1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/net/sunrpc/svc_xprt.c 4 * 5 * Author: Tom Tucker <tom@opengridcomputing.com> 6 */ 7 8 #include <linux/sched.h> 9 #include <linux/sched/mm.h> 10 #include <linux/errno.h> 11 #include <linux/freezer.h> 12 #include <linux/kthread.h> 13 #include <linux/slab.h> 14 #include <net/sock.h> 15 #include <linux/sunrpc/addr.h> 16 #include <linux/sunrpc/stats.h> 17 #include <linux/sunrpc/svc_xprt.h> 18 #include <linux/sunrpc/svcsock.h> 19 #include <linux/sunrpc/xprt.h> 20 #include <linux/module.h> 21 #include <linux/netdevice.h> 22 #include <trace/events/sunrpc.h> 23 24 #define RPCDBG_FACILITY RPCDBG_SVCXPRT 25 26 static unsigned int svc_rpc_per_connection_limit __read_mostly; 27 module_param(svc_rpc_per_connection_limit, uint, 0644); 28 29 30 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt); 31 static int svc_deferred_recv(struct svc_rqst *rqstp); 32 static struct cache_deferred_req *svc_defer(struct cache_req *req); 33 static void svc_age_temp_xprts(struct timer_list *t); 34 static void svc_delete_xprt(struct svc_xprt *xprt); 35 36 /* apparently the "standard" is that clients close 37 * idle connections after 5 minutes, servers after 38 * 6 minutes 39 * http://nfsv4bat.org/Documents/ConnectAThon/1996/nfstcp.pdf 40 */ 41 static int svc_conn_age_period = 6*60; 42 43 /* List of registered transport classes */ 44 static DEFINE_SPINLOCK(svc_xprt_class_lock); 45 static LIST_HEAD(svc_xprt_class_list); 46 47 /* SMP locking strategy: 48 * 49 * svc_pool->sp_lock protects most of the fields of that pool. 50 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt. 51 * when both need to be taken (rare), svc_serv->sv_lock is first. 52 * The "service mutex" protects svc_serv->sv_nrthread. 53 * svc_sock->sk_lock protects the svc_sock->sk_deferred list 54 * and the ->sk_info_authunix cache. 55 * 56 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being 57 * enqueued multiply. During normal transport processing this bit 58 * is set by svc_xprt_enqueue and cleared by svc_xprt_received. 59 * Providers should not manipulate this bit directly. 60 * 61 * Some flags can be set to certain values at any time 62 * providing that certain rules are followed: 63 * 64 * XPT_CONN, XPT_DATA: 65 * - Can be set or cleared at any time. 66 * - After a set, svc_xprt_enqueue must be called to enqueue 67 * the transport for processing. 68 * - After a clear, the transport must be read/accepted. 69 * If this succeeds, it must be set again. 70 * XPT_CLOSE: 71 * - Can set at any time. It is never cleared. 72 * XPT_DEAD: 73 * - Can only be set while XPT_BUSY is held which ensures 74 * that no other thread will be using the transport or will 75 * try to set XPT_DEAD. 76 */ 77 int svc_reg_xprt_class(struct svc_xprt_class *xcl) 78 { 79 struct svc_xprt_class *cl; 80 int res = -EEXIST; 81 82 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name); 83 84 INIT_LIST_HEAD(&xcl->xcl_list); 85 spin_lock(&svc_xprt_class_lock); 86 /* Make sure there isn't already a class with the same name */ 87 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) { 88 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0) 89 goto out; 90 } 91 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list); 92 res = 0; 93 out: 94 spin_unlock(&svc_xprt_class_lock); 95 return res; 96 } 97 EXPORT_SYMBOL_GPL(svc_reg_xprt_class); 98 99 void svc_unreg_xprt_class(struct svc_xprt_class *xcl) 100 { 101 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name); 102 spin_lock(&svc_xprt_class_lock); 103 list_del_init(&xcl->xcl_list); 104 spin_unlock(&svc_xprt_class_lock); 105 } 106 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class); 107 108 /** 109 * svc_print_xprts - Format the transport list for printing 110 * @buf: target buffer for formatted address 111 * @maxlen: length of target buffer 112 * 113 * Fills in @buf with a string containing a list of transport names, each name 114 * terminated with '\n'. If the buffer is too small, some entries may be 115 * missing, but it is guaranteed that all lines in the output buffer are 116 * complete. 117 * 118 * Returns positive length of the filled-in string. 119 */ 120 int svc_print_xprts(char *buf, int maxlen) 121 { 122 struct svc_xprt_class *xcl; 123 char tmpstr[80]; 124 int len = 0; 125 buf[0] = '\0'; 126 127 spin_lock(&svc_xprt_class_lock); 128 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { 129 int slen; 130 131 slen = snprintf(tmpstr, sizeof(tmpstr), "%s %d\n", 132 xcl->xcl_name, xcl->xcl_max_payload); 133 if (slen >= sizeof(tmpstr) || len + slen >= maxlen) 134 break; 135 len += slen; 136 strcat(buf, tmpstr); 137 } 138 spin_unlock(&svc_xprt_class_lock); 139 140 return len; 141 } 142 143 /** 144 * svc_xprt_deferred_close - Close a transport 145 * @xprt: transport instance 146 * 147 * Used in contexts that need to defer the work of shutting down 148 * the transport to an nfsd thread. 149 */ 150 void svc_xprt_deferred_close(struct svc_xprt *xprt) 151 { 152 if (!test_and_set_bit(XPT_CLOSE, &xprt->xpt_flags)) 153 svc_xprt_enqueue(xprt); 154 } 155 EXPORT_SYMBOL_GPL(svc_xprt_deferred_close); 156 157 static void svc_xprt_free(struct kref *kref) 158 { 159 struct svc_xprt *xprt = 160 container_of(kref, struct svc_xprt, xpt_ref); 161 struct module *owner = xprt->xpt_class->xcl_owner; 162 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags)) 163 svcauth_unix_info_release(xprt); 164 put_cred(xprt->xpt_cred); 165 put_net_track(xprt->xpt_net, &xprt->ns_tracker); 166 /* See comment on corresponding get in xs_setup_bc_tcp(): */ 167 if (xprt->xpt_bc_xprt) 168 xprt_put(xprt->xpt_bc_xprt); 169 if (xprt->xpt_bc_xps) 170 xprt_switch_put(xprt->xpt_bc_xps); 171 trace_svc_xprt_free(xprt); 172 xprt->xpt_ops->xpo_free(xprt); 173 module_put(owner); 174 } 175 176 void svc_xprt_put(struct svc_xprt *xprt) 177 { 178 kref_put(&xprt->xpt_ref, svc_xprt_free); 179 } 180 EXPORT_SYMBOL_GPL(svc_xprt_put); 181 182 /* 183 * Called by transport drivers to initialize the transport independent 184 * portion of the transport instance. 185 */ 186 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl, 187 struct svc_xprt *xprt, struct svc_serv *serv) 188 { 189 memset(xprt, 0, sizeof(*xprt)); 190 xprt->xpt_class = xcl; 191 xprt->xpt_ops = xcl->xcl_ops; 192 kref_init(&xprt->xpt_ref); 193 xprt->xpt_server = serv; 194 INIT_LIST_HEAD(&xprt->xpt_list); 195 INIT_LIST_HEAD(&xprt->xpt_ready); 196 INIT_LIST_HEAD(&xprt->xpt_deferred); 197 INIT_LIST_HEAD(&xprt->xpt_users); 198 mutex_init(&xprt->xpt_mutex); 199 spin_lock_init(&xprt->xpt_lock); 200 set_bit(XPT_BUSY, &xprt->xpt_flags); 201 xprt->xpt_net = get_net_track(net, &xprt->ns_tracker, GFP_ATOMIC); 202 strcpy(xprt->xpt_remotebuf, "uninitialized"); 203 } 204 EXPORT_SYMBOL_GPL(svc_xprt_init); 205 206 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl, 207 struct svc_serv *serv, 208 struct net *net, 209 const int family, 210 const unsigned short port, 211 int flags) 212 { 213 struct sockaddr_in sin = { 214 .sin_family = AF_INET, 215 .sin_addr.s_addr = htonl(INADDR_ANY), 216 .sin_port = htons(port), 217 }; 218 #if IS_ENABLED(CONFIG_IPV6) 219 struct sockaddr_in6 sin6 = { 220 .sin6_family = AF_INET6, 221 .sin6_addr = IN6ADDR_ANY_INIT, 222 .sin6_port = htons(port), 223 }; 224 #endif 225 struct svc_xprt *xprt; 226 struct sockaddr *sap; 227 size_t len; 228 229 switch (family) { 230 case PF_INET: 231 sap = (struct sockaddr *)&sin; 232 len = sizeof(sin); 233 break; 234 #if IS_ENABLED(CONFIG_IPV6) 235 case PF_INET6: 236 sap = (struct sockaddr *)&sin6; 237 len = sizeof(sin6); 238 break; 239 #endif 240 default: 241 return ERR_PTR(-EAFNOSUPPORT); 242 } 243 244 xprt = xcl->xcl_ops->xpo_create(serv, net, sap, len, flags); 245 if (IS_ERR(xprt)) 246 trace_svc_xprt_create_err(serv->sv_program->pg_name, 247 xcl->xcl_name, sap, len, xprt); 248 return xprt; 249 } 250 251 /** 252 * svc_xprt_received - start next receiver thread 253 * @xprt: controlling transport 254 * 255 * The caller must hold the XPT_BUSY bit and must 256 * not thereafter touch transport data. 257 * 258 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or 259 * insufficient) data. 260 */ 261 void svc_xprt_received(struct svc_xprt *xprt) 262 { 263 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) { 264 WARN_ONCE(1, "xprt=0x%p already busy!", xprt); 265 return; 266 } 267 268 /* As soon as we clear busy, the xprt could be closed and 269 * 'put', so we need a reference to call svc_xprt_enqueue with: 270 */ 271 svc_xprt_get(xprt); 272 smp_mb__before_atomic(); 273 clear_bit(XPT_BUSY, &xprt->xpt_flags); 274 svc_xprt_enqueue(xprt); 275 svc_xprt_put(xprt); 276 } 277 EXPORT_SYMBOL_GPL(svc_xprt_received); 278 279 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new) 280 { 281 clear_bit(XPT_TEMP, &new->xpt_flags); 282 spin_lock_bh(&serv->sv_lock); 283 list_add(&new->xpt_list, &serv->sv_permsocks); 284 spin_unlock_bh(&serv->sv_lock); 285 svc_xprt_received(new); 286 } 287 288 static int _svc_xprt_create(struct svc_serv *serv, const char *xprt_name, 289 struct net *net, const int family, 290 const unsigned short port, int flags, 291 const struct cred *cred) 292 { 293 struct svc_xprt_class *xcl; 294 295 spin_lock(&svc_xprt_class_lock); 296 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { 297 struct svc_xprt *newxprt; 298 unsigned short newport; 299 300 if (strcmp(xprt_name, xcl->xcl_name)) 301 continue; 302 303 if (!try_module_get(xcl->xcl_owner)) 304 goto err; 305 306 spin_unlock(&svc_xprt_class_lock); 307 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags); 308 if (IS_ERR(newxprt)) { 309 module_put(xcl->xcl_owner); 310 return PTR_ERR(newxprt); 311 } 312 newxprt->xpt_cred = get_cred(cred); 313 svc_add_new_perm_xprt(serv, newxprt); 314 newport = svc_xprt_local_port(newxprt); 315 return newport; 316 } 317 err: 318 spin_unlock(&svc_xprt_class_lock); 319 /* This errno is exposed to user space. Provide a reasonable 320 * perror msg for a bad transport. */ 321 return -EPROTONOSUPPORT; 322 } 323 324 /** 325 * svc_xprt_create - Add a new listener to @serv 326 * @serv: target RPC service 327 * @xprt_name: transport class name 328 * @net: network namespace 329 * @family: network address family 330 * @port: listener port 331 * @flags: SVC_SOCK flags 332 * @cred: credential to bind to this transport 333 * 334 * Return values: 335 * %0: New listener added successfully 336 * %-EPROTONOSUPPORT: Requested transport type not supported 337 */ 338 int svc_xprt_create(struct svc_serv *serv, const char *xprt_name, 339 struct net *net, const int family, 340 const unsigned short port, int flags, 341 const struct cred *cred) 342 { 343 int err; 344 345 err = _svc_xprt_create(serv, xprt_name, net, family, port, flags, cred); 346 if (err == -EPROTONOSUPPORT) { 347 request_module("svc%s", xprt_name); 348 err = _svc_xprt_create(serv, xprt_name, net, family, port, flags, cred); 349 } 350 return err; 351 } 352 EXPORT_SYMBOL_GPL(svc_xprt_create); 353 354 /* 355 * Copy the local and remote xprt addresses to the rqstp structure 356 */ 357 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt) 358 { 359 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen); 360 rqstp->rq_addrlen = xprt->xpt_remotelen; 361 362 /* 363 * Destination address in request is needed for binding the 364 * source address in RPC replies/callbacks later. 365 */ 366 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen); 367 rqstp->rq_daddrlen = xprt->xpt_locallen; 368 } 369 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs); 370 371 /** 372 * svc_print_addr - Format rq_addr field for printing 373 * @rqstp: svc_rqst struct containing address to print 374 * @buf: target buffer for formatted address 375 * @len: length of target buffer 376 * 377 */ 378 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len) 379 { 380 return __svc_print_addr(svc_addr(rqstp), buf, len); 381 } 382 EXPORT_SYMBOL_GPL(svc_print_addr); 383 384 static bool svc_xprt_slots_in_range(struct svc_xprt *xprt) 385 { 386 unsigned int limit = svc_rpc_per_connection_limit; 387 int nrqsts = atomic_read(&xprt->xpt_nr_rqsts); 388 389 return limit == 0 || (nrqsts >= 0 && nrqsts < limit); 390 } 391 392 static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt) 393 { 394 if (!test_bit(RQ_DATA, &rqstp->rq_flags)) { 395 if (!svc_xprt_slots_in_range(xprt)) 396 return false; 397 atomic_inc(&xprt->xpt_nr_rqsts); 398 set_bit(RQ_DATA, &rqstp->rq_flags); 399 } 400 return true; 401 } 402 403 static void svc_xprt_release_slot(struct svc_rqst *rqstp) 404 { 405 struct svc_xprt *xprt = rqstp->rq_xprt; 406 if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) { 407 atomic_dec(&xprt->xpt_nr_rqsts); 408 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */ 409 svc_xprt_enqueue(xprt); 410 } 411 } 412 413 static bool svc_xprt_ready(struct svc_xprt *xprt) 414 { 415 unsigned long xpt_flags; 416 417 /* 418 * If another cpu has recently updated xpt_flags, 419 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to 420 * know about it; otherwise it's possible that both that cpu and 421 * this one could call svc_xprt_enqueue() without either 422 * svc_xprt_enqueue() recognizing that the conditions below 423 * are satisfied, and we could stall indefinitely: 424 */ 425 smp_rmb(); 426 xpt_flags = READ_ONCE(xprt->xpt_flags); 427 428 if (xpt_flags & BIT(XPT_BUSY)) 429 return false; 430 if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE))) 431 return true; 432 if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) { 433 if (xprt->xpt_ops->xpo_has_wspace(xprt) && 434 svc_xprt_slots_in_range(xprt)) 435 return true; 436 trace_svc_xprt_no_write_space(xprt); 437 return false; 438 } 439 return false; 440 } 441 442 /** 443 * svc_xprt_enqueue - Queue a transport on an idle nfsd thread 444 * @xprt: transport with data pending 445 * 446 */ 447 void svc_xprt_enqueue(struct svc_xprt *xprt) 448 { 449 struct svc_pool *pool; 450 struct svc_rqst *rqstp = NULL; 451 int cpu; 452 453 if (!svc_xprt_ready(xprt)) 454 return; 455 456 /* Mark transport as busy. It will remain in this state until 457 * the provider calls svc_xprt_received. We update XPT_BUSY 458 * atomically because it also guards against trying to enqueue 459 * the transport twice. 460 */ 461 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) 462 return; 463 464 cpu = get_cpu(); 465 pool = svc_pool_for_cpu(xprt->xpt_server, cpu); 466 467 atomic_long_inc(&pool->sp_stats.packets); 468 469 spin_lock_bh(&pool->sp_lock); 470 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets); 471 pool->sp_stats.sockets_queued++; 472 spin_unlock_bh(&pool->sp_lock); 473 474 /* find a thread for this xprt */ 475 rcu_read_lock(); 476 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) { 477 if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags)) 478 continue; 479 atomic_long_inc(&pool->sp_stats.threads_woken); 480 rqstp->rq_qtime = ktime_get(); 481 wake_up_process(rqstp->rq_task); 482 goto out_unlock; 483 } 484 set_bit(SP_CONGESTED, &pool->sp_flags); 485 rqstp = NULL; 486 out_unlock: 487 rcu_read_unlock(); 488 put_cpu(); 489 trace_svc_xprt_enqueue(xprt, rqstp); 490 } 491 EXPORT_SYMBOL_GPL(svc_xprt_enqueue); 492 493 /* 494 * Dequeue the first transport, if there is one. 495 */ 496 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool) 497 { 498 struct svc_xprt *xprt = NULL; 499 500 if (list_empty(&pool->sp_sockets)) 501 goto out; 502 503 spin_lock_bh(&pool->sp_lock); 504 if (likely(!list_empty(&pool->sp_sockets))) { 505 xprt = list_first_entry(&pool->sp_sockets, 506 struct svc_xprt, xpt_ready); 507 list_del_init(&xprt->xpt_ready); 508 svc_xprt_get(xprt); 509 } 510 spin_unlock_bh(&pool->sp_lock); 511 out: 512 return xprt; 513 } 514 515 /** 516 * svc_reserve - change the space reserved for the reply to a request. 517 * @rqstp: The request in question 518 * @space: new max space to reserve 519 * 520 * Each request reserves some space on the output queue of the transport 521 * to make sure the reply fits. This function reduces that reserved 522 * space to be the amount of space used already, plus @space. 523 * 524 */ 525 void svc_reserve(struct svc_rqst *rqstp, int space) 526 { 527 struct svc_xprt *xprt = rqstp->rq_xprt; 528 529 space += rqstp->rq_res.head[0].iov_len; 530 531 if (xprt && space < rqstp->rq_reserved) { 532 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved); 533 rqstp->rq_reserved = space; 534 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */ 535 svc_xprt_enqueue(xprt); 536 } 537 } 538 EXPORT_SYMBOL_GPL(svc_reserve); 539 540 static void svc_xprt_release(struct svc_rqst *rqstp) 541 { 542 struct svc_xprt *xprt = rqstp->rq_xprt; 543 544 xprt->xpt_ops->xpo_release_rqst(rqstp); 545 546 kfree(rqstp->rq_deferred); 547 rqstp->rq_deferred = NULL; 548 549 pagevec_release(&rqstp->rq_pvec); 550 svc_free_res_pages(rqstp); 551 rqstp->rq_res.page_len = 0; 552 rqstp->rq_res.page_base = 0; 553 554 /* Reset response buffer and release 555 * the reservation. 556 * But first, check that enough space was reserved 557 * for the reply, otherwise we have a bug! 558 */ 559 if ((rqstp->rq_res.len) > rqstp->rq_reserved) 560 printk(KERN_ERR "RPC request reserved %d but used %d\n", 561 rqstp->rq_reserved, 562 rqstp->rq_res.len); 563 564 rqstp->rq_res.head[0].iov_len = 0; 565 svc_reserve(rqstp, 0); 566 svc_xprt_release_slot(rqstp); 567 rqstp->rq_xprt = NULL; 568 svc_xprt_put(xprt); 569 } 570 571 /* 572 * Some svc_serv's will have occasional work to do, even when a xprt is not 573 * waiting to be serviced. This function is there to "kick" a task in one of 574 * those services so that it can wake up and do that work. Note that we only 575 * bother with pool 0 as we don't need to wake up more than one thread for 576 * this purpose. 577 */ 578 void svc_wake_up(struct svc_serv *serv) 579 { 580 struct svc_rqst *rqstp; 581 struct svc_pool *pool; 582 583 pool = &serv->sv_pools[0]; 584 585 rcu_read_lock(); 586 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) { 587 /* skip any that aren't queued */ 588 if (test_bit(RQ_BUSY, &rqstp->rq_flags)) 589 continue; 590 rcu_read_unlock(); 591 wake_up_process(rqstp->rq_task); 592 trace_svc_wake_up(rqstp->rq_task->pid); 593 return; 594 } 595 rcu_read_unlock(); 596 597 /* No free entries available */ 598 set_bit(SP_TASK_PENDING, &pool->sp_flags); 599 smp_wmb(); 600 trace_svc_wake_up(0); 601 } 602 EXPORT_SYMBOL_GPL(svc_wake_up); 603 604 int svc_port_is_privileged(struct sockaddr *sin) 605 { 606 switch (sin->sa_family) { 607 case AF_INET: 608 return ntohs(((struct sockaddr_in *)sin)->sin_port) 609 < PROT_SOCK; 610 case AF_INET6: 611 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port) 612 < PROT_SOCK; 613 default: 614 return 0; 615 } 616 } 617 618 /* 619 * Make sure that we don't have too many active connections. If we have, 620 * something must be dropped. It's not clear what will happen if we allow 621 * "too many" connections, but when dealing with network-facing software, 622 * we have to code defensively. Here we do that by imposing hard limits. 623 * 624 * There's no point in trying to do random drop here for DoS 625 * prevention. The NFS clients does 1 reconnect in 15 seconds. An 626 * attacker can easily beat that. 627 * 628 * The only somewhat efficient mechanism would be if drop old 629 * connections from the same IP first. But right now we don't even 630 * record the client IP in svc_sock. 631 * 632 * single-threaded services that expect a lot of clients will probably 633 * need to set sv_maxconn to override the default value which is based 634 * on the number of threads 635 */ 636 static void svc_check_conn_limits(struct svc_serv *serv) 637 { 638 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn : 639 (serv->sv_nrthreads+3) * 20; 640 641 if (serv->sv_tmpcnt > limit) { 642 struct svc_xprt *xprt = NULL; 643 spin_lock_bh(&serv->sv_lock); 644 if (!list_empty(&serv->sv_tempsocks)) { 645 /* Try to help the admin */ 646 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n", 647 serv->sv_name, serv->sv_maxconn ? 648 "max number of connections" : 649 "number of threads"); 650 /* 651 * Always select the oldest connection. It's not fair, 652 * but so is life 653 */ 654 xprt = list_entry(serv->sv_tempsocks.prev, 655 struct svc_xprt, 656 xpt_list); 657 set_bit(XPT_CLOSE, &xprt->xpt_flags); 658 svc_xprt_get(xprt); 659 } 660 spin_unlock_bh(&serv->sv_lock); 661 662 if (xprt) { 663 svc_xprt_enqueue(xprt); 664 svc_xprt_put(xprt); 665 } 666 } 667 } 668 669 static int svc_alloc_arg(struct svc_rqst *rqstp) 670 { 671 struct svc_serv *serv = rqstp->rq_server; 672 struct xdr_buf *arg = &rqstp->rq_arg; 673 unsigned long pages, filled, ret; 674 675 pagevec_init(&rqstp->rq_pvec); 676 677 pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT; 678 if (pages > RPCSVC_MAXPAGES) { 679 pr_warn_once("svc: warning: pages=%lu > RPCSVC_MAXPAGES=%lu\n", 680 pages, RPCSVC_MAXPAGES); 681 /* use as many pages as possible */ 682 pages = RPCSVC_MAXPAGES; 683 } 684 685 for (filled = 0; filled < pages; filled = ret) { 686 ret = alloc_pages_bulk_array(GFP_KERNEL, pages, 687 rqstp->rq_pages); 688 if (ret > filled) 689 /* Made progress, don't sleep yet */ 690 continue; 691 692 set_current_state(TASK_INTERRUPTIBLE); 693 if (signalled() || kthread_should_stop()) { 694 set_current_state(TASK_RUNNING); 695 return -EINTR; 696 } 697 trace_svc_alloc_arg_err(pages); 698 memalloc_retry_wait(GFP_KERNEL); 699 } 700 rqstp->rq_page_end = &rqstp->rq_pages[pages]; 701 rqstp->rq_pages[pages] = NULL; /* this might be seen in nfsd_splice_actor() */ 702 703 /* Make arg->head point to first page and arg->pages point to rest */ 704 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]); 705 arg->head[0].iov_len = PAGE_SIZE; 706 arg->pages = rqstp->rq_pages + 1; 707 arg->page_base = 0; 708 /* save at least one page for response */ 709 arg->page_len = (pages-2)*PAGE_SIZE; 710 arg->len = (pages-1)*PAGE_SIZE; 711 arg->tail[0].iov_len = 0; 712 return 0; 713 } 714 715 static bool 716 rqst_should_sleep(struct svc_rqst *rqstp) 717 { 718 struct svc_pool *pool = rqstp->rq_pool; 719 720 /* did someone call svc_wake_up? */ 721 if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags)) 722 return false; 723 724 /* was a socket queued? */ 725 if (!list_empty(&pool->sp_sockets)) 726 return false; 727 728 /* are we shutting down? */ 729 if (signalled() || kthread_should_stop()) 730 return false; 731 732 /* are we freezing? */ 733 if (freezing(current)) 734 return false; 735 736 return true; 737 } 738 739 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout) 740 { 741 struct svc_pool *pool = rqstp->rq_pool; 742 long time_left = 0; 743 744 /* rq_xprt should be clear on entry */ 745 WARN_ON_ONCE(rqstp->rq_xprt); 746 747 rqstp->rq_xprt = svc_xprt_dequeue(pool); 748 if (rqstp->rq_xprt) 749 goto out_found; 750 751 /* 752 * We have to be able to interrupt this wait 753 * to bring down the daemons ... 754 */ 755 set_current_state(TASK_INTERRUPTIBLE); 756 smp_mb__before_atomic(); 757 clear_bit(SP_CONGESTED, &pool->sp_flags); 758 clear_bit(RQ_BUSY, &rqstp->rq_flags); 759 smp_mb__after_atomic(); 760 761 if (likely(rqst_should_sleep(rqstp))) 762 time_left = schedule_timeout(timeout); 763 else 764 __set_current_state(TASK_RUNNING); 765 766 try_to_freeze(); 767 768 set_bit(RQ_BUSY, &rqstp->rq_flags); 769 smp_mb__after_atomic(); 770 rqstp->rq_xprt = svc_xprt_dequeue(pool); 771 if (rqstp->rq_xprt) 772 goto out_found; 773 774 if (!time_left) 775 atomic_long_inc(&pool->sp_stats.threads_timedout); 776 777 if (signalled() || kthread_should_stop()) 778 return ERR_PTR(-EINTR); 779 return ERR_PTR(-EAGAIN); 780 out_found: 781 /* Normally we will wait up to 5 seconds for any required 782 * cache information to be provided. 783 */ 784 if (!test_bit(SP_CONGESTED, &pool->sp_flags)) 785 rqstp->rq_chandle.thread_wait = 5*HZ; 786 else 787 rqstp->rq_chandle.thread_wait = 1*HZ; 788 trace_svc_xprt_dequeue(rqstp); 789 return rqstp->rq_xprt; 790 } 791 792 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt) 793 { 794 spin_lock_bh(&serv->sv_lock); 795 set_bit(XPT_TEMP, &newxpt->xpt_flags); 796 list_add(&newxpt->xpt_list, &serv->sv_tempsocks); 797 serv->sv_tmpcnt++; 798 if (serv->sv_temptimer.function == NULL) { 799 /* setup timer to age temp transports */ 800 serv->sv_temptimer.function = svc_age_temp_xprts; 801 mod_timer(&serv->sv_temptimer, 802 jiffies + svc_conn_age_period * HZ); 803 } 804 spin_unlock_bh(&serv->sv_lock); 805 svc_xprt_received(newxpt); 806 } 807 808 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt) 809 { 810 struct svc_serv *serv = rqstp->rq_server; 811 int len = 0; 812 813 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) { 814 if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags)) 815 xprt->xpt_ops->xpo_kill_temp_xprt(xprt); 816 svc_delete_xprt(xprt); 817 /* Leave XPT_BUSY set on the dead xprt: */ 818 goto out; 819 } 820 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) { 821 struct svc_xprt *newxpt; 822 /* 823 * We know this module_get will succeed because the 824 * listener holds a reference too 825 */ 826 __module_get(xprt->xpt_class->xcl_owner); 827 svc_check_conn_limits(xprt->xpt_server); 828 newxpt = xprt->xpt_ops->xpo_accept(xprt); 829 if (newxpt) { 830 newxpt->xpt_cred = get_cred(xprt->xpt_cred); 831 svc_add_new_temp_xprt(serv, newxpt); 832 trace_svc_xprt_accept(newxpt, serv->sv_name); 833 } else { 834 module_put(xprt->xpt_class->xcl_owner); 835 } 836 svc_xprt_received(xprt); 837 } else if (svc_xprt_reserve_slot(rqstp, xprt)) { 838 /* XPT_DATA|XPT_DEFERRED case: */ 839 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n", 840 rqstp, rqstp->rq_pool->sp_id, xprt, 841 kref_read(&xprt->xpt_ref)); 842 rqstp->rq_deferred = svc_deferred_dequeue(xprt); 843 if (rqstp->rq_deferred) 844 len = svc_deferred_recv(rqstp); 845 else 846 len = xprt->xpt_ops->xpo_recvfrom(rqstp); 847 rqstp->rq_stime = ktime_get(); 848 rqstp->rq_reserved = serv->sv_max_mesg; 849 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved); 850 } else 851 svc_xprt_received(xprt); 852 853 out: 854 return len; 855 } 856 857 /* 858 * Receive the next request on any transport. This code is carefully 859 * organised not to touch any cachelines in the shared svc_serv 860 * structure, only cachelines in the local svc_pool. 861 */ 862 int svc_recv(struct svc_rqst *rqstp, long timeout) 863 { 864 struct svc_xprt *xprt = NULL; 865 struct svc_serv *serv = rqstp->rq_server; 866 int len, err; 867 868 err = svc_alloc_arg(rqstp); 869 if (err) 870 goto out; 871 872 try_to_freeze(); 873 cond_resched(); 874 err = -EINTR; 875 if (signalled() || kthread_should_stop()) 876 goto out; 877 878 xprt = svc_get_next_xprt(rqstp, timeout); 879 if (IS_ERR(xprt)) { 880 err = PTR_ERR(xprt); 881 goto out; 882 } 883 884 len = svc_handle_xprt(rqstp, xprt); 885 886 /* No data, incomplete (TCP) read, or accept() */ 887 err = -EAGAIN; 888 if (len <= 0) 889 goto out_release; 890 trace_svc_xdr_recvfrom(&rqstp->rq_arg); 891 892 clear_bit(XPT_OLD, &xprt->xpt_flags); 893 894 xprt->xpt_ops->xpo_secure_port(rqstp); 895 rqstp->rq_chandle.defer = svc_defer; 896 rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]); 897 898 if (serv->sv_stats) 899 serv->sv_stats->netcnt++; 900 return len; 901 out_release: 902 rqstp->rq_res.len = 0; 903 svc_xprt_release(rqstp); 904 out: 905 return err; 906 } 907 EXPORT_SYMBOL_GPL(svc_recv); 908 909 /* 910 * Drop request 911 */ 912 void svc_drop(struct svc_rqst *rqstp) 913 { 914 trace_svc_drop(rqstp); 915 svc_xprt_release(rqstp); 916 } 917 EXPORT_SYMBOL_GPL(svc_drop); 918 919 /* 920 * Return reply to client. 921 */ 922 int svc_send(struct svc_rqst *rqstp) 923 { 924 struct svc_xprt *xprt; 925 int len = -EFAULT; 926 struct xdr_buf *xb; 927 928 xprt = rqstp->rq_xprt; 929 if (!xprt) 930 goto out; 931 932 /* calculate over-all length */ 933 xb = &rqstp->rq_res; 934 xb->len = xb->head[0].iov_len + 935 xb->page_len + 936 xb->tail[0].iov_len; 937 trace_svc_xdr_sendto(rqstp->rq_xid, xb); 938 trace_svc_stats_latency(rqstp); 939 940 len = xprt->xpt_ops->xpo_sendto(rqstp); 941 942 trace_svc_send(rqstp, len); 943 svc_xprt_release(rqstp); 944 945 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN) 946 len = 0; 947 out: 948 return len; 949 } 950 951 /* 952 * Timer function to close old temporary transports, using 953 * a mark-and-sweep algorithm. 954 */ 955 static void svc_age_temp_xprts(struct timer_list *t) 956 { 957 struct svc_serv *serv = from_timer(serv, t, sv_temptimer); 958 struct svc_xprt *xprt; 959 struct list_head *le, *next; 960 961 dprintk("svc_age_temp_xprts\n"); 962 963 if (!spin_trylock_bh(&serv->sv_lock)) { 964 /* busy, try again 1 sec later */ 965 dprintk("svc_age_temp_xprts: busy\n"); 966 mod_timer(&serv->sv_temptimer, jiffies + HZ); 967 return; 968 } 969 970 list_for_each_safe(le, next, &serv->sv_tempsocks) { 971 xprt = list_entry(le, struct svc_xprt, xpt_list); 972 973 /* First time through, just mark it OLD. Second time 974 * through, close it. */ 975 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags)) 976 continue; 977 if (kref_read(&xprt->xpt_ref) > 1 || 978 test_bit(XPT_BUSY, &xprt->xpt_flags)) 979 continue; 980 list_del_init(le); 981 set_bit(XPT_CLOSE, &xprt->xpt_flags); 982 dprintk("queuing xprt %p for closing\n", xprt); 983 984 /* a thread will dequeue and close it soon */ 985 svc_xprt_enqueue(xprt); 986 } 987 spin_unlock_bh(&serv->sv_lock); 988 989 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ); 990 } 991 992 /* Close temporary transports whose xpt_local matches server_addr immediately 993 * instead of waiting for them to be picked up by the timer. 994 * 995 * This is meant to be called from a notifier_block that runs when an ip 996 * address is deleted. 997 */ 998 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr) 999 { 1000 struct svc_xprt *xprt; 1001 struct list_head *le, *next; 1002 LIST_HEAD(to_be_closed); 1003 1004 spin_lock_bh(&serv->sv_lock); 1005 list_for_each_safe(le, next, &serv->sv_tempsocks) { 1006 xprt = list_entry(le, struct svc_xprt, xpt_list); 1007 if (rpc_cmp_addr(server_addr, (struct sockaddr *) 1008 &xprt->xpt_local)) { 1009 dprintk("svc_age_temp_xprts_now: found %p\n", xprt); 1010 list_move(le, &to_be_closed); 1011 } 1012 } 1013 spin_unlock_bh(&serv->sv_lock); 1014 1015 while (!list_empty(&to_be_closed)) { 1016 le = to_be_closed.next; 1017 list_del_init(le); 1018 xprt = list_entry(le, struct svc_xprt, xpt_list); 1019 set_bit(XPT_CLOSE, &xprt->xpt_flags); 1020 set_bit(XPT_KILL_TEMP, &xprt->xpt_flags); 1021 dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n", 1022 xprt); 1023 svc_xprt_enqueue(xprt); 1024 } 1025 } 1026 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now); 1027 1028 static void call_xpt_users(struct svc_xprt *xprt) 1029 { 1030 struct svc_xpt_user *u; 1031 1032 spin_lock(&xprt->xpt_lock); 1033 while (!list_empty(&xprt->xpt_users)) { 1034 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list); 1035 list_del_init(&u->list); 1036 u->callback(u); 1037 } 1038 spin_unlock(&xprt->xpt_lock); 1039 } 1040 1041 /* 1042 * Remove a dead transport 1043 */ 1044 static void svc_delete_xprt(struct svc_xprt *xprt) 1045 { 1046 struct svc_serv *serv = xprt->xpt_server; 1047 struct svc_deferred_req *dr; 1048 1049 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags)) 1050 return; 1051 1052 trace_svc_xprt_detach(xprt); 1053 xprt->xpt_ops->xpo_detach(xprt); 1054 if (xprt->xpt_bc_xprt) 1055 xprt->xpt_bc_xprt->ops->close(xprt->xpt_bc_xprt); 1056 1057 spin_lock_bh(&serv->sv_lock); 1058 list_del_init(&xprt->xpt_list); 1059 WARN_ON_ONCE(!list_empty(&xprt->xpt_ready)); 1060 if (test_bit(XPT_TEMP, &xprt->xpt_flags)) 1061 serv->sv_tmpcnt--; 1062 spin_unlock_bh(&serv->sv_lock); 1063 1064 while ((dr = svc_deferred_dequeue(xprt)) != NULL) 1065 kfree(dr); 1066 1067 call_xpt_users(xprt); 1068 svc_xprt_put(xprt); 1069 } 1070 1071 /** 1072 * svc_xprt_close - Close a client connection 1073 * @xprt: transport to disconnect 1074 * 1075 */ 1076 void svc_xprt_close(struct svc_xprt *xprt) 1077 { 1078 trace_svc_xprt_close(xprt); 1079 set_bit(XPT_CLOSE, &xprt->xpt_flags); 1080 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) 1081 /* someone else will have to effect the close */ 1082 return; 1083 /* 1084 * We expect svc_close_xprt() to work even when no threads are 1085 * running (e.g., while configuring the server before starting 1086 * any threads), so if the transport isn't busy, we delete 1087 * it ourself: 1088 */ 1089 svc_delete_xprt(xprt); 1090 } 1091 EXPORT_SYMBOL_GPL(svc_xprt_close); 1092 1093 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net) 1094 { 1095 struct svc_xprt *xprt; 1096 int ret = 0; 1097 1098 spin_lock_bh(&serv->sv_lock); 1099 list_for_each_entry(xprt, xprt_list, xpt_list) { 1100 if (xprt->xpt_net != net) 1101 continue; 1102 ret++; 1103 set_bit(XPT_CLOSE, &xprt->xpt_flags); 1104 svc_xprt_enqueue(xprt); 1105 } 1106 spin_unlock_bh(&serv->sv_lock); 1107 return ret; 1108 } 1109 1110 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net) 1111 { 1112 struct svc_pool *pool; 1113 struct svc_xprt *xprt; 1114 struct svc_xprt *tmp; 1115 int i; 1116 1117 for (i = 0; i < serv->sv_nrpools; i++) { 1118 pool = &serv->sv_pools[i]; 1119 1120 spin_lock_bh(&pool->sp_lock); 1121 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) { 1122 if (xprt->xpt_net != net) 1123 continue; 1124 list_del_init(&xprt->xpt_ready); 1125 spin_unlock_bh(&pool->sp_lock); 1126 return xprt; 1127 } 1128 spin_unlock_bh(&pool->sp_lock); 1129 } 1130 return NULL; 1131 } 1132 1133 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net) 1134 { 1135 struct svc_xprt *xprt; 1136 1137 while ((xprt = svc_dequeue_net(serv, net))) { 1138 set_bit(XPT_CLOSE, &xprt->xpt_flags); 1139 svc_delete_xprt(xprt); 1140 } 1141 } 1142 1143 /** 1144 * svc_xprt_destroy_all - Destroy transports associated with @serv 1145 * @serv: RPC service to be shut down 1146 * @net: target network namespace 1147 * 1148 * Server threads may still be running (especially in the case where the 1149 * service is still running in other network namespaces). 1150 * 1151 * So we shut down sockets the same way we would on a running server, by 1152 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do 1153 * the close. In the case there are no such other threads, 1154 * threads running, svc_clean_up_xprts() does a simple version of a 1155 * server's main event loop, and in the case where there are other 1156 * threads, we may need to wait a little while and then check again to 1157 * see if they're done. 1158 */ 1159 void svc_xprt_destroy_all(struct svc_serv *serv, struct net *net) 1160 { 1161 int delay = 0; 1162 1163 while (svc_close_list(serv, &serv->sv_permsocks, net) + 1164 svc_close_list(serv, &serv->sv_tempsocks, net)) { 1165 1166 svc_clean_up_xprts(serv, net); 1167 msleep(delay++); 1168 } 1169 } 1170 EXPORT_SYMBOL_GPL(svc_xprt_destroy_all); 1171 1172 /* 1173 * Handle defer and revisit of requests 1174 */ 1175 1176 static void svc_revisit(struct cache_deferred_req *dreq, int too_many) 1177 { 1178 struct svc_deferred_req *dr = 1179 container_of(dreq, struct svc_deferred_req, handle); 1180 struct svc_xprt *xprt = dr->xprt; 1181 1182 spin_lock(&xprt->xpt_lock); 1183 set_bit(XPT_DEFERRED, &xprt->xpt_flags); 1184 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) { 1185 spin_unlock(&xprt->xpt_lock); 1186 trace_svc_defer_drop(dr); 1187 svc_xprt_put(xprt); 1188 kfree(dr); 1189 return; 1190 } 1191 dr->xprt = NULL; 1192 list_add(&dr->handle.recent, &xprt->xpt_deferred); 1193 spin_unlock(&xprt->xpt_lock); 1194 trace_svc_defer_queue(dr); 1195 svc_xprt_enqueue(xprt); 1196 svc_xprt_put(xprt); 1197 } 1198 1199 /* 1200 * Save the request off for later processing. The request buffer looks 1201 * like this: 1202 * 1203 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail> 1204 * 1205 * This code can only handle requests that consist of an xprt-header 1206 * and rpc-header. 1207 */ 1208 static struct cache_deferred_req *svc_defer(struct cache_req *req) 1209 { 1210 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle); 1211 struct svc_deferred_req *dr; 1212 1213 if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags)) 1214 return NULL; /* if more than a page, give up FIXME */ 1215 if (rqstp->rq_deferred) { 1216 dr = rqstp->rq_deferred; 1217 rqstp->rq_deferred = NULL; 1218 } else { 1219 size_t skip; 1220 size_t size; 1221 /* FIXME maybe discard if size too large */ 1222 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len; 1223 dr = kmalloc(size, GFP_KERNEL); 1224 if (dr == NULL) 1225 return NULL; 1226 1227 dr->handle.owner = rqstp->rq_server; 1228 dr->prot = rqstp->rq_prot; 1229 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen); 1230 dr->addrlen = rqstp->rq_addrlen; 1231 dr->daddr = rqstp->rq_daddr; 1232 dr->argslen = rqstp->rq_arg.len >> 2; 1233 dr->xprt_hlen = rqstp->rq_xprt_hlen; 1234 1235 /* back up head to the start of the buffer and copy */ 1236 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len; 1237 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip, 1238 dr->argslen << 2); 1239 } 1240 trace_svc_defer(rqstp); 1241 svc_xprt_get(rqstp->rq_xprt); 1242 dr->xprt = rqstp->rq_xprt; 1243 set_bit(RQ_DROPME, &rqstp->rq_flags); 1244 1245 dr->handle.revisit = svc_revisit; 1246 return &dr->handle; 1247 } 1248 1249 /* 1250 * recv data from a deferred request into an active one 1251 */ 1252 static noinline int svc_deferred_recv(struct svc_rqst *rqstp) 1253 { 1254 struct svc_deferred_req *dr = rqstp->rq_deferred; 1255 1256 trace_svc_defer_recv(dr); 1257 1258 /* setup iov_base past transport header */ 1259 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2); 1260 /* The iov_len does not include the transport header bytes */ 1261 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen; 1262 rqstp->rq_arg.page_len = 0; 1263 /* The rq_arg.len includes the transport header bytes */ 1264 rqstp->rq_arg.len = dr->argslen<<2; 1265 rqstp->rq_prot = dr->prot; 1266 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen); 1267 rqstp->rq_addrlen = dr->addrlen; 1268 /* Save off transport header len in case we get deferred again */ 1269 rqstp->rq_xprt_hlen = dr->xprt_hlen; 1270 rqstp->rq_daddr = dr->daddr; 1271 rqstp->rq_respages = rqstp->rq_pages; 1272 svc_xprt_received(rqstp->rq_xprt); 1273 return (dr->argslen<<2) - dr->xprt_hlen; 1274 } 1275 1276 1277 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt) 1278 { 1279 struct svc_deferred_req *dr = NULL; 1280 1281 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags)) 1282 return NULL; 1283 spin_lock(&xprt->xpt_lock); 1284 if (!list_empty(&xprt->xpt_deferred)) { 1285 dr = list_entry(xprt->xpt_deferred.next, 1286 struct svc_deferred_req, 1287 handle.recent); 1288 list_del_init(&dr->handle.recent); 1289 } else 1290 clear_bit(XPT_DEFERRED, &xprt->xpt_flags); 1291 spin_unlock(&xprt->xpt_lock); 1292 return dr; 1293 } 1294 1295 /** 1296 * svc_find_xprt - find an RPC transport instance 1297 * @serv: pointer to svc_serv to search 1298 * @xcl_name: C string containing transport's class name 1299 * @net: owner net pointer 1300 * @af: Address family of transport's local address 1301 * @port: transport's IP port number 1302 * 1303 * Return the transport instance pointer for the endpoint accepting 1304 * connections/peer traffic from the specified transport class, 1305 * address family and port. 1306 * 1307 * Specifying 0 for the address family or port is effectively a 1308 * wild-card, and will result in matching the first transport in the 1309 * service's list that has a matching class name. 1310 */ 1311 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name, 1312 struct net *net, const sa_family_t af, 1313 const unsigned short port) 1314 { 1315 struct svc_xprt *xprt; 1316 struct svc_xprt *found = NULL; 1317 1318 /* Sanity check the args */ 1319 if (serv == NULL || xcl_name == NULL) 1320 return found; 1321 1322 spin_lock_bh(&serv->sv_lock); 1323 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { 1324 if (xprt->xpt_net != net) 1325 continue; 1326 if (strcmp(xprt->xpt_class->xcl_name, xcl_name)) 1327 continue; 1328 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family) 1329 continue; 1330 if (port != 0 && port != svc_xprt_local_port(xprt)) 1331 continue; 1332 found = xprt; 1333 svc_xprt_get(xprt); 1334 break; 1335 } 1336 spin_unlock_bh(&serv->sv_lock); 1337 return found; 1338 } 1339 EXPORT_SYMBOL_GPL(svc_find_xprt); 1340 1341 static int svc_one_xprt_name(const struct svc_xprt *xprt, 1342 char *pos, int remaining) 1343 { 1344 int len; 1345 1346 len = snprintf(pos, remaining, "%s %u\n", 1347 xprt->xpt_class->xcl_name, 1348 svc_xprt_local_port(xprt)); 1349 if (len >= remaining) 1350 return -ENAMETOOLONG; 1351 return len; 1352 } 1353 1354 /** 1355 * svc_xprt_names - format a buffer with a list of transport names 1356 * @serv: pointer to an RPC service 1357 * @buf: pointer to a buffer to be filled in 1358 * @buflen: length of buffer to be filled in 1359 * 1360 * Fills in @buf with a string containing a list of transport names, 1361 * each name terminated with '\n'. 1362 * 1363 * Returns positive length of the filled-in string on success; otherwise 1364 * a negative errno value is returned if an error occurs. 1365 */ 1366 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen) 1367 { 1368 struct svc_xprt *xprt; 1369 int len, totlen; 1370 char *pos; 1371 1372 /* Sanity check args */ 1373 if (!serv) 1374 return 0; 1375 1376 spin_lock_bh(&serv->sv_lock); 1377 1378 pos = buf; 1379 totlen = 0; 1380 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { 1381 len = svc_one_xprt_name(xprt, pos, buflen - totlen); 1382 if (len < 0) { 1383 *buf = '\0'; 1384 totlen = len; 1385 } 1386 if (len <= 0) 1387 break; 1388 1389 pos += len; 1390 totlen += len; 1391 } 1392 1393 spin_unlock_bh(&serv->sv_lock); 1394 return totlen; 1395 } 1396 EXPORT_SYMBOL_GPL(svc_xprt_names); 1397 1398 1399 /*----------------------------------------------------------------------------*/ 1400 1401 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos) 1402 { 1403 unsigned int pidx = (unsigned int)*pos; 1404 struct svc_serv *serv = m->private; 1405 1406 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx); 1407 1408 if (!pidx) 1409 return SEQ_START_TOKEN; 1410 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]); 1411 } 1412 1413 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos) 1414 { 1415 struct svc_pool *pool = p; 1416 struct svc_serv *serv = m->private; 1417 1418 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos); 1419 1420 if (p == SEQ_START_TOKEN) { 1421 pool = &serv->sv_pools[0]; 1422 } else { 1423 unsigned int pidx = (pool - &serv->sv_pools[0]); 1424 if (pidx < serv->sv_nrpools-1) 1425 pool = &serv->sv_pools[pidx+1]; 1426 else 1427 pool = NULL; 1428 } 1429 ++*pos; 1430 return pool; 1431 } 1432 1433 static void svc_pool_stats_stop(struct seq_file *m, void *p) 1434 { 1435 } 1436 1437 static int svc_pool_stats_show(struct seq_file *m, void *p) 1438 { 1439 struct svc_pool *pool = p; 1440 1441 if (p == SEQ_START_TOKEN) { 1442 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n"); 1443 return 0; 1444 } 1445 1446 seq_printf(m, "%u %lu %lu %lu %lu\n", 1447 pool->sp_id, 1448 (unsigned long)atomic_long_read(&pool->sp_stats.packets), 1449 pool->sp_stats.sockets_queued, 1450 (unsigned long)atomic_long_read(&pool->sp_stats.threads_woken), 1451 (unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout)); 1452 1453 return 0; 1454 } 1455 1456 static const struct seq_operations svc_pool_stats_seq_ops = { 1457 .start = svc_pool_stats_start, 1458 .next = svc_pool_stats_next, 1459 .stop = svc_pool_stats_stop, 1460 .show = svc_pool_stats_show, 1461 }; 1462 1463 int svc_pool_stats_open(struct svc_serv *serv, struct file *file) 1464 { 1465 int err; 1466 1467 err = seq_open(file, &svc_pool_stats_seq_ops); 1468 if (!err) 1469 ((struct seq_file *) file->private_data)->private = serv; 1470 return err; 1471 } 1472 EXPORT_SYMBOL(svc_pool_stats_open); 1473 1474 /*----------------------------------------------------------------------------*/ 1475