xref: /openbmc/linux/net/sunrpc/svc_xprt.c (revision bf8981a2aa082d9d64771b47c8a1c9c388d8cd40)
1 /*
2  * linux/net/sunrpc/svc_xprt.c
3  *
4  * Author: Tom Tucker <tom@opengridcomputing.com>
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/addr.h>
14 #include <linux/sunrpc/stats.h>
15 #include <linux/sunrpc/svc_xprt.h>
16 #include <linux/sunrpc/svcsock.h>
17 #include <linux/sunrpc/xprt.h>
18 #include <linux/module.h>
19 #include <linux/netdevice.h>
20 #include <trace/events/sunrpc.h>
21 
22 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
23 
24 static unsigned int svc_rpc_per_connection_limit __read_mostly;
25 module_param(svc_rpc_per_connection_limit, uint, 0644);
26 
27 
28 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
29 static int svc_deferred_recv(struct svc_rqst *rqstp);
30 static struct cache_deferred_req *svc_defer(struct cache_req *req);
31 static void svc_age_temp_xprts(struct timer_list *t);
32 static void svc_delete_xprt(struct svc_xprt *xprt);
33 
34 /* apparently the "standard" is that clients close
35  * idle connections after 5 minutes, servers after
36  * 6 minutes
37  *   http://www.connectathon.org/talks96/nfstcp.pdf
38  */
39 static int svc_conn_age_period = 6*60;
40 
41 /* List of registered transport classes */
42 static DEFINE_SPINLOCK(svc_xprt_class_lock);
43 static LIST_HEAD(svc_xprt_class_list);
44 
45 /* SMP locking strategy:
46  *
47  *	svc_pool->sp_lock protects most of the fields of that pool.
48  *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
49  *	when both need to be taken (rare), svc_serv->sv_lock is first.
50  *	The "service mutex" protects svc_serv->sv_nrthread.
51  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
52  *             and the ->sk_info_authunix cache.
53  *
54  *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
55  *	enqueued multiply. During normal transport processing this bit
56  *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
57  *	Providers should not manipulate this bit directly.
58  *
59  *	Some flags can be set to certain values at any time
60  *	providing that certain rules are followed:
61  *
62  *	XPT_CONN, XPT_DATA:
63  *		- Can be set or cleared at any time.
64  *		- After a set, svc_xprt_enqueue must be called to enqueue
65  *		  the transport for processing.
66  *		- After a clear, the transport must be read/accepted.
67  *		  If this succeeds, it must be set again.
68  *	XPT_CLOSE:
69  *		- Can set at any time. It is never cleared.
70  *      XPT_DEAD:
71  *		- Can only be set while XPT_BUSY is held which ensures
72  *		  that no other thread will be using the transport or will
73  *		  try to set XPT_DEAD.
74  */
75 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
76 {
77 	struct svc_xprt_class *cl;
78 	int res = -EEXIST;
79 
80 	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
81 
82 	INIT_LIST_HEAD(&xcl->xcl_list);
83 	spin_lock(&svc_xprt_class_lock);
84 	/* Make sure there isn't already a class with the same name */
85 	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
86 		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
87 			goto out;
88 	}
89 	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
90 	res = 0;
91 out:
92 	spin_unlock(&svc_xprt_class_lock);
93 	return res;
94 }
95 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
96 
97 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
98 {
99 	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
100 	spin_lock(&svc_xprt_class_lock);
101 	list_del_init(&xcl->xcl_list);
102 	spin_unlock(&svc_xprt_class_lock);
103 }
104 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
105 
106 /*
107  * Format the transport list for printing
108  */
109 int svc_print_xprts(char *buf, int maxlen)
110 {
111 	struct svc_xprt_class *xcl;
112 	char tmpstr[80];
113 	int len = 0;
114 	buf[0] = '\0';
115 
116 	spin_lock(&svc_xprt_class_lock);
117 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
118 		int slen;
119 
120 		sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
121 		slen = strlen(tmpstr);
122 		if (len + slen > maxlen)
123 			break;
124 		len += slen;
125 		strcat(buf, tmpstr);
126 	}
127 	spin_unlock(&svc_xprt_class_lock);
128 
129 	return len;
130 }
131 
132 static void svc_xprt_free(struct kref *kref)
133 {
134 	struct svc_xprt *xprt =
135 		container_of(kref, struct svc_xprt, xpt_ref);
136 	struct module *owner = xprt->xpt_class->xcl_owner;
137 	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
138 		svcauth_unix_info_release(xprt);
139 	put_net(xprt->xpt_net);
140 	/* See comment on corresponding get in xs_setup_bc_tcp(): */
141 	if (xprt->xpt_bc_xprt)
142 		xprt_put(xprt->xpt_bc_xprt);
143 	if (xprt->xpt_bc_xps)
144 		xprt_switch_put(xprt->xpt_bc_xps);
145 	xprt->xpt_ops->xpo_free(xprt);
146 	module_put(owner);
147 }
148 
149 void svc_xprt_put(struct svc_xprt *xprt)
150 {
151 	kref_put(&xprt->xpt_ref, svc_xprt_free);
152 }
153 EXPORT_SYMBOL_GPL(svc_xprt_put);
154 
155 /*
156  * Called by transport drivers to initialize the transport independent
157  * portion of the transport instance.
158  */
159 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
160 		   struct svc_xprt *xprt, struct svc_serv *serv)
161 {
162 	memset(xprt, 0, sizeof(*xprt));
163 	xprt->xpt_class = xcl;
164 	xprt->xpt_ops = xcl->xcl_ops;
165 	kref_init(&xprt->xpt_ref);
166 	xprt->xpt_server = serv;
167 	INIT_LIST_HEAD(&xprt->xpt_list);
168 	INIT_LIST_HEAD(&xprt->xpt_ready);
169 	INIT_LIST_HEAD(&xprt->xpt_deferred);
170 	INIT_LIST_HEAD(&xprt->xpt_users);
171 	mutex_init(&xprt->xpt_mutex);
172 	spin_lock_init(&xprt->xpt_lock);
173 	set_bit(XPT_BUSY, &xprt->xpt_flags);
174 	xprt->xpt_net = get_net(net);
175 	strcpy(xprt->xpt_remotebuf, "uninitialized");
176 }
177 EXPORT_SYMBOL_GPL(svc_xprt_init);
178 
179 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
180 					 struct svc_serv *serv,
181 					 struct net *net,
182 					 const int family,
183 					 const unsigned short port,
184 					 int flags)
185 {
186 	struct sockaddr_in sin = {
187 		.sin_family		= AF_INET,
188 		.sin_addr.s_addr	= htonl(INADDR_ANY),
189 		.sin_port		= htons(port),
190 	};
191 #if IS_ENABLED(CONFIG_IPV6)
192 	struct sockaddr_in6 sin6 = {
193 		.sin6_family		= AF_INET6,
194 		.sin6_addr		= IN6ADDR_ANY_INIT,
195 		.sin6_port		= htons(port),
196 	};
197 #endif
198 	struct sockaddr *sap;
199 	size_t len;
200 
201 	switch (family) {
202 	case PF_INET:
203 		sap = (struct sockaddr *)&sin;
204 		len = sizeof(sin);
205 		break;
206 #if IS_ENABLED(CONFIG_IPV6)
207 	case PF_INET6:
208 		sap = (struct sockaddr *)&sin6;
209 		len = sizeof(sin6);
210 		break;
211 #endif
212 	default:
213 		return ERR_PTR(-EAFNOSUPPORT);
214 	}
215 
216 	return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
217 }
218 
219 /*
220  * svc_xprt_received conditionally queues the transport for processing
221  * by another thread. The caller must hold the XPT_BUSY bit and must
222  * not thereafter touch transport data.
223  *
224  * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
225  * insufficient) data.
226  */
227 static void svc_xprt_received(struct svc_xprt *xprt)
228 {
229 	if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
230 		WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
231 		return;
232 	}
233 
234 	/* As soon as we clear busy, the xprt could be closed and
235 	 * 'put', so we need a reference to call svc_enqueue_xprt with:
236 	 */
237 	svc_xprt_get(xprt);
238 	smp_mb__before_atomic();
239 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
240 	xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
241 	svc_xprt_put(xprt);
242 }
243 
244 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
245 {
246 	clear_bit(XPT_TEMP, &new->xpt_flags);
247 	spin_lock_bh(&serv->sv_lock);
248 	list_add(&new->xpt_list, &serv->sv_permsocks);
249 	spin_unlock_bh(&serv->sv_lock);
250 	svc_xprt_received(new);
251 }
252 
253 static int _svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
254 			    struct net *net, const int family,
255 			    const unsigned short port, int flags)
256 {
257 	struct svc_xprt_class *xcl;
258 
259 	spin_lock(&svc_xprt_class_lock);
260 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
261 		struct svc_xprt *newxprt;
262 		unsigned short newport;
263 
264 		if (strcmp(xprt_name, xcl->xcl_name))
265 			continue;
266 
267 		if (!try_module_get(xcl->xcl_owner))
268 			goto err;
269 
270 		spin_unlock(&svc_xprt_class_lock);
271 		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
272 		if (IS_ERR(newxprt)) {
273 			module_put(xcl->xcl_owner);
274 			return PTR_ERR(newxprt);
275 		}
276 		svc_add_new_perm_xprt(serv, newxprt);
277 		newport = svc_xprt_local_port(newxprt);
278 		return newport;
279 	}
280  err:
281 	spin_unlock(&svc_xprt_class_lock);
282 	/* This errno is exposed to user space.  Provide a reasonable
283 	 * perror msg for a bad transport. */
284 	return -EPROTONOSUPPORT;
285 }
286 
287 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
288 		    struct net *net, const int family,
289 		    const unsigned short port, int flags)
290 {
291 	int err;
292 
293 	dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
294 	err = _svc_create_xprt(serv, xprt_name, net, family, port, flags);
295 	if (err == -EPROTONOSUPPORT) {
296 		request_module("svc%s", xprt_name);
297 		err = _svc_create_xprt(serv, xprt_name, net, family, port, flags);
298 	}
299 	if (err < 0)
300 		dprintk("svc: transport %s not found, err %d\n",
301 			xprt_name, -err);
302 	return err;
303 }
304 EXPORT_SYMBOL_GPL(svc_create_xprt);
305 
306 /*
307  * Copy the local and remote xprt addresses to the rqstp structure
308  */
309 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
310 {
311 	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
312 	rqstp->rq_addrlen = xprt->xpt_remotelen;
313 
314 	/*
315 	 * Destination address in request is needed for binding the
316 	 * source address in RPC replies/callbacks later.
317 	 */
318 	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
319 	rqstp->rq_daddrlen = xprt->xpt_locallen;
320 }
321 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
322 
323 /**
324  * svc_print_addr - Format rq_addr field for printing
325  * @rqstp: svc_rqst struct containing address to print
326  * @buf: target buffer for formatted address
327  * @len: length of target buffer
328  *
329  */
330 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
331 {
332 	return __svc_print_addr(svc_addr(rqstp), buf, len);
333 }
334 EXPORT_SYMBOL_GPL(svc_print_addr);
335 
336 static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
337 {
338 	unsigned int limit = svc_rpc_per_connection_limit;
339 	int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
340 
341 	return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
342 }
343 
344 static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
345 {
346 	if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
347 		if (!svc_xprt_slots_in_range(xprt))
348 			return false;
349 		atomic_inc(&xprt->xpt_nr_rqsts);
350 		set_bit(RQ_DATA, &rqstp->rq_flags);
351 	}
352 	return true;
353 }
354 
355 static void svc_xprt_release_slot(struct svc_rqst *rqstp)
356 {
357 	struct svc_xprt	*xprt = rqstp->rq_xprt;
358 	if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
359 		atomic_dec(&xprt->xpt_nr_rqsts);
360 		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
361 		svc_xprt_enqueue(xprt);
362 	}
363 }
364 
365 static bool svc_xprt_ready(struct svc_xprt *xprt)
366 {
367 	unsigned long xpt_flags;
368 
369 	/*
370 	 * If another cpu has recently updated xpt_flags,
371 	 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to
372 	 * know about it; otherwise it's possible that both that cpu and
373 	 * this one could call svc_xprt_enqueue() without either
374 	 * svc_xprt_enqueue() recognizing that the conditions below
375 	 * are satisfied, and we could stall indefinitely:
376 	 */
377 	smp_rmb();
378 	xpt_flags = READ_ONCE(xprt->xpt_flags);
379 
380 	if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE)))
381 		return true;
382 	if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) {
383 		if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
384 		    svc_xprt_slots_in_range(xprt))
385 			return true;
386 		trace_svc_xprt_no_write_space(xprt);
387 		return false;
388 	}
389 	return false;
390 }
391 
392 void svc_xprt_do_enqueue(struct svc_xprt *xprt)
393 {
394 	struct svc_pool *pool;
395 	struct svc_rqst	*rqstp = NULL;
396 	int cpu;
397 
398 	if (!svc_xprt_ready(xprt))
399 		return;
400 
401 	/* Mark transport as busy. It will remain in this state until
402 	 * the provider calls svc_xprt_received. We update XPT_BUSY
403 	 * atomically because it also guards against trying to enqueue
404 	 * the transport twice.
405 	 */
406 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
407 		return;
408 
409 	cpu = get_cpu();
410 	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
411 
412 	atomic_long_inc(&pool->sp_stats.packets);
413 
414 	spin_lock_bh(&pool->sp_lock);
415 	list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
416 	pool->sp_stats.sockets_queued++;
417 	spin_unlock_bh(&pool->sp_lock);
418 
419 	/* find a thread for this xprt */
420 	rcu_read_lock();
421 	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
422 		if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags))
423 			continue;
424 		atomic_long_inc(&pool->sp_stats.threads_woken);
425 		rqstp->rq_qtime = ktime_get();
426 		wake_up_process(rqstp->rq_task);
427 		goto out_unlock;
428 	}
429 	set_bit(SP_CONGESTED, &pool->sp_flags);
430 	rqstp = NULL;
431 out_unlock:
432 	rcu_read_unlock();
433 	put_cpu();
434 	trace_svc_xprt_do_enqueue(xprt, rqstp);
435 }
436 EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue);
437 
438 /*
439  * Queue up a transport with data pending. If there are idle nfsd
440  * processes, wake 'em up.
441  *
442  */
443 void svc_xprt_enqueue(struct svc_xprt *xprt)
444 {
445 	if (test_bit(XPT_BUSY, &xprt->xpt_flags))
446 		return;
447 	xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
448 }
449 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
450 
451 /*
452  * Dequeue the first transport, if there is one.
453  */
454 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
455 {
456 	struct svc_xprt	*xprt = NULL;
457 
458 	if (list_empty(&pool->sp_sockets))
459 		goto out;
460 
461 	spin_lock_bh(&pool->sp_lock);
462 	if (likely(!list_empty(&pool->sp_sockets))) {
463 		xprt = list_first_entry(&pool->sp_sockets,
464 					struct svc_xprt, xpt_ready);
465 		list_del_init(&xprt->xpt_ready);
466 		svc_xprt_get(xprt);
467 	}
468 	spin_unlock_bh(&pool->sp_lock);
469 out:
470 	return xprt;
471 }
472 
473 /**
474  * svc_reserve - change the space reserved for the reply to a request.
475  * @rqstp:  The request in question
476  * @space: new max space to reserve
477  *
478  * Each request reserves some space on the output queue of the transport
479  * to make sure the reply fits.  This function reduces that reserved
480  * space to be the amount of space used already, plus @space.
481  *
482  */
483 void svc_reserve(struct svc_rqst *rqstp, int space)
484 {
485 	struct svc_xprt *xprt = rqstp->rq_xprt;
486 
487 	space += rqstp->rq_res.head[0].iov_len;
488 
489 	if (xprt && space < rqstp->rq_reserved) {
490 		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
491 		rqstp->rq_reserved = space;
492 		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
493 		svc_xprt_enqueue(xprt);
494 	}
495 }
496 EXPORT_SYMBOL_GPL(svc_reserve);
497 
498 static void svc_xprt_release(struct svc_rqst *rqstp)
499 {
500 	struct svc_xprt	*xprt = rqstp->rq_xprt;
501 
502 	xprt->xpt_ops->xpo_release_rqst(rqstp);
503 
504 	kfree(rqstp->rq_deferred);
505 	rqstp->rq_deferred = NULL;
506 
507 	svc_free_res_pages(rqstp);
508 	rqstp->rq_res.page_len = 0;
509 	rqstp->rq_res.page_base = 0;
510 
511 	/* Reset response buffer and release
512 	 * the reservation.
513 	 * But first, check that enough space was reserved
514 	 * for the reply, otherwise we have a bug!
515 	 */
516 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
517 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
518 		       rqstp->rq_reserved,
519 		       rqstp->rq_res.len);
520 
521 	rqstp->rq_res.head[0].iov_len = 0;
522 	svc_reserve(rqstp, 0);
523 	svc_xprt_release_slot(rqstp);
524 	rqstp->rq_xprt = NULL;
525 	svc_xprt_put(xprt);
526 }
527 
528 /*
529  * Some svc_serv's will have occasional work to do, even when a xprt is not
530  * waiting to be serviced. This function is there to "kick" a task in one of
531  * those services so that it can wake up and do that work. Note that we only
532  * bother with pool 0 as we don't need to wake up more than one thread for
533  * this purpose.
534  */
535 void svc_wake_up(struct svc_serv *serv)
536 {
537 	struct svc_rqst	*rqstp;
538 	struct svc_pool *pool;
539 
540 	pool = &serv->sv_pools[0];
541 
542 	rcu_read_lock();
543 	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
544 		/* skip any that aren't queued */
545 		if (test_bit(RQ_BUSY, &rqstp->rq_flags))
546 			continue;
547 		rcu_read_unlock();
548 		wake_up_process(rqstp->rq_task);
549 		trace_svc_wake_up(rqstp->rq_task->pid);
550 		return;
551 	}
552 	rcu_read_unlock();
553 
554 	/* No free entries available */
555 	set_bit(SP_TASK_PENDING, &pool->sp_flags);
556 	smp_wmb();
557 	trace_svc_wake_up(0);
558 }
559 EXPORT_SYMBOL_GPL(svc_wake_up);
560 
561 int svc_port_is_privileged(struct sockaddr *sin)
562 {
563 	switch (sin->sa_family) {
564 	case AF_INET:
565 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
566 			< PROT_SOCK;
567 	case AF_INET6:
568 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
569 			< PROT_SOCK;
570 	default:
571 		return 0;
572 	}
573 }
574 
575 /*
576  * Make sure that we don't have too many active connections. If we have,
577  * something must be dropped. It's not clear what will happen if we allow
578  * "too many" connections, but when dealing with network-facing software,
579  * we have to code defensively. Here we do that by imposing hard limits.
580  *
581  * There's no point in trying to do random drop here for DoS
582  * prevention. The NFS clients does 1 reconnect in 15 seconds. An
583  * attacker can easily beat that.
584  *
585  * The only somewhat efficient mechanism would be if drop old
586  * connections from the same IP first. But right now we don't even
587  * record the client IP in svc_sock.
588  *
589  * single-threaded services that expect a lot of clients will probably
590  * need to set sv_maxconn to override the default value which is based
591  * on the number of threads
592  */
593 static void svc_check_conn_limits(struct svc_serv *serv)
594 {
595 	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
596 				(serv->sv_nrthreads+3) * 20;
597 
598 	if (serv->sv_tmpcnt > limit) {
599 		struct svc_xprt *xprt = NULL;
600 		spin_lock_bh(&serv->sv_lock);
601 		if (!list_empty(&serv->sv_tempsocks)) {
602 			/* Try to help the admin */
603 			net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
604 					       serv->sv_name, serv->sv_maxconn ?
605 					       "max number of connections" :
606 					       "number of threads");
607 			/*
608 			 * Always select the oldest connection. It's not fair,
609 			 * but so is life
610 			 */
611 			xprt = list_entry(serv->sv_tempsocks.prev,
612 					  struct svc_xprt,
613 					  xpt_list);
614 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
615 			svc_xprt_get(xprt);
616 		}
617 		spin_unlock_bh(&serv->sv_lock);
618 
619 		if (xprt) {
620 			svc_xprt_enqueue(xprt);
621 			svc_xprt_put(xprt);
622 		}
623 	}
624 }
625 
626 static int svc_alloc_arg(struct svc_rqst *rqstp)
627 {
628 	struct svc_serv *serv = rqstp->rq_server;
629 	struct xdr_buf *arg;
630 	int pages;
631 	int i;
632 
633 	/* now allocate needed pages.  If we get a failure, sleep briefly */
634 	pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
635 	if (pages > RPCSVC_MAXPAGES) {
636 		pr_warn_once("svc: warning: pages=%u > RPCSVC_MAXPAGES=%lu\n",
637 			     pages, RPCSVC_MAXPAGES);
638 		/* use as many pages as possible */
639 		pages = RPCSVC_MAXPAGES;
640 	}
641 	for (i = 0; i < pages ; i++)
642 		while (rqstp->rq_pages[i] == NULL) {
643 			struct page *p = alloc_page(GFP_KERNEL);
644 			if (!p) {
645 				set_current_state(TASK_INTERRUPTIBLE);
646 				if (signalled() || kthread_should_stop()) {
647 					set_current_state(TASK_RUNNING);
648 					return -EINTR;
649 				}
650 				schedule_timeout(msecs_to_jiffies(500));
651 			}
652 			rqstp->rq_pages[i] = p;
653 		}
654 	rqstp->rq_page_end = &rqstp->rq_pages[i];
655 	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
656 
657 	/* Make arg->head point to first page and arg->pages point to rest */
658 	arg = &rqstp->rq_arg;
659 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
660 	arg->head[0].iov_len = PAGE_SIZE;
661 	arg->pages = rqstp->rq_pages + 1;
662 	arg->page_base = 0;
663 	/* save at least one page for response */
664 	arg->page_len = (pages-2)*PAGE_SIZE;
665 	arg->len = (pages-1)*PAGE_SIZE;
666 	arg->tail[0].iov_len = 0;
667 	return 0;
668 }
669 
670 static bool
671 rqst_should_sleep(struct svc_rqst *rqstp)
672 {
673 	struct svc_pool		*pool = rqstp->rq_pool;
674 
675 	/* did someone call svc_wake_up? */
676 	if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
677 		return false;
678 
679 	/* was a socket queued? */
680 	if (!list_empty(&pool->sp_sockets))
681 		return false;
682 
683 	/* are we shutting down? */
684 	if (signalled() || kthread_should_stop())
685 		return false;
686 
687 	/* are we freezing? */
688 	if (freezing(current))
689 		return false;
690 
691 	return true;
692 }
693 
694 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
695 {
696 	struct svc_pool		*pool = rqstp->rq_pool;
697 	long			time_left = 0;
698 
699 	/* rq_xprt should be clear on entry */
700 	WARN_ON_ONCE(rqstp->rq_xprt);
701 
702 	rqstp->rq_xprt = svc_xprt_dequeue(pool);
703 	if (rqstp->rq_xprt)
704 		goto out_found;
705 
706 	/*
707 	 * We have to be able to interrupt this wait
708 	 * to bring down the daemons ...
709 	 */
710 	set_current_state(TASK_INTERRUPTIBLE);
711 	smp_mb__before_atomic();
712 	clear_bit(SP_CONGESTED, &pool->sp_flags);
713 	clear_bit(RQ_BUSY, &rqstp->rq_flags);
714 	smp_mb__after_atomic();
715 
716 	if (likely(rqst_should_sleep(rqstp)))
717 		time_left = schedule_timeout(timeout);
718 	else
719 		__set_current_state(TASK_RUNNING);
720 
721 	try_to_freeze();
722 
723 	set_bit(RQ_BUSY, &rqstp->rq_flags);
724 	smp_mb__after_atomic();
725 	rqstp->rq_xprt = svc_xprt_dequeue(pool);
726 	if (rqstp->rq_xprt)
727 		goto out_found;
728 
729 	if (!time_left)
730 		atomic_long_inc(&pool->sp_stats.threads_timedout);
731 
732 	if (signalled() || kthread_should_stop())
733 		return ERR_PTR(-EINTR);
734 	return ERR_PTR(-EAGAIN);
735 out_found:
736 	/* Normally we will wait up to 5 seconds for any required
737 	 * cache information to be provided.
738 	 */
739 	if (!test_bit(SP_CONGESTED, &pool->sp_flags))
740 		rqstp->rq_chandle.thread_wait = 5*HZ;
741 	else
742 		rqstp->rq_chandle.thread_wait = 1*HZ;
743 	trace_svc_xprt_dequeue(rqstp);
744 	return rqstp->rq_xprt;
745 }
746 
747 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
748 {
749 	spin_lock_bh(&serv->sv_lock);
750 	set_bit(XPT_TEMP, &newxpt->xpt_flags);
751 	list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
752 	serv->sv_tmpcnt++;
753 	if (serv->sv_temptimer.function == NULL) {
754 		/* setup timer to age temp transports */
755 		serv->sv_temptimer.function = svc_age_temp_xprts;
756 		mod_timer(&serv->sv_temptimer,
757 			  jiffies + svc_conn_age_period * HZ);
758 	}
759 	spin_unlock_bh(&serv->sv_lock);
760 	svc_xprt_received(newxpt);
761 }
762 
763 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
764 {
765 	struct svc_serv *serv = rqstp->rq_server;
766 	int len = 0;
767 
768 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
769 		dprintk("svc_recv: found XPT_CLOSE\n");
770 		if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
771 			xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
772 		svc_delete_xprt(xprt);
773 		/* Leave XPT_BUSY set on the dead xprt: */
774 		goto out;
775 	}
776 	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
777 		struct svc_xprt *newxpt;
778 		/*
779 		 * We know this module_get will succeed because the
780 		 * listener holds a reference too
781 		 */
782 		__module_get(xprt->xpt_class->xcl_owner);
783 		svc_check_conn_limits(xprt->xpt_server);
784 		newxpt = xprt->xpt_ops->xpo_accept(xprt);
785 		if (newxpt)
786 			svc_add_new_temp_xprt(serv, newxpt);
787 		else
788 			module_put(xprt->xpt_class->xcl_owner);
789 	} else if (svc_xprt_reserve_slot(rqstp, xprt)) {
790 		/* XPT_DATA|XPT_DEFERRED case: */
791 		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
792 			rqstp, rqstp->rq_pool->sp_id, xprt,
793 			kref_read(&xprt->xpt_ref));
794 		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
795 		if (rqstp->rq_deferred)
796 			len = svc_deferred_recv(rqstp);
797 		else
798 			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
799 		rqstp->rq_stime = ktime_get();
800 		rqstp->rq_reserved = serv->sv_max_mesg;
801 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
802 	}
803 	/* clear XPT_BUSY: */
804 	svc_xprt_received(xprt);
805 out:
806 	trace_svc_handle_xprt(xprt, len);
807 	return len;
808 }
809 
810 /*
811  * Receive the next request on any transport.  This code is carefully
812  * organised not to touch any cachelines in the shared svc_serv
813  * structure, only cachelines in the local svc_pool.
814  */
815 int svc_recv(struct svc_rqst *rqstp, long timeout)
816 {
817 	struct svc_xprt		*xprt = NULL;
818 	struct svc_serv		*serv = rqstp->rq_server;
819 	int			len, err;
820 
821 	dprintk("svc: server %p waiting for data (to = %ld)\n",
822 		rqstp, timeout);
823 
824 	if (rqstp->rq_xprt)
825 		printk(KERN_ERR
826 			"svc_recv: service %p, transport not NULL!\n",
827 			 rqstp);
828 
829 	err = svc_alloc_arg(rqstp);
830 	if (err)
831 		goto out;
832 
833 	try_to_freeze();
834 	cond_resched();
835 	err = -EINTR;
836 	if (signalled() || kthread_should_stop())
837 		goto out;
838 
839 	xprt = svc_get_next_xprt(rqstp, timeout);
840 	if (IS_ERR(xprt)) {
841 		err = PTR_ERR(xprt);
842 		goto out;
843 	}
844 
845 	len = svc_handle_xprt(rqstp, xprt);
846 
847 	/* No data, incomplete (TCP) read, or accept() */
848 	err = -EAGAIN;
849 	if (len <= 0)
850 		goto out_release;
851 
852 	clear_bit(XPT_OLD, &xprt->xpt_flags);
853 
854 	xprt->xpt_ops->xpo_secure_port(rqstp);
855 	rqstp->rq_chandle.defer = svc_defer;
856 	rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
857 
858 	if (serv->sv_stats)
859 		serv->sv_stats->netcnt++;
860 	trace_svc_recv(rqstp, len);
861 	return len;
862 out_release:
863 	rqstp->rq_res.len = 0;
864 	svc_xprt_release(rqstp);
865 out:
866 	return err;
867 }
868 EXPORT_SYMBOL_GPL(svc_recv);
869 
870 /*
871  * Drop request
872  */
873 void svc_drop(struct svc_rqst *rqstp)
874 {
875 	trace_svc_drop(rqstp);
876 	dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
877 	svc_xprt_release(rqstp);
878 }
879 EXPORT_SYMBOL_GPL(svc_drop);
880 
881 /*
882  * Return reply to client.
883  */
884 int svc_send(struct svc_rqst *rqstp)
885 {
886 	struct svc_xprt	*xprt;
887 	int		len = -EFAULT;
888 	struct xdr_buf	*xb;
889 
890 	xprt = rqstp->rq_xprt;
891 	if (!xprt)
892 		goto out;
893 
894 	/* release the receive skb before sending the reply */
895 	xprt->xpt_ops->xpo_release_rqst(rqstp);
896 
897 	/* calculate over-all length */
898 	xb = &rqstp->rq_res;
899 	xb->len = xb->head[0].iov_len +
900 		xb->page_len +
901 		xb->tail[0].iov_len;
902 
903 	/* Grab mutex to serialize outgoing data. */
904 	mutex_lock(&xprt->xpt_mutex);
905 	trace_svc_stats_latency(rqstp);
906 	if (test_bit(XPT_DEAD, &xprt->xpt_flags)
907 			|| test_bit(XPT_CLOSE, &xprt->xpt_flags))
908 		len = -ENOTCONN;
909 	else
910 		len = xprt->xpt_ops->xpo_sendto(rqstp);
911 	mutex_unlock(&xprt->xpt_mutex);
912 	trace_svc_send(rqstp, len);
913 	svc_xprt_release(rqstp);
914 
915 	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
916 		len = 0;
917 out:
918 	return len;
919 }
920 
921 /*
922  * Timer function to close old temporary transports, using
923  * a mark-and-sweep algorithm.
924  */
925 static void svc_age_temp_xprts(struct timer_list *t)
926 {
927 	struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
928 	struct svc_xprt *xprt;
929 	struct list_head *le, *next;
930 
931 	dprintk("svc_age_temp_xprts\n");
932 
933 	if (!spin_trylock_bh(&serv->sv_lock)) {
934 		/* busy, try again 1 sec later */
935 		dprintk("svc_age_temp_xprts: busy\n");
936 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
937 		return;
938 	}
939 
940 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
941 		xprt = list_entry(le, struct svc_xprt, xpt_list);
942 
943 		/* First time through, just mark it OLD. Second time
944 		 * through, close it. */
945 		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
946 			continue;
947 		if (kref_read(&xprt->xpt_ref) > 1 ||
948 		    test_bit(XPT_BUSY, &xprt->xpt_flags))
949 			continue;
950 		list_del_init(le);
951 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
952 		dprintk("queuing xprt %p for closing\n", xprt);
953 
954 		/* a thread will dequeue and close it soon */
955 		svc_xprt_enqueue(xprt);
956 	}
957 	spin_unlock_bh(&serv->sv_lock);
958 
959 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
960 }
961 
962 /* Close temporary transports whose xpt_local matches server_addr immediately
963  * instead of waiting for them to be picked up by the timer.
964  *
965  * This is meant to be called from a notifier_block that runs when an ip
966  * address is deleted.
967  */
968 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
969 {
970 	struct svc_xprt *xprt;
971 	struct list_head *le, *next;
972 	LIST_HEAD(to_be_closed);
973 
974 	spin_lock_bh(&serv->sv_lock);
975 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
976 		xprt = list_entry(le, struct svc_xprt, xpt_list);
977 		if (rpc_cmp_addr(server_addr, (struct sockaddr *)
978 				&xprt->xpt_local)) {
979 			dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
980 			list_move(le, &to_be_closed);
981 		}
982 	}
983 	spin_unlock_bh(&serv->sv_lock);
984 
985 	while (!list_empty(&to_be_closed)) {
986 		le = to_be_closed.next;
987 		list_del_init(le);
988 		xprt = list_entry(le, struct svc_xprt, xpt_list);
989 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
990 		set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
991 		dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
992 				xprt);
993 		svc_xprt_enqueue(xprt);
994 	}
995 }
996 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
997 
998 static void call_xpt_users(struct svc_xprt *xprt)
999 {
1000 	struct svc_xpt_user *u;
1001 
1002 	spin_lock(&xprt->xpt_lock);
1003 	while (!list_empty(&xprt->xpt_users)) {
1004 		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1005 		list_del_init(&u->list);
1006 		u->callback(u);
1007 	}
1008 	spin_unlock(&xprt->xpt_lock);
1009 }
1010 
1011 /*
1012  * Remove a dead transport
1013  */
1014 static void svc_delete_xprt(struct svc_xprt *xprt)
1015 {
1016 	struct svc_serv	*serv = xprt->xpt_server;
1017 	struct svc_deferred_req *dr;
1018 
1019 	/* Only do this once */
1020 	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1021 		BUG();
1022 
1023 	dprintk("svc: svc_delete_xprt(%p)\n", xprt);
1024 	xprt->xpt_ops->xpo_detach(xprt);
1025 
1026 	spin_lock_bh(&serv->sv_lock);
1027 	list_del_init(&xprt->xpt_list);
1028 	WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1029 	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1030 		serv->sv_tmpcnt--;
1031 	spin_unlock_bh(&serv->sv_lock);
1032 
1033 	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1034 		kfree(dr);
1035 
1036 	call_xpt_users(xprt);
1037 	svc_xprt_put(xprt);
1038 }
1039 
1040 void svc_close_xprt(struct svc_xprt *xprt)
1041 {
1042 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
1043 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1044 		/* someone else will have to effect the close */
1045 		return;
1046 	/*
1047 	 * We expect svc_close_xprt() to work even when no threads are
1048 	 * running (e.g., while configuring the server before starting
1049 	 * any threads), so if the transport isn't busy, we delete
1050 	 * it ourself:
1051 	 */
1052 	svc_delete_xprt(xprt);
1053 }
1054 EXPORT_SYMBOL_GPL(svc_close_xprt);
1055 
1056 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1057 {
1058 	struct svc_xprt *xprt;
1059 	int ret = 0;
1060 
1061 	spin_lock(&serv->sv_lock);
1062 	list_for_each_entry(xprt, xprt_list, xpt_list) {
1063 		if (xprt->xpt_net != net)
1064 			continue;
1065 		ret++;
1066 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1067 		svc_xprt_enqueue(xprt);
1068 	}
1069 	spin_unlock(&serv->sv_lock);
1070 	return ret;
1071 }
1072 
1073 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1074 {
1075 	struct svc_pool *pool;
1076 	struct svc_xprt *xprt;
1077 	struct svc_xprt *tmp;
1078 	int i;
1079 
1080 	for (i = 0; i < serv->sv_nrpools; i++) {
1081 		pool = &serv->sv_pools[i];
1082 
1083 		spin_lock_bh(&pool->sp_lock);
1084 		list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1085 			if (xprt->xpt_net != net)
1086 				continue;
1087 			list_del_init(&xprt->xpt_ready);
1088 			spin_unlock_bh(&pool->sp_lock);
1089 			return xprt;
1090 		}
1091 		spin_unlock_bh(&pool->sp_lock);
1092 	}
1093 	return NULL;
1094 }
1095 
1096 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1097 {
1098 	struct svc_xprt *xprt;
1099 
1100 	while ((xprt = svc_dequeue_net(serv, net))) {
1101 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1102 		svc_delete_xprt(xprt);
1103 	}
1104 }
1105 
1106 /*
1107  * Server threads may still be running (especially in the case where the
1108  * service is still running in other network namespaces).
1109  *
1110  * So we shut down sockets the same way we would on a running server, by
1111  * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1112  * the close.  In the case there are no such other threads,
1113  * threads running, svc_clean_up_xprts() does a simple version of a
1114  * server's main event loop, and in the case where there are other
1115  * threads, we may need to wait a little while and then check again to
1116  * see if they're done.
1117  */
1118 void svc_close_net(struct svc_serv *serv, struct net *net)
1119 {
1120 	int delay = 0;
1121 
1122 	while (svc_close_list(serv, &serv->sv_permsocks, net) +
1123 	       svc_close_list(serv, &serv->sv_tempsocks, net)) {
1124 
1125 		svc_clean_up_xprts(serv, net);
1126 		msleep(delay++);
1127 	}
1128 }
1129 
1130 /*
1131  * Handle defer and revisit of requests
1132  */
1133 
1134 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1135 {
1136 	struct svc_deferred_req *dr =
1137 		container_of(dreq, struct svc_deferred_req, handle);
1138 	struct svc_xprt *xprt = dr->xprt;
1139 
1140 	spin_lock(&xprt->xpt_lock);
1141 	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1142 	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1143 		spin_unlock(&xprt->xpt_lock);
1144 		dprintk("revisit canceled\n");
1145 		svc_xprt_put(xprt);
1146 		trace_svc_drop_deferred(dr);
1147 		kfree(dr);
1148 		return;
1149 	}
1150 	dprintk("revisit queued\n");
1151 	dr->xprt = NULL;
1152 	list_add(&dr->handle.recent, &xprt->xpt_deferred);
1153 	spin_unlock(&xprt->xpt_lock);
1154 	svc_xprt_enqueue(xprt);
1155 	svc_xprt_put(xprt);
1156 }
1157 
1158 /*
1159  * Save the request off for later processing. The request buffer looks
1160  * like this:
1161  *
1162  * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1163  *
1164  * This code can only handle requests that consist of an xprt-header
1165  * and rpc-header.
1166  */
1167 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1168 {
1169 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1170 	struct svc_deferred_req *dr;
1171 
1172 	if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1173 		return NULL; /* if more than a page, give up FIXME */
1174 	if (rqstp->rq_deferred) {
1175 		dr = rqstp->rq_deferred;
1176 		rqstp->rq_deferred = NULL;
1177 	} else {
1178 		size_t skip;
1179 		size_t size;
1180 		/* FIXME maybe discard if size too large */
1181 		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1182 		dr = kmalloc(size, GFP_KERNEL);
1183 		if (dr == NULL)
1184 			return NULL;
1185 
1186 		dr->handle.owner = rqstp->rq_server;
1187 		dr->prot = rqstp->rq_prot;
1188 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1189 		dr->addrlen = rqstp->rq_addrlen;
1190 		dr->daddr = rqstp->rq_daddr;
1191 		dr->argslen = rqstp->rq_arg.len >> 2;
1192 		dr->xprt_hlen = rqstp->rq_xprt_hlen;
1193 
1194 		/* back up head to the start of the buffer and copy */
1195 		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1196 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1197 		       dr->argslen << 2);
1198 	}
1199 	svc_xprt_get(rqstp->rq_xprt);
1200 	dr->xprt = rqstp->rq_xprt;
1201 	set_bit(RQ_DROPME, &rqstp->rq_flags);
1202 
1203 	dr->handle.revisit = svc_revisit;
1204 	trace_svc_defer(rqstp);
1205 	return &dr->handle;
1206 }
1207 
1208 /*
1209  * recv data from a deferred request into an active one
1210  */
1211 static int svc_deferred_recv(struct svc_rqst *rqstp)
1212 {
1213 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1214 
1215 	/* setup iov_base past transport header */
1216 	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1217 	/* The iov_len does not include the transport header bytes */
1218 	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1219 	rqstp->rq_arg.page_len = 0;
1220 	/* The rq_arg.len includes the transport header bytes */
1221 	rqstp->rq_arg.len     = dr->argslen<<2;
1222 	rqstp->rq_prot        = dr->prot;
1223 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1224 	rqstp->rq_addrlen     = dr->addrlen;
1225 	/* Save off transport header len in case we get deferred again */
1226 	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1227 	rqstp->rq_daddr       = dr->daddr;
1228 	rqstp->rq_respages    = rqstp->rq_pages;
1229 	return (dr->argslen<<2) - dr->xprt_hlen;
1230 }
1231 
1232 
1233 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1234 {
1235 	struct svc_deferred_req *dr = NULL;
1236 
1237 	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1238 		return NULL;
1239 	spin_lock(&xprt->xpt_lock);
1240 	if (!list_empty(&xprt->xpt_deferred)) {
1241 		dr = list_entry(xprt->xpt_deferred.next,
1242 				struct svc_deferred_req,
1243 				handle.recent);
1244 		list_del_init(&dr->handle.recent);
1245 		trace_svc_revisit_deferred(dr);
1246 	} else
1247 		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1248 	spin_unlock(&xprt->xpt_lock);
1249 	return dr;
1250 }
1251 
1252 /**
1253  * svc_find_xprt - find an RPC transport instance
1254  * @serv: pointer to svc_serv to search
1255  * @xcl_name: C string containing transport's class name
1256  * @net: owner net pointer
1257  * @af: Address family of transport's local address
1258  * @port: transport's IP port number
1259  *
1260  * Return the transport instance pointer for the endpoint accepting
1261  * connections/peer traffic from the specified transport class,
1262  * address family and port.
1263  *
1264  * Specifying 0 for the address family or port is effectively a
1265  * wild-card, and will result in matching the first transport in the
1266  * service's list that has a matching class name.
1267  */
1268 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1269 			       struct net *net, const sa_family_t af,
1270 			       const unsigned short port)
1271 {
1272 	struct svc_xprt *xprt;
1273 	struct svc_xprt *found = NULL;
1274 
1275 	/* Sanity check the args */
1276 	if (serv == NULL || xcl_name == NULL)
1277 		return found;
1278 
1279 	spin_lock_bh(&serv->sv_lock);
1280 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1281 		if (xprt->xpt_net != net)
1282 			continue;
1283 		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1284 			continue;
1285 		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1286 			continue;
1287 		if (port != 0 && port != svc_xprt_local_port(xprt))
1288 			continue;
1289 		found = xprt;
1290 		svc_xprt_get(xprt);
1291 		break;
1292 	}
1293 	spin_unlock_bh(&serv->sv_lock);
1294 	return found;
1295 }
1296 EXPORT_SYMBOL_GPL(svc_find_xprt);
1297 
1298 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1299 			     char *pos, int remaining)
1300 {
1301 	int len;
1302 
1303 	len = snprintf(pos, remaining, "%s %u\n",
1304 			xprt->xpt_class->xcl_name,
1305 			svc_xprt_local_port(xprt));
1306 	if (len >= remaining)
1307 		return -ENAMETOOLONG;
1308 	return len;
1309 }
1310 
1311 /**
1312  * svc_xprt_names - format a buffer with a list of transport names
1313  * @serv: pointer to an RPC service
1314  * @buf: pointer to a buffer to be filled in
1315  * @buflen: length of buffer to be filled in
1316  *
1317  * Fills in @buf with a string containing a list of transport names,
1318  * each name terminated with '\n'.
1319  *
1320  * Returns positive length of the filled-in string on success; otherwise
1321  * a negative errno value is returned if an error occurs.
1322  */
1323 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1324 {
1325 	struct svc_xprt *xprt;
1326 	int len, totlen;
1327 	char *pos;
1328 
1329 	/* Sanity check args */
1330 	if (!serv)
1331 		return 0;
1332 
1333 	spin_lock_bh(&serv->sv_lock);
1334 
1335 	pos = buf;
1336 	totlen = 0;
1337 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1338 		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1339 		if (len < 0) {
1340 			*buf = '\0';
1341 			totlen = len;
1342 		}
1343 		if (len <= 0)
1344 			break;
1345 
1346 		pos += len;
1347 		totlen += len;
1348 	}
1349 
1350 	spin_unlock_bh(&serv->sv_lock);
1351 	return totlen;
1352 }
1353 EXPORT_SYMBOL_GPL(svc_xprt_names);
1354 
1355 
1356 /*----------------------------------------------------------------------------*/
1357 
1358 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1359 {
1360 	unsigned int pidx = (unsigned int)*pos;
1361 	struct svc_serv *serv = m->private;
1362 
1363 	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1364 
1365 	if (!pidx)
1366 		return SEQ_START_TOKEN;
1367 	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1368 }
1369 
1370 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1371 {
1372 	struct svc_pool *pool = p;
1373 	struct svc_serv *serv = m->private;
1374 
1375 	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1376 
1377 	if (p == SEQ_START_TOKEN) {
1378 		pool = &serv->sv_pools[0];
1379 	} else {
1380 		unsigned int pidx = (pool - &serv->sv_pools[0]);
1381 		if (pidx < serv->sv_nrpools-1)
1382 			pool = &serv->sv_pools[pidx+1];
1383 		else
1384 			pool = NULL;
1385 	}
1386 	++*pos;
1387 	return pool;
1388 }
1389 
1390 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1391 {
1392 }
1393 
1394 static int svc_pool_stats_show(struct seq_file *m, void *p)
1395 {
1396 	struct svc_pool *pool = p;
1397 
1398 	if (p == SEQ_START_TOKEN) {
1399 		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1400 		return 0;
1401 	}
1402 
1403 	seq_printf(m, "%u %lu %lu %lu %lu\n",
1404 		pool->sp_id,
1405 		(unsigned long)atomic_long_read(&pool->sp_stats.packets),
1406 		pool->sp_stats.sockets_queued,
1407 		(unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1408 		(unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1409 
1410 	return 0;
1411 }
1412 
1413 static const struct seq_operations svc_pool_stats_seq_ops = {
1414 	.start	= svc_pool_stats_start,
1415 	.next	= svc_pool_stats_next,
1416 	.stop	= svc_pool_stats_stop,
1417 	.show	= svc_pool_stats_show,
1418 };
1419 
1420 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1421 {
1422 	int err;
1423 
1424 	err = seq_open(file, &svc_pool_stats_seq_ops);
1425 	if (!err)
1426 		((struct seq_file *) file->private_data)->private = serv;
1427 	return err;
1428 }
1429 EXPORT_SYMBOL(svc_pool_stats_open);
1430 
1431 /*----------------------------------------------------------------------------*/
1432