xref: /openbmc/linux/net/sunrpc/svc_xprt.c (revision a8fe58ce)
1 /*
2  * linux/net/sunrpc/svc_xprt.c
3  *
4  * Author: Tom Tucker <tom@opengridcomputing.com>
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/addr.h>
14 #include <linux/sunrpc/stats.h>
15 #include <linux/sunrpc/svc_xprt.h>
16 #include <linux/sunrpc/svcsock.h>
17 #include <linux/sunrpc/xprt.h>
18 #include <linux/module.h>
19 #include <linux/netdevice.h>
20 #include <trace/events/sunrpc.h>
21 
22 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
23 
24 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
25 static int svc_deferred_recv(struct svc_rqst *rqstp);
26 static struct cache_deferred_req *svc_defer(struct cache_req *req);
27 static void svc_age_temp_xprts(unsigned long closure);
28 static void svc_delete_xprt(struct svc_xprt *xprt);
29 
30 /* apparently the "standard" is that clients close
31  * idle connections after 5 minutes, servers after
32  * 6 minutes
33  *   http://www.connectathon.org/talks96/nfstcp.pdf
34  */
35 static int svc_conn_age_period = 6*60;
36 
37 /* List of registered transport classes */
38 static DEFINE_SPINLOCK(svc_xprt_class_lock);
39 static LIST_HEAD(svc_xprt_class_list);
40 
41 /* SMP locking strategy:
42  *
43  *	svc_pool->sp_lock protects most of the fields of that pool.
44  *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
45  *	when both need to be taken (rare), svc_serv->sv_lock is first.
46  *	The "service mutex" protects svc_serv->sv_nrthread.
47  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
48  *             and the ->sk_info_authunix cache.
49  *
50  *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
51  *	enqueued multiply. During normal transport processing this bit
52  *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
53  *	Providers should not manipulate this bit directly.
54  *
55  *	Some flags can be set to certain values at any time
56  *	providing that certain rules are followed:
57  *
58  *	XPT_CONN, XPT_DATA:
59  *		- Can be set or cleared at any time.
60  *		- After a set, svc_xprt_enqueue must be called to enqueue
61  *		  the transport for processing.
62  *		- After a clear, the transport must be read/accepted.
63  *		  If this succeeds, it must be set again.
64  *	XPT_CLOSE:
65  *		- Can set at any time. It is never cleared.
66  *      XPT_DEAD:
67  *		- Can only be set while XPT_BUSY is held which ensures
68  *		  that no other thread will be using the transport or will
69  *		  try to set XPT_DEAD.
70  */
71 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
72 {
73 	struct svc_xprt_class *cl;
74 	int res = -EEXIST;
75 
76 	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
77 
78 	INIT_LIST_HEAD(&xcl->xcl_list);
79 	spin_lock(&svc_xprt_class_lock);
80 	/* Make sure there isn't already a class with the same name */
81 	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
82 		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
83 			goto out;
84 	}
85 	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
86 	res = 0;
87 out:
88 	spin_unlock(&svc_xprt_class_lock);
89 	return res;
90 }
91 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
92 
93 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
94 {
95 	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
96 	spin_lock(&svc_xprt_class_lock);
97 	list_del_init(&xcl->xcl_list);
98 	spin_unlock(&svc_xprt_class_lock);
99 }
100 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
101 
102 /*
103  * Format the transport list for printing
104  */
105 int svc_print_xprts(char *buf, int maxlen)
106 {
107 	struct svc_xprt_class *xcl;
108 	char tmpstr[80];
109 	int len = 0;
110 	buf[0] = '\0';
111 
112 	spin_lock(&svc_xprt_class_lock);
113 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
114 		int slen;
115 
116 		sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
117 		slen = strlen(tmpstr);
118 		if (len + slen > maxlen)
119 			break;
120 		len += slen;
121 		strcat(buf, tmpstr);
122 	}
123 	spin_unlock(&svc_xprt_class_lock);
124 
125 	return len;
126 }
127 
128 static void svc_xprt_free(struct kref *kref)
129 {
130 	struct svc_xprt *xprt =
131 		container_of(kref, struct svc_xprt, xpt_ref);
132 	struct module *owner = xprt->xpt_class->xcl_owner;
133 	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
134 		svcauth_unix_info_release(xprt);
135 	put_net(xprt->xpt_net);
136 	/* See comment on corresponding get in xs_setup_bc_tcp(): */
137 	if (xprt->xpt_bc_xprt)
138 		xprt_put(xprt->xpt_bc_xprt);
139 	xprt->xpt_ops->xpo_free(xprt);
140 	module_put(owner);
141 }
142 
143 void svc_xprt_put(struct svc_xprt *xprt)
144 {
145 	kref_put(&xprt->xpt_ref, svc_xprt_free);
146 }
147 EXPORT_SYMBOL_GPL(svc_xprt_put);
148 
149 /*
150  * Called by transport drivers to initialize the transport independent
151  * portion of the transport instance.
152  */
153 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
154 		   struct svc_xprt *xprt, struct svc_serv *serv)
155 {
156 	memset(xprt, 0, sizeof(*xprt));
157 	xprt->xpt_class = xcl;
158 	xprt->xpt_ops = xcl->xcl_ops;
159 	kref_init(&xprt->xpt_ref);
160 	xprt->xpt_server = serv;
161 	INIT_LIST_HEAD(&xprt->xpt_list);
162 	INIT_LIST_HEAD(&xprt->xpt_ready);
163 	INIT_LIST_HEAD(&xprt->xpt_deferred);
164 	INIT_LIST_HEAD(&xprt->xpt_users);
165 	mutex_init(&xprt->xpt_mutex);
166 	spin_lock_init(&xprt->xpt_lock);
167 	set_bit(XPT_BUSY, &xprt->xpt_flags);
168 	rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
169 	xprt->xpt_net = get_net(net);
170 }
171 EXPORT_SYMBOL_GPL(svc_xprt_init);
172 
173 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
174 					 struct svc_serv *serv,
175 					 struct net *net,
176 					 const int family,
177 					 const unsigned short port,
178 					 int flags)
179 {
180 	struct sockaddr_in sin = {
181 		.sin_family		= AF_INET,
182 		.sin_addr.s_addr	= htonl(INADDR_ANY),
183 		.sin_port		= htons(port),
184 	};
185 #if IS_ENABLED(CONFIG_IPV6)
186 	struct sockaddr_in6 sin6 = {
187 		.sin6_family		= AF_INET6,
188 		.sin6_addr		= IN6ADDR_ANY_INIT,
189 		.sin6_port		= htons(port),
190 	};
191 #endif
192 	struct sockaddr *sap;
193 	size_t len;
194 
195 	switch (family) {
196 	case PF_INET:
197 		sap = (struct sockaddr *)&sin;
198 		len = sizeof(sin);
199 		break;
200 #if IS_ENABLED(CONFIG_IPV6)
201 	case PF_INET6:
202 		sap = (struct sockaddr *)&sin6;
203 		len = sizeof(sin6);
204 		break;
205 #endif
206 	default:
207 		return ERR_PTR(-EAFNOSUPPORT);
208 	}
209 
210 	return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
211 }
212 
213 /*
214  * svc_xprt_received conditionally queues the transport for processing
215  * by another thread. The caller must hold the XPT_BUSY bit and must
216  * not thereafter touch transport data.
217  *
218  * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
219  * insufficient) data.
220  */
221 static void svc_xprt_received(struct svc_xprt *xprt)
222 {
223 	if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
224 		WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
225 		return;
226 	}
227 
228 	/* As soon as we clear busy, the xprt could be closed and
229 	 * 'put', so we need a reference to call svc_enqueue_xprt with:
230 	 */
231 	svc_xprt_get(xprt);
232 	smp_mb__before_atomic();
233 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
234 	xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
235 	svc_xprt_put(xprt);
236 }
237 
238 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
239 {
240 	clear_bit(XPT_TEMP, &new->xpt_flags);
241 	spin_lock_bh(&serv->sv_lock);
242 	list_add(&new->xpt_list, &serv->sv_permsocks);
243 	spin_unlock_bh(&serv->sv_lock);
244 	svc_xprt_received(new);
245 }
246 
247 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
248 		    struct net *net, const int family,
249 		    const unsigned short port, int flags)
250 {
251 	struct svc_xprt_class *xcl;
252 
253 	dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
254 	spin_lock(&svc_xprt_class_lock);
255 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
256 		struct svc_xprt *newxprt;
257 		unsigned short newport;
258 
259 		if (strcmp(xprt_name, xcl->xcl_name))
260 			continue;
261 
262 		if (!try_module_get(xcl->xcl_owner))
263 			goto err;
264 
265 		spin_unlock(&svc_xprt_class_lock);
266 		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
267 		if (IS_ERR(newxprt)) {
268 			module_put(xcl->xcl_owner);
269 			return PTR_ERR(newxprt);
270 		}
271 		svc_add_new_perm_xprt(serv, newxprt);
272 		newport = svc_xprt_local_port(newxprt);
273 		return newport;
274 	}
275  err:
276 	spin_unlock(&svc_xprt_class_lock);
277 	dprintk("svc: transport %s not found\n", xprt_name);
278 
279 	/* This errno is exposed to user space.  Provide a reasonable
280 	 * perror msg for a bad transport. */
281 	return -EPROTONOSUPPORT;
282 }
283 EXPORT_SYMBOL_GPL(svc_create_xprt);
284 
285 /*
286  * Copy the local and remote xprt addresses to the rqstp structure
287  */
288 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
289 {
290 	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
291 	rqstp->rq_addrlen = xprt->xpt_remotelen;
292 
293 	/*
294 	 * Destination address in request is needed for binding the
295 	 * source address in RPC replies/callbacks later.
296 	 */
297 	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
298 	rqstp->rq_daddrlen = xprt->xpt_locallen;
299 }
300 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
301 
302 /**
303  * svc_print_addr - Format rq_addr field for printing
304  * @rqstp: svc_rqst struct containing address to print
305  * @buf: target buffer for formatted address
306  * @len: length of target buffer
307  *
308  */
309 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
310 {
311 	return __svc_print_addr(svc_addr(rqstp), buf, len);
312 }
313 EXPORT_SYMBOL_GPL(svc_print_addr);
314 
315 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
316 {
317 	if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
318 		return true;
319 	if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED)))
320 		return xprt->xpt_ops->xpo_has_wspace(xprt);
321 	return false;
322 }
323 
324 void svc_xprt_do_enqueue(struct svc_xprt *xprt)
325 {
326 	struct svc_pool *pool;
327 	struct svc_rqst	*rqstp = NULL;
328 	int cpu;
329 	bool queued = false;
330 
331 	if (!svc_xprt_has_something_to_do(xprt))
332 		goto out;
333 
334 	/* Mark transport as busy. It will remain in this state until
335 	 * the provider calls svc_xprt_received. We update XPT_BUSY
336 	 * atomically because it also guards against trying to enqueue
337 	 * the transport twice.
338 	 */
339 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
340 		/* Don't enqueue transport while already enqueued */
341 		dprintk("svc: transport %p busy, not enqueued\n", xprt);
342 		goto out;
343 	}
344 
345 	cpu = get_cpu();
346 	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
347 
348 	atomic_long_inc(&pool->sp_stats.packets);
349 
350 redo_search:
351 	/* find a thread for this xprt */
352 	rcu_read_lock();
353 	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
354 		/* Do a lockless check first */
355 		if (test_bit(RQ_BUSY, &rqstp->rq_flags))
356 			continue;
357 
358 		/*
359 		 * Once the xprt has been queued, it can only be dequeued by
360 		 * the task that intends to service it. All we can do at that
361 		 * point is to try to wake this thread back up so that it can
362 		 * do so.
363 		 */
364 		if (!queued) {
365 			spin_lock_bh(&rqstp->rq_lock);
366 			if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags)) {
367 				/* already busy, move on... */
368 				spin_unlock_bh(&rqstp->rq_lock);
369 				continue;
370 			}
371 
372 			/* this one will do */
373 			rqstp->rq_xprt = xprt;
374 			svc_xprt_get(xprt);
375 			spin_unlock_bh(&rqstp->rq_lock);
376 		}
377 		rcu_read_unlock();
378 
379 		atomic_long_inc(&pool->sp_stats.threads_woken);
380 		wake_up_process(rqstp->rq_task);
381 		put_cpu();
382 		goto out;
383 	}
384 	rcu_read_unlock();
385 
386 	/*
387 	 * We didn't find an idle thread to use, so we need to queue the xprt.
388 	 * Do so and then search again. If we find one, we can't hook this one
389 	 * up to it directly but we can wake the thread up in the hopes that it
390 	 * will pick it up once it searches for a xprt to service.
391 	 */
392 	if (!queued) {
393 		queued = true;
394 		dprintk("svc: transport %p put into queue\n", xprt);
395 		spin_lock_bh(&pool->sp_lock);
396 		list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
397 		pool->sp_stats.sockets_queued++;
398 		spin_unlock_bh(&pool->sp_lock);
399 		goto redo_search;
400 	}
401 	rqstp = NULL;
402 	put_cpu();
403 out:
404 	trace_svc_xprt_do_enqueue(xprt, rqstp);
405 }
406 EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue);
407 
408 /*
409  * Queue up a transport with data pending. If there are idle nfsd
410  * processes, wake 'em up.
411  *
412  */
413 void svc_xprt_enqueue(struct svc_xprt *xprt)
414 {
415 	if (test_bit(XPT_BUSY, &xprt->xpt_flags))
416 		return;
417 	xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
418 }
419 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
420 
421 /*
422  * Dequeue the first transport, if there is one.
423  */
424 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
425 {
426 	struct svc_xprt	*xprt = NULL;
427 
428 	if (list_empty(&pool->sp_sockets))
429 		goto out;
430 
431 	spin_lock_bh(&pool->sp_lock);
432 	if (likely(!list_empty(&pool->sp_sockets))) {
433 		xprt = list_first_entry(&pool->sp_sockets,
434 					struct svc_xprt, xpt_ready);
435 		list_del_init(&xprt->xpt_ready);
436 		svc_xprt_get(xprt);
437 
438 		dprintk("svc: transport %p dequeued, inuse=%d\n",
439 			xprt, atomic_read(&xprt->xpt_ref.refcount));
440 	}
441 	spin_unlock_bh(&pool->sp_lock);
442 out:
443 	trace_svc_xprt_dequeue(xprt);
444 	return xprt;
445 }
446 
447 /**
448  * svc_reserve - change the space reserved for the reply to a request.
449  * @rqstp:  The request in question
450  * @space: new max space to reserve
451  *
452  * Each request reserves some space on the output queue of the transport
453  * to make sure the reply fits.  This function reduces that reserved
454  * space to be the amount of space used already, plus @space.
455  *
456  */
457 void svc_reserve(struct svc_rqst *rqstp, int space)
458 {
459 	space += rqstp->rq_res.head[0].iov_len;
460 
461 	if (space < rqstp->rq_reserved) {
462 		struct svc_xprt *xprt = rqstp->rq_xprt;
463 		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
464 		rqstp->rq_reserved = space;
465 
466 		if (xprt->xpt_ops->xpo_adjust_wspace)
467 			xprt->xpt_ops->xpo_adjust_wspace(xprt);
468 		svc_xprt_enqueue(xprt);
469 	}
470 }
471 EXPORT_SYMBOL_GPL(svc_reserve);
472 
473 static void svc_xprt_release(struct svc_rqst *rqstp)
474 {
475 	struct svc_xprt	*xprt = rqstp->rq_xprt;
476 
477 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
478 
479 	kfree(rqstp->rq_deferred);
480 	rqstp->rq_deferred = NULL;
481 
482 	svc_free_res_pages(rqstp);
483 	rqstp->rq_res.page_len = 0;
484 	rqstp->rq_res.page_base = 0;
485 
486 	/* Reset response buffer and release
487 	 * the reservation.
488 	 * But first, check that enough space was reserved
489 	 * for the reply, otherwise we have a bug!
490 	 */
491 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
492 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
493 		       rqstp->rq_reserved,
494 		       rqstp->rq_res.len);
495 
496 	rqstp->rq_res.head[0].iov_len = 0;
497 	svc_reserve(rqstp, 0);
498 	rqstp->rq_xprt = NULL;
499 
500 	svc_xprt_put(xprt);
501 }
502 
503 /*
504  * Some svc_serv's will have occasional work to do, even when a xprt is not
505  * waiting to be serviced. This function is there to "kick" a task in one of
506  * those services so that it can wake up and do that work. Note that we only
507  * bother with pool 0 as we don't need to wake up more than one thread for
508  * this purpose.
509  */
510 void svc_wake_up(struct svc_serv *serv)
511 {
512 	struct svc_rqst	*rqstp;
513 	struct svc_pool *pool;
514 
515 	pool = &serv->sv_pools[0];
516 
517 	rcu_read_lock();
518 	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
519 		/* skip any that aren't queued */
520 		if (test_bit(RQ_BUSY, &rqstp->rq_flags))
521 			continue;
522 		rcu_read_unlock();
523 		dprintk("svc: daemon %p woken up.\n", rqstp);
524 		wake_up_process(rqstp->rq_task);
525 		trace_svc_wake_up(rqstp->rq_task->pid);
526 		return;
527 	}
528 	rcu_read_unlock();
529 
530 	/* No free entries available */
531 	set_bit(SP_TASK_PENDING, &pool->sp_flags);
532 	smp_wmb();
533 	trace_svc_wake_up(0);
534 }
535 EXPORT_SYMBOL_GPL(svc_wake_up);
536 
537 int svc_port_is_privileged(struct sockaddr *sin)
538 {
539 	switch (sin->sa_family) {
540 	case AF_INET:
541 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
542 			< PROT_SOCK;
543 	case AF_INET6:
544 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
545 			< PROT_SOCK;
546 	default:
547 		return 0;
548 	}
549 }
550 
551 /*
552  * Make sure that we don't have too many active connections. If we have,
553  * something must be dropped. It's not clear what will happen if we allow
554  * "too many" connections, but when dealing with network-facing software,
555  * we have to code defensively. Here we do that by imposing hard limits.
556  *
557  * There's no point in trying to do random drop here for DoS
558  * prevention. The NFS clients does 1 reconnect in 15 seconds. An
559  * attacker can easily beat that.
560  *
561  * The only somewhat efficient mechanism would be if drop old
562  * connections from the same IP first. But right now we don't even
563  * record the client IP in svc_sock.
564  *
565  * single-threaded services that expect a lot of clients will probably
566  * need to set sv_maxconn to override the default value which is based
567  * on the number of threads
568  */
569 static void svc_check_conn_limits(struct svc_serv *serv)
570 {
571 	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
572 				(serv->sv_nrthreads+3) * 20;
573 
574 	if (serv->sv_tmpcnt > limit) {
575 		struct svc_xprt *xprt = NULL;
576 		spin_lock_bh(&serv->sv_lock);
577 		if (!list_empty(&serv->sv_tempsocks)) {
578 			/* Try to help the admin */
579 			net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
580 					       serv->sv_name, serv->sv_maxconn ?
581 					       "max number of connections" :
582 					       "number of threads");
583 			/*
584 			 * Always select the oldest connection. It's not fair,
585 			 * but so is life
586 			 */
587 			xprt = list_entry(serv->sv_tempsocks.prev,
588 					  struct svc_xprt,
589 					  xpt_list);
590 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
591 			svc_xprt_get(xprt);
592 		}
593 		spin_unlock_bh(&serv->sv_lock);
594 
595 		if (xprt) {
596 			svc_xprt_enqueue(xprt);
597 			svc_xprt_put(xprt);
598 		}
599 	}
600 }
601 
602 static int svc_alloc_arg(struct svc_rqst *rqstp)
603 {
604 	struct svc_serv *serv = rqstp->rq_server;
605 	struct xdr_buf *arg;
606 	int pages;
607 	int i;
608 
609 	/* now allocate needed pages.  If we get a failure, sleep briefly */
610 	pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
611 	WARN_ON_ONCE(pages >= RPCSVC_MAXPAGES);
612 	if (pages >= RPCSVC_MAXPAGES)
613 		/* use as many pages as possible */
614 		pages = RPCSVC_MAXPAGES - 1;
615 	for (i = 0; i < pages ; i++)
616 		while (rqstp->rq_pages[i] == NULL) {
617 			struct page *p = alloc_page(GFP_KERNEL);
618 			if (!p) {
619 				set_current_state(TASK_INTERRUPTIBLE);
620 				if (signalled() || kthread_should_stop()) {
621 					set_current_state(TASK_RUNNING);
622 					return -EINTR;
623 				}
624 				schedule_timeout(msecs_to_jiffies(500));
625 			}
626 			rqstp->rq_pages[i] = p;
627 		}
628 	rqstp->rq_page_end = &rqstp->rq_pages[i];
629 	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
630 
631 	/* Make arg->head point to first page and arg->pages point to rest */
632 	arg = &rqstp->rq_arg;
633 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
634 	arg->head[0].iov_len = PAGE_SIZE;
635 	arg->pages = rqstp->rq_pages + 1;
636 	arg->page_base = 0;
637 	/* save at least one page for response */
638 	arg->page_len = (pages-2)*PAGE_SIZE;
639 	arg->len = (pages-1)*PAGE_SIZE;
640 	arg->tail[0].iov_len = 0;
641 	return 0;
642 }
643 
644 static bool
645 rqst_should_sleep(struct svc_rqst *rqstp)
646 {
647 	struct svc_pool		*pool = rqstp->rq_pool;
648 
649 	/* did someone call svc_wake_up? */
650 	if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
651 		return false;
652 
653 	/* was a socket queued? */
654 	if (!list_empty(&pool->sp_sockets))
655 		return false;
656 
657 	/* are we shutting down? */
658 	if (signalled() || kthread_should_stop())
659 		return false;
660 
661 	/* are we freezing? */
662 	if (freezing(current))
663 		return false;
664 
665 	return true;
666 }
667 
668 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
669 {
670 	struct svc_xprt *xprt;
671 	struct svc_pool		*pool = rqstp->rq_pool;
672 	long			time_left = 0;
673 
674 	/* rq_xprt should be clear on entry */
675 	WARN_ON_ONCE(rqstp->rq_xprt);
676 
677 	/* Normally we will wait up to 5 seconds for any required
678 	 * cache information to be provided.
679 	 */
680 	rqstp->rq_chandle.thread_wait = 5*HZ;
681 
682 	xprt = svc_xprt_dequeue(pool);
683 	if (xprt) {
684 		rqstp->rq_xprt = xprt;
685 
686 		/* As there is a shortage of threads and this request
687 		 * had to be queued, don't allow the thread to wait so
688 		 * long for cache updates.
689 		 */
690 		rqstp->rq_chandle.thread_wait = 1*HZ;
691 		clear_bit(SP_TASK_PENDING, &pool->sp_flags);
692 		return xprt;
693 	}
694 
695 	/*
696 	 * We have to be able to interrupt this wait
697 	 * to bring down the daemons ...
698 	 */
699 	set_current_state(TASK_INTERRUPTIBLE);
700 	clear_bit(RQ_BUSY, &rqstp->rq_flags);
701 	smp_mb();
702 
703 	if (likely(rqst_should_sleep(rqstp)))
704 		time_left = schedule_timeout(timeout);
705 	else
706 		__set_current_state(TASK_RUNNING);
707 
708 	try_to_freeze();
709 
710 	spin_lock_bh(&rqstp->rq_lock);
711 	set_bit(RQ_BUSY, &rqstp->rq_flags);
712 	spin_unlock_bh(&rqstp->rq_lock);
713 
714 	xprt = rqstp->rq_xprt;
715 	if (xprt != NULL)
716 		return xprt;
717 
718 	if (!time_left)
719 		atomic_long_inc(&pool->sp_stats.threads_timedout);
720 
721 	if (signalled() || kthread_should_stop())
722 		return ERR_PTR(-EINTR);
723 	return ERR_PTR(-EAGAIN);
724 }
725 
726 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
727 {
728 	spin_lock_bh(&serv->sv_lock);
729 	set_bit(XPT_TEMP, &newxpt->xpt_flags);
730 	list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
731 	serv->sv_tmpcnt++;
732 	if (serv->sv_temptimer.function == NULL) {
733 		/* setup timer to age temp transports */
734 		setup_timer(&serv->sv_temptimer, svc_age_temp_xprts,
735 			    (unsigned long)serv);
736 		mod_timer(&serv->sv_temptimer,
737 			  jiffies + svc_conn_age_period * HZ);
738 	}
739 	spin_unlock_bh(&serv->sv_lock);
740 	svc_xprt_received(newxpt);
741 }
742 
743 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
744 {
745 	struct svc_serv *serv = rqstp->rq_server;
746 	int len = 0;
747 
748 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
749 		dprintk("svc_recv: found XPT_CLOSE\n");
750 		svc_delete_xprt(xprt);
751 		/* Leave XPT_BUSY set on the dead xprt: */
752 		goto out;
753 	}
754 	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
755 		struct svc_xprt *newxpt;
756 		/*
757 		 * We know this module_get will succeed because the
758 		 * listener holds a reference too
759 		 */
760 		__module_get(xprt->xpt_class->xcl_owner);
761 		svc_check_conn_limits(xprt->xpt_server);
762 		newxpt = xprt->xpt_ops->xpo_accept(xprt);
763 		if (newxpt)
764 			svc_add_new_temp_xprt(serv, newxpt);
765 		else
766 			module_put(xprt->xpt_class->xcl_owner);
767 	} else {
768 		/* XPT_DATA|XPT_DEFERRED case: */
769 		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
770 			rqstp, rqstp->rq_pool->sp_id, xprt,
771 			atomic_read(&xprt->xpt_ref.refcount));
772 		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
773 		if (rqstp->rq_deferred)
774 			len = svc_deferred_recv(rqstp);
775 		else
776 			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
777 		dprintk("svc: got len=%d\n", len);
778 		rqstp->rq_reserved = serv->sv_max_mesg;
779 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
780 	}
781 	/* clear XPT_BUSY: */
782 	svc_xprt_received(xprt);
783 out:
784 	trace_svc_handle_xprt(xprt, len);
785 	return len;
786 }
787 
788 /*
789  * Receive the next request on any transport.  This code is carefully
790  * organised not to touch any cachelines in the shared svc_serv
791  * structure, only cachelines in the local svc_pool.
792  */
793 int svc_recv(struct svc_rqst *rqstp, long timeout)
794 {
795 	struct svc_xprt		*xprt = NULL;
796 	struct svc_serv		*serv = rqstp->rq_server;
797 	int			len, err;
798 
799 	dprintk("svc: server %p waiting for data (to = %ld)\n",
800 		rqstp, timeout);
801 
802 	if (rqstp->rq_xprt)
803 		printk(KERN_ERR
804 			"svc_recv: service %p, transport not NULL!\n",
805 			 rqstp);
806 
807 	err = svc_alloc_arg(rqstp);
808 	if (err)
809 		goto out;
810 
811 	try_to_freeze();
812 	cond_resched();
813 	err = -EINTR;
814 	if (signalled() || kthread_should_stop())
815 		goto out;
816 
817 	xprt = svc_get_next_xprt(rqstp, timeout);
818 	if (IS_ERR(xprt)) {
819 		err = PTR_ERR(xprt);
820 		goto out;
821 	}
822 
823 	len = svc_handle_xprt(rqstp, xprt);
824 
825 	/* No data, incomplete (TCP) read, or accept() */
826 	err = -EAGAIN;
827 	if (len <= 0)
828 		goto out_release;
829 
830 	clear_bit(XPT_OLD, &xprt->xpt_flags);
831 
832 	if (xprt->xpt_ops->xpo_secure_port(rqstp))
833 		set_bit(RQ_SECURE, &rqstp->rq_flags);
834 	else
835 		clear_bit(RQ_SECURE, &rqstp->rq_flags);
836 	rqstp->rq_chandle.defer = svc_defer;
837 	rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
838 
839 	if (serv->sv_stats)
840 		serv->sv_stats->netcnt++;
841 	trace_svc_recv(rqstp, len);
842 	return len;
843 out_release:
844 	rqstp->rq_res.len = 0;
845 	svc_xprt_release(rqstp);
846 out:
847 	trace_svc_recv(rqstp, err);
848 	return err;
849 }
850 EXPORT_SYMBOL_GPL(svc_recv);
851 
852 /*
853  * Drop request
854  */
855 void svc_drop(struct svc_rqst *rqstp)
856 {
857 	dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
858 	svc_xprt_release(rqstp);
859 }
860 EXPORT_SYMBOL_GPL(svc_drop);
861 
862 /*
863  * Return reply to client.
864  */
865 int svc_send(struct svc_rqst *rqstp)
866 {
867 	struct svc_xprt	*xprt;
868 	int		len = -EFAULT;
869 	struct xdr_buf	*xb;
870 
871 	xprt = rqstp->rq_xprt;
872 	if (!xprt)
873 		goto out;
874 
875 	/* release the receive skb before sending the reply */
876 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
877 
878 	/* calculate over-all length */
879 	xb = &rqstp->rq_res;
880 	xb->len = xb->head[0].iov_len +
881 		xb->page_len +
882 		xb->tail[0].iov_len;
883 
884 	/* Grab mutex to serialize outgoing data. */
885 	mutex_lock(&xprt->xpt_mutex);
886 	if (test_bit(XPT_DEAD, &xprt->xpt_flags)
887 			|| test_bit(XPT_CLOSE, &xprt->xpt_flags))
888 		len = -ENOTCONN;
889 	else
890 		len = xprt->xpt_ops->xpo_sendto(rqstp);
891 	mutex_unlock(&xprt->xpt_mutex);
892 	rpc_wake_up(&xprt->xpt_bc_pending);
893 	svc_xprt_release(rqstp);
894 
895 	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
896 		len = 0;
897 out:
898 	trace_svc_send(rqstp, len);
899 	return len;
900 }
901 
902 /*
903  * Timer function to close old temporary transports, using
904  * a mark-and-sweep algorithm.
905  */
906 static void svc_age_temp_xprts(unsigned long closure)
907 {
908 	struct svc_serv *serv = (struct svc_serv *)closure;
909 	struct svc_xprt *xprt;
910 	struct list_head *le, *next;
911 
912 	dprintk("svc_age_temp_xprts\n");
913 
914 	if (!spin_trylock_bh(&serv->sv_lock)) {
915 		/* busy, try again 1 sec later */
916 		dprintk("svc_age_temp_xprts: busy\n");
917 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
918 		return;
919 	}
920 
921 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
922 		xprt = list_entry(le, struct svc_xprt, xpt_list);
923 
924 		/* First time through, just mark it OLD. Second time
925 		 * through, close it. */
926 		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
927 			continue;
928 		if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
929 		    test_bit(XPT_BUSY, &xprt->xpt_flags))
930 			continue;
931 		list_del_init(le);
932 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
933 		dprintk("queuing xprt %p for closing\n", xprt);
934 
935 		/* a thread will dequeue and close it soon */
936 		svc_xprt_enqueue(xprt);
937 	}
938 	spin_unlock_bh(&serv->sv_lock);
939 
940 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
941 }
942 
943 /* Close temporary transports whose xpt_local matches server_addr immediately
944  * instead of waiting for them to be picked up by the timer.
945  *
946  * This is meant to be called from a notifier_block that runs when an ip
947  * address is deleted.
948  */
949 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
950 {
951 	struct svc_xprt *xprt;
952 	struct svc_sock *svsk;
953 	struct socket *sock;
954 	struct list_head *le, *next;
955 	LIST_HEAD(to_be_closed);
956 	struct linger no_linger = {
957 		.l_onoff = 1,
958 		.l_linger = 0,
959 	};
960 
961 	spin_lock_bh(&serv->sv_lock);
962 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
963 		xprt = list_entry(le, struct svc_xprt, xpt_list);
964 		if (rpc_cmp_addr(server_addr, (struct sockaddr *)
965 				&xprt->xpt_local)) {
966 			dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
967 			list_move(le, &to_be_closed);
968 		}
969 	}
970 	spin_unlock_bh(&serv->sv_lock);
971 
972 	while (!list_empty(&to_be_closed)) {
973 		le = to_be_closed.next;
974 		list_del_init(le);
975 		xprt = list_entry(le, struct svc_xprt, xpt_list);
976 		dprintk("svc_age_temp_xprts_now: closing %p\n", xprt);
977 		svsk = container_of(xprt, struct svc_sock, sk_xprt);
978 		sock = svsk->sk_sock;
979 		kernel_setsockopt(sock, SOL_SOCKET, SO_LINGER,
980 				  (char *)&no_linger, sizeof(no_linger));
981 		svc_close_xprt(xprt);
982 	}
983 }
984 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
985 
986 static void call_xpt_users(struct svc_xprt *xprt)
987 {
988 	struct svc_xpt_user *u;
989 
990 	spin_lock(&xprt->xpt_lock);
991 	while (!list_empty(&xprt->xpt_users)) {
992 		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
993 		list_del(&u->list);
994 		u->callback(u);
995 	}
996 	spin_unlock(&xprt->xpt_lock);
997 }
998 
999 /*
1000  * Remove a dead transport
1001  */
1002 static void svc_delete_xprt(struct svc_xprt *xprt)
1003 {
1004 	struct svc_serv	*serv = xprt->xpt_server;
1005 	struct svc_deferred_req *dr;
1006 
1007 	/* Only do this once */
1008 	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1009 		BUG();
1010 
1011 	dprintk("svc: svc_delete_xprt(%p)\n", xprt);
1012 	xprt->xpt_ops->xpo_detach(xprt);
1013 
1014 	spin_lock_bh(&serv->sv_lock);
1015 	list_del_init(&xprt->xpt_list);
1016 	WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1017 	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1018 		serv->sv_tmpcnt--;
1019 	spin_unlock_bh(&serv->sv_lock);
1020 
1021 	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1022 		kfree(dr);
1023 
1024 	call_xpt_users(xprt);
1025 	svc_xprt_put(xprt);
1026 }
1027 
1028 void svc_close_xprt(struct svc_xprt *xprt)
1029 {
1030 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
1031 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1032 		/* someone else will have to effect the close */
1033 		return;
1034 	/*
1035 	 * We expect svc_close_xprt() to work even when no threads are
1036 	 * running (e.g., while configuring the server before starting
1037 	 * any threads), so if the transport isn't busy, we delete
1038 	 * it ourself:
1039 	 */
1040 	svc_delete_xprt(xprt);
1041 }
1042 EXPORT_SYMBOL_GPL(svc_close_xprt);
1043 
1044 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1045 {
1046 	struct svc_xprt *xprt;
1047 	int ret = 0;
1048 
1049 	spin_lock(&serv->sv_lock);
1050 	list_for_each_entry(xprt, xprt_list, xpt_list) {
1051 		if (xprt->xpt_net != net)
1052 			continue;
1053 		ret++;
1054 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1055 		svc_xprt_enqueue(xprt);
1056 	}
1057 	spin_unlock(&serv->sv_lock);
1058 	return ret;
1059 }
1060 
1061 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1062 {
1063 	struct svc_pool *pool;
1064 	struct svc_xprt *xprt;
1065 	struct svc_xprt *tmp;
1066 	int i;
1067 
1068 	for (i = 0; i < serv->sv_nrpools; i++) {
1069 		pool = &serv->sv_pools[i];
1070 
1071 		spin_lock_bh(&pool->sp_lock);
1072 		list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1073 			if (xprt->xpt_net != net)
1074 				continue;
1075 			list_del_init(&xprt->xpt_ready);
1076 			spin_unlock_bh(&pool->sp_lock);
1077 			return xprt;
1078 		}
1079 		spin_unlock_bh(&pool->sp_lock);
1080 	}
1081 	return NULL;
1082 }
1083 
1084 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1085 {
1086 	struct svc_xprt *xprt;
1087 
1088 	while ((xprt = svc_dequeue_net(serv, net))) {
1089 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1090 		svc_delete_xprt(xprt);
1091 	}
1092 }
1093 
1094 /*
1095  * Server threads may still be running (especially in the case where the
1096  * service is still running in other network namespaces).
1097  *
1098  * So we shut down sockets the same way we would on a running server, by
1099  * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1100  * the close.  In the case there are no such other threads,
1101  * threads running, svc_clean_up_xprts() does a simple version of a
1102  * server's main event loop, and in the case where there are other
1103  * threads, we may need to wait a little while and then check again to
1104  * see if they're done.
1105  */
1106 void svc_close_net(struct svc_serv *serv, struct net *net)
1107 {
1108 	int delay = 0;
1109 
1110 	while (svc_close_list(serv, &serv->sv_permsocks, net) +
1111 	       svc_close_list(serv, &serv->sv_tempsocks, net)) {
1112 
1113 		svc_clean_up_xprts(serv, net);
1114 		msleep(delay++);
1115 	}
1116 }
1117 
1118 /*
1119  * Handle defer and revisit of requests
1120  */
1121 
1122 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1123 {
1124 	struct svc_deferred_req *dr =
1125 		container_of(dreq, struct svc_deferred_req, handle);
1126 	struct svc_xprt *xprt = dr->xprt;
1127 
1128 	spin_lock(&xprt->xpt_lock);
1129 	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1130 	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1131 		spin_unlock(&xprt->xpt_lock);
1132 		dprintk("revisit canceled\n");
1133 		svc_xprt_put(xprt);
1134 		kfree(dr);
1135 		return;
1136 	}
1137 	dprintk("revisit queued\n");
1138 	dr->xprt = NULL;
1139 	list_add(&dr->handle.recent, &xprt->xpt_deferred);
1140 	spin_unlock(&xprt->xpt_lock);
1141 	svc_xprt_enqueue(xprt);
1142 	svc_xprt_put(xprt);
1143 }
1144 
1145 /*
1146  * Save the request off for later processing. The request buffer looks
1147  * like this:
1148  *
1149  * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1150  *
1151  * This code can only handle requests that consist of an xprt-header
1152  * and rpc-header.
1153  */
1154 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1155 {
1156 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1157 	struct svc_deferred_req *dr;
1158 
1159 	if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1160 		return NULL; /* if more than a page, give up FIXME */
1161 	if (rqstp->rq_deferred) {
1162 		dr = rqstp->rq_deferred;
1163 		rqstp->rq_deferred = NULL;
1164 	} else {
1165 		size_t skip;
1166 		size_t size;
1167 		/* FIXME maybe discard if size too large */
1168 		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1169 		dr = kmalloc(size, GFP_KERNEL);
1170 		if (dr == NULL)
1171 			return NULL;
1172 
1173 		dr->handle.owner = rqstp->rq_server;
1174 		dr->prot = rqstp->rq_prot;
1175 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1176 		dr->addrlen = rqstp->rq_addrlen;
1177 		dr->daddr = rqstp->rq_daddr;
1178 		dr->argslen = rqstp->rq_arg.len >> 2;
1179 		dr->xprt_hlen = rqstp->rq_xprt_hlen;
1180 
1181 		/* back up head to the start of the buffer and copy */
1182 		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1183 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1184 		       dr->argslen << 2);
1185 	}
1186 	svc_xprt_get(rqstp->rq_xprt);
1187 	dr->xprt = rqstp->rq_xprt;
1188 	set_bit(RQ_DROPME, &rqstp->rq_flags);
1189 
1190 	dr->handle.revisit = svc_revisit;
1191 	return &dr->handle;
1192 }
1193 
1194 /*
1195  * recv data from a deferred request into an active one
1196  */
1197 static int svc_deferred_recv(struct svc_rqst *rqstp)
1198 {
1199 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1200 
1201 	/* setup iov_base past transport header */
1202 	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1203 	/* The iov_len does not include the transport header bytes */
1204 	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1205 	rqstp->rq_arg.page_len = 0;
1206 	/* The rq_arg.len includes the transport header bytes */
1207 	rqstp->rq_arg.len     = dr->argslen<<2;
1208 	rqstp->rq_prot        = dr->prot;
1209 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1210 	rqstp->rq_addrlen     = dr->addrlen;
1211 	/* Save off transport header len in case we get deferred again */
1212 	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1213 	rqstp->rq_daddr       = dr->daddr;
1214 	rqstp->rq_respages    = rqstp->rq_pages;
1215 	return (dr->argslen<<2) - dr->xprt_hlen;
1216 }
1217 
1218 
1219 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1220 {
1221 	struct svc_deferred_req *dr = NULL;
1222 
1223 	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1224 		return NULL;
1225 	spin_lock(&xprt->xpt_lock);
1226 	if (!list_empty(&xprt->xpt_deferred)) {
1227 		dr = list_entry(xprt->xpt_deferred.next,
1228 				struct svc_deferred_req,
1229 				handle.recent);
1230 		list_del_init(&dr->handle.recent);
1231 	} else
1232 		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1233 	spin_unlock(&xprt->xpt_lock);
1234 	return dr;
1235 }
1236 
1237 /**
1238  * svc_find_xprt - find an RPC transport instance
1239  * @serv: pointer to svc_serv to search
1240  * @xcl_name: C string containing transport's class name
1241  * @net: owner net pointer
1242  * @af: Address family of transport's local address
1243  * @port: transport's IP port number
1244  *
1245  * Return the transport instance pointer for the endpoint accepting
1246  * connections/peer traffic from the specified transport class,
1247  * address family and port.
1248  *
1249  * Specifying 0 for the address family or port is effectively a
1250  * wild-card, and will result in matching the first transport in the
1251  * service's list that has a matching class name.
1252  */
1253 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1254 			       struct net *net, const sa_family_t af,
1255 			       const unsigned short port)
1256 {
1257 	struct svc_xprt *xprt;
1258 	struct svc_xprt *found = NULL;
1259 
1260 	/* Sanity check the args */
1261 	if (serv == NULL || xcl_name == NULL)
1262 		return found;
1263 
1264 	spin_lock_bh(&serv->sv_lock);
1265 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1266 		if (xprt->xpt_net != net)
1267 			continue;
1268 		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1269 			continue;
1270 		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1271 			continue;
1272 		if (port != 0 && port != svc_xprt_local_port(xprt))
1273 			continue;
1274 		found = xprt;
1275 		svc_xprt_get(xprt);
1276 		break;
1277 	}
1278 	spin_unlock_bh(&serv->sv_lock);
1279 	return found;
1280 }
1281 EXPORT_SYMBOL_GPL(svc_find_xprt);
1282 
1283 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1284 			     char *pos, int remaining)
1285 {
1286 	int len;
1287 
1288 	len = snprintf(pos, remaining, "%s %u\n",
1289 			xprt->xpt_class->xcl_name,
1290 			svc_xprt_local_port(xprt));
1291 	if (len >= remaining)
1292 		return -ENAMETOOLONG;
1293 	return len;
1294 }
1295 
1296 /**
1297  * svc_xprt_names - format a buffer with a list of transport names
1298  * @serv: pointer to an RPC service
1299  * @buf: pointer to a buffer to be filled in
1300  * @buflen: length of buffer to be filled in
1301  *
1302  * Fills in @buf with a string containing a list of transport names,
1303  * each name terminated with '\n'.
1304  *
1305  * Returns positive length of the filled-in string on success; otherwise
1306  * a negative errno value is returned if an error occurs.
1307  */
1308 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1309 {
1310 	struct svc_xprt *xprt;
1311 	int len, totlen;
1312 	char *pos;
1313 
1314 	/* Sanity check args */
1315 	if (!serv)
1316 		return 0;
1317 
1318 	spin_lock_bh(&serv->sv_lock);
1319 
1320 	pos = buf;
1321 	totlen = 0;
1322 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1323 		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1324 		if (len < 0) {
1325 			*buf = '\0';
1326 			totlen = len;
1327 		}
1328 		if (len <= 0)
1329 			break;
1330 
1331 		pos += len;
1332 		totlen += len;
1333 	}
1334 
1335 	spin_unlock_bh(&serv->sv_lock);
1336 	return totlen;
1337 }
1338 EXPORT_SYMBOL_GPL(svc_xprt_names);
1339 
1340 
1341 /*----------------------------------------------------------------------------*/
1342 
1343 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1344 {
1345 	unsigned int pidx = (unsigned int)*pos;
1346 	struct svc_serv *serv = m->private;
1347 
1348 	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1349 
1350 	if (!pidx)
1351 		return SEQ_START_TOKEN;
1352 	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1353 }
1354 
1355 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1356 {
1357 	struct svc_pool *pool = p;
1358 	struct svc_serv *serv = m->private;
1359 
1360 	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1361 
1362 	if (p == SEQ_START_TOKEN) {
1363 		pool = &serv->sv_pools[0];
1364 	} else {
1365 		unsigned int pidx = (pool - &serv->sv_pools[0]);
1366 		if (pidx < serv->sv_nrpools-1)
1367 			pool = &serv->sv_pools[pidx+1];
1368 		else
1369 			pool = NULL;
1370 	}
1371 	++*pos;
1372 	return pool;
1373 }
1374 
1375 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1376 {
1377 }
1378 
1379 static int svc_pool_stats_show(struct seq_file *m, void *p)
1380 {
1381 	struct svc_pool *pool = p;
1382 
1383 	if (p == SEQ_START_TOKEN) {
1384 		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1385 		return 0;
1386 	}
1387 
1388 	seq_printf(m, "%u %lu %lu %lu %lu\n",
1389 		pool->sp_id,
1390 		(unsigned long)atomic_long_read(&pool->sp_stats.packets),
1391 		pool->sp_stats.sockets_queued,
1392 		(unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1393 		(unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1394 
1395 	return 0;
1396 }
1397 
1398 static const struct seq_operations svc_pool_stats_seq_ops = {
1399 	.start	= svc_pool_stats_start,
1400 	.next	= svc_pool_stats_next,
1401 	.stop	= svc_pool_stats_stop,
1402 	.show	= svc_pool_stats_show,
1403 };
1404 
1405 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1406 {
1407 	int err;
1408 
1409 	err = seq_open(file, &svc_pool_stats_seq_ops);
1410 	if (!err)
1411 		((struct seq_file *) file->private_data)->private = serv;
1412 	return err;
1413 }
1414 EXPORT_SYMBOL(svc_pool_stats_open);
1415 
1416 /*----------------------------------------------------------------------------*/
1417