xref: /openbmc/linux/net/sunrpc/svc_xprt.c (revision 9429ec96)
1 /*
2  * linux/net/sunrpc/svc_xprt.c
3  *
4  * Author: Tom Tucker <tom@opengridcomputing.com>
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/stats.h>
14 #include <linux/sunrpc/svc_xprt.h>
15 #include <linux/sunrpc/svcsock.h>
16 #include <linux/sunrpc/xprt.h>
17 #include <linux/module.h>
18 
19 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
20 
21 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
22 static int svc_deferred_recv(struct svc_rqst *rqstp);
23 static struct cache_deferred_req *svc_defer(struct cache_req *req);
24 static void svc_age_temp_xprts(unsigned long closure);
25 static void svc_delete_xprt(struct svc_xprt *xprt);
26 
27 /* apparently the "standard" is that clients close
28  * idle connections after 5 minutes, servers after
29  * 6 minutes
30  *   http://www.connectathon.org/talks96/nfstcp.pdf
31  */
32 static int svc_conn_age_period = 6*60;
33 
34 /* List of registered transport classes */
35 static DEFINE_SPINLOCK(svc_xprt_class_lock);
36 static LIST_HEAD(svc_xprt_class_list);
37 
38 /* SMP locking strategy:
39  *
40  *	svc_pool->sp_lock protects most of the fields of that pool.
41  *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
42  *	when both need to be taken (rare), svc_serv->sv_lock is first.
43  *	BKL protects svc_serv->sv_nrthread.
44  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
45  *             and the ->sk_info_authunix cache.
46  *
47  *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
48  *	enqueued multiply. During normal transport processing this bit
49  *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
50  *	Providers should not manipulate this bit directly.
51  *
52  *	Some flags can be set to certain values at any time
53  *	providing that certain rules are followed:
54  *
55  *	XPT_CONN, XPT_DATA:
56  *		- Can be set or cleared at any time.
57  *		- After a set, svc_xprt_enqueue must be called to enqueue
58  *		  the transport for processing.
59  *		- After a clear, the transport must be read/accepted.
60  *		  If this succeeds, it must be set again.
61  *	XPT_CLOSE:
62  *		- Can set at any time. It is never cleared.
63  *      XPT_DEAD:
64  *		- Can only be set while XPT_BUSY is held which ensures
65  *		  that no other thread will be using the transport or will
66  *		  try to set XPT_DEAD.
67  */
68 
69 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
70 {
71 	struct svc_xprt_class *cl;
72 	int res = -EEXIST;
73 
74 	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
75 
76 	INIT_LIST_HEAD(&xcl->xcl_list);
77 	spin_lock(&svc_xprt_class_lock);
78 	/* Make sure there isn't already a class with the same name */
79 	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
80 		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
81 			goto out;
82 	}
83 	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
84 	res = 0;
85 out:
86 	spin_unlock(&svc_xprt_class_lock);
87 	return res;
88 }
89 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
90 
91 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
92 {
93 	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
94 	spin_lock(&svc_xprt_class_lock);
95 	list_del_init(&xcl->xcl_list);
96 	spin_unlock(&svc_xprt_class_lock);
97 }
98 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
99 
100 /*
101  * Format the transport list for printing
102  */
103 int svc_print_xprts(char *buf, int maxlen)
104 {
105 	struct svc_xprt_class *xcl;
106 	char tmpstr[80];
107 	int len = 0;
108 	buf[0] = '\0';
109 
110 	spin_lock(&svc_xprt_class_lock);
111 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
112 		int slen;
113 
114 		sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
115 		slen = strlen(tmpstr);
116 		if (len + slen > maxlen)
117 			break;
118 		len += slen;
119 		strcat(buf, tmpstr);
120 	}
121 	spin_unlock(&svc_xprt_class_lock);
122 
123 	return len;
124 }
125 
126 static void svc_xprt_free(struct kref *kref)
127 {
128 	struct svc_xprt *xprt =
129 		container_of(kref, struct svc_xprt, xpt_ref);
130 	struct module *owner = xprt->xpt_class->xcl_owner;
131 	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
132 		svcauth_unix_info_release(xprt);
133 	put_net(xprt->xpt_net);
134 	/* See comment on corresponding get in xs_setup_bc_tcp(): */
135 	if (xprt->xpt_bc_xprt)
136 		xprt_put(xprt->xpt_bc_xprt);
137 	xprt->xpt_ops->xpo_free(xprt);
138 	module_put(owner);
139 }
140 
141 void svc_xprt_put(struct svc_xprt *xprt)
142 {
143 	kref_put(&xprt->xpt_ref, svc_xprt_free);
144 }
145 EXPORT_SYMBOL_GPL(svc_xprt_put);
146 
147 /*
148  * Called by transport drivers to initialize the transport independent
149  * portion of the transport instance.
150  */
151 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
152 		   struct svc_xprt *xprt, struct svc_serv *serv)
153 {
154 	memset(xprt, 0, sizeof(*xprt));
155 	xprt->xpt_class = xcl;
156 	xprt->xpt_ops = xcl->xcl_ops;
157 	kref_init(&xprt->xpt_ref);
158 	xprt->xpt_server = serv;
159 	INIT_LIST_HEAD(&xprt->xpt_list);
160 	INIT_LIST_HEAD(&xprt->xpt_ready);
161 	INIT_LIST_HEAD(&xprt->xpt_deferred);
162 	INIT_LIST_HEAD(&xprt->xpt_users);
163 	mutex_init(&xprt->xpt_mutex);
164 	spin_lock_init(&xprt->xpt_lock);
165 	set_bit(XPT_BUSY, &xprt->xpt_flags);
166 	rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
167 	xprt->xpt_net = get_net(net);
168 }
169 EXPORT_SYMBOL_GPL(svc_xprt_init);
170 
171 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
172 					 struct svc_serv *serv,
173 					 struct net *net,
174 					 const int family,
175 					 const unsigned short port,
176 					 int flags)
177 {
178 	struct sockaddr_in sin = {
179 		.sin_family		= AF_INET,
180 		.sin_addr.s_addr	= htonl(INADDR_ANY),
181 		.sin_port		= htons(port),
182 	};
183 #if IS_ENABLED(CONFIG_IPV6)
184 	struct sockaddr_in6 sin6 = {
185 		.sin6_family		= AF_INET6,
186 		.sin6_addr		= IN6ADDR_ANY_INIT,
187 		.sin6_port		= htons(port),
188 	};
189 #endif
190 	struct sockaddr *sap;
191 	size_t len;
192 
193 	switch (family) {
194 	case PF_INET:
195 		sap = (struct sockaddr *)&sin;
196 		len = sizeof(sin);
197 		break;
198 #if IS_ENABLED(CONFIG_IPV6)
199 	case PF_INET6:
200 		sap = (struct sockaddr *)&sin6;
201 		len = sizeof(sin6);
202 		break;
203 #endif
204 	default:
205 		return ERR_PTR(-EAFNOSUPPORT);
206 	}
207 
208 	return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
209 }
210 
211 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
212 		    struct net *net, const int family,
213 		    const unsigned short port, int flags)
214 {
215 	struct svc_xprt_class *xcl;
216 
217 	dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
218 	spin_lock(&svc_xprt_class_lock);
219 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
220 		struct svc_xprt *newxprt;
221 		unsigned short newport;
222 
223 		if (strcmp(xprt_name, xcl->xcl_name))
224 			continue;
225 
226 		if (!try_module_get(xcl->xcl_owner))
227 			goto err;
228 
229 		spin_unlock(&svc_xprt_class_lock);
230 		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
231 		if (IS_ERR(newxprt)) {
232 			module_put(xcl->xcl_owner);
233 			return PTR_ERR(newxprt);
234 		}
235 
236 		clear_bit(XPT_TEMP, &newxprt->xpt_flags);
237 		spin_lock_bh(&serv->sv_lock);
238 		list_add(&newxprt->xpt_list, &serv->sv_permsocks);
239 		spin_unlock_bh(&serv->sv_lock);
240 		newport = svc_xprt_local_port(newxprt);
241 		clear_bit(XPT_BUSY, &newxprt->xpt_flags);
242 		return newport;
243 	}
244  err:
245 	spin_unlock(&svc_xprt_class_lock);
246 	dprintk("svc: transport %s not found\n", xprt_name);
247 
248 	/* This errno is exposed to user space.  Provide a reasonable
249 	 * perror msg for a bad transport. */
250 	return -EPROTONOSUPPORT;
251 }
252 EXPORT_SYMBOL_GPL(svc_create_xprt);
253 
254 /*
255  * Copy the local and remote xprt addresses to the rqstp structure
256  */
257 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
258 {
259 	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
260 	rqstp->rq_addrlen = xprt->xpt_remotelen;
261 
262 	/*
263 	 * Destination address in request is needed for binding the
264 	 * source address in RPC replies/callbacks later.
265 	 */
266 	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
267 	rqstp->rq_daddrlen = xprt->xpt_locallen;
268 }
269 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
270 
271 /**
272  * svc_print_addr - Format rq_addr field for printing
273  * @rqstp: svc_rqst struct containing address to print
274  * @buf: target buffer for formatted address
275  * @len: length of target buffer
276  *
277  */
278 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
279 {
280 	return __svc_print_addr(svc_addr(rqstp), buf, len);
281 }
282 EXPORT_SYMBOL_GPL(svc_print_addr);
283 
284 /*
285  * Queue up an idle server thread.  Must have pool->sp_lock held.
286  * Note: this is really a stack rather than a queue, so that we only
287  * use as many different threads as we need, and the rest don't pollute
288  * the cache.
289  */
290 static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
291 {
292 	list_add(&rqstp->rq_list, &pool->sp_threads);
293 }
294 
295 /*
296  * Dequeue an nfsd thread.  Must have pool->sp_lock held.
297  */
298 static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
299 {
300 	list_del(&rqstp->rq_list);
301 }
302 
303 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
304 {
305 	if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
306 		return true;
307 	if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED)))
308 		return xprt->xpt_ops->xpo_has_wspace(xprt);
309 	return false;
310 }
311 
312 /*
313  * Queue up a transport with data pending. If there are idle nfsd
314  * processes, wake 'em up.
315  *
316  */
317 void svc_xprt_enqueue(struct svc_xprt *xprt)
318 {
319 	struct svc_pool *pool;
320 	struct svc_rqst	*rqstp;
321 	int cpu;
322 
323 	if (!svc_xprt_has_something_to_do(xprt))
324 		return;
325 
326 	cpu = get_cpu();
327 	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
328 	put_cpu();
329 
330 	spin_lock_bh(&pool->sp_lock);
331 
332 	if (!list_empty(&pool->sp_threads) &&
333 	    !list_empty(&pool->sp_sockets))
334 		printk(KERN_ERR
335 		       "svc_xprt_enqueue: "
336 		       "threads and transports both waiting??\n");
337 
338 	pool->sp_stats.packets++;
339 
340 	/* Mark transport as busy. It will remain in this state until
341 	 * the provider calls svc_xprt_received. We update XPT_BUSY
342 	 * atomically because it also guards against trying to enqueue
343 	 * the transport twice.
344 	 */
345 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
346 		/* Don't enqueue transport while already enqueued */
347 		dprintk("svc: transport %p busy, not enqueued\n", xprt);
348 		goto out_unlock;
349 	}
350 
351 	if (!list_empty(&pool->sp_threads)) {
352 		rqstp = list_entry(pool->sp_threads.next,
353 				   struct svc_rqst,
354 				   rq_list);
355 		dprintk("svc: transport %p served by daemon %p\n",
356 			xprt, rqstp);
357 		svc_thread_dequeue(pool, rqstp);
358 		if (rqstp->rq_xprt)
359 			printk(KERN_ERR
360 				"svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
361 				rqstp, rqstp->rq_xprt);
362 		rqstp->rq_xprt = xprt;
363 		svc_xprt_get(xprt);
364 		pool->sp_stats.threads_woken++;
365 		wake_up(&rqstp->rq_wait);
366 	} else {
367 		dprintk("svc: transport %p put into queue\n", xprt);
368 		list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
369 		pool->sp_stats.sockets_queued++;
370 	}
371 
372 out_unlock:
373 	spin_unlock_bh(&pool->sp_lock);
374 }
375 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
376 
377 /*
378  * Dequeue the first transport.  Must be called with the pool->sp_lock held.
379  */
380 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
381 {
382 	struct svc_xprt	*xprt;
383 
384 	if (list_empty(&pool->sp_sockets))
385 		return NULL;
386 
387 	xprt = list_entry(pool->sp_sockets.next,
388 			  struct svc_xprt, xpt_ready);
389 	list_del_init(&xprt->xpt_ready);
390 
391 	dprintk("svc: transport %p dequeued, inuse=%d\n",
392 		xprt, atomic_read(&xprt->xpt_ref.refcount));
393 
394 	return xprt;
395 }
396 
397 /*
398  * svc_xprt_received conditionally queues the transport for processing
399  * by another thread. The caller must hold the XPT_BUSY bit and must
400  * not thereafter touch transport data.
401  *
402  * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
403  * insufficient) data.
404  */
405 void svc_xprt_received(struct svc_xprt *xprt)
406 {
407 	BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
408 	/* As soon as we clear busy, the xprt could be closed and
409 	 * 'put', so we need a reference to call svc_xprt_enqueue with:
410 	 */
411 	svc_xprt_get(xprt);
412 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
413 	svc_xprt_enqueue(xprt);
414 	svc_xprt_put(xprt);
415 }
416 EXPORT_SYMBOL_GPL(svc_xprt_received);
417 
418 /**
419  * svc_reserve - change the space reserved for the reply to a request.
420  * @rqstp:  The request in question
421  * @space: new max space to reserve
422  *
423  * Each request reserves some space on the output queue of the transport
424  * to make sure the reply fits.  This function reduces that reserved
425  * space to be the amount of space used already, plus @space.
426  *
427  */
428 void svc_reserve(struct svc_rqst *rqstp, int space)
429 {
430 	space += rqstp->rq_res.head[0].iov_len;
431 
432 	if (space < rqstp->rq_reserved) {
433 		struct svc_xprt *xprt = rqstp->rq_xprt;
434 		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
435 		rqstp->rq_reserved = space;
436 
437 		svc_xprt_enqueue(xprt);
438 	}
439 }
440 EXPORT_SYMBOL_GPL(svc_reserve);
441 
442 static void svc_xprt_release(struct svc_rqst *rqstp)
443 {
444 	struct svc_xprt	*xprt = rqstp->rq_xprt;
445 
446 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
447 
448 	kfree(rqstp->rq_deferred);
449 	rqstp->rq_deferred = NULL;
450 
451 	svc_free_res_pages(rqstp);
452 	rqstp->rq_res.page_len = 0;
453 	rqstp->rq_res.page_base = 0;
454 
455 	/* Reset response buffer and release
456 	 * the reservation.
457 	 * But first, check that enough space was reserved
458 	 * for the reply, otherwise we have a bug!
459 	 */
460 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
461 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
462 		       rqstp->rq_reserved,
463 		       rqstp->rq_res.len);
464 
465 	rqstp->rq_res.head[0].iov_len = 0;
466 	svc_reserve(rqstp, 0);
467 	rqstp->rq_xprt = NULL;
468 
469 	svc_xprt_put(xprt);
470 }
471 
472 /*
473  * External function to wake up a server waiting for data
474  * This really only makes sense for services like lockd
475  * which have exactly one thread anyway.
476  */
477 void svc_wake_up(struct svc_serv *serv)
478 {
479 	struct svc_rqst	*rqstp;
480 	unsigned int i;
481 	struct svc_pool *pool;
482 
483 	for (i = 0; i < serv->sv_nrpools; i++) {
484 		pool = &serv->sv_pools[i];
485 
486 		spin_lock_bh(&pool->sp_lock);
487 		if (!list_empty(&pool->sp_threads)) {
488 			rqstp = list_entry(pool->sp_threads.next,
489 					   struct svc_rqst,
490 					   rq_list);
491 			dprintk("svc: daemon %p woken up.\n", rqstp);
492 			/*
493 			svc_thread_dequeue(pool, rqstp);
494 			rqstp->rq_xprt = NULL;
495 			 */
496 			wake_up(&rqstp->rq_wait);
497 		}
498 		spin_unlock_bh(&pool->sp_lock);
499 	}
500 }
501 EXPORT_SYMBOL_GPL(svc_wake_up);
502 
503 int svc_port_is_privileged(struct sockaddr *sin)
504 {
505 	switch (sin->sa_family) {
506 	case AF_INET:
507 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
508 			< PROT_SOCK;
509 	case AF_INET6:
510 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
511 			< PROT_SOCK;
512 	default:
513 		return 0;
514 	}
515 }
516 
517 /*
518  * Make sure that we don't have too many active connections. If we have,
519  * something must be dropped. It's not clear what will happen if we allow
520  * "too many" connections, but when dealing with network-facing software,
521  * we have to code defensively. Here we do that by imposing hard limits.
522  *
523  * There's no point in trying to do random drop here for DoS
524  * prevention. The NFS clients does 1 reconnect in 15 seconds. An
525  * attacker can easily beat that.
526  *
527  * The only somewhat efficient mechanism would be if drop old
528  * connections from the same IP first. But right now we don't even
529  * record the client IP in svc_sock.
530  *
531  * single-threaded services that expect a lot of clients will probably
532  * need to set sv_maxconn to override the default value which is based
533  * on the number of threads
534  */
535 static void svc_check_conn_limits(struct svc_serv *serv)
536 {
537 	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
538 				(serv->sv_nrthreads+3) * 20;
539 
540 	if (serv->sv_tmpcnt > limit) {
541 		struct svc_xprt *xprt = NULL;
542 		spin_lock_bh(&serv->sv_lock);
543 		if (!list_empty(&serv->sv_tempsocks)) {
544 			/* Try to help the admin */
545 			net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
546 					       serv->sv_name, serv->sv_maxconn ?
547 					       "max number of connections" :
548 					       "number of threads");
549 			/*
550 			 * Always select the oldest connection. It's not fair,
551 			 * but so is life
552 			 */
553 			xprt = list_entry(serv->sv_tempsocks.prev,
554 					  struct svc_xprt,
555 					  xpt_list);
556 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
557 			svc_xprt_get(xprt);
558 		}
559 		spin_unlock_bh(&serv->sv_lock);
560 
561 		if (xprt) {
562 			svc_xprt_enqueue(xprt);
563 			svc_xprt_put(xprt);
564 		}
565 	}
566 }
567 
568 /*
569  * Receive the next request on any transport.  This code is carefully
570  * organised not to touch any cachelines in the shared svc_serv
571  * structure, only cachelines in the local svc_pool.
572  */
573 int svc_recv(struct svc_rqst *rqstp, long timeout)
574 {
575 	struct svc_xprt		*xprt = NULL;
576 	struct svc_serv		*serv = rqstp->rq_server;
577 	struct svc_pool		*pool = rqstp->rq_pool;
578 	int			len, i;
579 	int			pages;
580 	struct xdr_buf		*arg;
581 	DECLARE_WAITQUEUE(wait, current);
582 	long			time_left;
583 
584 	dprintk("svc: server %p waiting for data (to = %ld)\n",
585 		rqstp, timeout);
586 
587 	if (rqstp->rq_xprt)
588 		printk(KERN_ERR
589 			"svc_recv: service %p, transport not NULL!\n",
590 			 rqstp);
591 	if (waitqueue_active(&rqstp->rq_wait))
592 		printk(KERN_ERR
593 			"svc_recv: service %p, wait queue active!\n",
594 			 rqstp);
595 
596 	/* now allocate needed pages.  If we get a failure, sleep briefly */
597 	pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
598 	BUG_ON(pages >= RPCSVC_MAXPAGES);
599 	for (i = 0; i < pages ; i++)
600 		while (rqstp->rq_pages[i] == NULL) {
601 			struct page *p = alloc_page(GFP_KERNEL);
602 			if (!p) {
603 				set_current_state(TASK_INTERRUPTIBLE);
604 				if (signalled() || kthread_should_stop()) {
605 					set_current_state(TASK_RUNNING);
606 					return -EINTR;
607 				}
608 				schedule_timeout(msecs_to_jiffies(500));
609 			}
610 			rqstp->rq_pages[i] = p;
611 		}
612 	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
613 
614 	/* Make arg->head point to first page and arg->pages point to rest */
615 	arg = &rqstp->rq_arg;
616 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
617 	arg->head[0].iov_len = PAGE_SIZE;
618 	arg->pages = rqstp->rq_pages + 1;
619 	arg->page_base = 0;
620 	/* save at least one page for response */
621 	arg->page_len = (pages-2)*PAGE_SIZE;
622 	arg->len = (pages-1)*PAGE_SIZE;
623 	arg->tail[0].iov_len = 0;
624 
625 	try_to_freeze();
626 	cond_resched();
627 	if (signalled() || kthread_should_stop())
628 		return -EINTR;
629 
630 	/* Normally we will wait up to 5 seconds for any required
631 	 * cache information to be provided.
632 	 */
633 	rqstp->rq_chandle.thread_wait = 5*HZ;
634 
635 	spin_lock_bh(&pool->sp_lock);
636 	xprt = svc_xprt_dequeue(pool);
637 	if (xprt) {
638 		rqstp->rq_xprt = xprt;
639 		svc_xprt_get(xprt);
640 
641 		/* As there is a shortage of threads and this request
642 		 * had to be queued, don't allow the thread to wait so
643 		 * long for cache updates.
644 		 */
645 		rqstp->rq_chandle.thread_wait = 1*HZ;
646 	} else {
647 		/* No data pending. Go to sleep */
648 		svc_thread_enqueue(pool, rqstp);
649 
650 		/*
651 		 * We have to be able to interrupt this wait
652 		 * to bring down the daemons ...
653 		 */
654 		set_current_state(TASK_INTERRUPTIBLE);
655 
656 		/*
657 		 * checking kthread_should_stop() here allows us to avoid
658 		 * locking and signalling when stopping kthreads that call
659 		 * svc_recv. If the thread has already been woken up, then
660 		 * we can exit here without sleeping. If not, then it
661 		 * it'll be woken up quickly during the schedule_timeout
662 		 */
663 		if (kthread_should_stop()) {
664 			set_current_state(TASK_RUNNING);
665 			spin_unlock_bh(&pool->sp_lock);
666 			return -EINTR;
667 		}
668 
669 		add_wait_queue(&rqstp->rq_wait, &wait);
670 		spin_unlock_bh(&pool->sp_lock);
671 
672 		time_left = schedule_timeout(timeout);
673 
674 		try_to_freeze();
675 
676 		spin_lock_bh(&pool->sp_lock);
677 		remove_wait_queue(&rqstp->rq_wait, &wait);
678 		if (!time_left)
679 			pool->sp_stats.threads_timedout++;
680 
681 		xprt = rqstp->rq_xprt;
682 		if (!xprt) {
683 			svc_thread_dequeue(pool, rqstp);
684 			spin_unlock_bh(&pool->sp_lock);
685 			dprintk("svc: server %p, no data yet\n", rqstp);
686 			if (signalled() || kthread_should_stop())
687 				return -EINTR;
688 			else
689 				return -EAGAIN;
690 		}
691 	}
692 	spin_unlock_bh(&pool->sp_lock);
693 
694 	len = 0;
695 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
696 		dprintk("svc_recv: found XPT_CLOSE\n");
697 		svc_delete_xprt(xprt);
698 		/* Leave XPT_BUSY set on the dead xprt: */
699 		goto out;
700 	}
701 	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
702 		struct svc_xprt *newxpt;
703 		newxpt = xprt->xpt_ops->xpo_accept(xprt);
704 		if (newxpt) {
705 			/*
706 			 * We know this module_get will succeed because the
707 			 * listener holds a reference too
708 			 */
709 			__module_get(newxpt->xpt_class->xcl_owner);
710 			svc_check_conn_limits(xprt->xpt_server);
711 			spin_lock_bh(&serv->sv_lock);
712 			set_bit(XPT_TEMP, &newxpt->xpt_flags);
713 			list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
714 			serv->sv_tmpcnt++;
715 			if (serv->sv_temptimer.function == NULL) {
716 				/* setup timer to age temp transports */
717 				setup_timer(&serv->sv_temptimer,
718 					    svc_age_temp_xprts,
719 					    (unsigned long)serv);
720 				mod_timer(&serv->sv_temptimer,
721 					  jiffies + svc_conn_age_period * HZ);
722 			}
723 			spin_unlock_bh(&serv->sv_lock);
724 			svc_xprt_received(newxpt);
725 		}
726 	} else if (xprt->xpt_ops->xpo_has_wspace(xprt)) {
727 		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
728 			rqstp, pool->sp_id, xprt,
729 			atomic_read(&xprt->xpt_ref.refcount));
730 		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
731 		if (rqstp->rq_deferred)
732 			len = svc_deferred_recv(rqstp);
733 		else
734 			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
735 		dprintk("svc: got len=%d\n", len);
736 		rqstp->rq_reserved = serv->sv_max_mesg;
737 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
738 	}
739 	svc_xprt_received(xprt);
740 
741 	/* No data, incomplete (TCP) read, or accept() */
742 	if (len == 0 || len == -EAGAIN)
743 		goto out;
744 
745 	clear_bit(XPT_OLD, &xprt->xpt_flags);
746 
747 	rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
748 	rqstp->rq_chandle.defer = svc_defer;
749 
750 	if (serv->sv_stats)
751 		serv->sv_stats->netcnt++;
752 	return len;
753 out:
754 	rqstp->rq_res.len = 0;
755 	svc_xprt_release(rqstp);
756 	return -EAGAIN;
757 }
758 EXPORT_SYMBOL_GPL(svc_recv);
759 
760 /*
761  * Drop request
762  */
763 void svc_drop(struct svc_rqst *rqstp)
764 {
765 	dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
766 	svc_xprt_release(rqstp);
767 }
768 EXPORT_SYMBOL_GPL(svc_drop);
769 
770 /*
771  * Return reply to client.
772  */
773 int svc_send(struct svc_rqst *rqstp)
774 {
775 	struct svc_xprt	*xprt;
776 	int		len;
777 	struct xdr_buf	*xb;
778 
779 	xprt = rqstp->rq_xprt;
780 	if (!xprt)
781 		return -EFAULT;
782 
783 	/* release the receive skb before sending the reply */
784 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
785 
786 	/* calculate over-all length */
787 	xb = &rqstp->rq_res;
788 	xb->len = xb->head[0].iov_len +
789 		xb->page_len +
790 		xb->tail[0].iov_len;
791 
792 	/* Grab mutex to serialize outgoing data. */
793 	mutex_lock(&xprt->xpt_mutex);
794 	if (test_bit(XPT_DEAD, &xprt->xpt_flags)
795 			|| test_bit(XPT_CLOSE, &xprt->xpt_flags))
796 		len = -ENOTCONN;
797 	else
798 		len = xprt->xpt_ops->xpo_sendto(rqstp);
799 	mutex_unlock(&xprt->xpt_mutex);
800 	rpc_wake_up(&xprt->xpt_bc_pending);
801 	svc_xprt_release(rqstp);
802 
803 	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
804 		return 0;
805 	return len;
806 }
807 
808 /*
809  * Timer function to close old temporary transports, using
810  * a mark-and-sweep algorithm.
811  */
812 static void svc_age_temp_xprts(unsigned long closure)
813 {
814 	struct svc_serv *serv = (struct svc_serv *)closure;
815 	struct svc_xprt *xprt;
816 	struct list_head *le, *next;
817 	LIST_HEAD(to_be_aged);
818 
819 	dprintk("svc_age_temp_xprts\n");
820 
821 	if (!spin_trylock_bh(&serv->sv_lock)) {
822 		/* busy, try again 1 sec later */
823 		dprintk("svc_age_temp_xprts: busy\n");
824 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
825 		return;
826 	}
827 
828 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
829 		xprt = list_entry(le, struct svc_xprt, xpt_list);
830 
831 		/* First time through, just mark it OLD. Second time
832 		 * through, close it. */
833 		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
834 			continue;
835 		if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
836 		    test_bit(XPT_BUSY, &xprt->xpt_flags))
837 			continue;
838 		svc_xprt_get(xprt);
839 		list_move(le, &to_be_aged);
840 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
841 		set_bit(XPT_DETACHED, &xprt->xpt_flags);
842 	}
843 	spin_unlock_bh(&serv->sv_lock);
844 
845 	while (!list_empty(&to_be_aged)) {
846 		le = to_be_aged.next;
847 		/* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
848 		list_del_init(le);
849 		xprt = list_entry(le, struct svc_xprt, xpt_list);
850 
851 		dprintk("queuing xprt %p for closing\n", xprt);
852 
853 		/* a thread will dequeue and close it soon */
854 		svc_xprt_enqueue(xprt);
855 		svc_xprt_put(xprt);
856 	}
857 
858 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
859 }
860 
861 static void call_xpt_users(struct svc_xprt *xprt)
862 {
863 	struct svc_xpt_user *u;
864 
865 	spin_lock(&xprt->xpt_lock);
866 	while (!list_empty(&xprt->xpt_users)) {
867 		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
868 		list_del(&u->list);
869 		u->callback(u);
870 	}
871 	spin_unlock(&xprt->xpt_lock);
872 }
873 
874 /*
875  * Remove a dead transport
876  */
877 static void svc_delete_xprt(struct svc_xprt *xprt)
878 {
879 	struct svc_serv	*serv = xprt->xpt_server;
880 	struct svc_deferred_req *dr;
881 
882 	/* Only do this once */
883 	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
884 		BUG();
885 
886 	dprintk("svc: svc_delete_xprt(%p)\n", xprt);
887 	xprt->xpt_ops->xpo_detach(xprt);
888 
889 	spin_lock_bh(&serv->sv_lock);
890 	if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
891 		list_del_init(&xprt->xpt_list);
892 	BUG_ON(!list_empty(&xprt->xpt_ready));
893 	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
894 		serv->sv_tmpcnt--;
895 	spin_unlock_bh(&serv->sv_lock);
896 
897 	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
898 		kfree(dr);
899 
900 	call_xpt_users(xprt);
901 	svc_xprt_put(xprt);
902 }
903 
904 void svc_close_xprt(struct svc_xprt *xprt)
905 {
906 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
907 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
908 		/* someone else will have to effect the close */
909 		return;
910 	/*
911 	 * We expect svc_close_xprt() to work even when no threads are
912 	 * running (e.g., while configuring the server before starting
913 	 * any threads), so if the transport isn't busy, we delete
914 	 * it ourself:
915 	 */
916 	svc_delete_xprt(xprt);
917 }
918 EXPORT_SYMBOL_GPL(svc_close_xprt);
919 
920 static void svc_close_list(struct list_head *xprt_list, struct net *net)
921 {
922 	struct svc_xprt *xprt;
923 
924 	list_for_each_entry(xprt, xprt_list, xpt_list) {
925 		if (xprt->xpt_net != net)
926 			continue;
927 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
928 		set_bit(XPT_BUSY, &xprt->xpt_flags);
929 	}
930 }
931 
932 static void svc_clear_pools(struct svc_serv *serv, struct net *net)
933 {
934 	struct svc_pool *pool;
935 	struct svc_xprt *xprt;
936 	struct svc_xprt *tmp;
937 	int i;
938 
939 	for (i = 0; i < serv->sv_nrpools; i++) {
940 		pool = &serv->sv_pools[i];
941 
942 		spin_lock_bh(&pool->sp_lock);
943 		list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
944 			if (xprt->xpt_net != net)
945 				continue;
946 			list_del_init(&xprt->xpt_ready);
947 		}
948 		spin_unlock_bh(&pool->sp_lock);
949 	}
950 }
951 
952 static void svc_clear_list(struct list_head *xprt_list, struct net *net)
953 {
954 	struct svc_xprt *xprt;
955 	struct svc_xprt *tmp;
956 
957 	list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
958 		if (xprt->xpt_net != net)
959 			continue;
960 		svc_delete_xprt(xprt);
961 	}
962 	list_for_each_entry(xprt, xprt_list, xpt_list)
963 		BUG_ON(xprt->xpt_net == net);
964 }
965 
966 void svc_close_net(struct svc_serv *serv, struct net *net)
967 {
968 	svc_close_list(&serv->sv_tempsocks, net);
969 	svc_close_list(&serv->sv_permsocks, net);
970 
971 	svc_clear_pools(serv, net);
972 	/*
973 	 * At this point the sp_sockets lists will stay empty, since
974 	 * svc_xprt_enqueue will not add new entries without taking the
975 	 * sp_lock and checking XPT_BUSY.
976 	 */
977 	svc_clear_list(&serv->sv_tempsocks, net);
978 	svc_clear_list(&serv->sv_permsocks, net);
979 }
980 
981 /*
982  * Handle defer and revisit of requests
983  */
984 
985 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
986 {
987 	struct svc_deferred_req *dr =
988 		container_of(dreq, struct svc_deferred_req, handle);
989 	struct svc_xprt *xprt = dr->xprt;
990 
991 	spin_lock(&xprt->xpt_lock);
992 	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
993 	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
994 		spin_unlock(&xprt->xpt_lock);
995 		dprintk("revisit canceled\n");
996 		svc_xprt_put(xprt);
997 		kfree(dr);
998 		return;
999 	}
1000 	dprintk("revisit queued\n");
1001 	dr->xprt = NULL;
1002 	list_add(&dr->handle.recent, &xprt->xpt_deferred);
1003 	spin_unlock(&xprt->xpt_lock);
1004 	svc_xprt_enqueue(xprt);
1005 	svc_xprt_put(xprt);
1006 }
1007 
1008 /*
1009  * Save the request off for later processing. The request buffer looks
1010  * like this:
1011  *
1012  * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1013  *
1014  * This code can only handle requests that consist of an xprt-header
1015  * and rpc-header.
1016  */
1017 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1018 {
1019 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1020 	struct svc_deferred_req *dr;
1021 
1022 	if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
1023 		return NULL; /* if more than a page, give up FIXME */
1024 	if (rqstp->rq_deferred) {
1025 		dr = rqstp->rq_deferred;
1026 		rqstp->rq_deferred = NULL;
1027 	} else {
1028 		size_t skip;
1029 		size_t size;
1030 		/* FIXME maybe discard if size too large */
1031 		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1032 		dr = kmalloc(size, GFP_KERNEL);
1033 		if (dr == NULL)
1034 			return NULL;
1035 
1036 		dr->handle.owner = rqstp->rq_server;
1037 		dr->prot = rqstp->rq_prot;
1038 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1039 		dr->addrlen = rqstp->rq_addrlen;
1040 		dr->daddr = rqstp->rq_daddr;
1041 		dr->argslen = rqstp->rq_arg.len >> 2;
1042 		dr->xprt_hlen = rqstp->rq_xprt_hlen;
1043 
1044 		/* back up head to the start of the buffer and copy */
1045 		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1046 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1047 		       dr->argslen << 2);
1048 	}
1049 	svc_xprt_get(rqstp->rq_xprt);
1050 	dr->xprt = rqstp->rq_xprt;
1051 	rqstp->rq_dropme = true;
1052 
1053 	dr->handle.revisit = svc_revisit;
1054 	return &dr->handle;
1055 }
1056 
1057 /*
1058  * recv data from a deferred request into an active one
1059  */
1060 static int svc_deferred_recv(struct svc_rqst *rqstp)
1061 {
1062 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1063 
1064 	/* setup iov_base past transport header */
1065 	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1066 	/* The iov_len does not include the transport header bytes */
1067 	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1068 	rqstp->rq_arg.page_len = 0;
1069 	/* The rq_arg.len includes the transport header bytes */
1070 	rqstp->rq_arg.len     = dr->argslen<<2;
1071 	rqstp->rq_prot        = dr->prot;
1072 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1073 	rqstp->rq_addrlen     = dr->addrlen;
1074 	/* Save off transport header len in case we get deferred again */
1075 	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1076 	rqstp->rq_daddr       = dr->daddr;
1077 	rqstp->rq_respages    = rqstp->rq_pages;
1078 	return (dr->argslen<<2) - dr->xprt_hlen;
1079 }
1080 
1081 
1082 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1083 {
1084 	struct svc_deferred_req *dr = NULL;
1085 
1086 	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1087 		return NULL;
1088 	spin_lock(&xprt->xpt_lock);
1089 	if (!list_empty(&xprt->xpt_deferred)) {
1090 		dr = list_entry(xprt->xpt_deferred.next,
1091 				struct svc_deferred_req,
1092 				handle.recent);
1093 		list_del_init(&dr->handle.recent);
1094 	} else
1095 		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1096 	spin_unlock(&xprt->xpt_lock);
1097 	return dr;
1098 }
1099 
1100 /**
1101  * svc_find_xprt - find an RPC transport instance
1102  * @serv: pointer to svc_serv to search
1103  * @xcl_name: C string containing transport's class name
1104  * @net: owner net pointer
1105  * @af: Address family of transport's local address
1106  * @port: transport's IP port number
1107  *
1108  * Return the transport instance pointer for the endpoint accepting
1109  * connections/peer traffic from the specified transport class,
1110  * address family and port.
1111  *
1112  * Specifying 0 for the address family or port is effectively a
1113  * wild-card, and will result in matching the first transport in the
1114  * service's list that has a matching class name.
1115  */
1116 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1117 			       struct net *net, const sa_family_t af,
1118 			       const unsigned short port)
1119 {
1120 	struct svc_xprt *xprt;
1121 	struct svc_xprt *found = NULL;
1122 
1123 	/* Sanity check the args */
1124 	if (serv == NULL || xcl_name == NULL)
1125 		return found;
1126 
1127 	spin_lock_bh(&serv->sv_lock);
1128 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1129 		if (xprt->xpt_net != net)
1130 			continue;
1131 		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1132 			continue;
1133 		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1134 			continue;
1135 		if (port != 0 && port != svc_xprt_local_port(xprt))
1136 			continue;
1137 		found = xprt;
1138 		svc_xprt_get(xprt);
1139 		break;
1140 	}
1141 	spin_unlock_bh(&serv->sv_lock);
1142 	return found;
1143 }
1144 EXPORT_SYMBOL_GPL(svc_find_xprt);
1145 
1146 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1147 			     char *pos, int remaining)
1148 {
1149 	int len;
1150 
1151 	len = snprintf(pos, remaining, "%s %u\n",
1152 			xprt->xpt_class->xcl_name,
1153 			svc_xprt_local_port(xprt));
1154 	if (len >= remaining)
1155 		return -ENAMETOOLONG;
1156 	return len;
1157 }
1158 
1159 /**
1160  * svc_xprt_names - format a buffer with a list of transport names
1161  * @serv: pointer to an RPC service
1162  * @buf: pointer to a buffer to be filled in
1163  * @buflen: length of buffer to be filled in
1164  *
1165  * Fills in @buf with a string containing a list of transport names,
1166  * each name terminated with '\n'.
1167  *
1168  * Returns positive length of the filled-in string on success; otherwise
1169  * a negative errno value is returned if an error occurs.
1170  */
1171 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1172 {
1173 	struct svc_xprt *xprt;
1174 	int len, totlen;
1175 	char *pos;
1176 
1177 	/* Sanity check args */
1178 	if (!serv)
1179 		return 0;
1180 
1181 	spin_lock_bh(&serv->sv_lock);
1182 
1183 	pos = buf;
1184 	totlen = 0;
1185 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1186 		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1187 		if (len < 0) {
1188 			*buf = '\0';
1189 			totlen = len;
1190 		}
1191 		if (len <= 0)
1192 			break;
1193 
1194 		pos += len;
1195 		totlen += len;
1196 	}
1197 
1198 	spin_unlock_bh(&serv->sv_lock);
1199 	return totlen;
1200 }
1201 EXPORT_SYMBOL_GPL(svc_xprt_names);
1202 
1203 
1204 /*----------------------------------------------------------------------------*/
1205 
1206 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1207 {
1208 	unsigned int pidx = (unsigned int)*pos;
1209 	struct svc_serv *serv = m->private;
1210 
1211 	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1212 
1213 	if (!pidx)
1214 		return SEQ_START_TOKEN;
1215 	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1216 }
1217 
1218 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1219 {
1220 	struct svc_pool *pool = p;
1221 	struct svc_serv *serv = m->private;
1222 
1223 	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1224 
1225 	if (p == SEQ_START_TOKEN) {
1226 		pool = &serv->sv_pools[0];
1227 	} else {
1228 		unsigned int pidx = (pool - &serv->sv_pools[0]);
1229 		if (pidx < serv->sv_nrpools-1)
1230 			pool = &serv->sv_pools[pidx+1];
1231 		else
1232 			pool = NULL;
1233 	}
1234 	++*pos;
1235 	return pool;
1236 }
1237 
1238 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1239 {
1240 }
1241 
1242 static int svc_pool_stats_show(struct seq_file *m, void *p)
1243 {
1244 	struct svc_pool *pool = p;
1245 
1246 	if (p == SEQ_START_TOKEN) {
1247 		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1248 		return 0;
1249 	}
1250 
1251 	seq_printf(m, "%u %lu %lu %lu %lu\n",
1252 		pool->sp_id,
1253 		pool->sp_stats.packets,
1254 		pool->sp_stats.sockets_queued,
1255 		pool->sp_stats.threads_woken,
1256 		pool->sp_stats.threads_timedout);
1257 
1258 	return 0;
1259 }
1260 
1261 static const struct seq_operations svc_pool_stats_seq_ops = {
1262 	.start	= svc_pool_stats_start,
1263 	.next	= svc_pool_stats_next,
1264 	.stop	= svc_pool_stats_stop,
1265 	.show	= svc_pool_stats_show,
1266 };
1267 
1268 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1269 {
1270 	int err;
1271 
1272 	err = seq_open(file, &svc_pool_stats_seq_ops);
1273 	if (!err)
1274 		((struct seq_file *) file->private_data)->private = serv;
1275 	return err;
1276 }
1277 EXPORT_SYMBOL(svc_pool_stats_open);
1278 
1279 /*----------------------------------------------------------------------------*/
1280