xref: /openbmc/linux/net/sunrpc/svc_xprt.c (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 /*
2  * linux/net/sunrpc/svc_xprt.c
3  *
4  * Author: Tom Tucker <tom@opengridcomputing.com>
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/addr.h>
14 #include <linux/sunrpc/stats.h>
15 #include <linux/sunrpc/svc_xprt.h>
16 #include <linux/sunrpc/svcsock.h>
17 #include <linux/sunrpc/xprt.h>
18 #include <linux/module.h>
19 #include <linux/netdevice.h>
20 #include <trace/events/sunrpc.h>
21 
22 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
23 
24 static unsigned int svc_rpc_per_connection_limit __read_mostly;
25 module_param(svc_rpc_per_connection_limit, uint, 0644);
26 
27 
28 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
29 static int svc_deferred_recv(struct svc_rqst *rqstp);
30 static struct cache_deferred_req *svc_defer(struct cache_req *req);
31 static void svc_age_temp_xprts(struct timer_list *t);
32 static void svc_delete_xprt(struct svc_xprt *xprt);
33 
34 /* apparently the "standard" is that clients close
35  * idle connections after 5 minutes, servers after
36  * 6 minutes
37  *   http://www.connectathon.org/talks96/nfstcp.pdf
38  */
39 static int svc_conn_age_period = 6*60;
40 
41 /* List of registered transport classes */
42 static DEFINE_SPINLOCK(svc_xprt_class_lock);
43 static LIST_HEAD(svc_xprt_class_list);
44 
45 /* SMP locking strategy:
46  *
47  *	svc_pool->sp_lock protects most of the fields of that pool.
48  *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
49  *	when both need to be taken (rare), svc_serv->sv_lock is first.
50  *	The "service mutex" protects svc_serv->sv_nrthread.
51  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
52  *             and the ->sk_info_authunix cache.
53  *
54  *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
55  *	enqueued multiply. During normal transport processing this bit
56  *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
57  *	Providers should not manipulate this bit directly.
58  *
59  *	Some flags can be set to certain values at any time
60  *	providing that certain rules are followed:
61  *
62  *	XPT_CONN, XPT_DATA:
63  *		- Can be set or cleared at any time.
64  *		- After a set, svc_xprt_enqueue must be called to enqueue
65  *		  the transport for processing.
66  *		- After a clear, the transport must be read/accepted.
67  *		  If this succeeds, it must be set again.
68  *	XPT_CLOSE:
69  *		- Can set at any time. It is never cleared.
70  *      XPT_DEAD:
71  *		- Can only be set while XPT_BUSY is held which ensures
72  *		  that no other thread will be using the transport or will
73  *		  try to set XPT_DEAD.
74  */
75 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
76 {
77 	struct svc_xprt_class *cl;
78 	int res = -EEXIST;
79 
80 	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
81 
82 	INIT_LIST_HEAD(&xcl->xcl_list);
83 	spin_lock(&svc_xprt_class_lock);
84 	/* Make sure there isn't already a class with the same name */
85 	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
86 		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
87 			goto out;
88 	}
89 	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
90 	res = 0;
91 out:
92 	spin_unlock(&svc_xprt_class_lock);
93 	return res;
94 }
95 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
96 
97 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
98 {
99 	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
100 	spin_lock(&svc_xprt_class_lock);
101 	list_del_init(&xcl->xcl_list);
102 	spin_unlock(&svc_xprt_class_lock);
103 }
104 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
105 
106 /*
107  * Format the transport list for printing
108  */
109 int svc_print_xprts(char *buf, int maxlen)
110 {
111 	struct svc_xprt_class *xcl;
112 	char tmpstr[80];
113 	int len = 0;
114 	buf[0] = '\0';
115 
116 	spin_lock(&svc_xprt_class_lock);
117 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
118 		int slen;
119 
120 		sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
121 		slen = strlen(tmpstr);
122 		if (len + slen > maxlen)
123 			break;
124 		len += slen;
125 		strcat(buf, tmpstr);
126 	}
127 	spin_unlock(&svc_xprt_class_lock);
128 
129 	return len;
130 }
131 
132 static void svc_xprt_free(struct kref *kref)
133 {
134 	struct svc_xprt *xprt =
135 		container_of(kref, struct svc_xprt, xpt_ref);
136 	struct module *owner = xprt->xpt_class->xcl_owner;
137 	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
138 		svcauth_unix_info_release(xprt);
139 	put_net(xprt->xpt_net);
140 	/* See comment on corresponding get in xs_setup_bc_tcp(): */
141 	if (xprt->xpt_bc_xprt)
142 		xprt_put(xprt->xpt_bc_xprt);
143 	if (xprt->xpt_bc_xps)
144 		xprt_switch_put(xprt->xpt_bc_xps);
145 	xprt->xpt_ops->xpo_free(xprt);
146 	module_put(owner);
147 }
148 
149 void svc_xprt_put(struct svc_xprt *xprt)
150 {
151 	kref_put(&xprt->xpt_ref, svc_xprt_free);
152 }
153 EXPORT_SYMBOL_GPL(svc_xprt_put);
154 
155 /*
156  * Called by transport drivers to initialize the transport independent
157  * portion of the transport instance.
158  */
159 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
160 		   struct svc_xprt *xprt, struct svc_serv *serv)
161 {
162 	memset(xprt, 0, sizeof(*xprt));
163 	xprt->xpt_class = xcl;
164 	xprt->xpt_ops = xcl->xcl_ops;
165 	kref_init(&xprt->xpt_ref);
166 	xprt->xpt_server = serv;
167 	INIT_LIST_HEAD(&xprt->xpt_list);
168 	INIT_LIST_HEAD(&xprt->xpt_ready);
169 	INIT_LIST_HEAD(&xprt->xpt_deferred);
170 	INIT_LIST_HEAD(&xprt->xpt_users);
171 	mutex_init(&xprt->xpt_mutex);
172 	spin_lock_init(&xprt->xpt_lock);
173 	set_bit(XPT_BUSY, &xprt->xpt_flags);
174 	rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
175 	xprt->xpt_net = get_net(net);
176 	strcpy(xprt->xpt_remotebuf, "uninitialized");
177 }
178 EXPORT_SYMBOL_GPL(svc_xprt_init);
179 
180 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
181 					 struct svc_serv *serv,
182 					 struct net *net,
183 					 const int family,
184 					 const unsigned short port,
185 					 int flags)
186 {
187 	struct sockaddr_in sin = {
188 		.sin_family		= AF_INET,
189 		.sin_addr.s_addr	= htonl(INADDR_ANY),
190 		.sin_port		= htons(port),
191 	};
192 #if IS_ENABLED(CONFIG_IPV6)
193 	struct sockaddr_in6 sin6 = {
194 		.sin6_family		= AF_INET6,
195 		.sin6_addr		= IN6ADDR_ANY_INIT,
196 		.sin6_port		= htons(port),
197 	};
198 #endif
199 	struct sockaddr *sap;
200 	size_t len;
201 
202 	switch (family) {
203 	case PF_INET:
204 		sap = (struct sockaddr *)&sin;
205 		len = sizeof(sin);
206 		break;
207 #if IS_ENABLED(CONFIG_IPV6)
208 	case PF_INET6:
209 		sap = (struct sockaddr *)&sin6;
210 		len = sizeof(sin6);
211 		break;
212 #endif
213 	default:
214 		return ERR_PTR(-EAFNOSUPPORT);
215 	}
216 
217 	return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
218 }
219 
220 /*
221  * svc_xprt_received conditionally queues the transport for processing
222  * by another thread. The caller must hold the XPT_BUSY bit and must
223  * not thereafter touch transport data.
224  *
225  * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
226  * insufficient) data.
227  */
228 static void svc_xprt_received(struct svc_xprt *xprt)
229 {
230 	if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
231 		WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
232 		return;
233 	}
234 
235 	/* As soon as we clear busy, the xprt could be closed and
236 	 * 'put', so we need a reference to call svc_enqueue_xprt with:
237 	 */
238 	svc_xprt_get(xprt);
239 	smp_mb__before_atomic();
240 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
241 	xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
242 	svc_xprt_put(xprt);
243 }
244 
245 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
246 {
247 	clear_bit(XPT_TEMP, &new->xpt_flags);
248 	spin_lock_bh(&serv->sv_lock);
249 	list_add(&new->xpt_list, &serv->sv_permsocks);
250 	spin_unlock_bh(&serv->sv_lock);
251 	svc_xprt_received(new);
252 }
253 
254 static int _svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
255 			    struct net *net, const int family,
256 			    const unsigned short port, int flags)
257 {
258 	struct svc_xprt_class *xcl;
259 
260 	spin_lock(&svc_xprt_class_lock);
261 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
262 		struct svc_xprt *newxprt;
263 		unsigned short newport;
264 
265 		if (strcmp(xprt_name, xcl->xcl_name))
266 			continue;
267 
268 		if (!try_module_get(xcl->xcl_owner))
269 			goto err;
270 
271 		spin_unlock(&svc_xprt_class_lock);
272 		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
273 		if (IS_ERR(newxprt)) {
274 			module_put(xcl->xcl_owner);
275 			return PTR_ERR(newxprt);
276 		}
277 		svc_add_new_perm_xprt(serv, newxprt);
278 		newport = svc_xprt_local_port(newxprt);
279 		return newport;
280 	}
281  err:
282 	spin_unlock(&svc_xprt_class_lock);
283 	/* This errno is exposed to user space.  Provide a reasonable
284 	 * perror msg for a bad transport. */
285 	return -EPROTONOSUPPORT;
286 }
287 
288 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
289 		    struct net *net, const int family,
290 		    const unsigned short port, int flags)
291 {
292 	int err;
293 
294 	dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
295 	err = _svc_create_xprt(serv, xprt_name, net, family, port, flags);
296 	if (err == -EPROTONOSUPPORT) {
297 		request_module("svc%s", xprt_name);
298 		err = _svc_create_xprt(serv, xprt_name, net, family, port, flags);
299 	}
300 	if (err)
301 		dprintk("svc: transport %s not found, err %d\n",
302 			xprt_name, err);
303 	return err;
304 }
305 EXPORT_SYMBOL_GPL(svc_create_xprt);
306 
307 /*
308  * Copy the local and remote xprt addresses to the rqstp structure
309  */
310 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
311 {
312 	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
313 	rqstp->rq_addrlen = xprt->xpt_remotelen;
314 
315 	/*
316 	 * Destination address in request is needed for binding the
317 	 * source address in RPC replies/callbacks later.
318 	 */
319 	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
320 	rqstp->rq_daddrlen = xprt->xpt_locallen;
321 }
322 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
323 
324 /**
325  * svc_print_addr - Format rq_addr field for printing
326  * @rqstp: svc_rqst struct containing address to print
327  * @buf: target buffer for formatted address
328  * @len: length of target buffer
329  *
330  */
331 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
332 {
333 	return __svc_print_addr(svc_addr(rqstp), buf, len);
334 }
335 EXPORT_SYMBOL_GPL(svc_print_addr);
336 
337 static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
338 {
339 	unsigned int limit = svc_rpc_per_connection_limit;
340 	int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
341 
342 	return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
343 }
344 
345 static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
346 {
347 	if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
348 		if (!svc_xprt_slots_in_range(xprt))
349 			return false;
350 		atomic_inc(&xprt->xpt_nr_rqsts);
351 		set_bit(RQ_DATA, &rqstp->rq_flags);
352 	}
353 	return true;
354 }
355 
356 static void svc_xprt_release_slot(struct svc_rqst *rqstp)
357 {
358 	struct svc_xprt	*xprt = rqstp->rq_xprt;
359 	if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
360 		atomic_dec(&xprt->xpt_nr_rqsts);
361 		svc_xprt_enqueue(xprt);
362 	}
363 }
364 
365 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
366 {
367 	if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
368 		return true;
369 	if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED))) {
370 		if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
371 		    svc_xprt_slots_in_range(xprt))
372 			return true;
373 		trace_svc_xprt_no_write_space(xprt);
374 		return false;
375 	}
376 	return false;
377 }
378 
379 void svc_xprt_do_enqueue(struct svc_xprt *xprt)
380 {
381 	struct svc_pool *pool;
382 	struct svc_rqst	*rqstp = NULL;
383 	int cpu;
384 
385 	if (!svc_xprt_has_something_to_do(xprt))
386 		return;
387 
388 	/* Mark transport as busy. It will remain in this state until
389 	 * the provider calls svc_xprt_received. We update XPT_BUSY
390 	 * atomically because it also guards against trying to enqueue
391 	 * the transport twice.
392 	 */
393 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
394 		return;
395 
396 	cpu = get_cpu();
397 	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
398 
399 	atomic_long_inc(&pool->sp_stats.packets);
400 
401 	spin_lock_bh(&pool->sp_lock);
402 	list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
403 	pool->sp_stats.sockets_queued++;
404 	spin_unlock_bh(&pool->sp_lock);
405 
406 	/* find a thread for this xprt */
407 	rcu_read_lock();
408 	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
409 		if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags))
410 			continue;
411 		atomic_long_inc(&pool->sp_stats.threads_woken);
412 		rqstp->rq_qtime = ktime_get();
413 		wake_up_process(rqstp->rq_task);
414 		goto out_unlock;
415 	}
416 	set_bit(SP_CONGESTED, &pool->sp_flags);
417 	rqstp = NULL;
418 out_unlock:
419 	rcu_read_unlock();
420 	put_cpu();
421 	trace_svc_xprt_do_enqueue(xprt, rqstp);
422 }
423 EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue);
424 
425 /*
426  * Queue up a transport with data pending. If there are idle nfsd
427  * processes, wake 'em up.
428  *
429  */
430 void svc_xprt_enqueue(struct svc_xprt *xprt)
431 {
432 	if (test_bit(XPT_BUSY, &xprt->xpt_flags))
433 		return;
434 	xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
435 }
436 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
437 
438 /*
439  * Dequeue the first transport, if there is one.
440  */
441 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
442 {
443 	struct svc_xprt	*xprt = NULL;
444 
445 	if (list_empty(&pool->sp_sockets))
446 		goto out;
447 
448 	spin_lock_bh(&pool->sp_lock);
449 	if (likely(!list_empty(&pool->sp_sockets))) {
450 		xprt = list_first_entry(&pool->sp_sockets,
451 					struct svc_xprt, xpt_ready);
452 		list_del_init(&xprt->xpt_ready);
453 		svc_xprt_get(xprt);
454 	}
455 	spin_unlock_bh(&pool->sp_lock);
456 out:
457 	return xprt;
458 }
459 
460 /**
461  * svc_reserve - change the space reserved for the reply to a request.
462  * @rqstp:  The request in question
463  * @space: new max space to reserve
464  *
465  * Each request reserves some space on the output queue of the transport
466  * to make sure the reply fits.  This function reduces that reserved
467  * space to be the amount of space used already, plus @space.
468  *
469  */
470 void svc_reserve(struct svc_rqst *rqstp, int space)
471 {
472 	space += rqstp->rq_res.head[0].iov_len;
473 
474 	if (space < rqstp->rq_reserved) {
475 		struct svc_xprt *xprt = rqstp->rq_xprt;
476 		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
477 		rqstp->rq_reserved = space;
478 
479 		svc_xprt_enqueue(xprt);
480 	}
481 }
482 EXPORT_SYMBOL_GPL(svc_reserve);
483 
484 static void svc_xprt_release(struct svc_rqst *rqstp)
485 {
486 	struct svc_xprt	*xprt = rqstp->rq_xprt;
487 
488 	xprt->xpt_ops->xpo_release_rqst(rqstp);
489 
490 	kfree(rqstp->rq_deferred);
491 	rqstp->rq_deferred = NULL;
492 
493 	svc_free_res_pages(rqstp);
494 	rqstp->rq_res.page_len = 0;
495 	rqstp->rq_res.page_base = 0;
496 
497 	/* Reset response buffer and release
498 	 * the reservation.
499 	 * But first, check that enough space was reserved
500 	 * for the reply, otherwise we have a bug!
501 	 */
502 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
503 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
504 		       rqstp->rq_reserved,
505 		       rqstp->rq_res.len);
506 
507 	rqstp->rq_res.head[0].iov_len = 0;
508 	svc_reserve(rqstp, 0);
509 	svc_xprt_release_slot(rqstp);
510 	rqstp->rq_xprt = NULL;
511 	svc_xprt_put(xprt);
512 }
513 
514 /*
515  * Some svc_serv's will have occasional work to do, even when a xprt is not
516  * waiting to be serviced. This function is there to "kick" a task in one of
517  * those services so that it can wake up and do that work. Note that we only
518  * bother with pool 0 as we don't need to wake up more than one thread for
519  * this purpose.
520  */
521 void svc_wake_up(struct svc_serv *serv)
522 {
523 	struct svc_rqst	*rqstp;
524 	struct svc_pool *pool;
525 
526 	pool = &serv->sv_pools[0];
527 
528 	rcu_read_lock();
529 	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
530 		/* skip any that aren't queued */
531 		if (test_bit(RQ_BUSY, &rqstp->rq_flags))
532 			continue;
533 		rcu_read_unlock();
534 		wake_up_process(rqstp->rq_task);
535 		trace_svc_wake_up(rqstp->rq_task->pid);
536 		return;
537 	}
538 	rcu_read_unlock();
539 
540 	/* No free entries available */
541 	set_bit(SP_TASK_PENDING, &pool->sp_flags);
542 	smp_wmb();
543 	trace_svc_wake_up(0);
544 }
545 EXPORT_SYMBOL_GPL(svc_wake_up);
546 
547 int svc_port_is_privileged(struct sockaddr *sin)
548 {
549 	switch (sin->sa_family) {
550 	case AF_INET:
551 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
552 			< PROT_SOCK;
553 	case AF_INET6:
554 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
555 			< PROT_SOCK;
556 	default:
557 		return 0;
558 	}
559 }
560 
561 /*
562  * Make sure that we don't have too many active connections. If we have,
563  * something must be dropped. It's not clear what will happen if we allow
564  * "too many" connections, but when dealing with network-facing software,
565  * we have to code defensively. Here we do that by imposing hard limits.
566  *
567  * There's no point in trying to do random drop here for DoS
568  * prevention. The NFS clients does 1 reconnect in 15 seconds. An
569  * attacker can easily beat that.
570  *
571  * The only somewhat efficient mechanism would be if drop old
572  * connections from the same IP first. But right now we don't even
573  * record the client IP in svc_sock.
574  *
575  * single-threaded services that expect a lot of clients will probably
576  * need to set sv_maxconn to override the default value which is based
577  * on the number of threads
578  */
579 static void svc_check_conn_limits(struct svc_serv *serv)
580 {
581 	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
582 				(serv->sv_nrthreads+3) * 20;
583 
584 	if (serv->sv_tmpcnt > limit) {
585 		struct svc_xprt *xprt = NULL;
586 		spin_lock_bh(&serv->sv_lock);
587 		if (!list_empty(&serv->sv_tempsocks)) {
588 			/* Try to help the admin */
589 			net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
590 					       serv->sv_name, serv->sv_maxconn ?
591 					       "max number of connections" :
592 					       "number of threads");
593 			/*
594 			 * Always select the oldest connection. It's not fair,
595 			 * but so is life
596 			 */
597 			xprt = list_entry(serv->sv_tempsocks.prev,
598 					  struct svc_xprt,
599 					  xpt_list);
600 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
601 			svc_xprt_get(xprt);
602 		}
603 		spin_unlock_bh(&serv->sv_lock);
604 
605 		if (xprt) {
606 			svc_xprt_enqueue(xprt);
607 			svc_xprt_put(xprt);
608 		}
609 	}
610 }
611 
612 static int svc_alloc_arg(struct svc_rqst *rqstp)
613 {
614 	struct svc_serv *serv = rqstp->rq_server;
615 	struct xdr_buf *arg;
616 	int pages;
617 	int i;
618 
619 	/* now allocate needed pages.  If we get a failure, sleep briefly */
620 	pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
621 	if (pages > RPCSVC_MAXPAGES) {
622 		pr_warn_once("svc: warning: pages=%u > RPCSVC_MAXPAGES=%lu\n",
623 			     pages, RPCSVC_MAXPAGES);
624 		/* use as many pages as possible */
625 		pages = RPCSVC_MAXPAGES;
626 	}
627 	for (i = 0; i < pages ; i++)
628 		while (rqstp->rq_pages[i] == NULL) {
629 			struct page *p = alloc_page(GFP_KERNEL);
630 			if (!p) {
631 				set_current_state(TASK_INTERRUPTIBLE);
632 				if (signalled() || kthread_should_stop()) {
633 					set_current_state(TASK_RUNNING);
634 					return -EINTR;
635 				}
636 				schedule_timeout(msecs_to_jiffies(500));
637 			}
638 			rqstp->rq_pages[i] = p;
639 		}
640 	rqstp->rq_page_end = &rqstp->rq_pages[i];
641 	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
642 
643 	/* Make arg->head point to first page and arg->pages point to rest */
644 	arg = &rqstp->rq_arg;
645 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
646 	arg->head[0].iov_len = PAGE_SIZE;
647 	arg->pages = rqstp->rq_pages + 1;
648 	arg->page_base = 0;
649 	/* save at least one page for response */
650 	arg->page_len = (pages-2)*PAGE_SIZE;
651 	arg->len = (pages-1)*PAGE_SIZE;
652 	arg->tail[0].iov_len = 0;
653 	return 0;
654 }
655 
656 static bool
657 rqst_should_sleep(struct svc_rqst *rqstp)
658 {
659 	struct svc_pool		*pool = rqstp->rq_pool;
660 
661 	/* did someone call svc_wake_up? */
662 	if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
663 		return false;
664 
665 	/* was a socket queued? */
666 	if (!list_empty(&pool->sp_sockets))
667 		return false;
668 
669 	/* are we shutting down? */
670 	if (signalled() || kthread_should_stop())
671 		return false;
672 
673 	/* are we freezing? */
674 	if (freezing(current))
675 		return false;
676 
677 	return true;
678 }
679 
680 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
681 {
682 	struct svc_pool		*pool = rqstp->rq_pool;
683 	long			time_left = 0;
684 
685 	/* rq_xprt should be clear on entry */
686 	WARN_ON_ONCE(rqstp->rq_xprt);
687 
688 	rqstp->rq_xprt = svc_xprt_dequeue(pool);
689 	if (rqstp->rq_xprt)
690 		goto out_found;
691 
692 	/*
693 	 * We have to be able to interrupt this wait
694 	 * to bring down the daemons ...
695 	 */
696 	set_current_state(TASK_INTERRUPTIBLE);
697 	smp_mb__before_atomic();
698 	clear_bit(SP_CONGESTED, &pool->sp_flags);
699 	clear_bit(RQ_BUSY, &rqstp->rq_flags);
700 	smp_mb__after_atomic();
701 
702 	if (likely(rqst_should_sleep(rqstp)))
703 		time_left = schedule_timeout(timeout);
704 	else
705 		__set_current_state(TASK_RUNNING);
706 
707 	try_to_freeze();
708 
709 	set_bit(RQ_BUSY, &rqstp->rq_flags);
710 	smp_mb__after_atomic();
711 	rqstp->rq_xprt = svc_xprt_dequeue(pool);
712 	if (rqstp->rq_xprt)
713 		goto out_found;
714 
715 	if (!time_left)
716 		atomic_long_inc(&pool->sp_stats.threads_timedout);
717 
718 	if (signalled() || kthread_should_stop())
719 		return ERR_PTR(-EINTR);
720 	return ERR_PTR(-EAGAIN);
721 out_found:
722 	/* Normally we will wait up to 5 seconds for any required
723 	 * cache information to be provided.
724 	 */
725 	if (!test_bit(SP_CONGESTED, &pool->sp_flags))
726 		rqstp->rq_chandle.thread_wait = 5*HZ;
727 	else
728 		rqstp->rq_chandle.thread_wait = 1*HZ;
729 	trace_svc_xprt_dequeue(rqstp);
730 	return rqstp->rq_xprt;
731 }
732 
733 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
734 {
735 	spin_lock_bh(&serv->sv_lock);
736 	set_bit(XPT_TEMP, &newxpt->xpt_flags);
737 	list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
738 	serv->sv_tmpcnt++;
739 	if (serv->sv_temptimer.function == NULL) {
740 		/* setup timer to age temp transports */
741 		serv->sv_temptimer.function = svc_age_temp_xprts;
742 		mod_timer(&serv->sv_temptimer,
743 			  jiffies + svc_conn_age_period * HZ);
744 	}
745 	spin_unlock_bh(&serv->sv_lock);
746 	svc_xprt_received(newxpt);
747 }
748 
749 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
750 {
751 	struct svc_serv *serv = rqstp->rq_server;
752 	int len = 0;
753 
754 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
755 		dprintk("svc_recv: found XPT_CLOSE\n");
756 		if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
757 			xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
758 		svc_delete_xprt(xprt);
759 		/* Leave XPT_BUSY set on the dead xprt: */
760 		goto out;
761 	}
762 	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
763 		struct svc_xprt *newxpt;
764 		/*
765 		 * We know this module_get will succeed because the
766 		 * listener holds a reference too
767 		 */
768 		__module_get(xprt->xpt_class->xcl_owner);
769 		svc_check_conn_limits(xprt->xpt_server);
770 		newxpt = xprt->xpt_ops->xpo_accept(xprt);
771 		if (newxpt)
772 			svc_add_new_temp_xprt(serv, newxpt);
773 		else
774 			module_put(xprt->xpt_class->xcl_owner);
775 	} else if (svc_xprt_reserve_slot(rqstp, xprt)) {
776 		/* XPT_DATA|XPT_DEFERRED case: */
777 		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
778 			rqstp, rqstp->rq_pool->sp_id, xprt,
779 			kref_read(&xprt->xpt_ref));
780 		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
781 		if (rqstp->rq_deferred)
782 			len = svc_deferred_recv(rqstp);
783 		else
784 			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
785 		rqstp->rq_stime = ktime_get();
786 		rqstp->rq_reserved = serv->sv_max_mesg;
787 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
788 	}
789 	/* clear XPT_BUSY: */
790 	svc_xprt_received(xprt);
791 out:
792 	trace_svc_handle_xprt(xprt, len);
793 	return len;
794 }
795 
796 /*
797  * Receive the next request on any transport.  This code is carefully
798  * organised not to touch any cachelines in the shared svc_serv
799  * structure, only cachelines in the local svc_pool.
800  */
801 int svc_recv(struct svc_rqst *rqstp, long timeout)
802 {
803 	struct svc_xprt		*xprt = NULL;
804 	struct svc_serv		*serv = rqstp->rq_server;
805 	int			len, err;
806 
807 	dprintk("svc: server %p waiting for data (to = %ld)\n",
808 		rqstp, timeout);
809 
810 	if (rqstp->rq_xprt)
811 		printk(KERN_ERR
812 			"svc_recv: service %p, transport not NULL!\n",
813 			 rqstp);
814 
815 	err = svc_alloc_arg(rqstp);
816 	if (err)
817 		goto out;
818 
819 	try_to_freeze();
820 	cond_resched();
821 	err = -EINTR;
822 	if (signalled() || kthread_should_stop())
823 		goto out;
824 
825 	xprt = svc_get_next_xprt(rqstp, timeout);
826 	if (IS_ERR(xprt)) {
827 		err = PTR_ERR(xprt);
828 		goto out;
829 	}
830 
831 	len = svc_handle_xprt(rqstp, xprt);
832 
833 	/* No data, incomplete (TCP) read, or accept() */
834 	err = -EAGAIN;
835 	if (len <= 0)
836 		goto out_release;
837 
838 	clear_bit(XPT_OLD, &xprt->xpt_flags);
839 
840 	xprt->xpt_ops->xpo_secure_port(rqstp);
841 	rqstp->rq_chandle.defer = svc_defer;
842 	rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
843 
844 	if (serv->sv_stats)
845 		serv->sv_stats->netcnt++;
846 	trace_svc_recv(rqstp, len);
847 	return len;
848 out_release:
849 	rqstp->rq_res.len = 0;
850 	svc_xprt_release(rqstp);
851 out:
852 	return err;
853 }
854 EXPORT_SYMBOL_GPL(svc_recv);
855 
856 /*
857  * Drop request
858  */
859 void svc_drop(struct svc_rqst *rqstp)
860 {
861 	trace_svc_drop(rqstp);
862 	dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
863 	svc_xprt_release(rqstp);
864 }
865 EXPORT_SYMBOL_GPL(svc_drop);
866 
867 /*
868  * Return reply to client.
869  */
870 int svc_send(struct svc_rqst *rqstp)
871 {
872 	struct svc_xprt	*xprt;
873 	int		len = -EFAULT;
874 	struct xdr_buf	*xb;
875 
876 	xprt = rqstp->rq_xprt;
877 	if (!xprt)
878 		goto out;
879 
880 	/* release the receive skb before sending the reply */
881 	xprt->xpt_ops->xpo_release_rqst(rqstp);
882 
883 	/* calculate over-all length */
884 	xb = &rqstp->rq_res;
885 	xb->len = xb->head[0].iov_len +
886 		xb->page_len +
887 		xb->tail[0].iov_len;
888 
889 	/* Grab mutex to serialize outgoing data. */
890 	mutex_lock(&xprt->xpt_mutex);
891 	trace_svc_stats_latency(rqstp);
892 	if (test_bit(XPT_DEAD, &xprt->xpt_flags)
893 			|| test_bit(XPT_CLOSE, &xprt->xpt_flags))
894 		len = -ENOTCONN;
895 	else
896 		len = xprt->xpt_ops->xpo_sendto(rqstp);
897 	mutex_unlock(&xprt->xpt_mutex);
898 	rpc_wake_up(&xprt->xpt_bc_pending);
899 	trace_svc_send(rqstp, len);
900 	svc_xprt_release(rqstp);
901 
902 	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
903 		len = 0;
904 out:
905 	return len;
906 }
907 
908 /*
909  * Timer function to close old temporary transports, using
910  * a mark-and-sweep algorithm.
911  */
912 static void svc_age_temp_xprts(struct timer_list *t)
913 {
914 	struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
915 	struct svc_xprt *xprt;
916 	struct list_head *le, *next;
917 
918 	dprintk("svc_age_temp_xprts\n");
919 
920 	if (!spin_trylock_bh(&serv->sv_lock)) {
921 		/* busy, try again 1 sec later */
922 		dprintk("svc_age_temp_xprts: busy\n");
923 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
924 		return;
925 	}
926 
927 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
928 		xprt = list_entry(le, struct svc_xprt, xpt_list);
929 
930 		/* First time through, just mark it OLD. Second time
931 		 * through, close it. */
932 		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
933 			continue;
934 		if (kref_read(&xprt->xpt_ref) > 1 ||
935 		    test_bit(XPT_BUSY, &xprt->xpt_flags))
936 			continue;
937 		list_del_init(le);
938 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
939 		dprintk("queuing xprt %p for closing\n", xprt);
940 
941 		/* a thread will dequeue and close it soon */
942 		svc_xprt_enqueue(xprt);
943 	}
944 	spin_unlock_bh(&serv->sv_lock);
945 
946 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
947 }
948 
949 /* Close temporary transports whose xpt_local matches server_addr immediately
950  * instead of waiting for them to be picked up by the timer.
951  *
952  * This is meant to be called from a notifier_block that runs when an ip
953  * address is deleted.
954  */
955 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
956 {
957 	struct svc_xprt *xprt;
958 	struct list_head *le, *next;
959 	LIST_HEAD(to_be_closed);
960 
961 	spin_lock_bh(&serv->sv_lock);
962 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
963 		xprt = list_entry(le, struct svc_xprt, xpt_list);
964 		if (rpc_cmp_addr(server_addr, (struct sockaddr *)
965 				&xprt->xpt_local)) {
966 			dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
967 			list_move(le, &to_be_closed);
968 		}
969 	}
970 	spin_unlock_bh(&serv->sv_lock);
971 
972 	while (!list_empty(&to_be_closed)) {
973 		le = to_be_closed.next;
974 		list_del_init(le);
975 		xprt = list_entry(le, struct svc_xprt, xpt_list);
976 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
977 		set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
978 		dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
979 				xprt);
980 		svc_xprt_enqueue(xprt);
981 	}
982 }
983 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
984 
985 static void call_xpt_users(struct svc_xprt *xprt)
986 {
987 	struct svc_xpt_user *u;
988 
989 	spin_lock(&xprt->xpt_lock);
990 	while (!list_empty(&xprt->xpt_users)) {
991 		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
992 		list_del(&u->list);
993 		u->callback(u);
994 	}
995 	spin_unlock(&xprt->xpt_lock);
996 }
997 
998 /*
999  * Remove a dead transport
1000  */
1001 static void svc_delete_xprt(struct svc_xprt *xprt)
1002 {
1003 	struct svc_serv	*serv = xprt->xpt_server;
1004 	struct svc_deferred_req *dr;
1005 
1006 	/* Only do this once */
1007 	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1008 		BUG();
1009 
1010 	dprintk("svc: svc_delete_xprt(%p)\n", xprt);
1011 	xprt->xpt_ops->xpo_detach(xprt);
1012 
1013 	spin_lock_bh(&serv->sv_lock);
1014 	list_del_init(&xprt->xpt_list);
1015 	WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1016 	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1017 		serv->sv_tmpcnt--;
1018 	spin_unlock_bh(&serv->sv_lock);
1019 
1020 	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1021 		kfree(dr);
1022 
1023 	call_xpt_users(xprt);
1024 	svc_xprt_put(xprt);
1025 }
1026 
1027 void svc_close_xprt(struct svc_xprt *xprt)
1028 {
1029 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
1030 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1031 		/* someone else will have to effect the close */
1032 		return;
1033 	/*
1034 	 * We expect svc_close_xprt() to work even when no threads are
1035 	 * running (e.g., while configuring the server before starting
1036 	 * any threads), so if the transport isn't busy, we delete
1037 	 * it ourself:
1038 	 */
1039 	svc_delete_xprt(xprt);
1040 }
1041 EXPORT_SYMBOL_GPL(svc_close_xprt);
1042 
1043 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1044 {
1045 	struct svc_xprt *xprt;
1046 	int ret = 0;
1047 
1048 	spin_lock(&serv->sv_lock);
1049 	list_for_each_entry(xprt, xprt_list, xpt_list) {
1050 		if (xprt->xpt_net != net)
1051 			continue;
1052 		ret++;
1053 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1054 		svc_xprt_enqueue(xprt);
1055 	}
1056 	spin_unlock(&serv->sv_lock);
1057 	return ret;
1058 }
1059 
1060 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1061 {
1062 	struct svc_pool *pool;
1063 	struct svc_xprt *xprt;
1064 	struct svc_xprt *tmp;
1065 	int i;
1066 
1067 	for (i = 0; i < serv->sv_nrpools; i++) {
1068 		pool = &serv->sv_pools[i];
1069 
1070 		spin_lock_bh(&pool->sp_lock);
1071 		list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1072 			if (xprt->xpt_net != net)
1073 				continue;
1074 			list_del_init(&xprt->xpt_ready);
1075 			spin_unlock_bh(&pool->sp_lock);
1076 			return xprt;
1077 		}
1078 		spin_unlock_bh(&pool->sp_lock);
1079 	}
1080 	return NULL;
1081 }
1082 
1083 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1084 {
1085 	struct svc_xprt *xprt;
1086 
1087 	while ((xprt = svc_dequeue_net(serv, net))) {
1088 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1089 		svc_delete_xprt(xprt);
1090 	}
1091 }
1092 
1093 /*
1094  * Server threads may still be running (especially in the case where the
1095  * service is still running in other network namespaces).
1096  *
1097  * So we shut down sockets the same way we would on a running server, by
1098  * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1099  * the close.  In the case there are no such other threads,
1100  * threads running, svc_clean_up_xprts() does a simple version of a
1101  * server's main event loop, and in the case where there are other
1102  * threads, we may need to wait a little while and then check again to
1103  * see if they're done.
1104  */
1105 void svc_close_net(struct svc_serv *serv, struct net *net)
1106 {
1107 	int delay = 0;
1108 
1109 	while (svc_close_list(serv, &serv->sv_permsocks, net) +
1110 	       svc_close_list(serv, &serv->sv_tempsocks, net)) {
1111 
1112 		svc_clean_up_xprts(serv, net);
1113 		msleep(delay++);
1114 	}
1115 }
1116 
1117 /*
1118  * Handle defer and revisit of requests
1119  */
1120 
1121 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1122 {
1123 	struct svc_deferred_req *dr =
1124 		container_of(dreq, struct svc_deferred_req, handle);
1125 	struct svc_xprt *xprt = dr->xprt;
1126 
1127 	spin_lock(&xprt->xpt_lock);
1128 	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1129 	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1130 		spin_unlock(&xprt->xpt_lock);
1131 		dprintk("revisit canceled\n");
1132 		svc_xprt_put(xprt);
1133 		trace_svc_drop_deferred(dr);
1134 		kfree(dr);
1135 		return;
1136 	}
1137 	dprintk("revisit queued\n");
1138 	dr->xprt = NULL;
1139 	list_add(&dr->handle.recent, &xprt->xpt_deferred);
1140 	spin_unlock(&xprt->xpt_lock);
1141 	svc_xprt_enqueue(xprt);
1142 	svc_xprt_put(xprt);
1143 }
1144 
1145 /*
1146  * Save the request off for later processing. The request buffer looks
1147  * like this:
1148  *
1149  * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1150  *
1151  * This code can only handle requests that consist of an xprt-header
1152  * and rpc-header.
1153  */
1154 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1155 {
1156 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1157 	struct svc_deferred_req *dr;
1158 
1159 	if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1160 		return NULL; /* if more than a page, give up FIXME */
1161 	if (rqstp->rq_deferred) {
1162 		dr = rqstp->rq_deferred;
1163 		rqstp->rq_deferred = NULL;
1164 	} else {
1165 		size_t skip;
1166 		size_t size;
1167 		/* FIXME maybe discard if size too large */
1168 		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1169 		dr = kmalloc(size, GFP_KERNEL);
1170 		if (dr == NULL)
1171 			return NULL;
1172 
1173 		dr->handle.owner = rqstp->rq_server;
1174 		dr->prot = rqstp->rq_prot;
1175 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1176 		dr->addrlen = rqstp->rq_addrlen;
1177 		dr->daddr = rqstp->rq_daddr;
1178 		dr->argslen = rqstp->rq_arg.len >> 2;
1179 		dr->xprt_hlen = rqstp->rq_xprt_hlen;
1180 
1181 		/* back up head to the start of the buffer and copy */
1182 		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1183 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1184 		       dr->argslen << 2);
1185 	}
1186 	svc_xprt_get(rqstp->rq_xprt);
1187 	dr->xprt = rqstp->rq_xprt;
1188 	set_bit(RQ_DROPME, &rqstp->rq_flags);
1189 
1190 	dr->handle.revisit = svc_revisit;
1191 	trace_svc_defer(rqstp);
1192 	return &dr->handle;
1193 }
1194 
1195 /*
1196  * recv data from a deferred request into an active one
1197  */
1198 static int svc_deferred_recv(struct svc_rqst *rqstp)
1199 {
1200 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1201 
1202 	/* setup iov_base past transport header */
1203 	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1204 	/* The iov_len does not include the transport header bytes */
1205 	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1206 	rqstp->rq_arg.page_len = 0;
1207 	/* The rq_arg.len includes the transport header bytes */
1208 	rqstp->rq_arg.len     = dr->argslen<<2;
1209 	rqstp->rq_prot        = dr->prot;
1210 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1211 	rqstp->rq_addrlen     = dr->addrlen;
1212 	/* Save off transport header len in case we get deferred again */
1213 	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1214 	rqstp->rq_daddr       = dr->daddr;
1215 	rqstp->rq_respages    = rqstp->rq_pages;
1216 	return (dr->argslen<<2) - dr->xprt_hlen;
1217 }
1218 
1219 
1220 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1221 {
1222 	struct svc_deferred_req *dr = NULL;
1223 
1224 	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1225 		return NULL;
1226 	spin_lock(&xprt->xpt_lock);
1227 	if (!list_empty(&xprt->xpt_deferred)) {
1228 		dr = list_entry(xprt->xpt_deferred.next,
1229 				struct svc_deferred_req,
1230 				handle.recent);
1231 		list_del_init(&dr->handle.recent);
1232 		trace_svc_revisit_deferred(dr);
1233 	} else
1234 		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1235 	spin_unlock(&xprt->xpt_lock);
1236 	return dr;
1237 }
1238 
1239 /**
1240  * svc_find_xprt - find an RPC transport instance
1241  * @serv: pointer to svc_serv to search
1242  * @xcl_name: C string containing transport's class name
1243  * @net: owner net pointer
1244  * @af: Address family of transport's local address
1245  * @port: transport's IP port number
1246  *
1247  * Return the transport instance pointer for the endpoint accepting
1248  * connections/peer traffic from the specified transport class,
1249  * address family and port.
1250  *
1251  * Specifying 0 for the address family or port is effectively a
1252  * wild-card, and will result in matching the first transport in the
1253  * service's list that has a matching class name.
1254  */
1255 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1256 			       struct net *net, const sa_family_t af,
1257 			       const unsigned short port)
1258 {
1259 	struct svc_xprt *xprt;
1260 	struct svc_xprt *found = NULL;
1261 
1262 	/* Sanity check the args */
1263 	if (serv == NULL || xcl_name == NULL)
1264 		return found;
1265 
1266 	spin_lock_bh(&serv->sv_lock);
1267 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1268 		if (xprt->xpt_net != net)
1269 			continue;
1270 		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1271 			continue;
1272 		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1273 			continue;
1274 		if (port != 0 && port != svc_xprt_local_port(xprt))
1275 			continue;
1276 		found = xprt;
1277 		svc_xprt_get(xprt);
1278 		break;
1279 	}
1280 	spin_unlock_bh(&serv->sv_lock);
1281 	return found;
1282 }
1283 EXPORT_SYMBOL_GPL(svc_find_xprt);
1284 
1285 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1286 			     char *pos, int remaining)
1287 {
1288 	int len;
1289 
1290 	len = snprintf(pos, remaining, "%s %u\n",
1291 			xprt->xpt_class->xcl_name,
1292 			svc_xprt_local_port(xprt));
1293 	if (len >= remaining)
1294 		return -ENAMETOOLONG;
1295 	return len;
1296 }
1297 
1298 /**
1299  * svc_xprt_names - format a buffer with a list of transport names
1300  * @serv: pointer to an RPC service
1301  * @buf: pointer to a buffer to be filled in
1302  * @buflen: length of buffer to be filled in
1303  *
1304  * Fills in @buf with a string containing a list of transport names,
1305  * each name terminated with '\n'.
1306  *
1307  * Returns positive length of the filled-in string on success; otherwise
1308  * a negative errno value is returned if an error occurs.
1309  */
1310 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1311 {
1312 	struct svc_xprt *xprt;
1313 	int len, totlen;
1314 	char *pos;
1315 
1316 	/* Sanity check args */
1317 	if (!serv)
1318 		return 0;
1319 
1320 	spin_lock_bh(&serv->sv_lock);
1321 
1322 	pos = buf;
1323 	totlen = 0;
1324 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1325 		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1326 		if (len < 0) {
1327 			*buf = '\0';
1328 			totlen = len;
1329 		}
1330 		if (len <= 0)
1331 			break;
1332 
1333 		pos += len;
1334 		totlen += len;
1335 	}
1336 
1337 	spin_unlock_bh(&serv->sv_lock);
1338 	return totlen;
1339 }
1340 EXPORT_SYMBOL_GPL(svc_xprt_names);
1341 
1342 
1343 /*----------------------------------------------------------------------------*/
1344 
1345 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1346 {
1347 	unsigned int pidx = (unsigned int)*pos;
1348 	struct svc_serv *serv = m->private;
1349 
1350 	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1351 
1352 	if (!pidx)
1353 		return SEQ_START_TOKEN;
1354 	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1355 }
1356 
1357 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1358 {
1359 	struct svc_pool *pool = p;
1360 	struct svc_serv *serv = m->private;
1361 
1362 	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1363 
1364 	if (p == SEQ_START_TOKEN) {
1365 		pool = &serv->sv_pools[0];
1366 	} else {
1367 		unsigned int pidx = (pool - &serv->sv_pools[0]);
1368 		if (pidx < serv->sv_nrpools-1)
1369 			pool = &serv->sv_pools[pidx+1];
1370 		else
1371 			pool = NULL;
1372 	}
1373 	++*pos;
1374 	return pool;
1375 }
1376 
1377 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1378 {
1379 }
1380 
1381 static int svc_pool_stats_show(struct seq_file *m, void *p)
1382 {
1383 	struct svc_pool *pool = p;
1384 
1385 	if (p == SEQ_START_TOKEN) {
1386 		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1387 		return 0;
1388 	}
1389 
1390 	seq_printf(m, "%u %lu %lu %lu %lu\n",
1391 		pool->sp_id,
1392 		(unsigned long)atomic_long_read(&pool->sp_stats.packets),
1393 		pool->sp_stats.sockets_queued,
1394 		(unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1395 		(unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1396 
1397 	return 0;
1398 }
1399 
1400 static const struct seq_operations svc_pool_stats_seq_ops = {
1401 	.start	= svc_pool_stats_start,
1402 	.next	= svc_pool_stats_next,
1403 	.stop	= svc_pool_stats_stop,
1404 	.show	= svc_pool_stats_show,
1405 };
1406 
1407 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1408 {
1409 	int err;
1410 
1411 	err = seq_open(file, &svc_pool_stats_seq_ops);
1412 	if (!err)
1413 		((struct seq_file *) file->private_data)->private = serv;
1414 	return err;
1415 }
1416 EXPORT_SYMBOL(svc_pool_stats_open);
1417 
1418 /*----------------------------------------------------------------------------*/
1419