xref: /openbmc/linux/net/sunrpc/svc_xprt.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * linux/net/sunrpc/svc_xprt.c
3  *
4  * Author: Tom Tucker <tom@opengridcomputing.com>
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/stats.h>
14 #include <linux/sunrpc/svc_xprt.h>
15 #include <linux/sunrpc/svcsock.h>
16 
17 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
18 
19 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
20 static int svc_deferred_recv(struct svc_rqst *rqstp);
21 static struct cache_deferred_req *svc_defer(struct cache_req *req);
22 static void svc_age_temp_xprts(unsigned long closure);
23 
24 /* apparently the "standard" is that clients close
25  * idle connections after 5 minutes, servers after
26  * 6 minutes
27  *   http://www.connectathon.org/talks96/nfstcp.pdf
28  */
29 static int svc_conn_age_period = 6*60;
30 
31 /* List of registered transport classes */
32 static DEFINE_SPINLOCK(svc_xprt_class_lock);
33 static LIST_HEAD(svc_xprt_class_list);
34 
35 /* SMP locking strategy:
36  *
37  *	svc_pool->sp_lock protects most of the fields of that pool.
38  *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
39  *	when both need to be taken (rare), svc_serv->sv_lock is first.
40  *	BKL protects svc_serv->sv_nrthread.
41  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
42  *             and the ->sk_info_authunix cache.
43  *
44  *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
45  *	enqueued multiply. During normal transport processing this bit
46  *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
47  *	Providers should not manipulate this bit directly.
48  *
49  *	Some flags can be set to certain values at any time
50  *	providing that certain rules are followed:
51  *
52  *	XPT_CONN, XPT_DATA:
53  *		- Can be set or cleared at any time.
54  *		- After a set, svc_xprt_enqueue must be called to enqueue
55  *		  the transport for processing.
56  *		- After a clear, the transport must be read/accepted.
57  *		  If this succeeds, it must be set again.
58  *	XPT_CLOSE:
59  *		- Can set at any time. It is never cleared.
60  *      XPT_DEAD:
61  *		- Can only be set while XPT_BUSY is held which ensures
62  *		  that no other thread will be using the transport or will
63  *		  try to set XPT_DEAD.
64  */
65 
66 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
67 {
68 	struct svc_xprt_class *cl;
69 	int res = -EEXIST;
70 
71 	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
72 
73 	INIT_LIST_HEAD(&xcl->xcl_list);
74 	spin_lock(&svc_xprt_class_lock);
75 	/* Make sure there isn't already a class with the same name */
76 	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
77 		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
78 			goto out;
79 	}
80 	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
81 	res = 0;
82 out:
83 	spin_unlock(&svc_xprt_class_lock);
84 	return res;
85 }
86 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
87 
88 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
89 {
90 	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
91 	spin_lock(&svc_xprt_class_lock);
92 	list_del_init(&xcl->xcl_list);
93 	spin_unlock(&svc_xprt_class_lock);
94 }
95 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
96 
97 /*
98  * Format the transport list for printing
99  */
100 int svc_print_xprts(char *buf, int maxlen)
101 {
102 	struct svc_xprt_class *xcl;
103 	char tmpstr[80];
104 	int len = 0;
105 	buf[0] = '\0';
106 
107 	spin_lock(&svc_xprt_class_lock);
108 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
109 		int slen;
110 
111 		sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
112 		slen = strlen(tmpstr);
113 		if (len + slen > maxlen)
114 			break;
115 		len += slen;
116 		strcat(buf, tmpstr);
117 	}
118 	spin_unlock(&svc_xprt_class_lock);
119 
120 	return len;
121 }
122 
123 static void svc_xprt_free(struct kref *kref)
124 {
125 	struct svc_xprt *xprt =
126 		container_of(kref, struct svc_xprt, xpt_ref);
127 	struct module *owner = xprt->xpt_class->xcl_owner;
128 	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
129 		svcauth_unix_info_release(xprt);
130 	put_net(xprt->xpt_net);
131 	xprt->xpt_ops->xpo_free(xprt);
132 	module_put(owner);
133 }
134 
135 void svc_xprt_put(struct svc_xprt *xprt)
136 {
137 	kref_put(&xprt->xpt_ref, svc_xprt_free);
138 }
139 EXPORT_SYMBOL_GPL(svc_xprt_put);
140 
141 /*
142  * Called by transport drivers to initialize the transport independent
143  * portion of the transport instance.
144  */
145 void svc_xprt_init(struct svc_xprt_class *xcl, struct svc_xprt *xprt,
146 		   struct svc_serv *serv)
147 {
148 	memset(xprt, 0, sizeof(*xprt));
149 	xprt->xpt_class = xcl;
150 	xprt->xpt_ops = xcl->xcl_ops;
151 	kref_init(&xprt->xpt_ref);
152 	xprt->xpt_server = serv;
153 	INIT_LIST_HEAD(&xprt->xpt_list);
154 	INIT_LIST_HEAD(&xprt->xpt_ready);
155 	INIT_LIST_HEAD(&xprt->xpt_deferred);
156 	INIT_LIST_HEAD(&xprt->xpt_users);
157 	mutex_init(&xprt->xpt_mutex);
158 	spin_lock_init(&xprt->xpt_lock);
159 	set_bit(XPT_BUSY, &xprt->xpt_flags);
160 	rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
161 	xprt->xpt_net = get_net(&init_net);
162 }
163 EXPORT_SYMBOL_GPL(svc_xprt_init);
164 
165 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
166 					 struct svc_serv *serv,
167 					 struct net *net,
168 					 const int family,
169 					 const unsigned short port,
170 					 int flags)
171 {
172 	struct sockaddr_in sin = {
173 		.sin_family		= AF_INET,
174 		.sin_addr.s_addr	= htonl(INADDR_ANY),
175 		.sin_port		= htons(port),
176 	};
177 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
178 	struct sockaddr_in6 sin6 = {
179 		.sin6_family		= AF_INET6,
180 		.sin6_addr		= IN6ADDR_ANY_INIT,
181 		.sin6_port		= htons(port),
182 	};
183 #endif	/* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
184 	struct sockaddr *sap;
185 	size_t len;
186 
187 	switch (family) {
188 	case PF_INET:
189 		sap = (struct sockaddr *)&sin;
190 		len = sizeof(sin);
191 		break;
192 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
193 	case PF_INET6:
194 		sap = (struct sockaddr *)&sin6;
195 		len = sizeof(sin6);
196 		break;
197 #endif	/* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
198 	default:
199 		return ERR_PTR(-EAFNOSUPPORT);
200 	}
201 
202 	return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
203 }
204 
205 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
206 		    struct net *net, const int family,
207 		    const unsigned short port, int flags)
208 {
209 	struct svc_xprt_class *xcl;
210 
211 	dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
212 	spin_lock(&svc_xprt_class_lock);
213 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
214 		struct svc_xprt *newxprt;
215 		unsigned short newport;
216 
217 		if (strcmp(xprt_name, xcl->xcl_name))
218 			continue;
219 
220 		if (!try_module_get(xcl->xcl_owner))
221 			goto err;
222 
223 		spin_unlock(&svc_xprt_class_lock);
224 		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
225 		if (IS_ERR(newxprt)) {
226 			module_put(xcl->xcl_owner);
227 			return PTR_ERR(newxprt);
228 		}
229 
230 		clear_bit(XPT_TEMP, &newxprt->xpt_flags);
231 		spin_lock_bh(&serv->sv_lock);
232 		list_add(&newxprt->xpt_list, &serv->sv_permsocks);
233 		spin_unlock_bh(&serv->sv_lock);
234 		newport = svc_xprt_local_port(newxprt);
235 		clear_bit(XPT_BUSY, &newxprt->xpt_flags);
236 		return newport;
237 	}
238  err:
239 	spin_unlock(&svc_xprt_class_lock);
240 	dprintk("svc: transport %s not found\n", xprt_name);
241 
242 	/* This errno is exposed to user space.  Provide a reasonable
243 	 * perror msg for a bad transport. */
244 	return -EPROTONOSUPPORT;
245 }
246 EXPORT_SYMBOL_GPL(svc_create_xprt);
247 
248 /*
249  * Copy the local and remote xprt addresses to the rqstp structure
250  */
251 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
252 {
253 	struct sockaddr *sin;
254 
255 	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
256 	rqstp->rq_addrlen = xprt->xpt_remotelen;
257 
258 	/*
259 	 * Destination address in request is needed for binding the
260 	 * source address in RPC replies/callbacks later.
261 	 */
262 	sin = (struct sockaddr *)&xprt->xpt_local;
263 	switch (sin->sa_family) {
264 	case AF_INET:
265 		rqstp->rq_daddr.addr = ((struct sockaddr_in *)sin)->sin_addr;
266 		break;
267 	case AF_INET6:
268 		rqstp->rq_daddr.addr6 = ((struct sockaddr_in6 *)sin)->sin6_addr;
269 		break;
270 	}
271 }
272 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
273 
274 /**
275  * svc_print_addr - Format rq_addr field for printing
276  * @rqstp: svc_rqst struct containing address to print
277  * @buf: target buffer for formatted address
278  * @len: length of target buffer
279  *
280  */
281 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
282 {
283 	return __svc_print_addr(svc_addr(rqstp), buf, len);
284 }
285 EXPORT_SYMBOL_GPL(svc_print_addr);
286 
287 /*
288  * Queue up an idle server thread.  Must have pool->sp_lock held.
289  * Note: this is really a stack rather than a queue, so that we only
290  * use as many different threads as we need, and the rest don't pollute
291  * the cache.
292  */
293 static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
294 {
295 	list_add(&rqstp->rq_list, &pool->sp_threads);
296 }
297 
298 /*
299  * Dequeue an nfsd thread.  Must have pool->sp_lock held.
300  */
301 static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
302 {
303 	list_del(&rqstp->rq_list);
304 }
305 
306 /*
307  * Queue up a transport with data pending. If there are idle nfsd
308  * processes, wake 'em up.
309  *
310  */
311 void svc_xprt_enqueue(struct svc_xprt *xprt)
312 {
313 	struct svc_serv	*serv = xprt->xpt_server;
314 	struct svc_pool *pool;
315 	struct svc_rqst	*rqstp;
316 	int cpu;
317 
318 	if (!(xprt->xpt_flags &
319 	      ((1<<XPT_CONN)|(1<<XPT_DATA)|(1<<XPT_CLOSE)|(1<<XPT_DEFERRED))))
320 		return;
321 
322 	cpu = get_cpu();
323 	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
324 	put_cpu();
325 
326 	spin_lock_bh(&pool->sp_lock);
327 
328 	if (!list_empty(&pool->sp_threads) &&
329 	    !list_empty(&pool->sp_sockets))
330 		printk(KERN_ERR
331 		       "svc_xprt_enqueue: "
332 		       "threads and transports both waiting??\n");
333 
334 	pool->sp_stats.packets++;
335 
336 	/* Mark transport as busy. It will remain in this state until
337 	 * the provider calls svc_xprt_received. We update XPT_BUSY
338 	 * atomically because it also guards against trying to enqueue
339 	 * the transport twice.
340 	 */
341 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
342 		/* Don't enqueue transport while already enqueued */
343 		dprintk("svc: transport %p busy, not enqueued\n", xprt);
344 		goto out_unlock;
345 	}
346 	BUG_ON(xprt->xpt_pool != NULL);
347 	xprt->xpt_pool = pool;
348 
349 	/* Handle pending connection */
350 	if (test_bit(XPT_CONN, &xprt->xpt_flags))
351 		goto process;
352 
353 	/* Handle close in-progress */
354 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags))
355 		goto process;
356 
357 	/* Check if we have space to reply to a request */
358 	if (!xprt->xpt_ops->xpo_has_wspace(xprt)) {
359 		/* Don't enqueue while not enough space for reply */
360 		dprintk("svc: no write space, transport %p  not enqueued\n",
361 			xprt);
362 		xprt->xpt_pool = NULL;
363 		clear_bit(XPT_BUSY, &xprt->xpt_flags);
364 		goto out_unlock;
365 	}
366 
367  process:
368 	if (!list_empty(&pool->sp_threads)) {
369 		rqstp = list_entry(pool->sp_threads.next,
370 				   struct svc_rqst,
371 				   rq_list);
372 		dprintk("svc: transport %p served by daemon %p\n",
373 			xprt, rqstp);
374 		svc_thread_dequeue(pool, rqstp);
375 		if (rqstp->rq_xprt)
376 			printk(KERN_ERR
377 				"svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
378 				rqstp, rqstp->rq_xprt);
379 		rqstp->rq_xprt = xprt;
380 		svc_xprt_get(xprt);
381 		rqstp->rq_reserved = serv->sv_max_mesg;
382 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
383 		pool->sp_stats.threads_woken++;
384 		BUG_ON(xprt->xpt_pool != pool);
385 		wake_up(&rqstp->rq_wait);
386 	} else {
387 		dprintk("svc: transport %p put into queue\n", xprt);
388 		list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
389 		pool->sp_stats.sockets_queued++;
390 		BUG_ON(xprt->xpt_pool != pool);
391 	}
392 
393 out_unlock:
394 	spin_unlock_bh(&pool->sp_lock);
395 }
396 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
397 
398 /*
399  * Dequeue the first transport.  Must be called with the pool->sp_lock held.
400  */
401 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
402 {
403 	struct svc_xprt	*xprt;
404 
405 	if (list_empty(&pool->sp_sockets))
406 		return NULL;
407 
408 	xprt = list_entry(pool->sp_sockets.next,
409 			  struct svc_xprt, xpt_ready);
410 	list_del_init(&xprt->xpt_ready);
411 
412 	dprintk("svc: transport %p dequeued, inuse=%d\n",
413 		xprt, atomic_read(&xprt->xpt_ref.refcount));
414 
415 	return xprt;
416 }
417 
418 /*
419  * svc_xprt_received conditionally queues the transport for processing
420  * by another thread. The caller must hold the XPT_BUSY bit and must
421  * not thereafter touch transport data.
422  *
423  * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
424  * insufficient) data.
425  */
426 void svc_xprt_received(struct svc_xprt *xprt)
427 {
428 	BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
429 	xprt->xpt_pool = NULL;
430 	/* As soon as we clear busy, the xprt could be closed and
431 	 * 'put', so we need a reference to call svc_xprt_enqueue with:
432 	 */
433 	svc_xprt_get(xprt);
434 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
435 	svc_xprt_enqueue(xprt);
436 	svc_xprt_put(xprt);
437 }
438 EXPORT_SYMBOL_GPL(svc_xprt_received);
439 
440 /**
441  * svc_reserve - change the space reserved for the reply to a request.
442  * @rqstp:  The request in question
443  * @space: new max space to reserve
444  *
445  * Each request reserves some space on the output queue of the transport
446  * to make sure the reply fits.  This function reduces that reserved
447  * space to be the amount of space used already, plus @space.
448  *
449  */
450 void svc_reserve(struct svc_rqst *rqstp, int space)
451 {
452 	space += rqstp->rq_res.head[0].iov_len;
453 
454 	if (space < rqstp->rq_reserved) {
455 		struct svc_xprt *xprt = rqstp->rq_xprt;
456 		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
457 		rqstp->rq_reserved = space;
458 
459 		svc_xprt_enqueue(xprt);
460 	}
461 }
462 EXPORT_SYMBOL_GPL(svc_reserve);
463 
464 static void svc_xprt_release(struct svc_rqst *rqstp)
465 {
466 	struct svc_xprt	*xprt = rqstp->rq_xprt;
467 
468 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
469 
470 	kfree(rqstp->rq_deferred);
471 	rqstp->rq_deferred = NULL;
472 
473 	svc_free_res_pages(rqstp);
474 	rqstp->rq_res.page_len = 0;
475 	rqstp->rq_res.page_base = 0;
476 
477 	/* Reset response buffer and release
478 	 * the reservation.
479 	 * But first, check that enough space was reserved
480 	 * for the reply, otherwise we have a bug!
481 	 */
482 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
483 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
484 		       rqstp->rq_reserved,
485 		       rqstp->rq_res.len);
486 
487 	rqstp->rq_res.head[0].iov_len = 0;
488 	svc_reserve(rqstp, 0);
489 	rqstp->rq_xprt = NULL;
490 
491 	svc_xprt_put(xprt);
492 }
493 
494 /*
495  * External function to wake up a server waiting for data
496  * This really only makes sense for services like lockd
497  * which have exactly one thread anyway.
498  */
499 void svc_wake_up(struct svc_serv *serv)
500 {
501 	struct svc_rqst	*rqstp;
502 	unsigned int i;
503 	struct svc_pool *pool;
504 
505 	for (i = 0; i < serv->sv_nrpools; i++) {
506 		pool = &serv->sv_pools[i];
507 
508 		spin_lock_bh(&pool->sp_lock);
509 		if (!list_empty(&pool->sp_threads)) {
510 			rqstp = list_entry(pool->sp_threads.next,
511 					   struct svc_rqst,
512 					   rq_list);
513 			dprintk("svc: daemon %p woken up.\n", rqstp);
514 			/*
515 			svc_thread_dequeue(pool, rqstp);
516 			rqstp->rq_xprt = NULL;
517 			 */
518 			wake_up(&rqstp->rq_wait);
519 		}
520 		spin_unlock_bh(&pool->sp_lock);
521 	}
522 }
523 EXPORT_SYMBOL_GPL(svc_wake_up);
524 
525 int svc_port_is_privileged(struct sockaddr *sin)
526 {
527 	switch (sin->sa_family) {
528 	case AF_INET:
529 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
530 			< PROT_SOCK;
531 	case AF_INET6:
532 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
533 			< PROT_SOCK;
534 	default:
535 		return 0;
536 	}
537 }
538 
539 /*
540  * Make sure that we don't have too many active connections. If we have,
541  * something must be dropped. It's not clear what will happen if we allow
542  * "too many" connections, but when dealing with network-facing software,
543  * we have to code defensively. Here we do that by imposing hard limits.
544  *
545  * There's no point in trying to do random drop here for DoS
546  * prevention. The NFS clients does 1 reconnect in 15 seconds. An
547  * attacker can easily beat that.
548  *
549  * The only somewhat efficient mechanism would be if drop old
550  * connections from the same IP first. But right now we don't even
551  * record the client IP in svc_sock.
552  *
553  * single-threaded services that expect a lot of clients will probably
554  * need to set sv_maxconn to override the default value which is based
555  * on the number of threads
556  */
557 static void svc_check_conn_limits(struct svc_serv *serv)
558 {
559 	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
560 				(serv->sv_nrthreads+3) * 20;
561 
562 	if (serv->sv_tmpcnt > limit) {
563 		struct svc_xprt *xprt = NULL;
564 		spin_lock_bh(&serv->sv_lock);
565 		if (!list_empty(&serv->sv_tempsocks)) {
566 			if (net_ratelimit()) {
567 				/* Try to help the admin */
568 				printk(KERN_NOTICE "%s: too many open  "
569 				       "connections, consider increasing %s\n",
570 				       serv->sv_name, serv->sv_maxconn ?
571 				       "the max number of connections." :
572 				       "the number of threads.");
573 			}
574 			/*
575 			 * Always select the oldest connection. It's not fair,
576 			 * but so is life
577 			 */
578 			xprt = list_entry(serv->sv_tempsocks.prev,
579 					  struct svc_xprt,
580 					  xpt_list);
581 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
582 			svc_xprt_get(xprt);
583 		}
584 		spin_unlock_bh(&serv->sv_lock);
585 
586 		if (xprt) {
587 			svc_xprt_enqueue(xprt);
588 			svc_xprt_put(xprt);
589 		}
590 	}
591 }
592 
593 /*
594  * Receive the next request on any transport.  This code is carefully
595  * organised not to touch any cachelines in the shared svc_serv
596  * structure, only cachelines in the local svc_pool.
597  */
598 int svc_recv(struct svc_rqst *rqstp, long timeout)
599 {
600 	struct svc_xprt		*xprt = NULL;
601 	struct svc_serv		*serv = rqstp->rq_server;
602 	struct svc_pool		*pool = rqstp->rq_pool;
603 	int			len, i;
604 	int			pages;
605 	struct xdr_buf		*arg;
606 	DECLARE_WAITQUEUE(wait, current);
607 	long			time_left;
608 
609 	dprintk("svc: server %p waiting for data (to = %ld)\n",
610 		rqstp, timeout);
611 
612 	if (rqstp->rq_xprt)
613 		printk(KERN_ERR
614 			"svc_recv: service %p, transport not NULL!\n",
615 			 rqstp);
616 	if (waitqueue_active(&rqstp->rq_wait))
617 		printk(KERN_ERR
618 			"svc_recv: service %p, wait queue active!\n",
619 			 rqstp);
620 
621 	/* now allocate needed pages.  If we get a failure, sleep briefly */
622 	pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
623 	for (i = 0; i < pages ; i++)
624 		while (rqstp->rq_pages[i] == NULL) {
625 			struct page *p = alloc_page(GFP_KERNEL);
626 			if (!p) {
627 				set_current_state(TASK_INTERRUPTIBLE);
628 				if (signalled() || kthread_should_stop()) {
629 					set_current_state(TASK_RUNNING);
630 					return -EINTR;
631 				}
632 				schedule_timeout(msecs_to_jiffies(500));
633 			}
634 			rqstp->rq_pages[i] = p;
635 		}
636 	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
637 	BUG_ON(pages >= RPCSVC_MAXPAGES);
638 
639 	/* Make arg->head point to first page and arg->pages point to rest */
640 	arg = &rqstp->rq_arg;
641 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
642 	arg->head[0].iov_len = PAGE_SIZE;
643 	arg->pages = rqstp->rq_pages + 1;
644 	arg->page_base = 0;
645 	/* save at least one page for response */
646 	arg->page_len = (pages-2)*PAGE_SIZE;
647 	arg->len = (pages-1)*PAGE_SIZE;
648 	arg->tail[0].iov_len = 0;
649 
650 	try_to_freeze();
651 	cond_resched();
652 	if (signalled() || kthread_should_stop())
653 		return -EINTR;
654 
655 	/* Normally we will wait up to 5 seconds for any required
656 	 * cache information to be provided.
657 	 */
658 	rqstp->rq_chandle.thread_wait = 5*HZ;
659 
660 	spin_lock_bh(&pool->sp_lock);
661 	xprt = svc_xprt_dequeue(pool);
662 	if (xprt) {
663 		rqstp->rq_xprt = xprt;
664 		svc_xprt_get(xprt);
665 		rqstp->rq_reserved = serv->sv_max_mesg;
666 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
667 
668 		/* As there is a shortage of threads and this request
669 		 * had to be queued, don't allow the thread to wait so
670 		 * long for cache updates.
671 		 */
672 		rqstp->rq_chandle.thread_wait = 1*HZ;
673 	} else {
674 		/* No data pending. Go to sleep */
675 		svc_thread_enqueue(pool, rqstp);
676 
677 		/*
678 		 * We have to be able to interrupt this wait
679 		 * to bring down the daemons ...
680 		 */
681 		set_current_state(TASK_INTERRUPTIBLE);
682 
683 		/*
684 		 * checking kthread_should_stop() here allows us to avoid
685 		 * locking and signalling when stopping kthreads that call
686 		 * svc_recv. If the thread has already been woken up, then
687 		 * we can exit here without sleeping. If not, then it
688 		 * it'll be woken up quickly during the schedule_timeout
689 		 */
690 		if (kthread_should_stop()) {
691 			set_current_state(TASK_RUNNING);
692 			spin_unlock_bh(&pool->sp_lock);
693 			return -EINTR;
694 		}
695 
696 		add_wait_queue(&rqstp->rq_wait, &wait);
697 		spin_unlock_bh(&pool->sp_lock);
698 
699 		time_left = schedule_timeout(timeout);
700 
701 		try_to_freeze();
702 
703 		spin_lock_bh(&pool->sp_lock);
704 		remove_wait_queue(&rqstp->rq_wait, &wait);
705 		if (!time_left)
706 			pool->sp_stats.threads_timedout++;
707 
708 		xprt = rqstp->rq_xprt;
709 		if (!xprt) {
710 			svc_thread_dequeue(pool, rqstp);
711 			spin_unlock_bh(&pool->sp_lock);
712 			dprintk("svc: server %p, no data yet\n", rqstp);
713 			if (signalled() || kthread_should_stop())
714 				return -EINTR;
715 			else
716 				return -EAGAIN;
717 		}
718 	}
719 	spin_unlock_bh(&pool->sp_lock);
720 
721 	len = 0;
722 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
723 		dprintk("svc_recv: found XPT_CLOSE\n");
724 		svc_delete_xprt(xprt);
725 	} else if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
726 		struct svc_xprt *newxpt;
727 		newxpt = xprt->xpt_ops->xpo_accept(xprt);
728 		if (newxpt) {
729 			/*
730 			 * We know this module_get will succeed because the
731 			 * listener holds a reference too
732 			 */
733 			__module_get(newxpt->xpt_class->xcl_owner);
734 			svc_check_conn_limits(xprt->xpt_server);
735 			spin_lock_bh(&serv->sv_lock);
736 			set_bit(XPT_TEMP, &newxpt->xpt_flags);
737 			list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
738 			serv->sv_tmpcnt++;
739 			if (serv->sv_temptimer.function == NULL) {
740 				/* setup timer to age temp transports */
741 				setup_timer(&serv->sv_temptimer,
742 					    svc_age_temp_xprts,
743 					    (unsigned long)serv);
744 				mod_timer(&serv->sv_temptimer,
745 					  jiffies + svc_conn_age_period * HZ);
746 			}
747 			spin_unlock_bh(&serv->sv_lock);
748 			svc_xprt_received(newxpt);
749 		}
750 		svc_xprt_received(xprt);
751 	} else {
752 		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
753 			rqstp, pool->sp_id, xprt,
754 			atomic_read(&xprt->xpt_ref.refcount));
755 		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
756 		if (rqstp->rq_deferred) {
757 			svc_xprt_received(xprt);
758 			len = svc_deferred_recv(rqstp);
759 		} else {
760 			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
761 			svc_xprt_received(xprt);
762 		}
763 		dprintk("svc: got len=%d\n", len);
764 	}
765 
766 	/* No data, incomplete (TCP) read, or accept() */
767 	if (len == 0 || len == -EAGAIN) {
768 		rqstp->rq_res.len = 0;
769 		svc_xprt_release(rqstp);
770 		return -EAGAIN;
771 	}
772 	clear_bit(XPT_OLD, &xprt->xpt_flags);
773 
774 	rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
775 	rqstp->rq_chandle.defer = svc_defer;
776 
777 	if (serv->sv_stats)
778 		serv->sv_stats->netcnt++;
779 	return len;
780 }
781 EXPORT_SYMBOL_GPL(svc_recv);
782 
783 /*
784  * Drop request
785  */
786 void svc_drop(struct svc_rqst *rqstp)
787 {
788 	dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
789 	svc_xprt_release(rqstp);
790 }
791 EXPORT_SYMBOL_GPL(svc_drop);
792 
793 /*
794  * Return reply to client.
795  */
796 int svc_send(struct svc_rqst *rqstp)
797 {
798 	struct svc_xprt	*xprt;
799 	int		len;
800 	struct xdr_buf	*xb;
801 
802 	xprt = rqstp->rq_xprt;
803 	if (!xprt)
804 		return -EFAULT;
805 
806 	/* release the receive skb before sending the reply */
807 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
808 
809 	/* calculate over-all length */
810 	xb = &rqstp->rq_res;
811 	xb->len = xb->head[0].iov_len +
812 		xb->page_len +
813 		xb->tail[0].iov_len;
814 
815 	/* Grab mutex to serialize outgoing data. */
816 	mutex_lock(&xprt->xpt_mutex);
817 	if (test_bit(XPT_DEAD, &xprt->xpt_flags))
818 		len = -ENOTCONN;
819 	else
820 		len = xprt->xpt_ops->xpo_sendto(rqstp);
821 	mutex_unlock(&xprt->xpt_mutex);
822 	rpc_wake_up(&xprt->xpt_bc_pending);
823 	svc_xprt_release(rqstp);
824 
825 	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
826 		return 0;
827 	return len;
828 }
829 
830 /*
831  * Timer function to close old temporary transports, using
832  * a mark-and-sweep algorithm.
833  */
834 static void svc_age_temp_xprts(unsigned long closure)
835 {
836 	struct svc_serv *serv = (struct svc_serv *)closure;
837 	struct svc_xprt *xprt;
838 	struct list_head *le, *next;
839 	LIST_HEAD(to_be_aged);
840 
841 	dprintk("svc_age_temp_xprts\n");
842 
843 	if (!spin_trylock_bh(&serv->sv_lock)) {
844 		/* busy, try again 1 sec later */
845 		dprintk("svc_age_temp_xprts: busy\n");
846 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
847 		return;
848 	}
849 
850 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
851 		xprt = list_entry(le, struct svc_xprt, xpt_list);
852 
853 		/* First time through, just mark it OLD. Second time
854 		 * through, close it. */
855 		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
856 			continue;
857 		if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
858 		    test_bit(XPT_BUSY, &xprt->xpt_flags))
859 			continue;
860 		svc_xprt_get(xprt);
861 		list_move(le, &to_be_aged);
862 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
863 		set_bit(XPT_DETACHED, &xprt->xpt_flags);
864 	}
865 	spin_unlock_bh(&serv->sv_lock);
866 
867 	while (!list_empty(&to_be_aged)) {
868 		le = to_be_aged.next;
869 		/* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
870 		list_del_init(le);
871 		xprt = list_entry(le, struct svc_xprt, xpt_list);
872 
873 		dprintk("queuing xprt %p for closing\n", xprt);
874 
875 		/* a thread will dequeue and close it soon */
876 		svc_xprt_enqueue(xprt);
877 		svc_xprt_put(xprt);
878 	}
879 
880 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
881 }
882 
883 static void call_xpt_users(struct svc_xprt *xprt)
884 {
885 	struct svc_xpt_user *u;
886 
887 	spin_lock(&xprt->xpt_lock);
888 	while (!list_empty(&xprt->xpt_users)) {
889 		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
890 		list_del(&u->list);
891 		u->callback(u);
892 	}
893 	spin_unlock(&xprt->xpt_lock);
894 }
895 
896 /*
897  * Remove a dead transport
898  */
899 void svc_delete_xprt(struct svc_xprt *xprt)
900 {
901 	struct svc_serv	*serv = xprt->xpt_server;
902 	struct svc_deferred_req *dr;
903 
904 	/* Only do this once */
905 	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
906 		BUG();
907 
908 	dprintk("svc: svc_delete_xprt(%p)\n", xprt);
909 	xprt->xpt_ops->xpo_detach(xprt);
910 
911 	spin_lock_bh(&serv->sv_lock);
912 	if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
913 		list_del_init(&xprt->xpt_list);
914 	/*
915 	 * We used to delete the transport from whichever list
916 	 * it's sk_xprt.xpt_ready node was on, but we don't actually
917 	 * need to.  This is because the only time we're called
918 	 * while still attached to a queue, the queue itself
919 	 * is about to be destroyed (in svc_destroy).
920 	 */
921 	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
922 		serv->sv_tmpcnt--;
923 	spin_unlock_bh(&serv->sv_lock);
924 
925 	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
926 		kfree(dr);
927 
928 	call_xpt_users(xprt);
929 	svc_xprt_put(xprt);
930 }
931 
932 void svc_close_xprt(struct svc_xprt *xprt)
933 {
934 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
935 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
936 		/* someone else will have to effect the close */
937 		return;
938 
939 	svc_delete_xprt(xprt);
940 }
941 EXPORT_SYMBOL_GPL(svc_close_xprt);
942 
943 void svc_close_all(struct list_head *xprt_list)
944 {
945 	struct svc_xprt *xprt;
946 	struct svc_xprt *tmp;
947 
948 	list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
949 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
950 		if (test_bit(XPT_BUSY, &xprt->xpt_flags)) {
951 			/* Waiting to be processed, but no threads left,
952 			 * So just remove it from the waiting list
953 			 */
954 			list_del_init(&xprt->xpt_ready);
955 			clear_bit(XPT_BUSY, &xprt->xpt_flags);
956 		}
957 		svc_close_xprt(xprt);
958 	}
959 }
960 
961 /*
962  * Handle defer and revisit of requests
963  */
964 
965 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
966 {
967 	struct svc_deferred_req *dr =
968 		container_of(dreq, struct svc_deferred_req, handle);
969 	struct svc_xprt *xprt = dr->xprt;
970 
971 	spin_lock(&xprt->xpt_lock);
972 	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
973 	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
974 		spin_unlock(&xprt->xpt_lock);
975 		dprintk("revisit canceled\n");
976 		svc_xprt_put(xprt);
977 		kfree(dr);
978 		return;
979 	}
980 	dprintk("revisit queued\n");
981 	dr->xprt = NULL;
982 	list_add(&dr->handle.recent, &xprt->xpt_deferred);
983 	spin_unlock(&xprt->xpt_lock);
984 	svc_xprt_enqueue(xprt);
985 	svc_xprt_put(xprt);
986 }
987 
988 /*
989  * Save the request off for later processing. The request buffer looks
990  * like this:
991  *
992  * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
993  *
994  * This code can only handle requests that consist of an xprt-header
995  * and rpc-header.
996  */
997 static struct cache_deferred_req *svc_defer(struct cache_req *req)
998 {
999 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1000 	struct svc_deferred_req *dr;
1001 
1002 	if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
1003 		return NULL; /* if more than a page, give up FIXME */
1004 	if (rqstp->rq_deferred) {
1005 		dr = rqstp->rq_deferred;
1006 		rqstp->rq_deferred = NULL;
1007 	} else {
1008 		size_t skip;
1009 		size_t size;
1010 		/* FIXME maybe discard if size too large */
1011 		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1012 		dr = kmalloc(size, GFP_KERNEL);
1013 		if (dr == NULL)
1014 			return NULL;
1015 
1016 		dr->handle.owner = rqstp->rq_server;
1017 		dr->prot = rqstp->rq_prot;
1018 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1019 		dr->addrlen = rqstp->rq_addrlen;
1020 		dr->daddr = rqstp->rq_daddr;
1021 		dr->argslen = rqstp->rq_arg.len >> 2;
1022 		dr->xprt_hlen = rqstp->rq_xprt_hlen;
1023 
1024 		/* back up head to the start of the buffer and copy */
1025 		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1026 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1027 		       dr->argslen << 2);
1028 	}
1029 	svc_xprt_get(rqstp->rq_xprt);
1030 	dr->xprt = rqstp->rq_xprt;
1031 
1032 	dr->handle.revisit = svc_revisit;
1033 	return &dr->handle;
1034 }
1035 
1036 /*
1037  * recv data from a deferred request into an active one
1038  */
1039 static int svc_deferred_recv(struct svc_rqst *rqstp)
1040 {
1041 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1042 
1043 	/* setup iov_base past transport header */
1044 	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1045 	/* The iov_len does not include the transport header bytes */
1046 	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1047 	rqstp->rq_arg.page_len = 0;
1048 	/* The rq_arg.len includes the transport header bytes */
1049 	rqstp->rq_arg.len     = dr->argslen<<2;
1050 	rqstp->rq_prot        = dr->prot;
1051 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1052 	rqstp->rq_addrlen     = dr->addrlen;
1053 	/* Save off transport header len in case we get deferred again */
1054 	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1055 	rqstp->rq_daddr       = dr->daddr;
1056 	rqstp->rq_respages    = rqstp->rq_pages;
1057 	return (dr->argslen<<2) - dr->xprt_hlen;
1058 }
1059 
1060 
1061 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1062 {
1063 	struct svc_deferred_req *dr = NULL;
1064 
1065 	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1066 		return NULL;
1067 	spin_lock(&xprt->xpt_lock);
1068 	clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1069 	if (!list_empty(&xprt->xpt_deferred)) {
1070 		dr = list_entry(xprt->xpt_deferred.next,
1071 				struct svc_deferred_req,
1072 				handle.recent);
1073 		list_del_init(&dr->handle.recent);
1074 		set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1075 	}
1076 	spin_unlock(&xprt->xpt_lock);
1077 	return dr;
1078 }
1079 
1080 /**
1081  * svc_find_xprt - find an RPC transport instance
1082  * @serv: pointer to svc_serv to search
1083  * @xcl_name: C string containing transport's class name
1084  * @af: Address family of transport's local address
1085  * @port: transport's IP port number
1086  *
1087  * Return the transport instance pointer for the endpoint accepting
1088  * connections/peer traffic from the specified transport class,
1089  * address family and port.
1090  *
1091  * Specifying 0 for the address family or port is effectively a
1092  * wild-card, and will result in matching the first transport in the
1093  * service's list that has a matching class name.
1094  */
1095 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1096 			       const sa_family_t af, const unsigned short port)
1097 {
1098 	struct svc_xprt *xprt;
1099 	struct svc_xprt *found = NULL;
1100 
1101 	/* Sanity check the args */
1102 	if (serv == NULL || xcl_name == NULL)
1103 		return found;
1104 
1105 	spin_lock_bh(&serv->sv_lock);
1106 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1107 		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1108 			continue;
1109 		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1110 			continue;
1111 		if (port != 0 && port != svc_xprt_local_port(xprt))
1112 			continue;
1113 		found = xprt;
1114 		svc_xprt_get(xprt);
1115 		break;
1116 	}
1117 	spin_unlock_bh(&serv->sv_lock);
1118 	return found;
1119 }
1120 EXPORT_SYMBOL_GPL(svc_find_xprt);
1121 
1122 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1123 			     char *pos, int remaining)
1124 {
1125 	int len;
1126 
1127 	len = snprintf(pos, remaining, "%s %u\n",
1128 			xprt->xpt_class->xcl_name,
1129 			svc_xprt_local_port(xprt));
1130 	if (len >= remaining)
1131 		return -ENAMETOOLONG;
1132 	return len;
1133 }
1134 
1135 /**
1136  * svc_xprt_names - format a buffer with a list of transport names
1137  * @serv: pointer to an RPC service
1138  * @buf: pointer to a buffer to be filled in
1139  * @buflen: length of buffer to be filled in
1140  *
1141  * Fills in @buf with a string containing a list of transport names,
1142  * each name terminated with '\n'.
1143  *
1144  * Returns positive length of the filled-in string on success; otherwise
1145  * a negative errno value is returned if an error occurs.
1146  */
1147 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1148 {
1149 	struct svc_xprt *xprt;
1150 	int len, totlen;
1151 	char *pos;
1152 
1153 	/* Sanity check args */
1154 	if (!serv)
1155 		return 0;
1156 
1157 	spin_lock_bh(&serv->sv_lock);
1158 
1159 	pos = buf;
1160 	totlen = 0;
1161 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1162 		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1163 		if (len < 0) {
1164 			*buf = '\0';
1165 			totlen = len;
1166 		}
1167 		if (len <= 0)
1168 			break;
1169 
1170 		pos += len;
1171 		totlen += len;
1172 	}
1173 
1174 	spin_unlock_bh(&serv->sv_lock);
1175 	return totlen;
1176 }
1177 EXPORT_SYMBOL_GPL(svc_xprt_names);
1178 
1179 
1180 /*----------------------------------------------------------------------------*/
1181 
1182 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1183 {
1184 	unsigned int pidx = (unsigned int)*pos;
1185 	struct svc_serv *serv = m->private;
1186 
1187 	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1188 
1189 	if (!pidx)
1190 		return SEQ_START_TOKEN;
1191 	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1192 }
1193 
1194 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1195 {
1196 	struct svc_pool *pool = p;
1197 	struct svc_serv *serv = m->private;
1198 
1199 	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1200 
1201 	if (p == SEQ_START_TOKEN) {
1202 		pool = &serv->sv_pools[0];
1203 	} else {
1204 		unsigned int pidx = (pool - &serv->sv_pools[0]);
1205 		if (pidx < serv->sv_nrpools-1)
1206 			pool = &serv->sv_pools[pidx+1];
1207 		else
1208 			pool = NULL;
1209 	}
1210 	++*pos;
1211 	return pool;
1212 }
1213 
1214 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1215 {
1216 }
1217 
1218 static int svc_pool_stats_show(struct seq_file *m, void *p)
1219 {
1220 	struct svc_pool *pool = p;
1221 
1222 	if (p == SEQ_START_TOKEN) {
1223 		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1224 		return 0;
1225 	}
1226 
1227 	seq_printf(m, "%u %lu %lu %lu %lu\n",
1228 		pool->sp_id,
1229 		pool->sp_stats.packets,
1230 		pool->sp_stats.sockets_queued,
1231 		pool->sp_stats.threads_woken,
1232 		pool->sp_stats.threads_timedout);
1233 
1234 	return 0;
1235 }
1236 
1237 static const struct seq_operations svc_pool_stats_seq_ops = {
1238 	.start	= svc_pool_stats_start,
1239 	.next	= svc_pool_stats_next,
1240 	.stop	= svc_pool_stats_stop,
1241 	.show	= svc_pool_stats_show,
1242 };
1243 
1244 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1245 {
1246 	int err;
1247 
1248 	err = seq_open(file, &svc_pool_stats_seq_ops);
1249 	if (!err)
1250 		((struct seq_file *) file->private_data)->private = serv;
1251 	return err;
1252 }
1253 EXPORT_SYMBOL(svc_pool_stats_open);
1254 
1255 /*----------------------------------------------------------------------------*/
1256