1 /* 2 * linux/net/sunrpc/svc_xprt.c 3 * 4 * Author: Tom Tucker <tom@opengridcomputing.com> 5 */ 6 7 #include <linux/sched.h> 8 #include <linux/errno.h> 9 #include <linux/freezer.h> 10 #include <linux/kthread.h> 11 #include <net/sock.h> 12 #include <linux/sunrpc/stats.h> 13 #include <linux/sunrpc/svc_xprt.h> 14 15 #define RPCDBG_FACILITY RPCDBG_SVCXPRT 16 17 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt); 18 static int svc_deferred_recv(struct svc_rqst *rqstp); 19 static struct cache_deferred_req *svc_defer(struct cache_req *req); 20 static void svc_age_temp_xprts(unsigned long closure); 21 22 /* apparently the "standard" is that clients close 23 * idle connections after 5 minutes, servers after 24 * 6 minutes 25 * http://www.connectathon.org/talks96/nfstcp.pdf 26 */ 27 static int svc_conn_age_period = 6*60; 28 29 /* List of registered transport classes */ 30 static DEFINE_SPINLOCK(svc_xprt_class_lock); 31 static LIST_HEAD(svc_xprt_class_list); 32 33 /* SMP locking strategy: 34 * 35 * svc_pool->sp_lock protects most of the fields of that pool. 36 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt. 37 * when both need to be taken (rare), svc_serv->sv_lock is first. 38 * BKL protects svc_serv->sv_nrthread. 39 * svc_sock->sk_lock protects the svc_sock->sk_deferred list 40 * and the ->sk_info_authunix cache. 41 * 42 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being 43 * enqueued multiply. During normal transport processing this bit 44 * is set by svc_xprt_enqueue and cleared by svc_xprt_received. 45 * Providers should not manipulate this bit directly. 46 * 47 * Some flags can be set to certain values at any time 48 * providing that certain rules are followed: 49 * 50 * XPT_CONN, XPT_DATA: 51 * - Can be set or cleared at any time. 52 * - After a set, svc_xprt_enqueue must be called to enqueue 53 * the transport for processing. 54 * - After a clear, the transport must be read/accepted. 55 * If this succeeds, it must be set again. 56 * XPT_CLOSE: 57 * - Can set at any time. It is never cleared. 58 * XPT_DEAD: 59 * - Can only be set while XPT_BUSY is held which ensures 60 * that no other thread will be using the transport or will 61 * try to set XPT_DEAD. 62 */ 63 64 int svc_reg_xprt_class(struct svc_xprt_class *xcl) 65 { 66 struct svc_xprt_class *cl; 67 int res = -EEXIST; 68 69 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name); 70 71 INIT_LIST_HEAD(&xcl->xcl_list); 72 spin_lock(&svc_xprt_class_lock); 73 /* Make sure there isn't already a class with the same name */ 74 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) { 75 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0) 76 goto out; 77 } 78 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list); 79 res = 0; 80 out: 81 spin_unlock(&svc_xprt_class_lock); 82 return res; 83 } 84 EXPORT_SYMBOL_GPL(svc_reg_xprt_class); 85 86 void svc_unreg_xprt_class(struct svc_xprt_class *xcl) 87 { 88 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name); 89 spin_lock(&svc_xprt_class_lock); 90 list_del_init(&xcl->xcl_list); 91 spin_unlock(&svc_xprt_class_lock); 92 } 93 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class); 94 95 /* 96 * Format the transport list for printing 97 */ 98 int svc_print_xprts(char *buf, int maxlen) 99 { 100 struct list_head *le; 101 char tmpstr[80]; 102 int len = 0; 103 buf[0] = '\0'; 104 105 spin_lock(&svc_xprt_class_lock); 106 list_for_each(le, &svc_xprt_class_list) { 107 int slen; 108 struct svc_xprt_class *xcl = 109 list_entry(le, struct svc_xprt_class, xcl_list); 110 111 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload); 112 slen = strlen(tmpstr); 113 if (len + slen > maxlen) 114 break; 115 len += slen; 116 strcat(buf, tmpstr); 117 } 118 spin_unlock(&svc_xprt_class_lock); 119 120 return len; 121 } 122 123 static void svc_xprt_free(struct kref *kref) 124 { 125 struct svc_xprt *xprt = 126 container_of(kref, struct svc_xprt, xpt_ref); 127 struct module *owner = xprt->xpt_class->xcl_owner; 128 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags) 129 && xprt->xpt_auth_cache != NULL) 130 svcauth_unix_info_release(xprt->xpt_auth_cache); 131 xprt->xpt_ops->xpo_free(xprt); 132 module_put(owner); 133 } 134 135 void svc_xprt_put(struct svc_xprt *xprt) 136 { 137 kref_put(&xprt->xpt_ref, svc_xprt_free); 138 } 139 EXPORT_SYMBOL_GPL(svc_xprt_put); 140 141 /* 142 * Called by transport drivers to initialize the transport independent 143 * portion of the transport instance. 144 */ 145 void svc_xprt_init(struct svc_xprt_class *xcl, struct svc_xprt *xprt, 146 struct svc_serv *serv) 147 { 148 memset(xprt, 0, sizeof(*xprt)); 149 xprt->xpt_class = xcl; 150 xprt->xpt_ops = xcl->xcl_ops; 151 kref_init(&xprt->xpt_ref); 152 xprt->xpt_server = serv; 153 INIT_LIST_HEAD(&xprt->xpt_list); 154 INIT_LIST_HEAD(&xprt->xpt_ready); 155 INIT_LIST_HEAD(&xprt->xpt_deferred); 156 mutex_init(&xprt->xpt_mutex); 157 spin_lock_init(&xprt->xpt_lock); 158 set_bit(XPT_BUSY, &xprt->xpt_flags); 159 } 160 EXPORT_SYMBOL_GPL(svc_xprt_init); 161 162 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl, 163 struct svc_serv *serv, 164 unsigned short port, int flags) 165 { 166 struct sockaddr_in sin = { 167 .sin_family = AF_INET, 168 .sin_addr.s_addr = htonl(INADDR_ANY), 169 .sin_port = htons(port), 170 }; 171 struct sockaddr_in6 sin6 = { 172 .sin6_family = AF_INET6, 173 .sin6_addr = IN6ADDR_ANY_INIT, 174 .sin6_port = htons(port), 175 }; 176 struct sockaddr *sap; 177 size_t len; 178 179 switch (serv->sv_family) { 180 case AF_INET: 181 sap = (struct sockaddr *)&sin; 182 len = sizeof(sin); 183 break; 184 case AF_INET6: 185 sap = (struct sockaddr *)&sin6; 186 len = sizeof(sin6); 187 break; 188 default: 189 return ERR_PTR(-EAFNOSUPPORT); 190 } 191 192 return xcl->xcl_ops->xpo_create(serv, sap, len, flags); 193 } 194 195 int svc_create_xprt(struct svc_serv *serv, char *xprt_name, unsigned short port, 196 int flags) 197 { 198 struct svc_xprt_class *xcl; 199 200 dprintk("svc: creating transport %s[%d]\n", xprt_name, port); 201 spin_lock(&svc_xprt_class_lock); 202 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { 203 struct svc_xprt *newxprt; 204 205 if (strcmp(xprt_name, xcl->xcl_name)) 206 continue; 207 208 if (!try_module_get(xcl->xcl_owner)) 209 goto err; 210 211 spin_unlock(&svc_xprt_class_lock); 212 newxprt = __svc_xpo_create(xcl, serv, port, flags); 213 if (IS_ERR(newxprt)) { 214 module_put(xcl->xcl_owner); 215 return PTR_ERR(newxprt); 216 } 217 218 clear_bit(XPT_TEMP, &newxprt->xpt_flags); 219 spin_lock_bh(&serv->sv_lock); 220 list_add(&newxprt->xpt_list, &serv->sv_permsocks); 221 spin_unlock_bh(&serv->sv_lock); 222 clear_bit(XPT_BUSY, &newxprt->xpt_flags); 223 return svc_xprt_local_port(newxprt); 224 } 225 err: 226 spin_unlock(&svc_xprt_class_lock); 227 dprintk("svc: transport %s not found\n", xprt_name); 228 return -ENOENT; 229 } 230 EXPORT_SYMBOL_GPL(svc_create_xprt); 231 232 /* 233 * Copy the local and remote xprt addresses to the rqstp structure 234 */ 235 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt) 236 { 237 struct sockaddr *sin; 238 239 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen); 240 rqstp->rq_addrlen = xprt->xpt_remotelen; 241 242 /* 243 * Destination address in request is needed for binding the 244 * source address in RPC replies/callbacks later. 245 */ 246 sin = (struct sockaddr *)&xprt->xpt_local; 247 switch (sin->sa_family) { 248 case AF_INET: 249 rqstp->rq_daddr.addr = ((struct sockaddr_in *)sin)->sin_addr; 250 break; 251 case AF_INET6: 252 rqstp->rq_daddr.addr6 = ((struct sockaddr_in6 *)sin)->sin6_addr; 253 break; 254 } 255 } 256 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs); 257 258 /** 259 * svc_print_addr - Format rq_addr field for printing 260 * @rqstp: svc_rqst struct containing address to print 261 * @buf: target buffer for formatted address 262 * @len: length of target buffer 263 * 264 */ 265 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len) 266 { 267 return __svc_print_addr(svc_addr(rqstp), buf, len); 268 } 269 EXPORT_SYMBOL_GPL(svc_print_addr); 270 271 /* 272 * Queue up an idle server thread. Must have pool->sp_lock held. 273 * Note: this is really a stack rather than a queue, so that we only 274 * use as many different threads as we need, and the rest don't pollute 275 * the cache. 276 */ 277 static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp) 278 { 279 list_add(&rqstp->rq_list, &pool->sp_threads); 280 } 281 282 /* 283 * Dequeue an nfsd thread. Must have pool->sp_lock held. 284 */ 285 static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp) 286 { 287 list_del(&rqstp->rq_list); 288 } 289 290 /* 291 * Queue up a transport with data pending. If there are idle nfsd 292 * processes, wake 'em up. 293 * 294 */ 295 void svc_xprt_enqueue(struct svc_xprt *xprt) 296 { 297 struct svc_serv *serv = xprt->xpt_server; 298 struct svc_pool *pool; 299 struct svc_rqst *rqstp; 300 int cpu; 301 302 if (!(xprt->xpt_flags & 303 ((1<<XPT_CONN)|(1<<XPT_DATA)|(1<<XPT_CLOSE)|(1<<XPT_DEFERRED)))) 304 return; 305 306 cpu = get_cpu(); 307 pool = svc_pool_for_cpu(xprt->xpt_server, cpu); 308 put_cpu(); 309 310 spin_lock_bh(&pool->sp_lock); 311 312 if (!list_empty(&pool->sp_threads) && 313 !list_empty(&pool->sp_sockets)) 314 printk(KERN_ERR 315 "svc_xprt_enqueue: " 316 "threads and transports both waiting??\n"); 317 318 if (test_bit(XPT_DEAD, &xprt->xpt_flags)) { 319 /* Don't enqueue dead transports */ 320 dprintk("svc: transport %p is dead, not enqueued\n", xprt); 321 goto out_unlock; 322 } 323 324 /* Mark transport as busy. It will remain in this state until 325 * the provider calls svc_xprt_received. We update XPT_BUSY 326 * atomically because it also guards against trying to enqueue 327 * the transport twice. 328 */ 329 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) { 330 /* Don't enqueue transport while already enqueued */ 331 dprintk("svc: transport %p busy, not enqueued\n", xprt); 332 goto out_unlock; 333 } 334 BUG_ON(xprt->xpt_pool != NULL); 335 xprt->xpt_pool = pool; 336 337 /* Handle pending connection */ 338 if (test_bit(XPT_CONN, &xprt->xpt_flags)) 339 goto process; 340 341 /* Handle close in-progress */ 342 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) 343 goto process; 344 345 /* Check if we have space to reply to a request */ 346 if (!xprt->xpt_ops->xpo_has_wspace(xprt)) { 347 /* Don't enqueue while not enough space for reply */ 348 dprintk("svc: no write space, transport %p not enqueued\n", 349 xprt); 350 xprt->xpt_pool = NULL; 351 clear_bit(XPT_BUSY, &xprt->xpt_flags); 352 goto out_unlock; 353 } 354 355 process: 356 if (!list_empty(&pool->sp_threads)) { 357 rqstp = list_entry(pool->sp_threads.next, 358 struct svc_rqst, 359 rq_list); 360 dprintk("svc: transport %p served by daemon %p\n", 361 xprt, rqstp); 362 svc_thread_dequeue(pool, rqstp); 363 if (rqstp->rq_xprt) 364 printk(KERN_ERR 365 "svc_xprt_enqueue: server %p, rq_xprt=%p!\n", 366 rqstp, rqstp->rq_xprt); 367 rqstp->rq_xprt = xprt; 368 svc_xprt_get(xprt); 369 rqstp->rq_reserved = serv->sv_max_mesg; 370 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved); 371 BUG_ON(xprt->xpt_pool != pool); 372 wake_up(&rqstp->rq_wait); 373 } else { 374 dprintk("svc: transport %p put into queue\n", xprt); 375 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets); 376 BUG_ON(xprt->xpt_pool != pool); 377 } 378 379 out_unlock: 380 spin_unlock_bh(&pool->sp_lock); 381 } 382 EXPORT_SYMBOL_GPL(svc_xprt_enqueue); 383 384 /* 385 * Dequeue the first transport. Must be called with the pool->sp_lock held. 386 */ 387 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool) 388 { 389 struct svc_xprt *xprt; 390 391 if (list_empty(&pool->sp_sockets)) 392 return NULL; 393 394 xprt = list_entry(pool->sp_sockets.next, 395 struct svc_xprt, xpt_ready); 396 list_del_init(&xprt->xpt_ready); 397 398 dprintk("svc: transport %p dequeued, inuse=%d\n", 399 xprt, atomic_read(&xprt->xpt_ref.refcount)); 400 401 return xprt; 402 } 403 404 /* 405 * svc_xprt_received conditionally queues the transport for processing 406 * by another thread. The caller must hold the XPT_BUSY bit and must 407 * not thereafter touch transport data. 408 * 409 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or 410 * insufficient) data. 411 */ 412 void svc_xprt_received(struct svc_xprt *xprt) 413 { 414 BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags)); 415 xprt->xpt_pool = NULL; 416 clear_bit(XPT_BUSY, &xprt->xpt_flags); 417 svc_xprt_enqueue(xprt); 418 } 419 EXPORT_SYMBOL_GPL(svc_xprt_received); 420 421 /** 422 * svc_reserve - change the space reserved for the reply to a request. 423 * @rqstp: The request in question 424 * @space: new max space to reserve 425 * 426 * Each request reserves some space on the output queue of the transport 427 * to make sure the reply fits. This function reduces that reserved 428 * space to be the amount of space used already, plus @space. 429 * 430 */ 431 void svc_reserve(struct svc_rqst *rqstp, int space) 432 { 433 space += rqstp->rq_res.head[0].iov_len; 434 435 if (space < rqstp->rq_reserved) { 436 struct svc_xprt *xprt = rqstp->rq_xprt; 437 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved); 438 rqstp->rq_reserved = space; 439 440 svc_xprt_enqueue(xprt); 441 } 442 } 443 EXPORT_SYMBOL(svc_reserve); 444 445 static void svc_xprt_release(struct svc_rqst *rqstp) 446 { 447 struct svc_xprt *xprt = rqstp->rq_xprt; 448 449 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp); 450 451 svc_free_res_pages(rqstp); 452 rqstp->rq_res.page_len = 0; 453 rqstp->rq_res.page_base = 0; 454 455 /* Reset response buffer and release 456 * the reservation. 457 * But first, check that enough space was reserved 458 * for the reply, otherwise we have a bug! 459 */ 460 if ((rqstp->rq_res.len) > rqstp->rq_reserved) 461 printk(KERN_ERR "RPC request reserved %d but used %d\n", 462 rqstp->rq_reserved, 463 rqstp->rq_res.len); 464 465 rqstp->rq_res.head[0].iov_len = 0; 466 svc_reserve(rqstp, 0); 467 rqstp->rq_xprt = NULL; 468 469 svc_xprt_put(xprt); 470 } 471 472 /* 473 * External function to wake up a server waiting for data 474 * This really only makes sense for services like lockd 475 * which have exactly one thread anyway. 476 */ 477 void svc_wake_up(struct svc_serv *serv) 478 { 479 struct svc_rqst *rqstp; 480 unsigned int i; 481 struct svc_pool *pool; 482 483 for (i = 0; i < serv->sv_nrpools; i++) { 484 pool = &serv->sv_pools[i]; 485 486 spin_lock_bh(&pool->sp_lock); 487 if (!list_empty(&pool->sp_threads)) { 488 rqstp = list_entry(pool->sp_threads.next, 489 struct svc_rqst, 490 rq_list); 491 dprintk("svc: daemon %p woken up.\n", rqstp); 492 /* 493 svc_thread_dequeue(pool, rqstp); 494 rqstp->rq_xprt = NULL; 495 */ 496 wake_up(&rqstp->rq_wait); 497 } 498 spin_unlock_bh(&pool->sp_lock); 499 } 500 } 501 EXPORT_SYMBOL(svc_wake_up); 502 503 int svc_port_is_privileged(struct sockaddr *sin) 504 { 505 switch (sin->sa_family) { 506 case AF_INET: 507 return ntohs(((struct sockaddr_in *)sin)->sin_port) 508 < PROT_SOCK; 509 case AF_INET6: 510 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port) 511 < PROT_SOCK; 512 default: 513 return 0; 514 } 515 } 516 517 /* 518 * Make sure that we don't have too many active connections. If we 519 * have, something must be dropped. 520 * 521 * There's no point in trying to do random drop here for DoS 522 * prevention. The NFS clients does 1 reconnect in 15 seconds. An 523 * attacker can easily beat that. 524 * 525 * The only somewhat efficient mechanism would be if drop old 526 * connections from the same IP first. But right now we don't even 527 * record the client IP in svc_sock. 528 */ 529 static void svc_check_conn_limits(struct svc_serv *serv) 530 { 531 if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) { 532 struct svc_xprt *xprt = NULL; 533 spin_lock_bh(&serv->sv_lock); 534 if (!list_empty(&serv->sv_tempsocks)) { 535 if (net_ratelimit()) { 536 /* Try to help the admin */ 537 printk(KERN_NOTICE "%s: too many open " 538 "connections, consider increasing the " 539 "number of nfsd threads\n", 540 serv->sv_name); 541 } 542 /* 543 * Always select the oldest connection. It's not fair, 544 * but so is life 545 */ 546 xprt = list_entry(serv->sv_tempsocks.prev, 547 struct svc_xprt, 548 xpt_list); 549 set_bit(XPT_CLOSE, &xprt->xpt_flags); 550 svc_xprt_get(xprt); 551 } 552 spin_unlock_bh(&serv->sv_lock); 553 554 if (xprt) { 555 svc_xprt_enqueue(xprt); 556 svc_xprt_put(xprt); 557 } 558 } 559 } 560 561 /* 562 * Receive the next request on any transport. This code is carefully 563 * organised not to touch any cachelines in the shared svc_serv 564 * structure, only cachelines in the local svc_pool. 565 */ 566 int svc_recv(struct svc_rqst *rqstp, long timeout) 567 { 568 struct svc_xprt *xprt = NULL; 569 struct svc_serv *serv = rqstp->rq_server; 570 struct svc_pool *pool = rqstp->rq_pool; 571 int len, i; 572 int pages; 573 struct xdr_buf *arg; 574 DECLARE_WAITQUEUE(wait, current); 575 576 dprintk("svc: server %p waiting for data (to = %ld)\n", 577 rqstp, timeout); 578 579 if (rqstp->rq_xprt) 580 printk(KERN_ERR 581 "svc_recv: service %p, transport not NULL!\n", 582 rqstp); 583 if (waitqueue_active(&rqstp->rq_wait)) 584 printk(KERN_ERR 585 "svc_recv: service %p, wait queue active!\n", 586 rqstp); 587 588 /* now allocate needed pages. If we get a failure, sleep briefly */ 589 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE; 590 for (i = 0; i < pages ; i++) 591 while (rqstp->rq_pages[i] == NULL) { 592 struct page *p = alloc_page(GFP_KERNEL); 593 if (!p) { 594 set_current_state(TASK_INTERRUPTIBLE); 595 if (signalled() || kthread_should_stop()) { 596 set_current_state(TASK_RUNNING); 597 return -EINTR; 598 } 599 schedule_timeout(msecs_to_jiffies(500)); 600 } 601 rqstp->rq_pages[i] = p; 602 } 603 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */ 604 BUG_ON(pages >= RPCSVC_MAXPAGES); 605 606 /* Make arg->head point to first page and arg->pages point to rest */ 607 arg = &rqstp->rq_arg; 608 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]); 609 arg->head[0].iov_len = PAGE_SIZE; 610 arg->pages = rqstp->rq_pages + 1; 611 arg->page_base = 0; 612 /* save at least one page for response */ 613 arg->page_len = (pages-2)*PAGE_SIZE; 614 arg->len = (pages-1)*PAGE_SIZE; 615 arg->tail[0].iov_len = 0; 616 617 try_to_freeze(); 618 cond_resched(); 619 if (signalled() || kthread_should_stop()) 620 return -EINTR; 621 622 spin_lock_bh(&pool->sp_lock); 623 xprt = svc_xprt_dequeue(pool); 624 if (xprt) { 625 rqstp->rq_xprt = xprt; 626 svc_xprt_get(xprt); 627 rqstp->rq_reserved = serv->sv_max_mesg; 628 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved); 629 } else { 630 /* No data pending. Go to sleep */ 631 svc_thread_enqueue(pool, rqstp); 632 633 /* 634 * We have to be able to interrupt this wait 635 * to bring down the daemons ... 636 */ 637 set_current_state(TASK_INTERRUPTIBLE); 638 639 /* 640 * checking kthread_should_stop() here allows us to avoid 641 * locking and signalling when stopping kthreads that call 642 * svc_recv. If the thread has already been woken up, then 643 * we can exit here without sleeping. If not, then it 644 * it'll be woken up quickly during the schedule_timeout 645 */ 646 if (kthread_should_stop()) { 647 set_current_state(TASK_RUNNING); 648 spin_unlock_bh(&pool->sp_lock); 649 return -EINTR; 650 } 651 652 add_wait_queue(&rqstp->rq_wait, &wait); 653 spin_unlock_bh(&pool->sp_lock); 654 655 schedule_timeout(timeout); 656 657 try_to_freeze(); 658 659 spin_lock_bh(&pool->sp_lock); 660 remove_wait_queue(&rqstp->rq_wait, &wait); 661 662 xprt = rqstp->rq_xprt; 663 if (!xprt) { 664 svc_thread_dequeue(pool, rqstp); 665 spin_unlock_bh(&pool->sp_lock); 666 dprintk("svc: server %p, no data yet\n", rqstp); 667 if (signalled() || kthread_should_stop()) 668 return -EINTR; 669 else 670 return -EAGAIN; 671 } 672 } 673 spin_unlock_bh(&pool->sp_lock); 674 675 len = 0; 676 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) { 677 dprintk("svc_recv: found XPT_CLOSE\n"); 678 svc_delete_xprt(xprt); 679 } else if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) { 680 struct svc_xprt *newxpt; 681 newxpt = xprt->xpt_ops->xpo_accept(xprt); 682 if (newxpt) { 683 /* 684 * We know this module_get will succeed because the 685 * listener holds a reference too 686 */ 687 __module_get(newxpt->xpt_class->xcl_owner); 688 svc_check_conn_limits(xprt->xpt_server); 689 spin_lock_bh(&serv->sv_lock); 690 set_bit(XPT_TEMP, &newxpt->xpt_flags); 691 list_add(&newxpt->xpt_list, &serv->sv_tempsocks); 692 serv->sv_tmpcnt++; 693 if (serv->sv_temptimer.function == NULL) { 694 /* setup timer to age temp transports */ 695 setup_timer(&serv->sv_temptimer, 696 svc_age_temp_xprts, 697 (unsigned long)serv); 698 mod_timer(&serv->sv_temptimer, 699 jiffies + svc_conn_age_period * HZ); 700 } 701 spin_unlock_bh(&serv->sv_lock); 702 svc_xprt_received(newxpt); 703 } 704 svc_xprt_received(xprt); 705 } else { 706 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n", 707 rqstp, pool->sp_id, xprt, 708 atomic_read(&xprt->xpt_ref.refcount)); 709 rqstp->rq_deferred = svc_deferred_dequeue(xprt); 710 if (rqstp->rq_deferred) { 711 svc_xprt_received(xprt); 712 len = svc_deferred_recv(rqstp); 713 } else 714 len = xprt->xpt_ops->xpo_recvfrom(rqstp); 715 dprintk("svc: got len=%d\n", len); 716 } 717 718 /* No data, incomplete (TCP) read, or accept() */ 719 if (len == 0 || len == -EAGAIN) { 720 rqstp->rq_res.len = 0; 721 svc_xprt_release(rqstp); 722 return -EAGAIN; 723 } 724 clear_bit(XPT_OLD, &xprt->xpt_flags); 725 726 rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp)); 727 rqstp->rq_chandle.defer = svc_defer; 728 729 if (serv->sv_stats) 730 serv->sv_stats->netcnt++; 731 return len; 732 } 733 EXPORT_SYMBOL(svc_recv); 734 735 /* 736 * Drop request 737 */ 738 void svc_drop(struct svc_rqst *rqstp) 739 { 740 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt); 741 svc_xprt_release(rqstp); 742 } 743 EXPORT_SYMBOL(svc_drop); 744 745 /* 746 * Return reply to client. 747 */ 748 int svc_send(struct svc_rqst *rqstp) 749 { 750 struct svc_xprt *xprt; 751 int len; 752 struct xdr_buf *xb; 753 754 xprt = rqstp->rq_xprt; 755 if (!xprt) 756 return -EFAULT; 757 758 /* release the receive skb before sending the reply */ 759 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp); 760 761 /* calculate over-all length */ 762 xb = &rqstp->rq_res; 763 xb->len = xb->head[0].iov_len + 764 xb->page_len + 765 xb->tail[0].iov_len; 766 767 /* Grab mutex to serialize outgoing data. */ 768 mutex_lock(&xprt->xpt_mutex); 769 if (test_bit(XPT_DEAD, &xprt->xpt_flags)) 770 len = -ENOTCONN; 771 else 772 len = xprt->xpt_ops->xpo_sendto(rqstp); 773 mutex_unlock(&xprt->xpt_mutex); 774 svc_xprt_release(rqstp); 775 776 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN) 777 return 0; 778 return len; 779 } 780 781 /* 782 * Timer function to close old temporary transports, using 783 * a mark-and-sweep algorithm. 784 */ 785 static void svc_age_temp_xprts(unsigned long closure) 786 { 787 struct svc_serv *serv = (struct svc_serv *)closure; 788 struct svc_xprt *xprt; 789 struct list_head *le, *next; 790 LIST_HEAD(to_be_aged); 791 792 dprintk("svc_age_temp_xprts\n"); 793 794 if (!spin_trylock_bh(&serv->sv_lock)) { 795 /* busy, try again 1 sec later */ 796 dprintk("svc_age_temp_xprts: busy\n"); 797 mod_timer(&serv->sv_temptimer, jiffies + HZ); 798 return; 799 } 800 801 list_for_each_safe(le, next, &serv->sv_tempsocks) { 802 xprt = list_entry(le, struct svc_xprt, xpt_list); 803 804 /* First time through, just mark it OLD. Second time 805 * through, close it. */ 806 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags)) 807 continue; 808 if (atomic_read(&xprt->xpt_ref.refcount) > 1 809 || test_bit(XPT_BUSY, &xprt->xpt_flags)) 810 continue; 811 svc_xprt_get(xprt); 812 list_move(le, &to_be_aged); 813 set_bit(XPT_CLOSE, &xprt->xpt_flags); 814 set_bit(XPT_DETACHED, &xprt->xpt_flags); 815 } 816 spin_unlock_bh(&serv->sv_lock); 817 818 while (!list_empty(&to_be_aged)) { 819 le = to_be_aged.next; 820 /* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */ 821 list_del_init(le); 822 xprt = list_entry(le, struct svc_xprt, xpt_list); 823 824 dprintk("queuing xprt %p for closing\n", xprt); 825 826 /* a thread will dequeue and close it soon */ 827 svc_xprt_enqueue(xprt); 828 svc_xprt_put(xprt); 829 } 830 831 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ); 832 } 833 834 /* 835 * Remove a dead transport 836 */ 837 void svc_delete_xprt(struct svc_xprt *xprt) 838 { 839 struct svc_serv *serv = xprt->xpt_server; 840 841 dprintk("svc: svc_delete_xprt(%p)\n", xprt); 842 xprt->xpt_ops->xpo_detach(xprt); 843 844 spin_lock_bh(&serv->sv_lock); 845 if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags)) 846 list_del_init(&xprt->xpt_list); 847 /* 848 * We used to delete the transport from whichever list 849 * it's sk_xprt.xpt_ready node was on, but we don't actually 850 * need to. This is because the only time we're called 851 * while still attached to a queue, the queue itself 852 * is about to be destroyed (in svc_destroy). 853 */ 854 if (!test_and_set_bit(XPT_DEAD, &xprt->xpt_flags)) { 855 BUG_ON(atomic_read(&xprt->xpt_ref.refcount) < 2); 856 if (test_bit(XPT_TEMP, &xprt->xpt_flags)) 857 serv->sv_tmpcnt--; 858 svc_xprt_put(xprt); 859 } 860 spin_unlock_bh(&serv->sv_lock); 861 } 862 863 void svc_close_xprt(struct svc_xprt *xprt) 864 { 865 set_bit(XPT_CLOSE, &xprt->xpt_flags); 866 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) 867 /* someone else will have to effect the close */ 868 return; 869 870 svc_xprt_get(xprt); 871 svc_delete_xprt(xprt); 872 clear_bit(XPT_BUSY, &xprt->xpt_flags); 873 svc_xprt_put(xprt); 874 } 875 EXPORT_SYMBOL_GPL(svc_close_xprt); 876 877 void svc_close_all(struct list_head *xprt_list) 878 { 879 struct svc_xprt *xprt; 880 struct svc_xprt *tmp; 881 882 list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) { 883 set_bit(XPT_CLOSE, &xprt->xpt_flags); 884 if (test_bit(XPT_BUSY, &xprt->xpt_flags)) { 885 /* Waiting to be processed, but no threads left, 886 * So just remove it from the waiting list 887 */ 888 list_del_init(&xprt->xpt_ready); 889 clear_bit(XPT_BUSY, &xprt->xpt_flags); 890 } 891 svc_close_xprt(xprt); 892 } 893 } 894 895 /* 896 * Handle defer and revisit of requests 897 */ 898 899 static void svc_revisit(struct cache_deferred_req *dreq, int too_many) 900 { 901 struct svc_deferred_req *dr = 902 container_of(dreq, struct svc_deferred_req, handle); 903 struct svc_xprt *xprt = dr->xprt; 904 905 if (too_many) { 906 svc_xprt_put(xprt); 907 kfree(dr); 908 return; 909 } 910 dprintk("revisit queued\n"); 911 dr->xprt = NULL; 912 spin_lock(&xprt->xpt_lock); 913 list_add(&dr->handle.recent, &xprt->xpt_deferred); 914 spin_unlock(&xprt->xpt_lock); 915 set_bit(XPT_DEFERRED, &xprt->xpt_flags); 916 svc_xprt_enqueue(xprt); 917 svc_xprt_put(xprt); 918 } 919 920 /* 921 * Save the request off for later processing. The request buffer looks 922 * like this: 923 * 924 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail> 925 * 926 * This code can only handle requests that consist of an xprt-header 927 * and rpc-header. 928 */ 929 static struct cache_deferred_req *svc_defer(struct cache_req *req) 930 { 931 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle); 932 struct svc_deferred_req *dr; 933 934 if (rqstp->rq_arg.page_len) 935 return NULL; /* if more than a page, give up FIXME */ 936 if (rqstp->rq_deferred) { 937 dr = rqstp->rq_deferred; 938 rqstp->rq_deferred = NULL; 939 } else { 940 size_t skip; 941 size_t size; 942 /* FIXME maybe discard if size too large */ 943 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len; 944 dr = kmalloc(size, GFP_KERNEL); 945 if (dr == NULL) 946 return NULL; 947 948 dr->handle.owner = rqstp->rq_server; 949 dr->prot = rqstp->rq_prot; 950 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen); 951 dr->addrlen = rqstp->rq_addrlen; 952 dr->daddr = rqstp->rq_daddr; 953 dr->argslen = rqstp->rq_arg.len >> 2; 954 dr->xprt_hlen = rqstp->rq_xprt_hlen; 955 956 /* back up head to the start of the buffer and copy */ 957 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len; 958 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip, 959 dr->argslen << 2); 960 } 961 svc_xprt_get(rqstp->rq_xprt); 962 dr->xprt = rqstp->rq_xprt; 963 964 dr->handle.revisit = svc_revisit; 965 return &dr->handle; 966 } 967 968 /* 969 * recv data from a deferred request into an active one 970 */ 971 static int svc_deferred_recv(struct svc_rqst *rqstp) 972 { 973 struct svc_deferred_req *dr = rqstp->rq_deferred; 974 975 /* setup iov_base past transport header */ 976 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2); 977 /* The iov_len does not include the transport header bytes */ 978 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen; 979 rqstp->rq_arg.page_len = 0; 980 /* The rq_arg.len includes the transport header bytes */ 981 rqstp->rq_arg.len = dr->argslen<<2; 982 rqstp->rq_prot = dr->prot; 983 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen); 984 rqstp->rq_addrlen = dr->addrlen; 985 /* Save off transport header len in case we get deferred again */ 986 rqstp->rq_xprt_hlen = dr->xprt_hlen; 987 rqstp->rq_daddr = dr->daddr; 988 rqstp->rq_respages = rqstp->rq_pages; 989 return (dr->argslen<<2) - dr->xprt_hlen; 990 } 991 992 993 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt) 994 { 995 struct svc_deferred_req *dr = NULL; 996 997 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags)) 998 return NULL; 999 spin_lock(&xprt->xpt_lock); 1000 clear_bit(XPT_DEFERRED, &xprt->xpt_flags); 1001 if (!list_empty(&xprt->xpt_deferred)) { 1002 dr = list_entry(xprt->xpt_deferred.next, 1003 struct svc_deferred_req, 1004 handle.recent); 1005 list_del_init(&dr->handle.recent); 1006 set_bit(XPT_DEFERRED, &xprt->xpt_flags); 1007 } 1008 spin_unlock(&xprt->xpt_lock); 1009 return dr; 1010 } 1011 1012 /* 1013 * Return the transport instance pointer for the endpoint accepting 1014 * connections/peer traffic from the specified transport class, 1015 * address family and port. 1016 * 1017 * Specifying 0 for the address family or port is effectively a 1018 * wild-card, and will result in matching the first transport in the 1019 * service's list that has a matching class name. 1020 */ 1021 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, char *xcl_name, 1022 int af, int port) 1023 { 1024 struct svc_xprt *xprt; 1025 struct svc_xprt *found = NULL; 1026 1027 /* Sanity check the args */ 1028 if (!serv || !xcl_name) 1029 return found; 1030 1031 spin_lock_bh(&serv->sv_lock); 1032 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { 1033 if (strcmp(xprt->xpt_class->xcl_name, xcl_name)) 1034 continue; 1035 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family) 1036 continue; 1037 if (port && port != svc_xprt_local_port(xprt)) 1038 continue; 1039 found = xprt; 1040 svc_xprt_get(xprt); 1041 break; 1042 } 1043 spin_unlock_bh(&serv->sv_lock); 1044 return found; 1045 } 1046 EXPORT_SYMBOL_GPL(svc_find_xprt); 1047 1048 /* 1049 * Format a buffer with a list of the active transports. A zero for 1050 * the buflen parameter disables target buffer overflow checking. 1051 */ 1052 int svc_xprt_names(struct svc_serv *serv, char *buf, int buflen) 1053 { 1054 struct svc_xprt *xprt; 1055 char xprt_str[64]; 1056 int totlen = 0; 1057 int len; 1058 1059 /* Sanity check args */ 1060 if (!serv) 1061 return 0; 1062 1063 spin_lock_bh(&serv->sv_lock); 1064 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { 1065 len = snprintf(xprt_str, sizeof(xprt_str), 1066 "%s %d\n", xprt->xpt_class->xcl_name, 1067 svc_xprt_local_port(xprt)); 1068 /* If the string was truncated, replace with error string */ 1069 if (len >= sizeof(xprt_str)) 1070 strcpy(xprt_str, "name-too-long\n"); 1071 /* Don't overflow buffer */ 1072 len = strlen(xprt_str); 1073 if (buflen && (len + totlen >= buflen)) 1074 break; 1075 strcpy(buf+totlen, xprt_str); 1076 totlen += len; 1077 } 1078 spin_unlock_bh(&serv->sv_lock); 1079 return totlen; 1080 } 1081 EXPORT_SYMBOL_GPL(svc_xprt_names); 1082