; 560 svc_xprt_put(xprt); 561 } 562 563 /* 564 * Some svc_serv's will have occasional work to do, even when a xprt is not 565 * waiting to be serviced. This function is there to "kick" a task in one of 566 * those services so that it can wake up and do that work. Note that we only 567 * bother with pool 0 as we don't need to wake up more than one thread for 568 * this purpose. 569 */ 570 void svc_wake_up(struct svc_serv *serv) 571 { 572 struct svc_rqst *rqstp; 573 struct svc_pool *pool; 574 575 pool = &serv->sv_pools[0]; 576 577 rcu_read_lock(); 578 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) { 579 /* skip any that aren't queued */ 580 if (test_bit(RQ_BUSY, &rqstp->rq_flags)) 581 continue; 582 rcu_read_unlock(); 583 wake_up_process(rqstp->rq_task); 584 trace_svc_wake_up(rqstp->rq_task->pid); 585 return; 586 } 587 rcu_read_unlock(); 588 589 /* No free entries available */ 590 set_bit(SP_TASK_PENDING, &pool->sp_flags); 591 smp_wmb(); 592 trace_svc_wake_up(0); 593 } 594 EXPORT_SYMBOL_GPL(svc_wake_up); 595 596 int svc_port_is_privileged(struct sockaddr *sin) 597 { 598 switch (sin->sa_family) { 599 case AF_INET: 600 return ntohs(((struct sockaddr_in *)sin)->sin_port) 601 < PROT_SOCK; 602 case AF_INET6: 603 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port) 604 < PROT_SOCK; 605 default: 606 return 0; 607 } 608 } 609 610 /* 611 * Make sure that we don't have too many active connections. If we have, 612 * something must be dropped. It's not clear what will happen if we allow 613 * "too many" connections, but when dealing with network-facing software, 614 * we have to code defensively. Here we do that by imposing hard limits. 615 * 616 * There's no point in trying to do random drop here for DoS 617 * prevention. The NFS clients does 1 reconnect in 15 seconds. An 618 * attacker can easily beat that. 619 * 620 * The only somewhat efficient mechanism would be if drop old 621 * connections from the same IP first. But right now we don't even 622 * record the client IP in svc_sock. 623 * 624 * single-threaded services that expect a lot of clients will probably 625 * need to set sv_maxconn to override the default value which is based 626 * on the number of threads 627 */ 628 static void svc_check_conn_limits(struct svc_serv *serv) 629 { 630 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn : 631 (serv->sv_nrthreads+3) * 20; 632 633 if (serv->sv_tmpcnt > limit) { 634 struct svc_xprt *xprt = NULL; 635 spin_lock_bh(&serv->sv_lock); 636 if (!list_empty(&serv->sv_tempsocks)) { 637 /* Try to help the admin */ 638 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n", 639 serv->sv_name, serv->sv_maxconn ? 640 "max number of connections" : 641 "number of threads"); 642 /* 643 * Always select the oldest connection. It's not fair, 644 * but so is life 645 */ 646 xprt = list_entry(serv->sv_tempsocks.prev, 647 struct svc_xprt, 648 xpt_list); 649 set_bit(XPT_CLOSE, &xprt->xpt_flags); 650 svc_xprt_get(xprt); 651 } 652 spin_unlock_bh(&serv->sv_lock); 653 654 if (xprt) { 655 svc_xprt_enqueue(xprt); 656 svc_xprt_put(xprt); 657 } 658 } 659 } 660 661 static int svc_alloc_arg(struct svc_rqst *rqstp) 662 { 663 struct svc_serv *serv = rqstp->rq_server; 664 struct xdr_buf *arg = &rqstp->rq_arg; 665 unsigned long pages, filled, ret; 666 667 pagevec_init(&rqstp->rq_pvec); 668 669 pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT; 670 if (pages > RPCSVC_MAXPAGES) { 671 pr_warn_once("svc: warning: pages=%lu > RPCSVC_MAXPAGES=%lu\n", 672 pages, RPCSVC_MAXPAGES); 673 /* use as many pages as possible */ 674 pages = RPCSVC_MAXPAGES; 675 } 676 677 for (filled = 0; filled < pages; filled = ret) { 678 ret = alloc_pages_bulk_array(GFP_KERNEL, pages, 679 rqstp->rq_pages); 680 if (ret > filled) 681 /* Made progress, don't sleep yet */ 682 continue; 683 684 set_current_state(TASK_INTERRUPTIBLE); 685 if (signalled() || kthread_should_stop()) { 686 set_current_state(TASK_RUNNING); 687 return -EINTR; 688 } 689 trace_svc_alloc_arg_err(pages); 690 memalloc_retry_wait(GFP_KERNEL); 691 } 692 rqstp->rq_page_end = &rqstp->rq_pages[pages]; 693 rqstp->rq_pages[pages] = NULL; /* this might be seen in nfsd_splice_actor() */ 694 695 /* Make arg->head point to first page and arg->pages point to rest */ 696 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]); 697 arg->head[0].iov_len = PAGE_SIZE; 698 arg->pages = rqstp->rq_pages + 1; 699 arg->page_base = 0; 700 /* save at least one page for response */ 701 arg->page_len = (pages-2)*PAGE_SIZE; 702 arg->len = (pages-1)*PAGE_SIZE; 703 arg->tail[0].iov_len = 0; 704 return 0; 705 } 706 707 static bool 708 rqst_should_sleep(struct svc_rqst *rqstp) 709 { 710 struct svc_pool *pool = rqstp->rq_pool; 711 712 /* did someone call svc_wake_up? */ 713 if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags)) 714 return false; 715 716 /* was a socket queued? */ 717 if (!list_empty(&pool->sp_sockets)) 718 return false; 719 720 /* are we shutting down? */ 721 if (signalled() || kthread_should_stop()) 722 return false; 723 724 /* are we freezing? */ 725 if (freezing(current)) 726 return false; 727 728 return true; 729 } 730 731 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout) 732 { 733 struct svc_pool *pool = rqstp->rq_pool; 734 long time_left = 0; 735 736 /* rq_xprt should be clear on entry */ 737 WARN_ON_ONCE(rqstp->rq_xprt); 738 739 rqstp->rq_xprt = svc_xprt_dequeue(pool); 740 if (rqstp->rq_xprt) 741 goto out_found; 742 743 /* 744 * We have to be able to interrupt this wait 745 * to bring down the daemons ... 746 */ 747 set_current_state(TASK_INTERRUPTIBLE); 748 smp_mb__before_atomic(); 749 clear_bit(SP_CONGESTED, &pool->sp_flags); 750 clear_bit(RQ_BUSY, &rqstp->rq_flags); 751 smp_mb__after_atomic(); 752 753 if (likely(rqst_should_sleep(rqstp))) 754 time_left = schedule_timeout(timeout); 755 else 756 __set_current_state(TASK_RUNNING); 757 758 try_to_freeze(); 759 760 set_bit(RQ_BUSY, &rqstp->rq_flags); 761 smp_mb__after_atomic(); 762 rqstp->rq_xprt = svc_xprt_dequeue(pool); 763 if (rqstp->rq_xprt) 764 goto out_found; 765 766 if (!time_left) 767 atomic_long_inc(&pool->sp_stats.threads_timedout); 768 769 if (signalled() || kthread_should_stop()) 770 return ERR_PTR(-EINTR); 771 return ERR_PTR(-EAGAIN); 772 out_found: 773 /* Normally we will wait up to 5 seconds for any required 774 * cache information to be provided. 775 */ 776 if (!test_bit(SP_CONGESTED, &pool->sp_flags)) 777 rqstp->rq_chandle.thread_wait = 5*HZ; 778 else 779 rqstp->rq_chandle.thread_wait = 1*HZ; 780 trace_svc_xprt_dequeue(rqstp); 781 return rqstp->rq_xprt; 782 } 783 784 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt) 785 { 786 spin_lock_bh(&serv->sv_lock); 787 set_bit(XPT_TEMP, &newxpt->xpt_flags); 788 list_add(&newxpt->xpt_list, &serv->sv_tempsocks); 789 serv->sv_tmpcnt++; 790 if (serv->sv_temptimer.function == NULL) { 791 /* setup timer to age temp transports */ 792 serv->sv_temptimer.function = svc_age_temp_xprts; 793 mod_timer(&serv->sv_temptimer, 794 jiffies + svc_conn_age_period * HZ); 795 } 796 spin_unlock_bh(&serv->sv_lock); 797 svc_xprt_received(newxpt); 798 } 799 800 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt) 801 { 802 struct svc_serv *serv = rqstp->rq_server; 803 int len = 0; 804 805 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) { 806 if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags)) 807 xprt->xpt_ops->xpo_kill_temp_xprt(xprt); 808 svc_delete_xprt(xprt); 809 /* Leave XPT_BUSY set on the dead xprt: */ 810 goto out; 811 } 812 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) { 813 struct svc_xprt *newxpt; 814 /* 815 * We know this module_get will succeed because the 816 * listener holds a reference too 817 */ 818 __module_get(xprt->xpt_class->xcl_owner); 819 svc_check_conn_limits(xprt->xpt_server); 820 newxpt = xprt->xpt_ops->xpo_accept(xprt); 821 if (newxpt) { 822 newxpt->xpt_cred = get_cred(xprt->xpt_cred); 823 svc_add_new_temp_xprt(serv, newxpt); 824 trace_svc_xprt_accept(newxpt, serv->sv_name); 825 } else { 826 module_put(xprt->xpt_class->xcl_owner); 827 } 828 svc_xprt_received(xprt); 829 } else if (svc_xprt_reserve_slot(rqstp, xprt)) { 830 /* XPT_DATA|XPT_DEFERRED case: */ 831 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n", 832 rqstp, rqstp->rq_pool->sp_id, xprt, 833 kref_read(&xprt->xpt_ref)); 834 rqstp->rq_deferred = svc_deferred_dequeue(xprt); 835 if (rqstp->rq_deferred) 836 len = svc_deferred_recv(rqstp); 837 else 838 len = xprt->xpt_ops->xpo_recvfrom(rqstp); 839 rqstp->rq_stime = ktime_get(); 840 rqstp->rq_reserved = serv->sv_max_mesg; 841 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved); 842 } else 843 svc_xprt_received(xprt); 844 845 out: 846 return len; 847 } 848 849 /* 850 * Receive the next request on any transport. This code is carefully 851 * organised not to touch any cachelines in the shared svc_serv 852 * structure, only cachelines in the local svc_pool. 853 */ 854 int svc_recv(struct svc_rqst *rqstp, long timeout) 855 { 856 struct svc_xprt *xprt = NULL; 857 struct svc_serv *serv = rqstp->rq_server; 858 int len, err; 859 860 err = svc_alloc_arg(rqstp); 861 if (err) 862 goto out; 863 864 try_to_freeze(); 865 cond_resched(); 866 err = -EINTR; 867 if (signalled() || kthread_should_stop()) 868 goto out; 869 870 xprt = svc_get_next_xprt(rqstp, timeout); 871 if (IS_ERR(xprt)) { 872 err = PTR_ERR(xprt); 873 goto out; 874 } 875 876 len = svc_handle_xprt(rqstp, xprt); 877 878 /* No data, incomplete (TCP) read, or accept() */ 879 err = -EAGAIN; 880 if (len <= 0) 881 goto out_release; 882 trace_svc_xdr_recvfrom(&rqstp->rq_arg); 883 884 clear_bit(XPT_OLD, &xprt->xpt_flags); 885 886 xprt->xpt_ops->xpo_secure_port(rqstp); 887 rqstp->rq_chandle.defer = svc_defer; 888 rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]); 889 890 if (serv->sv_stats) 891 serv->sv_stats->netcnt++; 892 return len; 893 out_release: 894 rqstp->rq_res.len = 0; 895 svc_xprt_release(rqstp); 896 out: 897 return err; 898 } 899 EXPORT_SYMBOL_GPL(svc_recv); 900 901 /* 902 * Drop request 903 */ 904 void svc_drop(struct svc_rqst *rqstp) 905 { 906 trace_svc_drop(rqstp); 907 svc_xprt_release(rqstp); 908 } 909 EXPORT_SYMBOL_GPL(svc_drop); 910 911 /* 912 * Return reply to client. 913 */ 914 int svc_send(struct svc_rqst *rqstp) 915 { 916 struct svc_xprt *xprt; 917 int len = -EFAULT; 918 struct xdr_buf *xb; 919 920 xprt = rqstp->rq_xprt; 921 if (!xprt) 922 goto out; 923 924 /* calculate over-all length */ 925 xb = &rqstp->rq_res; 926 xb->len = xb->head[0].iov_len + 927 xb->page_len + 928 xb->tail[0].iov_len; 929 trace_svc_xdr_sendto(rqstp->rq_xid, xb); 930 trace_svc_stats_latency(rqstp); 931 932 len = xprt->xpt_ops->xpo_sendto(rqstp); 933 934 trace_svc_send(rqstp, len); 935 svc_xprt_release(rqstp); 936 937 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN) 938 len = 0; 939 out: 940 return len; 941 } 942 943 /* 944 * Timer function to close old temporary transports, using 945 * a mark-and-sweep algorithm. 946 */ 947 static void svc_age_temp_xprts(struct timer_list *t) 948 { 949 struct svc_serv *serv = from_timer(serv, t, sv_temptimer); 950 struct svc_xprt *xprt; 951 struct list_head *le, *next; 952 953 dprintk("svc_age_temp_xprts\n"); 954 955 if (!spin_trylock_bh(&serv->sv_lock)) { 956 /* busy, try again 1 sec later */ 957 dprintk("svc_age_temp_xprts: busy\n"); 958 mod_timer(&serv->sv_temptimer, jiffies + HZ); 959 return; 960 } 961 962 list_for_each_safe(le, next, &serv->sv_tempsocks) { 963 xprt = list_entry(le, struct svc_xprt, xpt_list); 964 965 /* First time through, just mark it OLD. Second time 966 * through, close it. */ 967 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags)) 968 continue; 969 if (kref_read(&xprt->xpt_ref) > 1 || 970 test_bit(XPT_BUSY, &xprt->xpt_flags)) 971 continue; 972 list_del_init(le); 973 set_bit(XPT_CLOSE, &xprt->xpt_flags); 974 dprintk("queuing xprt %p for closing\n", xprt); 975 976 /* a thread will dequeue and close it soon */ 977 svc_xprt_enqueue(xprt); 978 } 979 spin_unlock_bh(&serv->sv_lock); 980 981 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ); 982 } 983 984 /* Close temporary transports whose xpt_local matches server_addr immediately 985 * instead of waiting for them to be picked up by the timer. 986 * 987 * This is meant to be called from a notifier_block that runs when an ip 988 * address is deleted. 989 */ 990 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr) 991 { 992 struct svc_xprt *xprt; 993 struct list_head *le, *next; 994 LIST_HEAD(to_be_closed); 995 996 spin_lock_bh(&serv->sv_lock); 997 list_for_each_safe(le, next, &serv->sv_tempsocks) { 998 xprt = list_entry(le, struct svc_xprt, xpt_list); 999 if (rpc_cmp_addr(server_addr, (struct sockaddr *) 1000 &xprt->xpt_local)) { 1001 dprintk("svc_age_temp_xprts_now: found %p\n", xprt); 1002 list_move(le, &to_be_closed); 1003 } 1004 } 1005 spin_unlock_bh(&serv->sv_lock); 1006 1007 while (!list_empty(&to_be_closed)) { 1008 le = to_be_closed.next; 1009 list_del_init(le); 1010 xprt = list_entry(le, struct svc_xprt, xpt_list); 1011 set_bit(XPT_CLOSE, &xprt->xpt_flags); 1012 set_bit(XPT_KILL_TEMP, &xprt->xpt_flags); 1013 dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n", 1014 xprt); 1015 svc_xprt_enqueue(xprt); 1016 } 1017 } 1018 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now); 1019 1020 static void call_xpt_users(struct svc_xprt *xprt) 1021 { 1022 struct svc_xpt_user *u; 1023 1024 spin_lock(&xprt->xpt_lock); 1025 while (!list_empty(&xprt->xpt_users)) { 1026 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list); 1027 list_del_init(&u->list); 1028 u->callback(u); 1029 } 1030 spin_unlock(&xprt->xpt_lock); 1031 } 1032 1033 /* 1034 * Remove a dead transport 1035 */ 1036 static void svc_delete_xprt(struct svc_xprt *xprt) 1037 { 1038 struct svc_serv *serv = xprt->xpt_server; 1039 struct svc_deferred_req *dr; 1040 1041 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags)) 1042 return; 1043 1044 trace_svc_xprt_detach(xprt); 1045 xprt->xpt_ops->xpo_detach(xprt); 1046 if (xprt->xpt_bc_xprt) 1047 xprt->xpt_bc_xprt->ops->close(xprt->xpt_bc_xprt); 1048 1049 spin_lock_bh(&serv->sv_lock); 1050 list_del_init(&xprt->xpt_list); 1051 WARN_ON_ONCE(!list_empty(&xprt->xpt_ready)); 1052 if (test_bit(XPT_TEMP, &xprt->xpt_flags)) 1053 serv->sv_tmpcnt--; 1054 spin_unlock_bh(&serv->sv_lock); 1055 1056 while ((dr = svc_deferred_dequeue(xprt)) != NULL) 1057 kfree(dr); 1058 1059 call_xpt_users(xprt); 1060 svc_xprt_put(xprt); 1061 } 1062 1063 void svc_close_xprt(struct svc_xprt *xprt) 1064 { 1065 trace_svc_xprt_close(xprt); 1066 set_bit(XPT_CLOSE, &xprt->xpt_flags); 1067 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) 1068 /* someone else will have to effect the close */ 1069 return; 1070 /* 1071 * We expect svc_close_xprt() to work even when no threads are 1072 * running (e.g., while configuring the server before starting 1073 * any threads), so if the transport isn't busy, we delete 1074 * it ourself: 1075 */ 1076 svc_delete_xprt(xprt); 1077 } 1078 EXPORT_SYMBOL_GPL(svc_close_xprt); 1079 1080 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net) 1081 { 1082 struct svc_xprt *xprt; 1083 int ret = 0; 1084 1085 spin_lock_bh(&serv->sv_lock); 1086 list_for_each_entry(xprt, xprt_list, xpt_list) { 1087 if (xprt->xpt_net != net) 1088 continue; 1089 ret++; 1090 set_bit(XPT_CLOSE, &xprt->xpt_flags); 1091 svc_xprt_enqueue(xprt); 1092 } 1093 spin_unlock_bh(&serv->sv_lock); 1094 return ret; 1095 } 1096 1097 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net) 1098 { 1099 struct svc_pool *pool; 1100 struct svc_xprt *xprt; 1101 struct svc_xprt *tmp; 1102 int i; 1103 1104 for (i = 0; i < serv->sv_nrpools; i++) { 1105 pool = &serv->sv_pools[i]; 1106 1107 spin_lock_bh(&pool->sp_lock); 1108 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) { 1109 if (xprt->xpt_net != net) 1110 continue; 1111 list_del_init(&xprt->xpt_ready); 1112 spin_unlock_bh(&pool->sp_lock); 1113 return xprt; 1114 } 1115 spin_unlock_bh(&pool->sp_lock); 1116 } 1117 return NULL; 1118 } 1119 1120 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net) 1121 { 1122 struct svc_xprt *xprt; 1123 1124 while ((xprt = svc_dequeue_net(serv, net))) { 1125 set_bit(XPT_CLOSE, &xprt->xpt_flags); 1126 svc_delete_xprt(xprt); 1127 } 1128 } 1129 1130 /* 1131 * Server threads may still be running (especially in the case where the 1132 * service is still running in other network namespaces). 1133 * 1134 * So we shut down sockets the same way we would on a running server, by 1135 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do 1136 * the close. In the case there are no such other threads, 1137 * threads running, svc_clean_up_xprts() does a simple version of a 1138 * server's main event loop, and in the case where there are other 1139 * threads, we may need to wait a little while and then check again to 1140 * see if they're done. 1141 */ 1142 void svc_close_net(struct svc_serv *serv, struct net *net) 1143 { 1144 int delay = 0; 1145 1146 while (svc_close_list(serv, &serv->sv_permsocks, net) + 1147 svc_close_list(serv, &serv->sv_tempsocks, net)) { 1148 1149 svc_clean_up_xprts(serv, net); 1150 msleep(delay++); 1151 } 1152 } 1153 1154 /* 1155 * Handle defer and revisit of requests 1156 */ 1157 1158 static void svc_revisit(struct cache_deferred_req *dreq, int too_many) 1159 { 1160 struct svc_deferred_req *dr = 1161 container_of(dreq, struct svc_deferred_req, handle); 1162 struct svc_xprt *xprt = dr->xprt; 1163 1164 spin_lock(&xprt->xpt_lock); 1165 set_bit(XPT_DEFERRED, &xprt->xpt_flags); 1166 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) { 1167 spin_unlock(&xprt->xpt_lock); 1168 trace_svc_defer_drop(dr); 1169 svc_xprt_put(xprt); 1170 kfree(dr); 1171 return; 1172 } 1173 dr->xprt = NULL; 1174 list_add(&dr->handle.recent, &xprt->xpt_deferred); 1175 spin_unlock(&xprt->xpt_lock); 1176 trace_svc_defer_queue(dr); 1177 svc_xprt_enqueue(xprt); 1178 svc_xprt_put(xprt); 1179 } 1180 1181 /* 1182 * Save the request off for later processing. The request buffer looks 1183 * like this: 1184 * 1185 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail> 1186 * 1187 * This code can only handle requests that consist of an xprt-header 1188 * and rpc-header. 1189 */ 1190 static struct cache_deferred_req *svc_defer(struct cache_req *req) 1191 { 1192 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle); 1193 struct svc_deferred_req *dr; 1194 1195 if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags)) 1196 return NULL; /* if more than a page, give up FIXME */ 1197 if (rqstp->rq_deferred) { 1198 dr = rqstp->rq_deferred; 1199 rqstp->rq_deferred = NULL; 1200 } else { 1201 size_t skip; 1202 size_t size; 1203 /* FIXME maybe discard if size too large */ 1204 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len; 1205 dr = kmalloc(size, GFP_KERNEL); 1206 if (dr == NULL) 1207 return NULL; 1208 1209 dr->handle.owner = rqstp->rq_server; 1210 dr->prot = rqstp->rq_prot; 1211 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen); 1212 dr->addrlen = rqstp->rq_addrlen; 1213 dr->daddr = rqstp->rq_daddr; 1214 dr->argslen = rqstp->rq_arg.len >> 2; 1215 dr->xprt_hlen = rqstp->rq_xprt_hlen; 1216 1217 /* back up head to the start of the buffer and copy */ 1218 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len; 1219 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip, 1220 dr->argslen << 2); 1221 } 1222 trace_svc_defer(rqstp); 1223 svc_xprt_get(rqstp->rq_xprt); 1224 dr->xprt = rqstp->rq_xprt; 1225 set_bit(RQ_DROPME, &rqstp->rq_flags); 1226 1227 dr->handle.revisit = svc_revisit; 1228 return &dr->handle; 1229 } 1230 1231 /* 1232 * recv data from a deferred request into an active one 1233 */ 1234 static noinline int svc_deferred_recv(struct svc_rqst *rqstp) 1235 { 1236 struct svc_deferred_req *dr = rqstp->rq_deferred; 1237 1238 trace_svc_defer_recv(dr); 1239 1240 /* setup iov_base past transport header */ 1241 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2); 1242 /* The iov_len does not include the transport header bytes */ 1243 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen; 1244 rqstp->rq_arg.page_len = 0; 1245 /* The rq_arg.len includes the transport header bytes */ 1246 rqstp->rq_arg.len = dr->argslen<<2; 1247 rqstp->rq_prot = dr->prot; 1248 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen); 1249 rqstp->rq_addrlen = dr->addrlen; 1250 /* Save off transport header len in case we get deferred again */ 1251 rqstp->rq_xprt_hlen = dr->xprt_hlen; 1252 rqstp->rq_daddr = dr->daddr; 1253 rqstp->rq_respages = rqstp->rq_pages; 1254 svc_xprt_received(rqstp->rq_xprt); 1255 return (dr->argslen<<2) - dr->xprt_hlen; 1256 } 1257 1258 1259 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt) 1260 { 1261 struct svc_deferred_req *dr = NULL; 1262 1263 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags)) 1264 return NULL; 1265 spin_lock(&xprt->xpt_lock); 1266 if (!list_empty(&xprt->xpt_deferred)) { 1267 dr = list_entry(xprt->xpt_deferred.next, 1268 struct svc_deferred_req, 1269 handle.recent); 1270 list_del_init(&dr->handle.recent); 1271 } else 1272 clear_bit(XPT_DEFERRED, &xprt->xpt_flags); 1273 spin_unlock(&xprt->xpt_lock); 1274 return dr; 1275 } 1276 1277 /** 1278 * svc_find_xprt - find an RPC transport instance 1279 * @serv: pointer to svc_serv to search 1280 * @xcl_name: C string containing transport's class name 1281 * @net: owner net pointer 1282 * @af: Address family of transport's local address 1283 * @port: transport's IP port number 1284 * 1285 * Return the transport instance pointer for the endpoint accepting 1286 * connections/peer traffic from the specified transport class, 1287 * address family and port. 1288 * 1289 * Specifying 0 for the address family or port is effectively a 1290 * wild-card, and will result in matching the first transport in the 1291 * service's list that has a matching class name. 1292 */ 1293 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name, 1294 struct net *net, const sa_family_t af, 1295 const unsigned short port) 1296 { 1297 struct svc_xprt *xprt; 1298 struct svc_xprt *found = NULL; 1299 1300 /* Sanity check the args */ 1301 if (serv == NULL || xcl_name == NULL) 1302 return found; 1303 1304 spin_lock_bh(&serv->sv_lock); 1305 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { 1306 if (xprt->xpt_net != net) 1307 continue; 1308 if (strcmp(xprt->xpt_class->xcl_name, xcl_name)) 1309 continue; 1310 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family) 1311 continue; 1312 if (port != 0 && port != svc_xprt_local_port(xprt)) 1313 continue; 1314 found = xprt; 1315 svc_xprt_get(xprt); 1316 break; 1317 } 1318 spin_unlock_bh(&serv->sv_lock); 1319 return found; 1320 } 1321 EXPORT_SYMBOL_GPL(svc_find_xprt); 1322 1323 static int svc_one_xprt_name(const struct svc_xprt *xprt, 1324 char *pos, int remaining) 1325 { 1326 int len; 1327 1328 len = snprintf(pos, remaining, "%s %u\n", 1329 xprt->xpt_class->xcl_name, 1330 svc_xprt_local_port(xprt)); 1331 if (len >= remaining) 1332 return -ENAMETOOLONG; 1333 return len; 1334 } 1335 1336 /** 1337 * svc_xprt_names - format a buffer with a list of transport names 1338 * @serv: pointer to an RPC service 1339 * @buf: pointer to a buffer to be filled in 1340 * @buflen: length of buffer to be filled in 1341 * 1342 * Fills in @buf with a string containing a list of transport names, 1343 * each name terminated with '\n'. 1344 * 1345 * Returns positive length of the filled-in string on success; otherwise 1346 * a negative errno value is returned if an error occurs. 1347 */ 1348 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen) 1349 { 1350 struct svc_xprt *xprt; 1351 int len, totlen; 1352 char *pos; 1353 1354 /* Sanity check args */ 1355 if (!serv) 1356 return 0; 1357 1358 spin_lock_bh(&serv->sv_lock); 1359 1360 pos = buf; 1361 totlen = 0; 1362 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { 1363 len = svc_one_xprt_name(xprt, pos, buflen - totlen); 1364 if (len < 0) { 1365 *buf = '\0'; 1366 totlen = len; 1367 } 1368 if (len <= 0) 1369 break; 1370 1371 pos += len; 1372 totlen += len; 1373 } 1374 1375 spin_unlock_bh(&serv->sv_lock); 1376 return totlen; 1377 } 1378 EXPORT_SYMBOL_GPL(svc_xprt_names); 1379 1380 1381 /*----------------------------------------------------------------------------*/ 1382 1383 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos) 1384 { 1385 unsigned int pidx = (unsigned int)*pos; 1386 struct svc_serv *serv = m->private; 1387 1388 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx); 1389 1390 if (!pidx) 1391 return SEQ_START_TOKEN; 1392 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]); 1393 } 1394 1395 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos) 1396 { 1397 struct svc_pool *pool = p; 1398 struct svc_serv *serv = m->private; 1399 1400 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos); 1401 1402 if (p == SEQ_START_TOKEN) { 1403 pool = &serv->sv_pools[0]; 1404 } else { 1405 unsigned int pidx = (pool - &serv->sv_pools[0]); 1406 if (pidx < serv->sv_nrpools-1) 1407 pool = &serv->sv_pools[pidx+1]; 1408 else 1409 pool = NULL; 1410 } 1411 ++*pos; 1412 return pool; 1413 } 1414 1415 static void svc_pool_stats_stop(struct seq_file *m, void *p) 1416 { 1417 } 1418 1419 static int svc_pool_stats_show(struct seq_file *m, void *p) 1420 { 1421 struct svc_pool *pool = p; 1422 1423 if (p == SEQ_START_TOKEN) { 1424 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n"); 1425 return 0; 1426 } 1427 1428 seq_printf(m, "%u %lu %lu %lu %lu\n", 1429 pool->sp_id, 1430 (unsigned long)atomic_long_read(&pool->sp_stats.packets), 1431 pool->sp_stats.sockets_queued, 1432 (unsigned long)atomic_long_read(&pool->sp_stats.threads_woken), 1433 (unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout)); 1434 1435 return 0; 1436 } 1437 1438 static const struct seq_operations svc_pool_stats_seq_ops = { 1439 .start = svc_pool_stats_start, 1440 .next = svc_pool_stats_next, 1441 .stop = svc_pool_stats_stop, 1442 .show = svc_pool_stats_show, 1443 }; 1444 1445 int svc_pool_stats_open(struct svc_serv *serv, struct file *file) 1446 { 1447 int err; 1448 1449 err = seq_open(file, &svc_pool_stats_seq_ops); 1450 if (!err) 1451 ((struct seq_file *) file->private_data)->private = serv; 1452 return err; 1453 } 1454 EXPORT_SYMBOL(svc_pool_stats_open); 1455 1456 /*----------------------------------------------------------------------------*/ 1457