xref: /openbmc/linux/net/sunrpc/svc_xprt.c (revision 9cdb81c7)
1 /*
2  * linux/net/sunrpc/svc_xprt.c
3  *
4  * Author: Tom Tucker <tom@opengridcomputing.com>
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/stats.h>
14 #include <linux/sunrpc/svc_xprt.h>
15 #include <linux/sunrpc/svcsock.h>
16 #include <linux/sunrpc/xprt.h>
17 #include <linux/module.h>
18 
19 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
20 
21 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
22 static int svc_deferred_recv(struct svc_rqst *rqstp);
23 static struct cache_deferred_req *svc_defer(struct cache_req *req);
24 static void svc_age_temp_xprts(unsigned long closure);
25 static void svc_delete_xprt(struct svc_xprt *xprt);
26 
27 /* apparently the "standard" is that clients close
28  * idle connections after 5 minutes, servers after
29  * 6 minutes
30  *   http://www.connectathon.org/talks96/nfstcp.pdf
31  */
32 static int svc_conn_age_period = 6*60;
33 
34 /* List of registered transport classes */
35 static DEFINE_SPINLOCK(svc_xprt_class_lock);
36 static LIST_HEAD(svc_xprt_class_list);
37 
38 /* SMP locking strategy:
39  *
40  *	svc_pool->sp_lock protects most of the fields of that pool.
41  *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
42  *	when both need to be taken (rare), svc_serv->sv_lock is first.
43  *	BKL protects svc_serv->sv_nrthread.
44  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
45  *             and the ->sk_info_authunix cache.
46  *
47  *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
48  *	enqueued multiply. During normal transport processing this bit
49  *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
50  *	Providers should not manipulate this bit directly.
51  *
52  *	Some flags can be set to certain values at any time
53  *	providing that certain rules are followed:
54  *
55  *	XPT_CONN, XPT_DATA:
56  *		- Can be set or cleared at any time.
57  *		- After a set, svc_xprt_enqueue must be called to enqueue
58  *		  the transport for processing.
59  *		- After a clear, the transport must be read/accepted.
60  *		  If this succeeds, it must be set again.
61  *	XPT_CLOSE:
62  *		- Can set at any time. It is never cleared.
63  *      XPT_DEAD:
64  *		- Can only be set while XPT_BUSY is held which ensures
65  *		  that no other thread will be using the transport or will
66  *		  try to set XPT_DEAD.
67  */
68 
69 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
70 {
71 	struct svc_xprt_class *cl;
72 	int res = -EEXIST;
73 
74 	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
75 
76 	INIT_LIST_HEAD(&xcl->xcl_list);
77 	spin_lock(&svc_xprt_class_lock);
78 	/* Make sure there isn't already a class with the same name */
79 	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
80 		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
81 			goto out;
82 	}
83 	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
84 	res = 0;
85 out:
86 	spin_unlock(&svc_xprt_class_lock);
87 	return res;
88 }
89 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
90 
91 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
92 {
93 	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
94 	spin_lock(&svc_xprt_class_lock);
95 	list_del_init(&xcl->xcl_list);
96 	spin_unlock(&svc_xprt_class_lock);
97 }
98 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
99 
100 /*
101  * Format the transport list for printing
102  */
103 int svc_print_xprts(char *buf, int maxlen)
104 {
105 	struct svc_xprt_class *xcl;
106 	char tmpstr[80];
107 	int len = 0;
108 	buf[0] = '\0';
109 
110 	spin_lock(&svc_xprt_class_lock);
111 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
112 		int slen;
113 
114 		sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
115 		slen = strlen(tmpstr);
116 		if (len + slen > maxlen)
117 			break;
118 		len += slen;
119 		strcat(buf, tmpstr);
120 	}
121 	spin_unlock(&svc_xprt_class_lock);
122 
123 	return len;
124 }
125 
126 static void svc_xprt_free(struct kref *kref)
127 {
128 	struct svc_xprt *xprt =
129 		container_of(kref, struct svc_xprt, xpt_ref);
130 	struct module *owner = xprt->xpt_class->xcl_owner;
131 	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
132 		svcauth_unix_info_release(xprt);
133 	put_net(xprt->xpt_net);
134 	/* See comment on corresponding get in xs_setup_bc_tcp(): */
135 	if (xprt->xpt_bc_xprt)
136 		xprt_put(xprt->xpt_bc_xprt);
137 	xprt->xpt_ops->xpo_free(xprt);
138 	module_put(owner);
139 }
140 
141 void svc_xprt_put(struct svc_xprt *xprt)
142 {
143 	kref_put(&xprt->xpt_ref, svc_xprt_free);
144 }
145 EXPORT_SYMBOL_GPL(svc_xprt_put);
146 
147 /*
148  * Called by transport drivers to initialize the transport independent
149  * portion of the transport instance.
150  */
151 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
152 		   struct svc_xprt *xprt, struct svc_serv *serv)
153 {
154 	memset(xprt, 0, sizeof(*xprt));
155 	xprt->xpt_class = xcl;
156 	xprt->xpt_ops = xcl->xcl_ops;
157 	kref_init(&xprt->xpt_ref);
158 	xprt->xpt_server = serv;
159 	INIT_LIST_HEAD(&xprt->xpt_list);
160 	INIT_LIST_HEAD(&xprt->xpt_ready);
161 	INIT_LIST_HEAD(&xprt->xpt_deferred);
162 	INIT_LIST_HEAD(&xprt->xpt_users);
163 	mutex_init(&xprt->xpt_mutex);
164 	spin_lock_init(&xprt->xpt_lock);
165 	set_bit(XPT_BUSY, &xprt->xpt_flags);
166 	rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
167 	xprt->xpt_net = get_net(net);
168 }
169 EXPORT_SYMBOL_GPL(svc_xprt_init);
170 
171 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
172 					 struct svc_serv *serv,
173 					 struct net *net,
174 					 const int family,
175 					 const unsigned short port,
176 					 int flags)
177 {
178 	struct sockaddr_in sin = {
179 		.sin_family		= AF_INET,
180 		.sin_addr.s_addr	= htonl(INADDR_ANY),
181 		.sin_port		= htons(port),
182 	};
183 #if IS_ENABLED(CONFIG_IPV6)
184 	struct sockaddr_in6 sin6 = {
185 		.sin6_family		= AF_INET6,
186 		.sin6_addr		= IN6ADDR_ANY_INIT,
187 		.sin6_port		= htons(port),
188 	};
189 #endif
190 	struct sockaddr *sap;
191 	size_t len;
192 
193 	switch (family) {
194 	case PF_INET:
195 		sap = (struct sockaddr *)&sin;
196 		len = sizeof(sin);
197 		break;
198 #if IS_ENABLED(CONFIG_IPV6)
199 	case PF_INET6:
200 		sap = (struct sockaddr *)&sin6;
201 		len = sizeof(sin6);
202 		break;
203 #endif
204 	default:
205 		return ERR_PTR(-EAFNOSUPPORT);
206 	}
207 
208 	return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
209 }
210 
211 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
212 		    struct net *net, const int family,
213 		    const unsigned short port, int flags)
214 {
215 	struct svc_xprt_class *xcl;
216 
217 	dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
218 	spin_lock(&svc_xprt_class_lock);
219 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
220 		struct svc_xprt *newxprt;
221 		unsigned short newport;
222 
223 		if (strcmp(xprt_name, xcl->xcl_name))
224 			continue;
225 
226 		if (!try_module_get(xcl->xcl_owner))
227 			goto err;
228 
229 		spin_unlock(&svc_xprt_class_lock);
230 		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
231 		if (IS_ERR(newxprt)) {
232 			module_put(xcl->xcl_owner);
233 			return PTR_ERR(newxprt);
234 		}
235 
236 		clear_bit(XPT_TEMP, &newxprt->xpt_flags);
237 		spin_lock_bh(&serv->sv_lock);
238 		list_add(&newxprt->xpt_list, &serv->sv_permsocks);
239 		spin_unlock_bh(&serv->sv_lock);
240 		newport = svc_xprt_local_port(newxprt);
241 		clear_bit(XPT_BUSY, &newxprt->xpt_flags);
242 		return newport;
243 	}
244  err:
245 	spin_unlock(&svc_xprt_class_lock);
246 	dprintk("svc: transport %s not found\n", xprt_name);
247 
248 	/* This errno is exposed to user space.  Provide a reasonable
249 	 * perror msg for a bad transport. */
250 	return -EPROTONOSUPPORT;
251 }
252 EXPORT_SYMBOL_GPL(svc_create_xprt);
253 
254 /*
255  * Copy the local and remote xprt addresses to the rqstp structure
256  */
257 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
258 {
259 	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
260 	rqstp->rq_addrlen = xprt->xpt_remotelen;
261 
262 	/*
263 	 * Destination address in request is needed for binding the
264 	 * source address in RPC replies/callbacks later.
265 	 */
266 	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
267 	rqstp->rq_daddrlen = xprt->xpt_locallen;
268 }
269 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
270 
271 /**
272  * svc_print_addr - Format rq_addr field for printing
273  * @rqstp: svc_rqst struct containing address to print
274  * @buf: target buffer for formatted address
275  * @len: length of target buffer
276  *
277  */
278 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
279 {
280 	return __svc_print_addr(svc_addr(rqstp), buf, len);
281 }
282 EXPORT_SYMBOL_GPL(svc_print_addr);
283 
284 /*
285  * Queue up an idle server thread.  Must have pool->sp_lock held.
286  * Note: this is really a stack rather than a queue, so that we only
287  * use as many different threads as we need, and the rest don't pollute
288  * the cache.
289  */
290 static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
291 {
292 	list_add(&rqstp->rq_list, &pool->sp_threads);
293 }
294 
295 /*
296  * Dequeue an nfsd thread.  Must have pool->sp_lock held.
297  */
298 static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
299 {
300 	list_del(&rqstp->rq_list);
301 }
302 
303 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
304 {
305 	if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
306 		return true;
307 	if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED)))
308 		return xprt->xpt_ops->xpo_has_wspace(xprt);
309 	return false;
310 }
311 
312 /*
313  * Queue up a transport with data pending. If there are idle nfsd
314  * processes, wake 'em up.
315  *
316  */
317 void svc_xprt_enqueue(struct svc_xprt *xprt)
318 {
319 	struct svc_serv	*serv = xprt->xpt_server;
320 	struct svc_pool *pool;
321 	struct svc_rqst	*rqstp;
322 	int cpu;
323 
324 	if (!svc_xprt_has_something_to_do(xprt))
325 		return;
326 
327 	cpu = get_cpu();
328 	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
329 	put_cpu();
330 
331 	spin_lock_bh(&pool->sp_lock);
332 
333 	if (!list_empty(&pool->sp_threads) &&
334 	    !list_empty(&pool->sp_sockets))
335 		printk(KERN_ERR
336 		       "svc_xprt_enqueue: "
337 		       "threads and transports both waiting??\n");
338 
339 	pool->sp_stats.packets++;
340 
341 	/* Mark transport as busy. It will remain in this state until
342 	 * the provider calls svc_xprt_received. We update XPT_BUSY
343 	 * atomically because it also guards against trying to enqueue
344 	 * the transport twice.
345 	 */
346 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
347 		/* Don't enqueue transport while already enqueued */
348 		dprintk("svc: transport %p busy, not enqueued\n", xprt);
349 		goto out_unlock;
350 	}
351 
352 	if (!list_empty(&pool->sp_threads)) {
353 		rqstp = list_entry(pool->sp_threads.next,
354 				   struct svc_rqst,
355 				   rq_list);
356 		dprintk("svc: transport %p served by daemon %p\n",
357 			xprt, rqstp);
358 		svc_thread_dequeue(pool, rqstp);
359 		if (rqstp->rq_xprt)
360 			printk(KERN_ERR
361 				"svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
362 				rqstp, rqstp->rq_xprt);
363 		rqstp->rq_xprt = xprt;
364 		svc_xprt_get(xprt);
365 		rqstp->rq_reserved = serv->sv_max_mesg;
366 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
367 		pool->sp_stats.threads_woken++;
368 		wake_up(&rqstp->rq_wait);
369 	} else {
370 		dprintk("svc: transport %p put into queue\n", xprt);
371 		list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
372 		pool->sp_stats.sockets_queued++;
373 	}
374 
375 out_unlock:
376 	spin_unlock_bh(&pool->sp_lock);
377 }
378 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
379 
380 /*
381  * Dequeue the first transport.  Must be called with the pool->sp_lock held.
382  */
383 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
384 {
385 	struct svc_xprt	*xprt;
386 
387 	if (list_empty(&pool->sp_sockets))
388 		return NULL;
389 
390 	xprt = list_entry(pool->sp_sockets.next,
391 			  struct svc_xprt, xpt_ready);
392 	list_del_init(&xprt->xpt_ready);
393 
394 	dprintk("svc: transport %p dequeued, inuse=%d\n",
395 		xprt, atomic_read(&xprt->xpt_ref.refcount));
396 
397 	return xprt;
398 }
399 
400 /*
401  * svc_xprt_received conditionally queues the transport for processing
402  * by another thread. The caller must hold the XPT_BUSY bit and must
403  * not thereafter touch transport data.
404  *
405  * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
406  * insufficient) data.
407  */
408 void svc_xprt_received(struct svc_xprt *xprt)
409 {
410 	BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
411 	/* As soon as we clear busy, the xprt could be closed and
412 	 * 'put', so we need a reference to call svc_xprt_enqueue with:
413 	 */
414 	svc_xprt_get(xprt);
415 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
416 	svc_xprt_enqueue(xprt);
417 	svc_xprt_put(xprt);
418 }
419 EXPORT_SYMBOL_GPL(svc_xprt_received);
420 
421 /**
422  * svc_reserve - change the space reserved for the reply to a request.
423  * @rqstp:  The request in question
424  * @space: new max space to reserve
425  *
426  * Each request reserves some space on the output queue of the transport
427  * to make sure the reply fits.  This function reduces that reserved
428  * space to be the amount of space used already, plus @space.
429  *
430  */
431 void svc_reserve(struct svc_rqst *rqstp, int space)
432 {
433 	space += rqstp->rq_res.head[0].iov_len;
434 
435 	if (space < rqstp->rq_reserved) {
436 		struct svc_xprt *xprt = rqstp->rq_xprt;
437 		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
438 		rqstp->rq_reserved = space;
439 
440 		svc_xprt_enqueue(xprt);
441 	}
442 }
443 EXPORT_SYMBOL_GPL(svc_reserve);
444 
445 static void svc_xprt_release(struct svc_rqst *rqstp)
446 {
447 	struct svc_xprt	*xprt = rqstp->rq_xprt;
448 
449 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
450 
451 	kfree(rqstp->rq_deferred);
452 	rqstp->rq_deferred = NULL;
453 
454 	svc_free_res_pages(rqstp);
455 	rqstp->rq_res.page_len = 0;
456 	rqstp->rq_res.page_base = 0;
457 
458 	/* Reset response buffer and release
459 	 * the reservation.
460 	 * But first, check that enough space was reserved
461 	 * for the reply, otherwise we have a bug!
462 	 */
463 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
464 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
465 		       rqstp->rq_reserved,
466 		       rqstp->rq_res.len);
467 
468 	rqstp->rq_res.head[0].iov_len = 0;
469 	svc_reserve(rqstp, 0);
470 	rqstp->rq_xprt = NULL;
471 
472 	svc_xprt_put(xprt);
473 }
474 
475 /*
476  * External function to wake up a server waiting for data
477  * This really only makes sense for services like lockd
478  * which have exactly one thread anyway.
479  */
480 void svc_wake_up(struct svc_serv *serv)
481 {
482 	struct svc_rqst	*rqstp;
483 	unsigned int i;
484 	struct svc_pool *pool;
485 
486 	for (i = 0; i < serv->sv_nrpools; i++) {
487 		pool = &serv->sv_pools[i];
488 
489 		spin_lock_bh(&pool->sp_lock);
490 		if (!list_empty(&pool->sp_threads)) {
491 			rqstp = list_entry(pool->sp_threads.next,
492 					   struct svc_rqst,
493 					   rq_list);
494 			dprintk("svc: daemon %p woken up.\n", rqstp);
495 			/*
496 			svc_thread_dequeue(pool, rqstp);
497 			rqstp->rq_xprt = NULL;
498 			 */
499 			wake_up(&rqstp->rq_wait);
500 		}
501 		spin_unlock_bh(&pool->sp_lock);
502 	}
503 }
504 EXPORT_SYMBOL_GPL(svc_wake_up);
505 
506 int svc_port_is_privileged(struct sockaddr *sin)
507 {
508 	switch (sin->sa_family) {
509 	case AF_INET:
510 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
511 			< PROT_SOCK;
512 	case AF_INET6:
513 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
514 			< PROT_SOCK;
515 	default:
516 		return 0;
517 	}
518 }
519 
520 /*
521  * Make sure that we don't have too many active connections. If we have,
522  * something must be dropped. It's not clear what will happen if we allow
523  * "too many" connections, but when dealing with network-facing software,
524  * we have to code defensively. Here we do that by imposing hard limits.
525  *
526  * There's no point in trying to do random drop here for DoS
527  * prevention. The NFS clients does 1 reconnect in 15 seconds. An
528  * attacker can easily beat that.
529  *
530  * The only somewhat efficient mechanism would be if drop old
531  * connections from the same IP first. But right now we don't even
532  * record the client IP in svc_sock.
533  *
534  * single-threaded services that expect a lot of clients will probably
535  * need to set sv_maxconn to override the default value which is based
536  * on the number of threads
537  */
538 static void svc_check_conn_limits(struct svc_serv *serv)
539 {
540 	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
541 				(serv->sv_nrthreads+3) * 20;
542 
543 	if (serv->sv_tmpcnt > limit) {
544 		struct svc_xprt *xprt = NULL;
545 		spin_lock_bh(&serv->sv_lock);
546 		if (!list_empty(&serv->sv_tempsocks)) {
547 			if (net_ratelimit()) {
548 				/* Try to help the admin */
549 				printk(KERN_NOTICE "%s: too many open  "
550 				       "connections, consider increasing %s\n",
551 				       serv->sv_name, serv->sv_maxconn ?
552 				       "the max number of connections." :
553 				       "the number of threads.");
554 			}
555 			/*
556 			 * Always select the oldest connection. It's not fair,
557 			 * but so is life
558 			 */
559 			xprt = list_entry(serv->sv_tempsocks.prev,
560 					  struct svc_xprt,
561 					  xpt_list);
562 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
563 			svc_xprt_get(xprt);
564 		}
565 		spin_unlock_bh(&serv->sv_lock);
566 
567 		if (xprt) {
568 			svc_xprt_enqueue(xprt);
569 			svc_xprt_put(xprt);
570 		}
571 	}
572 }
573 
574 /*
575  * Receive the next request on any transport.  This code is carefully
576  * organised not to touch any cachelines in the shared svc_serv
577  * structure, only cachelines in the local svc_pool.
578  */
579 int svc_recv(struct svc_rqst *rqstp, long timeout)
580 {
581 	struct svc_xprt		*xprt = NULL;
582 	struct svc_serv		*serv = rqstp->rq_server;
583 	struct svc_pool		*pool = rqstp->rq_pool;
584 	int			len, i;
585 	int			pages;
586 	struct xdr_buf		*arg;
587 	DECLARE_WAITQUEUE(wait, current);
588 	long			time_left;
589 
590 	dprintk("svc: server %p waiting for data (to = %ld)\n",
591 		rqstp, timeout);
592 
593 	if (rqstp->rq_xprt)
594 		printk(KERN_ERR
595 			"svc_recv: service %p, transport not NULL!\n",
596 			 rqstp);
597 	if (waitqueue_active(&rqstp->rq_wait))
598 		printk(KERN_ERR
599 			"svc_recv: service %p, wait queue active!\n",
600 			 rqstp);
601 
602 	/* now allocate needed pages.  If we get a failure, sleep briefly */
603 	pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
604 	for (i = 0; i < pages ; i++)
605 		while (rqstp->rq_pages[i] == NULL) {
606 			struct page *p = alloc_page(GFP_KERNEL);
607 			if (!p) {
608 				set_current_state(TASK_INTERRUPTIBLE);
609 				if (signalled() || kthread_should_stop()) {
610 					set_current_state(TASK_RUNNING);
611 					return -EINTR;
612 				}
613 				schedule_timeout(msecs_to_jiffies(500));
614 			}
615 			rqstp->rq_pages[i] = p;
616 		}
617 	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
618 	BUG_ON(pages >= RPCSVC_MAXPAGES);
619 
620 	/* Make arg->head point to first page and arg->pages point to rest */
621 	arg = &rqstp->rq_arg;
622 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
623 	arg->head[0].iov_len = PAGE_SIZE;
624 	arg->pages = rqstp->rq_pages + 1;
625 	arg->page_base = 0;
626 	/* save at least one page for response */
627 	arg->page_len = (pages-2)*PAGE_SIZE;
628 	arg->len = (pages-1)*PAGE_SIZE;
629 	arg->tail[0].iov_len = 0;
630 
631 	try_to_freeze();
632 	cond_resched();
633 	if (signalled() || kthread_should_stop())
634 		return -EINTR;
635 
636 	/* Normally we will wait up to 5 seconds for any required
637 	 * cache information to be provided.
638 	 */
639 	rqstp->rq_chandle.thread_wait = 5*HZ;
640 
641 	spin_lock_bh(&pool->sp_lock);
642 	xprt = svc_xprt_dequeue(pool);
643 	if (xprt) {
644 		rqstp->rq_xprt = xprt;
645 		svc_xprt_get(xprt);
646 		rqstp->rq_reserved = serv->sv_max_mesg;
647 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
648 
649 		/* As there is a shortage of threads and this request
650 		 * had to be queued, don't allow the thread to wait so
651 		 * long for cache updates.
652 		 */
653 		rqstp->rq_chandle.thread_wait = 1*HZ;
654 	} else {
655 		/* No data pending. Go to sleep */
656 		svc_thread_enqueue(pool, rqstp);
657 
658 		/*
659 		 * We have to be able to interrupt this wait
660 		 * to bring down the daemons ...
661 		 */
662 		set_current_state(TASK_INTERRUPTIBLE);
663 
664 		/*
665 		 * checking kthread_should_stop() here allows us to avoid
666 		 * locking and signalling when stopping kthreads that call
667 		 * svc_recv. If the thread has already been woken up, then
668 		 * we can exit here without sleeping. If not, then it
669 		 * it'll be woken up quickly during the schedule_timeout
670 		 */
671 		if (kthread_should_stop()) {
672 			set_current_state(TASK_RUNNING);
673 			spin_unlock_bh(&pool->sp_lock);
674 			return -EINTR;
675 		}
676 
677 		add_wait_queue(&rqstp->rq_wait, &wait);
678 		spin_unlock_bh(&pool->sp_lock);
679 
680 		time_left = schedule_timeout(timeout);
681 
682 		try_to_freeze();
683 
684 		spin_lock_bh(&pool->sp_lock);
685 		remove_wait_queue(&rqstp->rq_wait, &wait);
686 		if (!time_left)
687 			pool->sp_stats.threads_timedout++;
688 
689 		xprt = rqstp->rq_xprt;
690 		if (!xprt) {
691 			svc_thread_dequeue(pool, rqstp);
692 			spin_unlock_bh(&pool->sp_lock);
693 			dprintk("svc: server %p, no data yet\n", rqstp);
694 			if (signalled() || kthread_should_stop())
695 				return -EINTR;
696 			else
697 				return -EAGAIN;
698 		}
699 	}
700 	spin_unlock_bh(&pool->sp_lock);
701 
702 	len = 0;
703 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
704 		dprintk("svc_recv: found XPT_CLOSE\n");
705 		svc_delete_xprt(xprt);
706 		/* Leave XPT_BUSY set on the dead xprt: */
707 		goto out;
708 	}
709 	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
710 		struct svc_xprt *newxpt;
711 		newxpt = xprt->xpt_ops->xpo_accept(xprt);
712 		if (newxpt) {
713 			/*
714 			 * We know this module_get will succeed because the
715 			 * listener holds a reference too
716 			 */
717 			__module_get(newxpt->xpt_class->xcl_owner);
718 			svc_check_conn_limits(xprt->xpt_server);
719 			spin_lock_bh(&serv->sv_lock);
720 			set_bit(XPT_TEMP, &newxpt->xpt_flags);
721 			list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
722 			serv->sv_tmpcnt++;
723 			if (serv->sv_temptimer.function == NULL) {
724 				/* setup timer to age temp transports */
725 				setup_timer(&serv->sv_temptimer,
726 					    svc_age_temp_xprts,
727 					    (unsigned long)serv);
728 				mod_timer(&serv->sv_temptimer,
729 					  jiffies + svc_conn_age_period * HZ);
730 			}
731 			spin_unlock_bh(&serv->sv_lock);
732 			svc_xprt_received(newxpt);
733 		}
734 	} else if (xprt->xpt_ops->xpo_has_wspace(xprt)) {
735 		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
736 			rqstp, pool->sp_id, xprt,
737 			atomic_read(&xprt->xpt_ref.refcount));
738 		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
739 		if (rqstp->rq_deferred)
740 			len = svc_deferred_recv(rqstp);
741 		else
742 			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
743 		dprintk("svc: got len=%d\n", len);
744 	}
745 	svc_xprt_received(xprt);
746 
747 	/* No data, incomplete (TCP) read, or accept() */
748 	if (len == 0 || len == -EAGAIN)
749 		goto out;
750 
751 	clear_bit(XPT_OLD, &xprt->xpt_flags);
752 
753 	rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
754 	rqstp->rq_chandle.defer = svc_defer;
755 
756 	if (serv->sv_stats)
757 		serv->sv_stats->netcnt++;
758 	return len;
759 out:
760 	rqstp->rq_res.len = 0;
761 	svc_xprt_release(rqstp);
762 	return -EAGAIN;
763 }
764 EXPORT_SYMBOL_GPL(svc_recv);
765 
766 /*
767  * Drop request
768  */
769 void svc_drop(struct svc_rqst *rqstp)
770 {
771 	dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
772 	svc_xprt_release(rqstp);
773 }
774 EXPORT_SYMBOL_GPL(svc_drop);
775 
776 /*
777  * Return reply to client.
778  */
779 int svc_send(struct svc_rqst *rqstp)
780 {
781 	struct svc_xprt	*xprt;
782 	int		len;
783 	struct xdr_buf	*xb;
784 
785 	xprt = rqstp->rq_xprt;
786 	if (!xprt)
787 		return -EFAULT;
788 
789 	/* release the receive skb before sending the reply */
790 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
791 
792 	/* calculate over-all length */
793 	xb = &rqstp->rq_res;
794 	xb->len = xb->head[0].iov_len +
795 		xb->page_len +
796 		xb->tail[0].iov_len;
797 
798 	/* Grab mutex to serialize outgoing data. */
799 	mutex_lock(&xprt->xpt_mutex);
800 	if (test_bit(XPT_DEAD, &xprt->xpt_flags))
801 		len = -ENOTCONN;
802 	else
803 		len = xprt->xpt_ops->xpo_sendto(rqstp);
804 	mutex_unlock(&xprt->xpt_mutex);
805 	rpc_wake_up(&xprt->xpt_bc_pending);
806 	svc_xprt_release(rqstp);
807 
808 	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
809 		return 0;
810 	return len;
811 }
812 
813 /*
814  * Timer function to close old temporary transports, using
815  * a mark-and-sweep algorithm.
816  */
817 static void svc_age_temp_xprts(unsigned long closure)
818 {
819 	struct svc_serv *serv = (struct svc_serv *)closure;
820 	struct svc_xprt *xprt;
821 	struct list_head *le, *next;
822 	LIST_HEAD(to_be_aged);
823 
824 	dprintk("svc_age_temp_xprts\n");
825 
826 	if (!spin_trylock_bh(&serv->sv_lock)) {
827 		/* busy, try again 1 sec later */
828 		dprintk("svc_age_temp_xprts: busy\n");
829 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
830 		return;
831 	}
832 
833 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
834 		xprt = list_entry(le, struct svc_xprt, xpt_list);
835 
836 		/* First time through, just mark it OLD. Second time
837 		 * through, close it. */
838 		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
839 			continue;
840 		if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
841 		    test_bit(XPT_BUSY, &xprt->xpt_flags))
842 			continue;
843 		svc_xprt_get(xprt);
844 		list_move(le, &to_be_aged);
845 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
846 		set_bit(XPT_DETACHED, &xprt->xpt_flags);
847 	}
848 	spin_unlock_bh(&serv->sv_lock);
849 
850 	while (!list_empty(&to_be_aged)) {
851 		le = to_be_aged.next;
852 		/* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
853 		list_del_init(le);
854 		xprt = list_entry(le, struct svc_xprt, xpt_list);
855 
856 		dprintk("queuing xprt %p for closing\n", xprt);
857 
858 		/* a thread will dequeue and close it soon */
859 		svc_xprt_enqueue(xprt);
860 		svc_xprt_put(xprt);
861 	}
862 
863 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
864 }
865 
866 static void call_xpt_users(struct svc_xprt *xprt)
867 {
868 	struct svc_xpt_user *u;
869 
870 	spin_lock(&xprt->xpt_lock);
871 	while (!list_empty(&xprt->xpt_users)) {
872 		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
873 		list_del(&u->list);
874 		u->callback(u);
875 	}
876 	spin_unlock(&xprt->xpt_lock);
877 }
878 
879 /*
880  * Remove a dead transport
881  */
882 static void svc_delete_xprt(struct svc_xprt *xprt)
883 {
884 	struct svc_serv	*serv = xprt->xpt_server;
885 	struct svc_deferred_req *dr;
886 
887 	/* Only do this once */
888 	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
889 		BUG();
890 
891 	dprintk("svc: svc_delete_xprt(%p)\n", xprt);
892 	xprt->xpt_ops->xpo_detach(xprt);
893 
894 	spin_lock_bh(&serv->sv_lock);
895 	if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
896 		list_del_init(&xprt->xpt_list);
897 	BUG_ON(!list_empty(&xprt->xpt_ready));
898 	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
899 		serv->sv_tmpcnt--;
900 	spin_unlock_bh(&serv->sv_lock);
901 
902 	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
903 		kfree(dr);
904 
905 	call_xpt_users(xprt);
906 	svc_xprt_put(xprt);
907 }
908 
909 void svc_close_xprt(struct svc_xprt *xprt)
910 {
911 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
912 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
913 		/* someone else will have to effect the close */
914 		return;
915 	/*
916 	 * We expect svc_close_xprt() to work even when no threads are
917 	 * running (e.g., while configuring the server before starting
918 	 * any threads), so if the transport isn't busy, we delete
919 	 * it ourself:
920 	 */
921 	svc_delete_xprt(xprt);
922 }
923 EXPORT_SYMBOL_GPL(svc_close_xprt);
924 
925 static void svc_close_list(struct list_head *xprt_list, struct net *net)
926 {
927 	struct svc_xprt *xprt;
928 
929 	list_for_each_entry(xprt, xprt_list, xpt_list) {
930 		if (xprt->xpt_net != net)
931 			continue;
932 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
933 		set_bit(XPT_BUSY, &xprt->xpt_flags);
934 	}
935 }
936 
937 static void svc_clear_pools(struct svc_serv *serv, struct net *net)
938 {
939 	struct svc_pool *pool;
940 	struct svc_xprt *xprt;
941 	struct svc_xprt *tmp;
942 	int i;
943 
944 	for (i = 0; i < serv->sv_nrpools; i++) {
945 		pool = &serv->sv_pools[i];
946 
947 		spin_lock_bh(&pool->sp_lock);
948 		list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
949 			if (xprt->xpt_net != net)
950 				continue;
951 			list_del_init(&xprt->xpt_ready);
952 		}
953 		spin_unlock_bh(&pool->sp_lock);
954 	}
955 }
956 
957 static void svc_clear_list(struct list_head *xprt_list, struct net *net)
958 {
959 	struct svc_xprt *xprt;
960 	struct svc_xprt *tmp;
961 
962 	list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
963 		if (xprt->xpt_net != net)
964 			continue;
965 		svc_delete_xprt(xprt);
966 	}
967 	list_for_each_entry(xprt, xprt_list, xpt_list)
968 		BUG_ON(xprt->xpt_net == net);
969 }
970 
971 void svc_close_net(struct svc_serv *serv, struct net *net)
972 {
973 	svc_close_list(&serv->sv_tempsocks, net);
974 	svc_close_list(&serv->sv_permsocks, net);
975 
976 	svc_clear_pools(serv, net);
977 	/*
978 	 * At this point the sp_sockets lists will stay empty, since
979 	 * svc_enqueue will not add new entries without taking the
980 	 * sp_lock and checking XPT_BUSY.
981 	 */
982 	svc_clear_list(&serv->sv_tempsocks, net);
983 	svc_clear_list(&serv->sv_permsocks, net);
984 }
985 
986 /*
987  * Handle defer and revisit of requests
988  */
989 
990 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
991 {
992 	struct svc_deferred_req *dr =
993 		container_of(dreq, struct svc_deferred_req, handle);
994 	struct svc_xprt *xprt = dr->xprt;
995 
996 	spin_lock(&xprt->xpt_lock);
997 	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
998 	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
999 		spin_unlock(&xprt->xpt_lock);
1000 		dprintk("revisit canceled\n");
1001 		svc_xprt_put(xprt);
1002 		kfree(dr);
1003 		return;
1004 	}
1005 	dprintk("revisit queued\n");
1006 	dr->xprt = NULL;
1007 	list_add(&dr->handle.recent, &xprt->xpt_deferred);
1008 	spin_unlock(&xprt->xpt_lock);
1009 	svc_xprt_enqueue(xprt);
1010 	svc_xprt_put(xprt);
1011 }
1012 
1013 /*
1014  * Save the request off for later processing. The request buffer looks
1015  * like this:
1016  *
1017  * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1018  *
1019  * This code can only handle requests that consist of an xprt-header
1020  * and rpc-header.
1021  */
1022 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1023 {
1024 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1025 	struct svc_deferred_req *dr;
1026 
1027 	if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
1028 		return NULL; /* if more than a page, give up FIXME */
1029 	if (rqstp->rq_deferred) {
1030 		dr = rqstp->rq_deferred;
1031 		rqstp->rq_deferred = NULL;
1032 	} else {
1033 		size_t skip;
1034 		size_t size;
1035 		/* FIXME maybe discard if size too large */
1036 		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1037 		dr = kmalloc(size, GFP_KERNEL);
1038 		if (dr == NULL)
1039 			return NULL;
1040 
1041 		dr->handle.owner = rqstp->rq_server;
1042 		dr->prot = rqstp->rq_prot;
1043 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1044 		dr->addrlen = rqstp->rq_addrlen;
1045 		dr->daddr = rqstp->rq_daddr;
1046 		dr->argslen = rqstp->rq_arg.len >> 2;
1047 		dr->xprt_hlen = rqstp->rq_xprt_hlen;
1048 
1049 		/* back up head to the start of the buffer and copy */
1050 		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1051 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1052 		       dr->argslen << 2);
1053 	}
1054 	svc_xprt_get(rqstp->rq_xprt);
1055 	dr->xprt = rqstp->rq_xprt;
1056 	rqstp->rq_dropme = true;
1057 
1058 	dr->handle.revisit = svc_revisit;
1059 	return &dr->handle;
1060 }
1061 
1062 /*
1063  * recv data from a deferred request into an active one
1064  */
1065 static int svc_deferred_recv(struct svc_rqst *rqstp)
1066 {
1067 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1068 
1069 	/* setup iov_base past transport header */
1070 	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1071 	/* The iov_len does not include the transport header bytes */
1072 	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1073 	rqstp->rq_arg.page_len = 0;
1074 	/* The rq_arg.len includes the transport header bytes */
1075 	rqstp->rq_arg.len     = dr->argslen<<2;
1076 	rqstp->rq_prot        = dr->prot;
1077 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1078 	rqstp->rq_addrlen     = dr->addrlen;
1079 	/* Save off transport header len in case we get deferred again */
1080 	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1081 	rqstp->rq_daddr       = dr->daddr;
1082 	rqstp->rq_respages    = rqstp->rq_pages;
1083 	return (dr->argslen<<2) - dr->xprt_hlen;
1084 }
1085 
1086 
1087 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1088 {
1089 	struct svc_deferred_req *dr = NULL;
1090 
1091 	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1092 		return NULL;
1093 	spin_lock(&xprt->xpt_lock);
1094 	if (!list_empty(&xprt->xpt_deferred)) {
1095 		dr = list_entry(xprt->xpt_deferred.next,
1096 				struct svc_deferred_req,
1097 				handle.recent);
1098 		list_del_init(&dr->handle.recent);
1099 	} else
1100 		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1101 	spin_unlock(&xprt->xpt_lock);
1102 	return dr;
1103 }
1104 
1105 /**
1106  * svc_find_xprt - find an RPC transport instance
1107  * @serv: pointer to svc_serv to search
1108  * @xcl_name: C string containing transport's class name
1109  * @net: owner net pointer
1110  * @af: Address family of transport's local address
1111  * @port: transport's IP port number
1112  *
1113  * Return the transport instance pointer for the endpoint accepting
1114  * connections/peer traffic from the specified transport class,
1115  * address family and port.
1116  *
1117  * Specifying 0 for the address family or port is effectively a
1118  * wild-card, and will result in matching the first transport in the
1119  * service's list that has a matching class name.
1120  */
1121 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1122 			       struct net *net, const sa_family_t af,
1123 			       const unsigned short port)
1124 {
1125 	struct svc_xprt *xprt;
1126 	struct svc_xprt *found = NULL;
1127 
1128 	/* Sanity check the args */
1129 	if (serv == NULL || xcl_name == NULL)
1130 		return found;
1131 
1132 	spin_lock_bh(&serv->sv_lock);
1133 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1134 		if (xprt->xpt_net != net)
1135 			continue;
1136 		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1137 			continue;
1138 		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1139 			continue;
1140 		if (port != 0 && port != svc_xprt_local_port(xprt))
1141 			continue;
1142 		found = xprt;
1143 		svc_xprt_get(xprt);
1144 		break;
1145 	}
1146 	spin_unlock_bh(&serv->sv_lock);
1147 	return found;
1148 }
1149 EXPORT_SYMBOL_GPL(svc_find_xprt);
1150 
1151 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1152 			     char *pos, int remaining)
1153 {
1154 	int len;
1155 
1156 	len = snprintf(pos, remaining, "%s %u\n",
1157 			xprt->xpt_class->xcl_name,
1158 			svc_xprt_local_port(xprt));
1159 	if (len >= remaining)
1160 		return -ENAMETOOLONG;
1161 	return len;
1162 }
1163 
1164 /**
1165  * svc_xprt_names - format a buffer with a list of transport names
1166  * @serv: pointer to an RPC service
1167  * @buf: pointer to a buffer to be filled in
1168  * @buflen: length of buffer to be filled in
1169  *
1170  * Fills in @buf with a string containing a list of transport names,
1171  * each name terminated with '\n'.
1172  *
1173  * Returns positive length of the filled-in string on success; otherwise
1174  * a negative errno value is returned if an error occurs.
1175  */
1176 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1177 {
1178 	struct svc_xprt *xprt;
1179 	int len, totlen;
1180 	char *pos;
1181 
1182 	/* Sanity check args */
1183 	if (!serv)
1184 		return 0;
1185 
1186 	spin_lock_bh(&serv->sv_lock);
1187 
1188 	pos = buf;
1189 	totlen = 0;
1190 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1191 		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1192 		if (len < 0) {
1193 			*buf = '\0';
1194 			totlen = len;
1195 		}
1196 		if (len <= 0)
1197 			break;
1198 
1199 		pos += len;
1200 		totlen += len;
1201 	}
1202 
1203 	spin_unlock_bh(&serv->sv_lock);
1204 	return totlen;
1205 }
1206 EXPORT_SYMBOL_GPL(svc_xprt_names);
1207 
1208 
1209 /*----------------------------------------------------------------------------*/
1210 
1211 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1212 {
1213 	unsigned int pidx = (unsigned int)*pos;
1214 	struct svc_serv *serv = m->private;
1215 
1216 	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1217 
1218 	if (!pidx)
1219 		return SEQ_START_TOKEN;
1220 	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1221 }
1222 
1223 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1224 {
1225 	struct svc_pool *pool = p;
1226 	struct svc_serv *serv = m->private;
1227 
1228 	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1229 
1230 	if (p == SEQ_START_TOKEN) {
1231 		pool = &serv->sv_pools[0];
1232 	} else {
1233 		unsigned int pidx = (pool - &serv->sv_pools[0]);
1234 		if (pidx < serv->sv_nrpools-1)
1235 			pool = &serv->sv_pools[pidx+1];
1236 		else
1237 			pool = NULL;
1238 	}
1239 	++*pos;
1240 	return pool;
1241 }
1242 
1243 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1244 {
1245 }
1246 
1247 static int svc_pool_stats_show(struct seq_file *m, void *p)
1248 {
1249 	struct svc_pool *pool = p;
1250 
1251 	if (p == SEQ_START_TOKEN) {
1252 		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1253 		return 0;
1254 	}
1255 
1256 	seq_printf(m, "%u %lu %lu %lu %lu\n",
1257 		pool->sp_id,
1258 		pool->sp_stats.packets,
1259 		pool->sp_stats.sockets_queued,
1260 		pool->sp_stats.threads_woken,
1261 		pool->sp_stats.threads_timedout);
1262 
1263 	return 0;
1264 }
1265 
1266 static const struct seq_operations svc_pool_stats_seq_ops = {
1267 	.start	= svc_pool_stats_start,
1268 	.next	= svc_pool_stats_next,
1269 	.stop	= svc_pool_stats_stop,
1270 	.show	= svc_pool_stats_show,
1271 };
1272 
1273 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1274 {
1275 	int err;
1276 
1277 	err = seq_open(file, &svc_pool_stats_seq_ops);
1278 	if (!err)
1279 		((struct seq_file *) file->private_data)->private = serv;
1280 	return err;
1281 }
1282 EXPORT_SYMBOL(svc_pool_stats_open);
1283 
1284 /*----------------------------------------------------------------------------*/
1285