1 /* 2 * linux/net/sunrpc/svc_xprt.c 3 * 4 * Author: Tom Tucker <tom@opengridcomputing.com> 5 */ 6 7 #include <linux/sched.h> 8 #include <linux/errno.h> 9 #include <linux/freezer.h> 10 #include <linux/kthread.h> 11 #include <net/sock.h> 12 #include <linux/sunrpc/stats.h> 13 #include <linux/sunrpc/svc_xprt.h> 14 15 #define RPCDBG_FACILITY RPCDBG_SVCXPRT 16 17 #define SVC_MAX_WAKING 5 18 19 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt); 20 static int svc_deferred_recv(struct svc_rqst *rqstp); 21 static struct cache_deferred_req *svc_defer(struct cache_req *req); 22 static void svc_age_temp_xprts(unsigned long closure); 23 24 /* apparently the "standard" is that clients close 25 * idle connections after 5 minutes, servers after 26 * 6 minutes 27 * http://www.connectathon.org/talks96/nfstcp.pdf 28 */ 29 static int svc_conn_age_period = 6*60; 30 31 /* List of registered transport classes */ 32 static DEFINE_SPINLOCK(svc_xprt_class_lock); 33 static LIST_HEAD(svc_xprt_class_list); 34 35 /* SMP locking strategy: 36 * 37 * svc_pool->sp_lock protects most of the fields of that pool. 38 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt. 39 * when both need to be taken (rare), svc_serv->sv_lock is first. 40 * BKL protects svc_serv->sv_nrthread. 41 * svc_sock->sk_lock protects the svc_sock->sk_deferred list 42 * and the ->sk_info_authunix cache. 43 * 44 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being 45 * enqueued multiply. During normal transport processing this bit 46 * is set by svc_xprt_enqueue and cleared by svc_xprt_received. 47 * Providers should not manipulate this bit directly. 48 * 49 * Some flags can be set to certain values at any time 50 * providing that certain rules are followed: 51 * 52 * XPT_CONN, XPT_DATA: 53 * - Can be set or cleared at any time. 54 * - After a set, svc_xprt_enqueue must be called to enqueue 55 * the transport for processing. 56 * - After a clear, the transport must be read/accepted. 57 * If this succeeds, it must be set again. 58 * XPT_CLOSE: 59 * - Can set at any time. It is never cleared. 60 * XPT_DEAD: 61 * - Can only be set while XPT_BUSY is held which ensures 62 * that no other thread will be using the transport or will 63 * try to set XPT_DEAD. 64 */ 65 66 int svc_reg_xprt_class(struct svc_xprt_class *xcl) 67 { 68 struct svc_xprt_class *cl; 69 int res = -EEXIST; 70 71 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name); 72 73 INIT_LIST_HEAD(&xcl->xcl_list); 74 spin_lock(&svc_xprt_class_lock); 75 /* Make sure there isn't already a class with the same name */ 76 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) { 77 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0) 78 goto out; 79 } 80 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list); 81 res = 0; 82 out: 83 spin_unlock(&svc_xprt_class_lock); 84 return res; 85 } 86 EXPORT_SYMBOL_GPL(svc_reg_xprt_class); 87 88 void svc_unreg_xprt_class(struct svc_xprt_class *xcl) 89 { 90 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name); 91 spin_lock(&svc_xprt_class_lock); 92 list_del_init(&xcl->xcl_list); 93 spin_unlock(&svc_xprt_class_lock); 94 } 95 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class); 96 97 /* 98 * Format the transport list for printing 99 */ 100 int svc_print_xprts(char *buf, int maxlen) 101 { 102 struct list_head *le; 103 char tmpstr[80]; 104 int len = 0; 105 buf[0] = '\0'; 106 107 spin_lock(&svc_xprt_class_lock); 108 list_for_each(le, &svc_xprt_class_list) { 109 int slen; 110 struct svc_xprt_class *xcl = 111 list_entry(le, struct svc_xprt_class, xcl_list); 112 113 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload); 114 slen = strlen(tmpstr); 115 if (len + slen > maxlen) 116 break; 117 len += slen; 118 strcat(buf, tmpstr); 119 } 120 spin_unlock(&svc_xprt_class_lock); 121 122 return len; 123 } 124 125 static void svc_xprt_free(struct kref *kref) 126 { 127 struct svc_xprt *xprt = 128 container_of(kref, struct svc_xprt, xpt_ref); 129 struct module *owner = xprt->xpt_class->xcl_owner; 130 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags) 131 && xprt->xpt_auth_cache != NULL) 132 svcauth_unix_info_release(xprt->xpt_auth_cache); 133 xprt->xpt_ops->xpo_free(xprt); 134 module_put(owner); 135 } 136 137 void svc_xprt_put(struct svc_xprt *xprt) 138 { 139 kref_put(&xprt->xpt_ref, svc_xprt_free); 140 } 141 EXPORT_SYMBOL_GPL(svc_xprt_put); 142 143 /* 144 * Called by transport drivers to initialize the transport independent 145 * portion of the transport instance. 146 */ 147 void svc_xprt_init(struct svc_xprt_class *xcl, struct svc_xprt *xprt, 148 struct svc_serv *serv) 149 { 150 memset(xprt, 0, sizeof(*xprt)); 151 xprt->xpt_class = xcl; 152 xprt->xpt_ops = xcl->xcl_ops; 153 kref_init(&xprt->xpt_ref); 154 xprt->xpt_server = serv; 155 INIT_LIST_HEAD(&xprt->xpt_list); 156 INIT_LIST_HEAD(&xprt->xpt_ready); 157 INIT_LIST_HEAD(&xprt->xpt_deferred); 158 mutex_init(&xprt->xpt_mutex); 159 spin_lock_init(&xprt->xpt_lock); 160 set_bit(XPT_BUSY, &xprt->xpt_flags); 161 } 162 EXPORT_SYMBOL_GPL(svc_xprt_init); 163 164 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl, 165 struct svc_serv *serv, 166 const int family, 167 const unsigned short port, 168 int flags) 169 { 170 struct sockaddr_in sin = { 171 .sin_family = AF_INET, 172 .sin_addr.s_addr = htonl(INADDR_ANY), 173 .sin_port = htons(port), 174 }; 175 struct sockaddr_in6 sin6 = { 176 .sin6_family = AF_INET6, 177 .sin6_addr = IN6ADDR_ANY_INIT, 178 .sin6_port = htons(port), 179 }; 180 struct sockaddr *sap; 181 size_t len; 182 183 switch (family) { 184 case PF_INET: 185 sap = (struct sockaddr *)&sin; 186 len = sizeof(sin); 187 break; 188 case PF_INET6: 189 sap = (struct sockaddr *)&sin6; 190 len = sizeof(sin6); 191 break; 192 default: 193 return ERR_PTR(-EAFNOSUPPORT); 194 } 195 196 return xcl->xcl_ops->xpo_create(serv, sap, len, flags); 197 } 198 199 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name, 200 const int family, const unsigned short port, 201 int flags) 202 { 203 struct svc_xprt_class *xcl; 204 205 dprintk("svc: creating transport %s[%d]\n", xprt_name, port); 206 spin_lock(&svc_xprt_class_lock); 207 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { 208 struct svc_xprt *newxprt; 209 210 if (strcmp(xprt_name, xcl->xcl_name)) 211 continue; 212 213 if (!try_module_get(xcl->xcl_owner)) 214 goto err; 215 216 spin_unlock(&svc_xprt_class_lock); 217 newxprt = __svc_xpo_create(xcl, serv, family, port, flags); 218 if (IS_ERR(newxprt)) { 219 module_put(xcl->xcl_owner); 220 return PTR_ERR(newxprt); 221 } 222 223 clear_bit(XPT_TEMP, &newxprt->xpt_flags); 224 spin_lock_bh(&serv->sv_lock); 225 list_add(&newxprt->xpt_list, &serv->sv_permsocks); 226 spin_unlock_bh(&serv->sv_lock); 227 clear_bit(XPT_BUSY, &newxprt->xpt_flags); 228 return svc_xprt_local_port(newxprt); 229 } 230 err: 231 spin_unlock(&svc_xprt_class_lock); 232 dprintk("svc: transport %s not found\n", xprt_name); 233 return -ENOENT; 234 } 235 EXPORT_SYMBOL_GPL(svc_create_xprt); 236 237 /* 238 * Copy the local and remote xprt addresses to the rqstp structure 239 */ 240 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt) 241 { 242 struct sockaddr *sin; 243 244 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen); 245 rqstp->rq_addrlen = xprt->xpt_remotelen; 246 247 /* 248 * Destination address in request is needed for binding the 249 * source address in RPC replies/callbacks later. 250 */ 251 sin = (struct sockaddr *)&xprt->xpt_local; 252 switch (sin->sa_family) { 253 case AF_INET: 254 rqstp->rq_daddr.addr = ((struct sockaddr_in *)sin)->sin_addr; 255 break; 256 case AF_INET6: 257 rqstp->rq_daddr.addr6 = ((struct sockaddr_in6 *)sin)->sin6_addr; 258 break; 259 } 260 } 261 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs); 262 263 /** 264 * svc_print_addr - Format rq_addr field for printing 265 * @rqstp: svc_rqst struct containing address to print 266 * @buf: target buffer for formatted address 267 * @len: length of target buffer 268 * 269 */ 270 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len) 271 { 272 return __svc_print_addr(svc_addr(rqstp), buf, len); 273 } 274 EXPORT_SYMBOL_GPL(svc_print_addr); 275 276 /* 277 * Queue up an idle server thread. Must have pool->sp_lock held. 278 * Note: this is really a stack rather than a queue, so that we only 279 * use as many different threads as we need, and the rest don't pollute 280 * the cache. 281 */ 282 static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp) 283 { 284 list_add(&rqstp->rq_list, &pool->sp_threads); 285 } 286 287 /* 288 * Dequeue an nfsd thread. Must have pool->sp_lock held. 289 */ 290 static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp) 291 { 292 list_del(&rqstp->rq_list); 293 } 294 295 /* 296 * Queue up a transport with data pending. If there are idle nfsd 297 * processes, wake 'em up. 298 * 299 */ 300 void svc_xprt_enqueue(struct svc_xprt *xprt) 301 { 302 struct svc_serv *serv = xprt->xpt_server; 303 struct svc_pool *pool; 304 struct svc_rqst *rqstp; 305 int cpu; 306 int thread_avail; 307 308 if (!(xprt->xpt_flags & 309 ((1<<XPT_CONN)|(1<<XPT_DATA)|(1<<XPT_CLOSE)|(1<<XPT_DEFERRED)))) 310 return; 311 312 cpu = get_cpu(); 313 pool = svc_pool_for_cpu(xprt->xpt_server, cpu); 314 put_cpu(); 315 316 spin_lock_bh(&pool->sp_lock); 317 318 if (test_bit(XPT_DEAD, &xprt->xpt_flags)) { 319 /* Don't enqueue dead transports */ 320 dprintk("svc: transport %p is dead, not enqueued\n", xprt); 321 goto out_unlock; 322 } 323 324 pool->sp_stats.packets++; 325 326 /* Mark transport as busy. It will remain in this state until 327 * the provider calls svc_xprt_received. We update XPT_BUSY 328 * atomically because it also guards against trying to enqueue 329 * the transport twice. 330 */ 331 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) { 332 /* Don't enqueue transport while already enqueued */ 333 dprintk("svc: transport %p busy, not enqueued\n", xprt); 334 goto out_unlock; 335 } 336 BUG_ON(xprt->xpt_pool != NULL); 337 xprt->xpt_pool = pool; 338 339 /* Handle pending connection */ 340 if (test_bit(XPT_CONN, &xprt->xpt_flags)) 341 goto process; 342 343 /* Handle close in-progress */ 344 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) 345 goto process; 346 347 /* Check if we have space to reply to a request */ 348 if (!xprt->xpt_ops->xpo_has_wspace(xprt)) { 349 /* Don't enqueue while not enough space for reply */ 350 dprintk("svc: no write space, transport %p not enqueued\n", 351 xprt); 352 xprt->xpt_pool = NULL; 353 clear_bit(XPT_BUSY, &xprt->xpt_flags); 354 goto out_unlock; 355 } 356 357 process: 358 /* Work out whether threads are available */ 359 thread_avail = !list_empty(&pool->sp_threads); /* threads are asleep */ 360 if (pool->sp_nwaking >= SVC_MAX_WAKING) { 361 /* too many threads are runnable and trying to wake up */ 362 thread_avail = 0; 363 pool->sp_stats.overloads_avoided++; 364 } 365 366 if (thread_avail) { 367 rqstp = list_entry(pool->sp_threads.next, 368 struct svc_rqst, 369 rq_list); 370 dprintk("svc: transport %p served by daemon %p\n", 371 xprt, rqstp); 372 svc_thread_dequeue(pool, rqstp); 373 if (rqstp->rq_xprt) 374 printk(KERN_ERR 375 "svc_xprt_enqueue: server %p, rq_xprt=%p!\n", 376 rqstp, rqstp->rq_xprt); 377 rqstp->rq_xprt = xprt; 378 svc_xprt_get(xprt); 379 rqstp->rq_reserved = serv->sv_max_mesg; 380 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved); 381 rqstp->rq_waking = 1; 382 pool->sp_nwaking++; 383 pool->sp_stats.threads_woken++; 384 BUG_ON(xprt->xpt_pool != pool); 385 wake_up(&rqstp->rq_wait); 386 } else { 387 dprintk("svc: transport %p put into queue\n", xprt); 388 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets); 389 pool->sp_stats.sockets_queued++; 390 BUG_ON(xprt->xpt_pool != pool); 391 } 392 393 out_unlock: 394 spin_unlock_bh(&pool->sp_lock); 395 } 396 EXPORT_SYMBOL_GPL(svc_xprt_enqueue); 397 398 /* 399 * Dequeue the first transport. Must be called with the pool->sp_lock held. 400 */ 401 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool) 402 { 403 struct svc_xprt *xprt; 404 405 if (list_empty(&pool->sp_sockets)) 406 return NULL; 407 408 xprt = list_entry(pool->sp_sockets.next, 409 struct svc_xprt, xpt_ready); 410 list_del_init(&xprt->xpt_ready); 411 412 dprintk("svc: transport %p dequeued, inuse=%d\n", 413 xprt, atomic_read(&xprt->xpt_ref.refcount)); 414 415 return xprt; 416 } 417 418 /* 419 * svc_xprt_received conditionally queues the transport for processing 420 * by another thread. The caller must hold the XPT_BUSY bit and must 421 * not thereafter touch transport data. 422 * 423 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or 424 * insufficient) data. 425 */ 426 void svc_xprt_received(struct svc_xprt *xprt) 427 { 428 BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags)); 429 xprt->xpt_pool = NULL; 430 clear_bit(XPT_BUSY, &xprt->xpt_flags); 431 svc_xprt_enqueue(xprt); 432 } 433 EXPORT_SYMBOL_GPL(svc_xprt_received); 434 435 /** 436 * svc_reserve - change the space reserved for the reply to a request. 437 * @rqstp: The request in question 438 * @space: new max space to reserve 439 * 440 * Each request reserves some space on the output queue of the transport 441 * to make sure the reply fits. This function reduces that reserved 442 * space to be the amount of space used already, plus @space. 443 * 444 */ 445 void svc_reserve(struct svc_rqst *rqstp, int space) 446 { 447 space += rqstp->rq_res.head[0].iov_len; 448 449 if (space < rqstp->rq_reserved) { 450 struct svc_xprt *xprt = rqstp->rq_xprt; 451 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved); 452 rqstp->rq_reserved = space; 453 454 svc_xprt_enqueue(xprt); 455 } 456 } 457 EXPORT_SYMBOL_GPL(svc_reserve); 458 459 static void svc_xprt_release(struct svc_rqst *rqstp) 460 { 461 struct svc_xprt *xprt = rqstp->rq_xprt; 462 463 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp); 464 465 kfree(rqstp->rq_deferred); 466 rqstp->rq_deferred = NULL; 467 468 svc_free_res_pages(rqstp); 469 rqstp->rq_res.page_len = 0; 470 rqstp->rq_res.page_base = 0; 471 472 /* Reset response buffer and release 473 * the reservation. 474 * But first, check that enough space was reserved 475 * for the reply, otherwise we have a bug! 476 */ 477 if ((rqstp->rq_res.len) > rqstp->rq_reserved) 478 printk(KERN_ERR "RPC request reserved %d but used %d\n", 479 rqstp->rq_reserved, 480 rqstp->rq_res.len); 481 482 rqstp->rq_res.head[0].iov_len = 0; 483 svc_reserve(rqstp, 0); 484 rqstp->rq_xprt = NULL; 485 486 svc_xprt_put(xprt); 487 } 488 489 /* 490 * External function to wake up a server waiting for data 491 * This really only makes sense for services like lockd 492 * which have exactly one thread anyway. 493 */ 494 void svc_wake_up(struct svc_serv *serv) 495 { 496 struct svc_rqst *rqstp; 497 unsigned int i; 498 struct svc_pool *pool; 499 500 for (i = 0; i < serv->sv_nrpools; i++) { 501 pool = &serv->sv_pools[i]; 502 503 spin_lock_bh(&pool->sp_lock); 504 if (!list_empty(&pool->sp_threads)) { 505 rqstp = list_entry(pool->sp_threads.next, 506 struct svc_rqst, 507 rq_list); 508 dprintk("svc: daemon %p woken up.\n", rqstp); 509 /* 510 svc_thread_dequeue(pool, rqstp); 511 rqstp->rq_xprt = NULL; 512 */ 513 wake_up(&rqstp->rq_wait); 514 } 515 spin_unlock_bh(&pool->sp_lock); 516 } 517 } 518 EXPORT_SYMBOL_GPL(svc_wake_up); 519 520 int svc_port_is_privileged(struct sockaddr *sin) 521 { 522 switch (sin->sa_family) { 523 case AF_INET: 524 return ntohs(((struct sockaddr_in *)sin)->sin_port) 525 < PROT_SOCK; 526 case AF_INET6: 527 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port) 528 < PROT_SOCK; 529 default: 530 return 0; 531 } 532 } 533 534 /* 535 * Make sure that we don't have too many active connections. If we have, 536 * something must be dropped. It's not clear what will happen if we allow 537 * "too many" connections, but when dealing with network-facing software, 538 * we have to code defensively. Here we do that by imposing hard limits. 539 * 540 * There's no point in trying to do random drop here for DoS 541 * prevention. The NFS clients does 1 reconnect in 15 seconds. An 542 * attacker can easily beat that. 543 * 544 * The only somewhat efficient mechanism would be if drop old 545 * connections from the same IP first. But right now we don't even 546 * record the client IP in svc_sock. 547 * 548 * single-threaded services that expect a lot of clients will probably 549 * need to set sv_maxconn to override the default value which is based 550 * on the number of threads 551 */ 552 static void svc_check_conn_limits(struct svc_serv *serv) 553 { 554 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn : 555 (serv->sv_nrthreads+3) * 20; 556 557 if (serv->sv_tmpcnt > limit) { 558 struct svc_xprt *xprt = NULL; 559 spin_lock_bh(&serv->sv_lock); 560 if (!list_empty(&serv->sv_tempsocks)) { 561 if (net_ratelimit()) { 562 /* Try to help the admin */ 563 printk(KERN_NOTICE "%s: too many open " 564 "connections, consider increasing %s\n", 565 serv->sv_name, serv->sv_maxconn ? 566 "the max number of connections." : 567 "the number of threads."); 568 } 569 /* 570 * Always select the oldest connection. It's not fair, 571 * but so is life 572 */ 573 xprt = list_entry(serv->sv_tempsocks.prev, 574 struct svc_xprt, 575 xpt_list); 576 set_bit(XPT_CLOSE, &xprt->xpt_flags); 577 svc_xprt_get(xprt); 578 } 579 spin_unlock_bh(&serv->sv_lock); 580 581 if (xprt) { 582 svc_xprt_enqueue(xprt); 583 svc_xprt_put(xprt); 584 } 585 } 586 } 587 588 /* 589 * Receive the next request on any transport. This code is carefully 590 * organised not to touch any cachelines in the shared svc_serv 591 * structure, only cachelines in the local svc_pool. 592 */ 593 int svc_recv(struct svc_rqst *rqstp, long timeout) 594 { 595 struct svc_xprt *xprt = NULL; 596 struct svc_serv *serv = rqstp->rq_server; 597 struct svc_pool *pool = rqstp->rq_pool; 598 int len, i; 599 int pages; 600 struct xdr_buf *arg; 601 DECLARE_WAITQUEUE(wait, current); 602 long time_left; 603 604 dprintk("svc: server %p waiting for data (to = %ld)\n", 605 rqstp, timeout); 606 607 if (rqstp->rq_xprt) 608 printk(KERN_ERR 609 "svc_recv: service %p, transport not NULL!\n", 610 rqstp); 611 if (waitqueue_active(&rqstp->rq_wait)) 612 printk(KERN_ERR 613 "svc_recv: service %p, wait queue active!\n", 614 rqstp); 615 616 /* now allocate needed pages. If we get a failure, sleep briefly */ 617 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE; 618 for (i = 0; i < pages ; i++) 619 while (rqstp->rq_pages[i] == NULL) { 620 struct page *p = alloc_page(GFP_KERNEL); 621 if (!p) { 622 set_current_state(TASK_INTERRUPTIBLE); 623 if (signalled() || kthread_should_stop()) { 624 set_current_state(TASK_RUNNING); 625 return -EINTR; 626 } 627 schedule_timeout(msecs_to_jiffies(500)); 628 } 629 rqstp->rq_pages[i] = p; 630 } 631 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */ 632 BUG_ON(pages >= RPCSVC_MAXPAGES); 633 634 /* Make arg->head point to first page and arg->pages point to rest */ 635 arg = &rqstp->rq_arg; 636 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]); 637 arg->head[0].iov_len = PAGE_SIZE; 638 arg->pages = rqstp->rq_pages + 1; 639 arg->page_base = 0; 640 /* save at least one page for response */ 641 arg->page_len = (pages-2)*PAGE_SIZE; 642 arg->len = (pages-1)*PAGE_SIZE; 643 arg->tail[0].iov_len = 0; 644 645 try_to_freeze(); 646 cond_resched(); 647 if (signalled() || kthread_should_stop()) 648 return -EINTR; 649 650 spin_lock_bh(&pool->sp_lock); 651 if (rqstp->rq_waking) { 652 rqstp->rq_waking = 0; 653 pool->sp_nwaking--; 654 BUG_ON(pool->sp_nwaking < 0); 655 } 656 xprt = svc_xprt_dequeue(pool); 657 if (xprt) { 658 rqstp->rq_xprt = xprt; 659 svc_xprt_get(xprt); 660 rqstp->rq_reserved = serv->sv_max_mesg; 661 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved); 662 } else { 663 /* No data pending. Go to sleep */ 664 svc_thread_enqueue(pool, rqstp); 665 666 /* 667 * We have to be able to interrupt this wait 668 * to bring down the daemons ... 669 */ 670 set_current_state(TASK_INTERRUPTIBLE); 671 672 /* 673 * checking kthread_should_stop() here allows us to avoid 674 * locking and signalling when stopping kthreads that call 675 * svc_recv. If the thread has already been woken up, then 676 * we can exit here without sleeping. If not, then it 677 * it'll be woken up quickly during the schedule_timeout 678 */ 679 if (kthread_should_stop()) { 680 set_current_state(TASK_RUNNING); 681 spin_unlock_bh(&pool->sp_lock); 682 return -EINTR; 683 } 684 685 add_wait_queue(&rqstp->rq_wait, &wait); 686 spin_unlock_bh(&pool->sp_lock); 687 688 time_left = schedule_timeout(timeout); 689 690 try_to_freeze(); 691 692 spin_lock_bh(&pool->sp_lock); 693 remove_wait_queue(&rqstp->rq_wait, &wait); 694 if (!time_left) 695 pool->sp_stats.threads_timedout++; 696 697 xprt = rqstp->rq_xprt; 698 if (!xprt) { 699 svc_thread_dequeue(pool, rqstp); 700 spin_unlock_bh(&pool->sp_lock); 701 dprintk("svc: server %p, no data yet\n", rqstp); 702 if (signalled() || kthread_should_stop()) 703 return -EINTR; 704 else 705 return -EAGAIN; 706 } 707 } 708 spin_unlock_bh(&pool->sp_lock); 709 710 len = 0; 711 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) { 712 dprintk("svc_recv: found XPT_CLOSE\n"); 713 svc_delete_xprt(xprt); 714 } else if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) { 715 struct svc_xprt *newxpt; 716 newxpt = xprt->xpt_ops->xpo_accept(xprt); 717 if (newxpt) { 718 /* 719 * We know this module_get will succeed because the 720 * listener holds a reference too 721 */ 722 __module_get(newxpt->xpt_class->xcl_owner); 723 svc_check_conn_limits(xprt->xpt_server); 724 spin_lock_bh(&serv->sv_lock); 725 set_bit(XPT_TEMP, &newxpt->xpt_flags); 726 list_add(&newxpt->xpt_list, &serv->sv_tempsocks); 727 serv->sv_tmpcnt++; 728 if (serv->sv_temptimer.function == NULL) { 729 /* setup timer to age temp transports */ 730 setup_timer(&serv->sv_temptimer, 731 svc_age_temp_xprts, 732 (unsigned long)serv); 733 mod_timer(&serv->sv_temptimer, 734 jiffies + svc_conn_age_period * HZ); 735 } 736 spin_unlock_bh(&serv->sv_lock); 737 svc_xprt_received(newxpt); 738 } 739 svc_xprt_received(xprt); 740 } else { 741 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n", 742 rqstp, pool->sp_id, xprt, 743 atomic_read(&xprt->xpt_ref.refcount)); 744 rqstp->rq_deferred = svc_deferred_dequeue(xprt); 745 if (rqstp->rq_deferred) { 746 svc_xprt_received(xprt); 747 len = svc_deferred_recv(rqstp); 748 } else 749 len = xprt->xpt_ops->xpo_recvfrom(rqstp); 750 dprintk("svc: got len=%d\n", len); 751 } 752 753 /* No data, incomplete (TCP) read, or accept() */ 754 if (len == 0 || len == -EAGAIN) { 755 rqstp->rq_res.len = 0; 756 svc_xprt_release(rqstp); 757 return -EAGAIN; 758 } 759 clear_bit(XPT_OLD, &xprt->xpt_flags); 760 761 rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp)); 762 rqstp->rq_chandle.defer = svc_defer; 763 764 if (serv->sv_stats) 765 serv->sv_stats->netcnt++; 766 return len; 767 } 768 EXPORT_SYMBOL_GPL(svc_recv); 769 770 /* 771 * Drop request 772 */ 773 void svc_drop(struct svc_rqst *rqstp) 774 { 775 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt); 776 svc_xprt_release(rqstp); 777 } 778 EXPORT_SYMBOL_GPL(svc_drop); 779 780 /* 781 * Return reply to client. 782 */ 783 int svc_send(struct svc_rqst *rqstp) 784 { 785 struct svc_xprt *xprt; 786 int len; 787 struct xdr_buf *xb; 788 789 xprt = rqstp->rq_xprt; 790 if (!xprt) 791 return -EFAULT; 792 793 /* release the receive skb before sending the reply */ 794 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp); 795 796 /* calculate over-all length */ 797 xb = &rqstp->rq_res; 798 xb->len = xb->head[0].iov_len + 799 xb->page_len + 800 xb->tail[0].iov_len; 801 802 /* Grab mutex to serialize outgoing data. */ 803 mutex_lock(&xprt->xpt_mutex); 804 if (test_bit(XPT_DEAD, &xprt->xpt_flags)) 805 len = -ENOTCONN; 806 else 807 len = xprt->xpt_ops->xpo_sendto(rqstp); 808 mutex_unlock(&xprt->xpt_mutex); 809 svc_xprt_release(rqstp); 810 811 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN) 812 return 0; 813 return len; 814 } 815 816 /* 817 * Timer function to close old temporary transports, using 818 * a mark-and-sweep algorithm. 819 */ 820 static void svc_age_temp_xprts(unsigned long closure) 821 { 822 struct svc_serv *serv = (struct svc_serv *)closure; 823 struct svc_xprt *xprt; 824 struct list_head *le, *next; 825 LIST_HEAD(to_be_aged); 826 827 dprintk("svc_age_temp_xprts\n"); 828 829 if (!spin_trylock_bh(&serv->sv_lock)) { 830 /* busy, try again 1 sec later */ 831 dprintk("svc_age_temp_xprts: busy\n"); 832 mod_timer(&serv->sv_temptimer, jiffies + HZ); 833 return; 834 } 835 836 list_for_each_safe(le, next, &serv->sv_tempsocks) { 837 xprt = list_entry(le, struct svc_xprt, xpt_list); 838 839 /* First time through, just mark it OLD. Second time 840 * through, close it. */ 841 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags)) 842 continue; 843 if (atomic_read(&xprt->xpt_ref.refcount) > 1 844 || test_bit(XPT_BUSY, &xprt->xpt_flags)) 845 continue; 846 svc_xprt_get(xprt); 847 list_move(le, &to_be_aged); 848 set_bit(XPT_CLOSE, &xprt->xpt_flags); 849 set_bit(XPT_DETACHED, &xprt->xpt_flags); 850 } 851 spin_unlock_bh(&serv->sv_lock); 852 853 while (!list_empty(&to_be_aged)) { 854 le = to_be_aged.next; 855 /* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */ 856 list_del_init(le); 857 xprt = list_entry(le, struct svc_xprt, xpt_list); 858 859 dprintk("queuing xprt %p for closing\n", xprt); 860 861 /* a thread will dequeue and close it soon */ 862 svc_xprt_enqueue(xprt); 863 svc_xprt_put(xprt); 864 } 865 866 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ); 867 } 868 869 /* 870 * Remove a dead transport 871 */ 872 void svc_delete_xprt(struct svc_xprt *xprt) 873 { 874 struct svc_serv *serv = xprt->xpt_server; 875 struct svc_deferred_req *dr; 876 877 /* Only do this once */ 878 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags)) 879 return; 880 881 dprintk("svc: svc_delete_xprt(%p)\n", xprt); 882 xprt->xpt_ops->xpo_detach(xprt); 883 884 spin_lock_bh(&serv->sv_lock); 885 if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags)) 886 list_del_init(&xprt->xpt_list); 887 /* 888 * We used to delete the transport from whichever list 889 * it's sk_xprt.xpt_ready node was on, but we don't actually 890 * need to. This is because the only time we're called 891 * while still attached to a queue, the queue itself 892 * is about to be destroyed (in svc_destroy). 893 */ 894 if (test_bit(XPT_TEMP, &xprt->xpt_flags)) 895 serv->sv_tmpcnt--; 896 897 for (dr = svc_deferred_dequeue(xprt); dr; 898 dr = svc_deferred_dequeue(xprt)) { 899 svc_xprt_put(xprt); 900 kfree(dr); 901 } 902 903 svc_xprt_put(xprt); 904 spin_unlock_bh(&serv->sv_lock); 905 } 906 907 void svc_close_xprt(struct svc_xprt *xprt) 908 { 909 set_bit(XPT_CLOSE, &xprt->xpt_flags); 910 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) 911 /* someone else will have to effect the close */ 912 return; 913 914 svc_xprt_get(xprt); 915 svc_delete_xprt(xprt); 916 clear_bit(XPT_BUSY, &xprt->xpt_flags); 917 svc_xprt_put(xprt); 918 } 919 EXPORT_SYMBOL_GPL(svc_close_xprt); 920 921 void svc_close_all(struct list_head *xprt_list) 922 { 923 struct svc_xprt *xprt; 924 struct svc_xprt *tmp; 925 926 list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) { 927 set_bit(XPT_CLOSE, &xprt->xpt_flags); 928 if (test_bit(XPT_BUSY, &xprt->xpt_flags)) { 929 /* Waiting to be processed, but no threads left, 930 * So just remove it from the waiting list 931 */ 932 list_del_init(&xprt->xpt_ready); 933 clear_bit(XPT_BUSY, &xprt->xpt_flags); 934 } 935 svc_close_xprt(xprt); 936 } 937 } 938 939 /* 940 * Handle defer and revisit of requests 941 */ 942 943 static void svc_revisit(struct cache_deferred_req *dreq, int too_many) 944 { 945 struct svc_deferred_req *dr = 946 container_of(dreq, struct svc_deferred_req, handle); 947 struct svc_xprt *xprt = dr->xprt; 948 949 spin_lock(&xprt->xpt_lock); 950 set_bit(XPT_DEFERRED, &xprt->xpt_flags); 951 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) { 952 spin_unlock(&xprt->xpt_lock); 953 dprintk("revisit canceled\n"); 954 svc_xprt_put(xprt); 955 kfree(dr); 956 return; 957 } 958 dprintk("revisit queued\n"); 959 dr->xprt = NULL; 960 list_add(&dr->handle.recent, &xprt->xpt_deferred); 961 spin_unlock(&xprt->xpt_lock); 962 svc_xprt_enqueue(xprt); 963 svc_xprt_put(xprt); 964 } 965 966 /* 967 * Save the request off for later processing. The request buffer looks 968 * like this: 969 * 970 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail> 971 * 972 * This code can only handle requests that consist of an xprt-header 973 * and rpc-header. 974 */ 975 static struct cache_deferred_req *svc_defer(struct cache_req *req) 976 { 977 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle); 978 struct svc_deferred_req *dr; 979 980 if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral) 981 return NULL; /* if more than a page, give up FIXME */ 982 if (rqstp->rq_deferred) { 983 dr = rqstp->rq_deferred; 984 rqstp->rq_deferred = NULL; 985 } else { 986 size_t skip; 987 size_t size; 988 /* FIXME maybe discard if size too large */ 989 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len; 990 dr = kmalloc(size, GFP_KERNEL); 991 if (dr == NULL) 992 return NULL; 993 994 dr->handle.owner = rqstp->rq_server; 995 dr->prot = rqstp->rq_prot; 996 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen); 997 dr->addrlen = rqstp->rq_addrlen; 998 dr->daddr = rqstp->rq_daddr; 999 dr->argslen = rqstp->rq_arg.len >> 2; 1000 dr->xprt_hlen = rqstp->rq_xprt_hlen; 1001 1002 /* back up head to the start of the buffer and copy */ 1003 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len; 1004 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip, 1005 dr->argslen << 2); 1006 } 1007 svc_xprt_get(rqstp->rq_xprt); 1008 dr->xprt = rqstp->rq_xprt; 1009 1010 dr->handle.revisit = svc_revisit; 1011 return &dr->handle; 1012 } 1013 1014 /* 1015 * recv data from a deferred request into an active one 1016 */ 1017 static int svc_deferred_recv(struct svc_rqst *rqstp) 1018 { 1019 struct svc_deferred_req *dr = rqstp->rq_deferred; 1020 1021 /* setup iov_base past transport header */ 1022 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2); 1023 /* The iov_len does not include the transport header bytes */ 1024 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen; 1025 rqstp->rq_arg.page_len = 0; 1026 /* The rq_arg.len includes the transport header bytes */ 1027 rqstp->rq_arg.len = dr->argslen<<2; 1028 rqstp->rq_prot = dr->prot; 1029 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen); 1030 rqstp->rq_addrlen = dr->addrlen; 1031 /* Save off transport header len in case we get deferred again */ 1032 rqstp->rq_xprt_hlen = dr->xprt_hlen; 1033 rqstp->rq_daddr = dr->daddr; 1034 rqstp->rq_respages = rqstp->rq_pages; 1035 return (dr->argslen<<2) - dr->xprt_hlen; 1036 } 1037 1038 1039 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt) 1040 { 1041 struct svc_deferred_req *dr = NULL; 1042 1043 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags)) 1044 return NULL; 1045 spin_lock(&xprt->xpt_lock); 1046 clear_bit(XPT_DEFERRED, &xprt->xpt_flags); 1047 if (!list_empty(&xprt->xpt_deferred)) { 1048 dr = list_entry(xprt->xpt_deferred.next, 1049 struct svc_deferred_req, 1050 handle.recent); 1051 list_del_init(&dr->handle.recent); 1052 set_bit(XPT_DEFERRED, &xprt->xpt_flags); 1053 } 1054 spin_unlock(&xprt->xpt_lock); 1055 return dr; 1056 } 1057 1058 /** 1059 * svc_find_xprt - find an RPC transport instance 1060 * @serv: pointer to svc_serv to search 1061 * @xcl_name: C string containing transport's class name 1062 * @af: Address family of transport's local address 1063 * @port: transport's IP port number 1064 * 1065 * Return the transport instance pointer for the endpoint accepting 1066 * connections/peer traffic from the specified transport class, 1067 * address family and port. 1068 * 1069 * Specifying 0 for the address family or port is effectively a 1070 * wild-card, and will result in matching the first transport in the 1071 * service's list that has a matching class name. 1072 */ 1073 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name, 1074 const sa_family_t af, const unsigned short port) 1075 { 1076 struct svc_xprt *xprt; 1077 struct svc_xprt *found = NULL; 1078 1079 /* Sanity check the args */ 1080 if (serv == NULL || xcl_name == NULL) 1081 return found; 1082 1083 spin_lock_bh(&serv->sv_lock); 1084 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { 1085 if (strcmp(xprt->xpt_class->xcl_name, xcl_name)) 1086 continue; 1087 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family) 1088 continue; 1089 if (port != 0 && port != svc_xprt_local_port(xprt)) 1090 continue; 1091 found = xprt; 1092 svc_xprt_get(xprt); 1093 break; 1094 } 1095 spin_unlock_bh(&serv->sv_lock); 1096 return found; 1097 } 1098 EXPORT_SYMBOL_GPL(svc_find_xprt); 1099 1100 /* 1101 * Format a buffer with a list of the active transports. A zero for 1102 * the buflen parameter disables target buffer overflow checking. 1103 */ 1104 int svc_xprt_names(struct svc_serv *serv, char *buf, int buflen) 1105 { 1106 struct svc_xprt *xprt; 1107 char xprt_str[64]; 1108 int totlen = 0; 1109 int len; 1110 1111 /* Sanity check args */ 1112 if (!serv) 1113 return 0; 1114 1115 spin_lock_bh(&serv->sv_lock); 1116 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { 1117 len = snprintf(xprt_str, sizeof(xprt_str), 1118 "%s %d\n", xprt->xpt_class->xcl_name, 1119 svc_xprt_local_port(xprt)); 1120 /* If the string was truncated, replace with error string */ 1121 if (len >= sizeof(xprt_str)) 1122 strcpy(xprt_str, "name-too-long\n"); 1123 /* Don't overflow buffer */ 1124 len = strlen(xprt_str); 1125 if (buflen && (len + totlen >= buflen)) 1126 break; 1127 strcpy(buf+totlen, xprt_str); 1128 totlen += len; 1129 } 1130 spin_unlock_bh(&serv->sv_lock); 1131 return totlen; 1132 } 1133 EXPORT_SYMBOL_GPL(svc_xprt_names); 1134 1135 1136 /*----------------------------------------------------------------------------*/ 1137 1138 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos) 1139 { 1140 unsigned int pidx = (unsigned int)*pos; 1141 struct svc_serv *serv = m->private; 1142 1143 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx); 1144 1145 lock_kernel(); 1146 /* bump up the pseudo refcount while traversing */ 1147 svc_get(serv); 1148 unlock_kernel(); 1149 1150 if (!pidx) 1151 return SEQ_START_TOKEN; 1152 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]); 1153 } 1154 1155 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos) 1156 { 1157 struct svc_pool *pool = p; 1158 struct svc_serv *serv = m->private; 1159 1160 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos); 1161 1162 if (p == SEQ_START_TOKEN) { 1163 pool = &serv->sv_pools[0]; 1164 } else { 1165 unsigned int pidx = (pool - &serv->sv_pools[0]); 1166 if (pidx < serv->sv_nrpools-1) 1167 pool = &serv->sv_pools[pidx+1]; 1168 else 1169 pool = NULL; 1170 } 1171 ++*pos; 1172 return pool; 1173 } 1174 1175 static void svc_pool_stats_stop(struct seq_file *m, void *p) 1176 { 1177 struct svc_serv *serv = m->private; 1178 1179 lock_kernel(); 1180 /* this function really, really should have been called svc_put() */ 1181 svc_destroy(serv); 1182 unlock_kernel(); 1183 } 1184 1185 static int svc_pool_stats_show(struct seq_file *m, void *p) 1186 { 1187 struct svc_pool *pool = p; 1188 1189 if (p == SEQ_START_TOKEN) { 1190 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken overloads-avoided threads-timedout\n"); 1191 return 0; 1192 } 1193 1194 seq_printf(m, "%u %lu %lu %lu %lu %lu\n", 1195 pool->sp_id, 1196 pool->sp_stats.packets, 1197 pool->sp_stats.sockets_queued, 1198 pool->sp_stats.threads_woken, 1199 pool->sp_stats.overloads_avoided, 1200 pool->sp_stats.threads_timedout); 1201 1202 return 0; 1203 } 1204 1205 static const struct seq_operations svc_pool_stats_seq_ops = { 1206 .start = svc_pool_stats_start, 1207 .next = svc_pool_stats_next, 1208 .stop = svc_pool_stats_stop, 1209 .show = svc_pool_stats_show, 1210 }; 1211 1212 int svc_pool_stats_open(struct svc_serv *serv, struct file *file) 1213 { 1214 int err; 1215 1216 err = seq_open(file, &svc_pool_stats_seq_ops); 1217 if (!err) 1218 ((struct seq_file *) file->private_data)->private = serv; 1219 return err; 1220 } 1221 EXPORT_SYMBOL(svc_pool_stats_open); 1222 1223 /*----------------------------------------------------------------------------*/ 1224