1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/net/sunrpc/svc_xprt.c 4 * 5 * Author: Tom Tucker <tom@opengridcomputing.com> 6 */ 7 8 #include <linux/sched.h> 9 #include <linux/sched/mm.h> 10 #include <linux/errno.h> 11 #include <linux/freezer.h> 12 #include <linux/kthread.h> 13 #include <linux/slab.h> 14 #include <net/sock.h> 15 #include <linux/sunrpc/addr.h> 16 #include <linux/sunrpc/stats.h> 17 #include <linux/sunrpc/svc_xprt.h> 18 #include <linux/sunrpc/svcsock.h> 19 #include <linux/sunrpc/xprt.h> 20 #include <linux/module.h> 21 #include <linux/netdevice.h> 22 #include <trace/events/sunrpc.h> 23 24 #define RPCDBG_FACILITY RPCDBG_SVCXPRT 25 26 static unsigned int svc_rpc_per_connection_limit __read_mostly; 27 module_param(svc_rpc_per_connection_limit, uint, 0644); 28 29 30 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt); 31 static int svc_deferred_recv(struct svc_rqst *rqstp); 32 static struct cache_deferred_req *svc_defer(struct cache_req *req); 33 static void svc_age_temp_xprts(struct timer_list *t); 34 static void svc_delete_xprt(struct svc_xprt *xprt); 35 36 /* apparently the "standard" is that clients close 37 * idle connections after 5 minutes, servers after 38 * 6 minutes 39 * http://nfsv4bat.org/Documents/ConnectAThon/1996/nfstcp.pdf 40 */ 41 static int svc_conn_age_period = 6*60; 42 43 /* List of registered transport classes */ 44 static DEFINE_SPINLOCK(svc_xprt_class_lock); 45 static LIST_HEAD(svc_xprt_class_list); 46 47 /* SMP locking strategy: 48 * 49 * svc_pool->sp_lock protects most of the fields of that pool. 50 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt. 51 * when both need to be taken (rare), svc_serv->sv_lock is first. 52 * The "service mutex" protects svc_serv->sv_nrthread. 53 * svc_sock->sk_lock protects the svc_sock->sk_deferred list 54 * and the ->sk_info_authunix cache. 55 * 56 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being 57 * enqueued multiply. During normal transport processing this bit 58 * is set by svc_xprt_enqueue and cleared by svc_xprt_received. 59 * Providers should not manipulate this bit directly. 60 * 61 * Some flags can be set to certain values at any time 62 * providing that certain rules are followed: 63 * 64 * XPT_CONN, XPT_DATA: 65 * - Can be set or cleared at any time. 66 * - After a set, svc_xprt_enqueue must be called to enqueue 67 * the transport for processing. 68 * - After a clear, the transport must be read/accepted. 69 * If this succeeds, it must be set again. 70 * XPT_CLOSE: 71 * - Can set at any time. It is never cleared. 72 * XPT_DEAD: 73 * - Can only be set while XPT_BUSY is held which ensures 74 * that no other thread will be using the transport or will 75 * try to set XPT_DEAD. 76 */ 77 int svc_reg_xprt_class(struct svc_xprt_class *xcl) 78 { 79 struct svc_xprt_class *cl; 80 int res = -EEXIST; 81 82 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name); 83 84 INIT_LIST_HEAD(&xcl->xcl_list); 85 spin_lock(&svc_xprt_class_lock); 86 /* Make sure there isn't already a class with the same name */ 87 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) { 88 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0) 89 goto out; 90 } 91 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list); 92 res = 0; 93 out: 94 spin_unlock(&svc_xprt_class_lock); 95 return res; 96 } 97 EXPORT_SYMBOL_GPL(svc_reg_xprt_class); 98 99 void svc_unreg_xprt_class(struct svc_xprt_class *xcl) 100 { 101 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name); 102 spin_lock(&svc_xprt_class_lock); 103 list_del_init(&xcl->xcl_list); 104 spin_unlock(&svc_xprt_class_lock); 105 } 106 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class); 107 108 /** 109 * svc_print_xprts - Format the transport list for printing 110 * @buf: target buffer for formatted address 111 * @maxlen: length of target buffer 112 * 113 * Fills in @buf with a string containing a list of transport names, each name 114 * terminated with '\n'. If the buffer is too small, some entries may be 115 * missing, but it is guaranteed that all lines in the output buffer are 116 * complete. 117 * 118 * Returns positive length of the filled-in string. 119 */ 120 int svc_print_xprts(char *buf, int maxlen) 121 { 122 struct svc_xprt_class *xcl; 123 char tmpstr[80]; 124 int len = 0; 125 buf[0] = '\0'; 126 127 spin_lock(&svc_xprt_class_lock); 128 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { 129 int slen; 130 131 slen = snprintf(tmpstr, sizeof(tmpstr), "%s %d\n", 132 xcl->xcl_name, xcl->xcl_max_payload); 133 if (slen >= sizeof(tmpstr) || len + slen >= maxlen) 134 break; 135 len += slen; 136 strcat(buf, tmpstr); 137 } 138 spin_unlock(&svc_xprt_class_lock); 139 140 return len; 141 } 142 143 /** 144 * svc_xprt_deferred_close - Close a transport 145 * @xprt: transport instance 146 * 147 * Used in contexts that need to defer the work of shutting down 148 * the transport to an nfsd thread. 149 */ 150 void svc_xprt_deferred_close(struct svc_xprt *xprt) 151 { 152 if (!test_and_set_bit(XPT_CLOSE, &xprt->xpt_flags)) 153 svc_xprt_enqueue(xprt); 154 } 155 EXPORT_SYMBOL_GPL(svc_xprt_deferred_close); 156 157 static void svc_xprt_free(struct kref *kref) 158 { 159 struct svc_xprt *xprt = 160 container_of(kref, struct svc_xprt, xpt_ref); 161 struct module *owner = xprt->xpt_class->xcl_owner; 162 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags)) 163 svcauth_unix_info_release(xprt); 164 put_cred(xprt->xpt_cred); 165 put_net_track(xprt->xpt_net, &xprt->ns_tracker); 166 /* See comment on corresponding get in xs_setup_bc_tcp(): */ 167 if (xprt->xpt_bc_xprt) 168 xprt_put(xprt->xpt_bc_xprt); 169 if (xprt->xpt_bc_xps) 170 xprt_switch_put(xprt->xpt_bc_xps); 171 trace_svc_xprt_free(xprt); 172 xprt->xpt_ops->xpo_free(xprt); 173 module_put(owner); 174 } 175 176 void svc_xprt_put(struct svc_xprt *xprt) 177 { 178 kref_put(&xprt->xpt_ref, svc_xprt_free); 179 } 180 EXPORT_SYMBOL_GPL(svc_xprt_put); 181 182 /* 183 * Called by transport drivers to initialize the transport independent 184 * portion of the transport instance. 185 */ 186 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl, 187 struct svc_xprt *xprt, struct svc_serv *serv) 188 { 189 memset(xprt, 0, sizeof(*xprt)); 190 xprt->xpt_class = xcl; 191 xprt->xpt_ops = xcl->xcl_ops; 192 kref_init(&xprt->xpt_ref); 193 xprt->xpt_server = serv; 194 INIT_LIST_HEAD(&xprt->xpt_list); 195 INIT_LIST_HEAD(&xprt->xpt_ready); 196 INIT_LIST_HEAD(&xprt->xpt_deferred); 197 INIT_LIST_HEAD(&xprt->xpt_users); 198 mutex_init(&xprt->xpt_mutex); 199 spin_lock_init(&xprt->xpt_lock); 200 set_bit(XPT_BUSY, &xprt->xpt_flags); 201 xprt->xpt_net = get_net_track(net, &xprt->ns_tracker, GFP_ATOMIC); 202 strcpy(xprt->xpt_remotebuf, "uninitialized"); 203 } 204 EXPORT_SYMBOL_GPL(svc_xprt_init); 205 206 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl, 207 struct svc_serv *serv, 208 struct net *net, 209 const int family, 210 const unsigned short port, 211 int flags) 212 { 213 struct sockaddr_in sin = { 214 .sin_family = AF_INET, 215 .sin_addr.s_addr = htonl(INADDR_ANY), 216 .sin_port = htons(port), 217 }; 218 #if IS_ENABLED(CONFIG_IPV6) 219 struct sockaddr_in6 sin6 = { 220 .sin6_family = AF_INET6, 221 .sin6_addr = IN6ADDR_ANY_INIT, 222 .sin6_port = htons(port), 223 }; 224 #endif 225 struct svc_xprt *xprt; 226 struct sockaddr *sap; 227 size_t len; 228 229 switch (family) { 230 case PF_INET: 231 sap = (struct sockaddr *)&sin; 232 len = sizeof(sin); 233 break; 234 #if IS_ENABLED(CONFIG_IPV6) 235 case PF_INET6: 236 sap = (struct sockaddr *)&sin6; 237 len = sizeof(sin6); 238 break; 239 #endif 240 default: 241 return ERR_PTR(-EAFNOSUPPORT); 242 } 243 244 xprt = xcl->xcl_ops->xpo_create(serv, net, sap, len, flags); 245 if (IS_ERR(xprt)) 246 trace_svc_xprt_create_err(serv->sv_program->pg_name, 247 xcl->xcl_name, sap, len, xprt); 248 return xprt; 249 } 250 251 /** 252 * svc_xprt_received - start next receiver thread 253 * @xprt: controlling transport 254 * 255 * The caller must hold the XPT_BUSY bit and must 256 * not thereafter touch transport data. 257 * 258 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or 259 * insufficient) data. 260 */ 261 void svc_xprt_received(struct svc_xprt *xprt) 262 { 263 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) { 264 WARN_ONCE(1, "xprt=0x%p already busy!", xprt); 265 return; 266 } 267 268 /* As soon as we clear busy, the xprt could be closed and 269 * 'put', so we need a reference to call svc_xprt_enqueue with: 270 */ 271 svc_xprt_get(xprt); 272 smp_mb__before_atomic(); 273 clear_bit(XPT_BUSY, &xprt->xpt_flags); 274 svc_xprt_enqueue(xprt); 275 svc_xprt_put(xprt); 276 } 277 EXPORT_SYMBOL_GPL(svc_xprt_received); 278 279 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new) 280 { 281 clear_bit(XPT_TEMP, &new->xpt_flags); 282 spin_lock_bh(&serv->sv_lock); 283 list_add(&new->xpt_list, &serv->sv_permsocks); 284 spin_unlock_bh(&serv->sv_lock); 285 svc_xprt_received(new); 286 } 287 288 static int _svc_xprt_create(struct svc_serv *serv, const char *xprt_name, 289 struct net *net, const int family, 290 const unsigned short port, int flags, 291 const struct cred *cred) 292 { 293 struct svc_xprt_class *xcl; 294 295 spin_lock(&svc_xprt_class_lock); 296 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { 297 struct svc_xprt *newxprt; 298 unsigned short newport; 299 300 if (strcmp(xprt_name, xcl->xcl_name)) 301 continue; 302 303 if (!try_module_get(xcl->xcl_owner)) 304 goto err; 305 306 spin_unlock(&svc_xprt_class_lock); 307 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags); 308 if (IS_ERR(newxprt)) { 309 module_put(xcl->xcl_owner); 310 return PTR_ERR(newxprt); 311 } 312 newxprt->xpt_cred = get_cred(cred); 313 svc_add_new_perm_xprt(serv, newxprt); 314 newport = svc_xprt_local_port(newxprt); 315 return newport; 316 } 317 err: 318 spin_unlock(&svc_xprt_class_lock); 319 /* This errno is exposed to user space. Provide a reasonable 320 * perror msg for a bad transport. */ 321 return -EPROTONOSUPPORT; 322 } 323 324 /** 325 * svc_xprt_create - Add a new listener to @serv 326 * @serv: target RPC service 327 * @xprt_name: transport class name 328 * @net: network namespace 329 * @family: network address family 330 * @port: listener port 331 * @flags: SVC_SOCK flags 332 * @cred: credential to bind to this transport 333 * 334 * Return values: 335 * %0: New listener added successfully 336 * %-EPROTONOSUPPORT: Requested transport type not supported 337 */ 338 int svc_xprt_create(struct svc_serv *serv, const char *xprt_name, 339 struct net *net, const int family, 340 const unsigned short port, int flags, 341 const struct cred *cred) 342 { 343 int err; 344 345 err = _svc_xprt_create(serv, xprt_name, net, family, port, flags, cred); 346 if (err == -EPROTONOSUPPORT) { 347 request_module("svc%s", xprt_name); 348 err = _svc_xprt_create(serv, xprt_name, net, family, port, flags, cred); 349 } 350 return err; 351 } 352 EXPORT_SYMBOL_GPL(svc_xprt_create); 353 354 /* 355 * Copy the local and remote xprt addresses to the rqstp structure 356 */ 357 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt) 358 { 359 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen); 360 rqstp->rq_addrlen = xprt->xpt_remotelen; 361 362 /* 363 * Destination address in request is needed for binding the 364 * source address in RPC replies/callbacks later. 365 */ 366 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen); 367 rqstp->rq_daddrlen = xprt->xpt_locallen; 368 } 369 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs); 370 371 /** 372 * svc_print_addr - Format rq_addr field for printing 373 * @rqstp: svc_rqst struct containing address to print 374 * @buf: target buffer for formatted address 375 * @len: length of target buffer 376 * 377 */ 378 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len) 379 { 380 return __svc_print_addr(svc_addr(rqstp), buf, len); 381 } 382 EXPORT_SYMBOL_GPL(svc_print_addr); 383 384 static bool svc_xprt_slots_in_range(struct svc_xprt *xprt) 385 { 386 unsigned int limit = svc_rpc_per_connection_limit; 387 int nrqsts = atomic_read(&xprt->xpt_nr_rqsts); 388 389 return limit == 0 || (nrqsts >= 0 && nrqsts < limit); 390 } 391 392 static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt) 393 { 394 if (!test_bit(RQ_DATA, &rqstp->rq_flags)) { 395 if (!svc_xprt_slots_in_range(xprt)) 396 return false; 397 atomic_inc(&xprt->xpt_nr_rqsts); 398 set_bit(RQ_DATA, &rqstp->rq_flags); 399 } 400 return true; 401 } 402 403 static void svc_xprt_release_slot(struct svc_rqst *rqstp) 404 { 405 struct svc_xprt *xprt = rqstp->rq_xprt; 406 if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) { 407 atomic_dec(&xprt->xpt_nr_rqsts); 408 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */ 409 svc_xprt_enqueue(xprt); 410 } 411 } 412 413 static bool svc_xprt_ready(struct svc_xprt *xprt) 414 { 415 unsigned long xpt_flags; 416 417 /* 418 * If another cpu has recently updated xpt_flags, 419 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to 420 * know about it; otherwise it's possible that both that cpu and 421 * this one could call svc_xprt_enqueue() without either 422 * svc_xprt_enqueue() recognizing that the conditions below 423 * are satisfied, and we could stall indefinitely: 424 */ 425 smp_rmb(); 426 xpt_flags = READ_ONCE(xprt->xpt_flags); 427 428 if (xpt_flags & BIT(XPT_BUSY)) 429 return false; 430 if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE) | BIT(XPT_HANDSHAKE))) 431 return true; 432 if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) { 433 if (xprt->xpt_ops->xpo_has_wspace(xprt) && 434 svc_xprt_slots_in_range(xprt)) 435 return true; 436 trace_svc_xprt_no_write_space(xprt); 437 return false; 438 } 439 return false; 440 } 441 442 /** 443 * svc_xprt_enqueue - Queue a transport on an idle nfsd thread 444 * @xprt: transport with data pending 445 * 446 */ 447 void svc_xprt_enqueue(struct svc_xprt *xprt) 448 { 449 struct svc_pool *pool; 450 struct svc_rqst *rqstp = NULL; 451 452 if (!svc_xprt_ready(xprt)) 453 return; 454 455 /* Mark transport as busy. It will remain in this state until 456 * the provider calls svc_xprt_received. We update XPT_BUSY 457 * atomically because it also guards against trying to enqueue 458 * the transport twice. 459 */ 460 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) 461 return; 462 463 pool = svc_pool_for_cpu(xprt->xpt_server); 464 465 percpu_counter_inc(&pool->sp_sockets_queued); 466 spin_lock_bh(&pool->sp_lock); 467 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets); 468 spin_unlock_bh(&pool->sp_lock); 469 470 /* find a thread for this xprt */ 471 rcu_read_lock(); 472 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) { 473 if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags)) 474 continue; 475 percpu_counter_inc(&pool->sp_threads_woken); 476 rqstp->rq_qtime = ktime_get(); 477 wake_up_process(rqstp->rq_task); 478 goto out_unlock; 479 } 480 set_bit(SP_CONGESTED, &pool->sp_flags); 481 rqstp = NULL; 482 out_unlock: 483 rcu_read_unlock(); 484 trace_svc_xprt_enqueue(xprt, rqstp); 485 } 486 EXPORT_SYMBOL_GPL(svc_xprt_enqueue); 487 488 /* 489 * Dequeue the first transport, if there is one. 490 */ 491 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool) 492 { 493 struct svc_xprt *xprt = NULL; 494 495 if (list_empty(&pool->sp_sockets)) 496 goto out; 497 498 spin_lock_bh(&pool->sp_lock); 499 if (likely(!list_empty(&pool->sp_sockets))) { 500 xprt = list_first_entry(&pool->sp_sockets, 501 struct svc_xprt, xpt_ready); 502 list_del_init(&xprt->xpt_ready); 503 svc_xprt_get(xprt); 504 } 505 spin_unlock_bh(&pool->sp_lock); 506 out: 507 return xprt; 508 } 509 510 /** 511 * svc_reserve - change the space reserved for the reply to a request. 512 * @rqstp: The request in question 513 * @space: new max space to reserve 514 * 515 * Each request reserves some space on the output queue of the transport 516 * to make sure the reply fits. This function reduces that reserved 517 * space to be the amount of space used already, plus @space. 518 * 519 */ 520 void svc_reserve(struct svc_rqst *rqstp, int space) 521 { 522 struct svc_xprt *xprt = rqstp->rq_xprt; 523 524 space += rqstp->rq_res.head[0].iov_len; 525 526 if (xprt && space < rqstp->rq_reserved) { 527 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved); 528 rqstp->rq_reserved = space; 529 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */ 530 svc_xprt_enqueue(xprt); 531 } 532 } 533 EXPORT_SYMBOL_GPL(svc_reserve); 534 535 static void svc_xprt_release(struct svc_rqst *rqstp) 536 { 537 struct svc_xprt *xprt = rqstp->rq_xprt; 538 539 xprt->xpt_ops->xpo_release_rqst(rqstp); 540 541 kfree(rqstp->rq_deferred); 542 rqstp->rq_deferred = NULL; 543 544 svc_rqst_release_pages(rqstp); 545 rqstp->rq_res.page_len = 0; 546 rqstp->rq_res.page_base = 0; 547 548 /* Reset response buffer and release 549 * the reservation. 550 * But first, check that enough space was reserved 551 * for the reply, otherwise we have a bug! 552 */ 553 if ((rqstp->rq_res.len) > rqstp->rq_reserved) 554 printk(KERN_ERR "RPC request reserved %d but used %d\n", 555 rqstp->rq_reserved, 556 rqstp->rq_res.len); 557 558 rqstp->rq_res.head[0].iov_len = 0; 559 svc_reserve(rqstp, 0); 560 svc_xprt_release_slot(rqstp); 561 rqstp->rq_xprt = NULL; 562 svc_xprt_put(xprt); 563 } 564 565 /* 566 * Some svc_serv's will have occasional work to do, even when a xprt is not 567 * waiting to be serviced. This function is there to "kick" a task in one of 568 * those services so that it can wake up and do that work. Note that we only 569 * bother with pool 0 as we don't need to wake up more than one thread for 570 * this purpose. 571 */ 572 void svc_wake_up(struct svc_serv *serv) 573 { 574 struct svc_rqst *rqstp; 575 struct svc_pool *pool; 576 577 pool = &serv->sv_pools[0]; 578 579 rcu_read_lock(); 580 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) { 581 /* skip any that aren't queued */ 582 if (test_bit(RQ_BUSY, &rqstp->rq_flags)) 583 continue; 584 rcu_read_unlock(); 585 wake_up_process(rqstp->rq_task); 586 trace_svc_wake_up(rqstp->rq_task->pid); 587 return; 588 } 589 rcu_read_unlock(); 590 591 /* No free entries available */ 592 set_bit(SP_TASK_PENDING, &pool->sp_flags); 593 smp_wmb(); 594 trace_svc_wake_up(0); 595 } 596 EXPORT_SYMBOL_GPL(svc_wake_up); 597 598 int svc_port_is_privileged(struct sockaddr *sin) 599 { 600 switch (sin->sa_family) { 601 case AF_INET: 602 return ntohs(((struct sockaddr_in *)sin)->sin_port) 603 < PROT_SOCK; 604 case AF_INET6: 605 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port) 606 < PROT_SOCK; 607 default: 608 return 0; 609 } 610 } 611 612 /* 613 * Make sure that we don't have too many active connections. If we have, 614 * something must be dropped. It's not clear what will happen if we allow 615 * "too many" connections, but when dealing with network-facing software, 616 * we have to code defensively. Here we do that by imposing hard limits. 617 * 618 * There's no point in trying to do random drop here for DoS 619 * prevention. The NFS clients does 1 reconnect in 15 seconds. An 620 * attacker can easily beat that. 621 * 622 * The only somewhat efficient mechanism would be if drop old 623 * connections from the same IP first. But right now we don't even 624 * record the client IP in svc_sock. 625 * 626 * single-threaded services that expect a lot of clients will probably 627 * need to set sv_maxconn to override the default value which is based 628 * on the number of threads 629 */ 630 static void svc_check_conn_limits(struct svc_serv *serv) 631 { 632 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn : 633 (serv->sv_nrthreads+3) * 20; 634 635 if (serv->sv_tmpcnt > limit) { 636 struct svc_xprt *xprt = NULL; 637 spin_lock_bh(&serv->sv_lock); 638 if (!list_empty(&serv->sv_tempsocks)) { 639 /* Try to help the admin */ 640 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n", 641 serv->sv_name, serv->sv_maxconn ? 642 "max number of connections" : 643 "number of threads"); 644 /* 645 * Always select the oldest connection. It's not fair, 646 * but so is life 647 */ 648 xprt = list_entry(serv->sv_tempsocks.prev, 649 struct svc_xprt, 650 xpt_list); 651 set_bit(XPT_CLOSE, &xprt->xpt_flags); 652 svc_xprt_get(xprt); 653 } 654 spin_unlock_bh(&serv->sv_lock); 655 656 if (xprt) { 657 svc_xprt_enqueue(xprt); 658 svc_xprt_put(xprt); 659 } 660 } 661 } 662 663 static int svc_alloc_arg(struct svc_rqst *rqstp) 664 { 665 struct svc_serv *serv = rqstp->rq_server; 666 struct xdr_buf *arg = &rqstp->rq_arg; 667 unsigned long pages, filled, ret; 668 669 pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT; 670 if (pages > RPCSVC_MAXPAGES) { 671 pr_warn_once("svc: warning: pages=%lu > RPCSVC_MAXPAGES=%lu\n", 672 pages, RPCSVC_MAXPAGES); 673 /* use as many pages as possible */ 674 pages = RPCSVC_MAXPAGES; 675 } 676 677 for (filled = 0; filled < pages; filled = ret) { 678 ret = alloc_pages_bulk_array(GFP_KERNEL, pages, 679 rqstp->rq_pages); 680 if (ret > filled) 681 /* Made progress, don't sleep yet */ 682 continue; 683 684 set_current_state(TASK_INTERRUPTIBLE); 685 if (signalled() || kthread_should_stop()) { 686 set_current_state(TASK_RUNNING); 687 return -EINTR; 688 } 689 trace_svc_alloc_arg_err(pages, ret); 690 memalloc_retry_wait(GFP_KERNEL); 691 } 692 rqstp->rq_page_end = &rqstp->rq_pages[pages]; 693 rqstp->rq_pages[pages] = NULL; /* this might be seen in nfsd_splice_actor() */ 694 695 /* Make arg->head point to first page and arg->pages point to rest */ 696 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]); 697 arg->head[0].iov_len = PAGE_SIZE; 698 arg->pages = rqstp->rq_pages + 1; 699 arg->page_base = 0; 700 /* save at least one page for response */ 701 arg->page_len = (pages-2)*PAGE_SIZE; 702 arg->len = (pages-1)*PAGE_SIZE; 703 arg->tail[0].iov_len = 0; 704 705 rqstp->rq_xid = xdr_zero; 706 return 0; 707 } 708 709 static bool 710 rqst_should_sleep(struct svc_rqst *rqstp) 711 { 712 struct svc_pool *pool = rqstp->rq_pool; 713 714 /* did someone call svc_wake_up? */ 715 if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags)) 716 return false; 717 718 /* was a socket queued? */ 719 if (!list_empty(&pool->sp_sockets)) 720 return false; 721 722 /* are we shutting down? */ 723 if (signalled() || kthread_should_stop()) 724 return false; 725 726 /* are we freezing? */ 727 if (freezing(current)) 728 return false; 729 730 return true; 731 } 732 733 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout) 734 { 735 struct svc_pool *pool = rqstp->rq_pool; 736 long time_left = 0; 737 738 /* rq_xprt should be clear on entry */ 739 WARN_ON_ONCE(rqstp->rq_xprt); 740 741 rqstp->rq_xprt = svc_xprt_dequeue(pool); 742 if (rqstp->rq_xprt) 743 goto out_found; 744 745 /* 746 * We have to be able to interrupt this wait 747 * to bring down the daemons ... 748 */ 749 set_current_state(TASK_INTERRUPTIBLE); 750 smp_mb__before_atomic(); 751 clear_bit(SP_CONGESTED, &pool->sp_flags); 752 clear_bit(RQ_BUSY, &rqstp->rq_flags); 753 smp_mb__after_atomic(); 754 755 if (likely(rqst_should_sleep(rqstp))) 756 time_left = schedule_timeout(timeout); 757 else 758 __set_current_state(TASK_RUNNING); 759 760 try_to_freeze(); 761 762 set_bit(RQ_BUSY, &rqstp->rq_flags); 763 smp_mb__after_atomic(); 764 rqstp->rq_xprt = svc_xprt_dequeue(pool); 765 if (rqstp->rq_xprt) 766 goto out_found; 767 768 if (!time_left) 769 percpu_counter_inc(&pool->sp_threads_timedout); 770 771 if (signalled() || kthread_should_stop()) 772 return ERR_PTR(-EINTR); 773 return ERR_PTR(-EAGAIN); 774 out_found: 775 /* Normally we will wait up to 5 seconds for any required 776 * cache information to be provided. 777 */ 778 if (!test_bit(SP_CONGESTED, &pool->sp_flags)) 779 rqstp->rq_chandle.thread_wait = 5*HZ; 780 else 781 rqstp->rq_chandle.thread_wait = 1*HZ; 782 trace_svc_xprt_dequeue(rqstp); 783 return rqstp->rq_xprt; 784 } 785 786 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt) 787 { 788 spin_lock_bh(&serv->sv_lock); 789 set_bit(XPT_TEMP, &newxpt->xpt_flags); 790 list_add(&newxpt->xpt_list, &serv->sv_tempsocks); 791 serv->sv_tmpcnt++; 792 if (serv->sv_temptimer.function == NULL) { 793 /* setup timer to age temp transports */ 794 serv->sv_temptimer.function = svc_age_temp_xprts; 795 mod_timer(&serv->sv_temptimer, 796 jiffies + svc_conn_age_period * HZ); 797 } 798 spin_unlock_bh(&serv->sv_lock); 799 svc_xprt_received(newxpt); 800 } 801 802 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt) 803 { 804 struct svc_serv *serv = rqstp->rq_server; 805 int len = 0; 806 807 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) { 808 if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags)) 809 xprt->xpt_ops->xpo_kill_temp_xprt(xprt); 810 svc_delete_xprt(xprt); 811 /* Leave XPT_BUSY set on the dead xprt: */ 812 goto out; 813 } 814 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) { 815 struct svc_xprt *newxpt; 816 /* 817 * We know this module_get will succeed because the 818 * listener holds a reference too 819 */ 820 __module_get(xprt->xpt_class->xcl_owner); 821 svc_check_conn_limits(xprt->xpt_server); 822 newxpt = xprt->xpt_ops->xpo_accept(xprt); 823 if (newxpt) { 824 newxpt->xpt_cred = get_cred(xprt->xpt_cred); 825 svc_add_new_temp_xprt(serv, newxpt); 826 trace_svc_xprt_accept(newxpt, serv->sv_name); 827 } else { 828 module_put(xprt->xpt_class->xcl_owner); 829 } 830 svc_xprt_received(xprt); 831 } else if (test_bit(XPT_HANDSHAKE, &xprt->xpt_flags)) { 832 xprt->xpt_ops->xpo_handshake(xprt); 833 svc_xprt_received(xprt); 834 } else if (svc_xprt_reserve_slot(rqstp, xprt)) { 835 /* XPT_DATA|XPT_DEFERRED case: */ 836 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n", 837 rqstp, rqstp->rq_pool->sp_id, xprt, 838 kref_read(&xprt->xpt_ref)); 839 rqstp->rq_deferred = svc_deferred_dequeue(xprt); 840 if (rqstp->rq_deferred) 841 len = svc_deferred_recv(rqstp); 842 else 843 len = xprt->xpt_ops->xpo_recvfrom(rqstp); 844 rqstp->rq_stime = ktime_get(); 845 rqstp->rq_reserved = serv->sv_max_mesg; 846 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved); 847 } else 848 svc_xprt_received(xprt); 849 850 out: 851 return len; 852 } 853 854 /* 855 * Receive the next request on any transport. This code is carefully 856 * organised not to touch any cachelines in the shared svc_serv 857 * structure, only cachelines in the local svc_pool. 858 */ 859 int svc_recv(struct svc_rqst *rqstp, long timeout) 860 { 861 struct svc_xprt *xprt = NULL; 862 struct svc_serv *serv = rqstp->rq_server; 863 int len, err; 864 865 err = svc_alloc_arg(rqstp); 866 if (err) 867 goto out; 868 869 try_to_freeze(); 870 cond_resched(); 871 err = -EINTR; 872 if (signalled() || kthread_should_stop()) 873 goto out; 874 875 xprt = svc_get_next_xprt(rqstp, timeout); 876 if (IS_ERR(xprt)) { 877 err = PTR_ERR(xprt); 878 goto out; 879 } 880 881 len = svc_handle_xprt(rqstp, xprt); 882 883 /* No data, incomplete (TCP) read, or accept() */ 884 err = -EAGAIN; 885 if (len <= 0) 886 goto out_release; 887 trace_svc_xdr_recvfrom(&rqstp->rq_arg); 888 889 clear_bit(XPT_OLD, &xprt->xpt_flags); 890 891 rqstp->rq_chandle.defer = svc_defer; 892 893 if (serv->sv_stats) 894 serv->sv_stats->netcnt++; 895 return len; 896 out_release: 897 rqstp->rq_res.len = 0; 898 svc_xprt_release(rqstp); 899 out: 900 return err; 901 } 902 EXPORT_SYMBOL_GPL(svc_recv); 903 904 /* 905 * Drop request 906 */ 907 void svc_drop(struct svc_rqst *rqstp) 908 { 909 trace_svc_drop(rqstp); 910 svc_xprt_release(rqstp); 911 } 912 EXPORT_SYMBOL_GPL(svc_drop); 913 914 /** 915 * svc_send - Return reply to client 916 * @rqstp: RPC transaction context 917 * 918 */ 919 void svc_send(struct svc_rqst *rqstp) 920 { 921 struct svc_xprt *xprt; 922 struct xdr_buf *xb; 923 int status; 924 925 xprt = rqstp->rq_xprt; 926 if (!xprt) 927 return; 928 929 /* calculate over-all length */ 930 xb = &rqstp->rq_res; 931 xb->len = xb->head[0].iov_len + 932 xb->page_len + 933 xb->tail[0].iov_len; 934 trace_svc_xdr_sendto(rqstp->rq_xid, xb); 935 trace_svc_stats_latency(rqstp); 936 937 status = xprt->xpt_ops->xpo_sendto(rqstp); 938 939 trace_svc_send(rqstp, status); 940 svc_xprt_release(rqstp); 941 } 942 943 /* 944 * Timer function to close old temporary transports, using 945 * a mark-and-sweep algorithm. 946 */ 947 static void svc_age_temp_xprts(struct timer_list *t) 948 { 949 struct svc_serv *serv = from_timer(serv, t, sv_temptimer); 950 struct svc_xprt *xprt; 951 struct list_head *le, *next; 952 953 dprintk("svc_age_temp_xprts\n"); 954 955 if (!spin_trylock_bh(&serv->sv_lock)) { 956 /* busy, try again 1 sec later */ 957 dprintk("svc_age_temp_xprts: busy\n"); 958 mod_timer(&serv->sv_temptimer, jiffies + HZ); 959 return; 960 } 961 962 list_for_each_safe(le, next, &serv->sv_tempsocks) { 963 xprt = list_entry(le, struct svc_xprt, xpt_list); 964 965 /* First time through, just mark it OLD. Second time 966 * through, close it. */ 967 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags)) 968 continue; 969 if (kref_read(&xprt->xpt_ref) > 1 || 970 test_bit(XPT_BUSY, &xprt->xpt_flags)) 971 continue; 972 list_del_init(le); 973 set_bit(XPT_CLOSE, &xprt->xpt_flags); 974 dprintk("queuing xprt %p for closing\n", xprt); 975 976 /* a thread will dequeue and close it soon */ 977 svc_xprt_enqueue(xprt); 978 } 979 spin_unlock_bh(&serv->sv_lock); 980 981 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ); 982 } 983 984 /* Close temporary transports whose xpt_local matches server_addr immediately 985 * instead of waiting for them to be picked up by the timer. 986 * 987 * This is meant to be called from a notifier_block that runs when an ip 988 * address is deleted. 989 */ 990 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr) 991 { 992 struct svc_xprt *xprt; 993 struct list_head *le, *next; 994 LIST_HEAD(to_be_closed); 995 996 spin_lock_bh(&serv->sv_lock); 997 list_for_each_safe(le, next, &serv->sv_tempsocks) { 998 xprt = list_entry(le, struct svc_xprt, xpt_list); 999 if (rpc_cmp_addr(server_addr, (struct sockaddr *) 1000 &xprt->xpt_local)) { 1001 dprintk("svc_age_temp_xprts_now: found %p\n", xprt); 1002 list_move(le, &to_be_closed); 1003 } 1004 } 1005 spin_unlock_bh(&serv->sv_lock); 1006 1007 while (!list_empty(&to_be_closed)) { 1008 le = to_be_closed.next; 1009 list_del_init(le); 1010 xprt = list_entry(le, struct svc_xprt, xpt_list); 1011 set_bit(XPT_CLOSE, &xprt->xpt_flags); 1012 set_bit(XPT_KILL_TEMP, &xprt->xpt_flags); 1013 dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n", 1014 xprt); 1015 svc_xprt_enqueue(xprt); 1016 } 1017 } 1018 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now); 1019 1020 static void call_xpt_users(struct svc_xprt *xprt) 1021 { 1022 struct svc_xpt_user *u; 1023 1024 spin_lock(&xprt->xpt_lock); 1025 while (!list_empty(&xprt->xpt_users)) { 1026 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list); 1027 list_del_init(&u->list); 1028 u->callback(u); 1029 } 1030 spin_unlock(&xprt->xpt_lock); 1031 } 1032 1033 /* 1034 * Remove a dead transport 1035 */ 1036 static void svc_delete_xprt(struct svc_xprt *xprt) 1037 { 1038 struct svc_serv *serv = xprt->xpt_server; 1039 struct svc_deferred_req *dr; 1040 1041 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags)) 1042 return; 1043 1044 trace_svc_xprt_detach(xprt); 1045 xprt->xpt_ops->xpo_detach(xprt); 1046 if (xprt->xpt_bc_xprt) 1047 xprt->xpt_bc_xprt->ops->close(xprt->xpt_bc_xprt); 1048 1049 spin_lock_bh(&serv->sv_lock); 1050 list_del_init(&xprt->xpt_list); 1051 WARN_ON_ONCE(!list_empty(&xprt->xpt_ready)); 1052 if (test_bit(XPT_TEMP, &xprt->xpt_flags)) 1053 serv->sv_tmpcnt--; 1054 spin_unlock_bh(&serv->sv_lock); 1055 1056 while ((dr = svc_deferred_dequeue(xprt)) != NULL) 1057 kfree(dr); 1058 1059 call_xpt_users(xprt); 1060 svc_xprt_put(xprt); 1061 } 1062 1063 /** 1064 * svc_xprt_close - Close a client connection 1065 * @xprt: transport to disconnect 1066 * 1067 */ 1068 void svc_xprt_close(struct svc_xprt *xprt) 1069 { 1070 trace_svc_xprt_close(xprt); 1071 set_bit(XPT_CLOSE, &xprt->xpt_flags); 1072 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) 1073 /* someone else will have to effect the close */ 1074 return; 1075 /* 1076 * We expect svc_close_xprt() to work even when no threads are 1077 * running (e.g., while configuring the server before starting 1078 * any threads), so if the transport isn't busy, we delete 1079 * it ourself: 1080 */ 1081 svc_delete_xprt(xprt); 1082 } 1083 EXPORT_SYMBOL_GPL(svc_xprt_close); 1084 1085 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net) 1086 { 1087 struct svc_xprt *xprt; 1088 int ret = 0; 1089 1090 spin_lock_bh(&serv->sv_lock); 1091 list_for_each_entry(xprt, xprt_list, xpt_list) { 1092 if (xprt->xpt_net != net) 1093 continue; 1094 ret++; 1095 set_bit(XPT_CLOSE, &xprt->xpt_flags); 1096 svc_xprt_enqueue(xprt); 1097 } 1098 spin_unlock_bh(&serv->sv_lock); 1099 return ret; 1100 } 1101 1102 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net) 1103 { 1104 struct svc_pool *pool; 1105 struct svc_xprt *xprt; 1106 struct svc_xprt *tmp; 1107 int i; 1108 1109 for (i = 0; i < serv->sv_nrpools; i++) { 1110 pool = &serv->sv_pools[i]; 1111 1112 spin_lock_bh(&pool->sp_lock); 1113 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) { 1114 if (xprt->xpt_net != net) 1115 continue; 1116 list_del_init(&xprt->xpt_ready); 1117 spin_unlock_bh(&pool->sp_lock); 1118 return xprt; 1119 } 1120 spin_unlock_bh(&pool->sp_lock); 1121 } 1122 return NULL; 1123 } 1124 1125 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net) 1126 { 1127 struct svc_xprt *xprt; 1128 1129 while ((xprt = svc_dequeue_net(serv, net))) { 1130 set_bit(XPT_CLOSE, &xprt->xpt_flags); 1131 svc_delete_xprt(xprt); 1132 } 1133 } 1134 1135 /** 1136 * svc_xprt_destroy_all - Destroy transports associated with @serv 1137 * @serv: RPC service to be shut down 1138 * @net: target network namespace 1139 * 1140 * Server threads may still be running (especially in the case where the 1141 * service is still running in other network namespaces). 1142 * 1143 * So we shut down sockets the same way we would on a running server, by 1144 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do 1145 * the close. In the case there are no such other threads, 1146 * threads running, svc_clean_up_xprts() does a simple version of a 1147 * server's main event loop, and in the case where there are other 1148 * threads, we may need to wait a little while and then check again to 1149 * see if they're done. 1150 */ 1151 void svc_xprt_destroy_all(struct svc_serv *serv, struct net *net) 1152 { 1153 int delay = 0; 1154 1155 while (svc_close_list(serv, &serv->sv_permsocks, net) + 1156 svc_close_list(serv, &serv->sv_tempsocks, net)) { 1157 1158 svc_clean_up_xprts(serv, net); 1159 msleep(delay++); 1160 } 1161 } 1162 EXPORT_SYMBOL_GPL(svc_xprt_destroy_all); 1163 1164 /* 1165 * Handle defer and revisit of requests 1166 */ 1167 1168 static void svc_revisit(struct cache_deferred_req *dreq, int too_many) 1169 { 1170 struct svc_deferred_req *dr = 1171 container_of(dreq, struct svc_deferred_req, handle); 1172 struct svc_xprt *xprt = dr->xprt; 1173 1174 spin_lock(&xprt->xpt_lock); 1175 set_bit(XPT_DEFERRED, &xprt->xpt_flags); 1176 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) { 1177 spin_unlock(&xprt->xpt_lock); 1178 trace_svc_defer_drop(dr); 1179 svc_xprt_put(xprt); 1180 kfree(dr); 1181 return; 1182 } 1183 dr->xprt = NULL; 1184 list_add(&dr->handle.recent, &xprt->xpt_deferred); 1185 spin_unlock(&xprt->xpt_lock); 1186 trace_svc_defer_queue(dr); 1187 svc_xprt_enqueue(xprt); 1188 svc_xprt_put(xprt); 1189 } 1190 1191 /* 1192 * Save the request off for later processing. The request buffer looks 1193 * like this: 1194 * 1195 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail> 1196 * 1197 * This code can only handle requests that consist of an xprt-header 1198 * and rpc-header. 1199 */ 1200 static struct cache_deferred_req *svc_defer(struct cache_req *req) 1201 { 1202 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle); 1203 struct svc_deferred_req *dr; 1204 1205 if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags)) 1206 return NULL; /* if more than a page, give up FIXME */ 1207 if (rqstp->rq_deferred) { 1208 dr = rqstp->rq_deferred; 1209 rqstp->rq_deferred = NULL; 1210 } else { 1211 size_t skip; 1212 size_t size; 1213 /* FIXME maybe discard if size too large */ 1214 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len; 1215 dr = kmalloc(size, GFP_KERNEL); 1216 if (dr == NULL) 1217 return NULL; 1218 1219 dr->handle.owner = rqstp->rq_server; 1220 dr->prot = rqstp->rq_prot; 1221 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen); 1222 dr->addrlen = rqstp->rq_addrlen; 1223 dr->daddr = rqstp->rq_daddr; 1224 dr->argslen = rqstp->rq_arg.len >> 2; 1225 dr->xprt_ctxt = rqstp->rq_xprt_ctxt; 1226 rqstp->rq_xprt_ctxt = NULL; 1227 1228 /* back up head to the start of the buffer and copy */ 1229 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len; 1230 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip, 1231 dr->argslen << 2); 1232 } 1233 trace_svc_defer(rqstp); 1234 svc_xprt_get(rqstp->rq_xprt); 1235 dr->xprt = rqstp->rq_xprt; 1236 set_bit(RQ_DROPME, &rqstp->rq_flags); 1237 1238 dr->handle.revisit = svc_revisit; 1239 return &dr->handle; 1240 } 1241 1242 /* 1243 * recv data from a deferred request into an active one 1244 */ 1245 static noinline int svc_deferred_recv(struct svc_rqst *rqstp) 1246 { 1247 struct svc_deferred_req *dr = rqstp->rq_deferred; 1248 1249 trace_svc_defer_recv(dr); 1250 1251 /* setup iov_base past transport header */ 1252 rqstp->rq_arg.head[0].iov_base = dr->args; 1253 /* The iov_len does not include the transport header bytes */ 1254 rqstp->rq_arg.head[0].iov_len = dr->argslen << 2; 1255 rqstp->rq_arg.page_len = 0; 1256 /* The rq_arg.len includes the transport header bytes */ 1257 rqstp->rq_arg.len = dr->argslen << 2; 1258 rqstp->rq_prot = dr->prot; 1259 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen); 1260 rqstp->rq_addrlen = dr->addrlen; 1261 /* Save off transport header len in case we get deferred again */ 1262 rqstp->rq_daddr = dr->daddr; 1263 rqstp->rq_respages = rqstp->rq_pages; 1264 rqstp->rq_xprt_ctxt = dr->xprt_ctxt; 1265 svc_xprt_received(rqstp->rq_xprt); 1266 return dr->argslen << 2; 1267 } 1268 1269 1270 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt) 1271 { 1272 struct svc_deferred_req *dr = NULL; 1273 1274 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags)) 1275 return NULL; 1276 spin_lock(&xprt->xpt_lock); 1277 if (!list_empty(&xprt->xpt_deferred)) { 1278 dr = list_entry(xprt->xpt_deferred.next, 1279 struct svc_deferred_req, 1280 handle.recent); 1281 list_del_init(&dr->handle.recent); 1282 } else 1283 clear_bit(XPT_DEFERRED, &xprt->xpt_flags); 1284 spin_unlock(&xprt->xpt_lock); 1285 return dr; 1286 } 1287 1288 /** 1289 * svc_find_xprt - find an RPC transport instance 1290 * @serv: pointer to svc_serv to search 1291 * @xcl_name: C string containing transport's class name 1292 * @net: owner net pointer 1293 * @af: Address family of transport's local address 1294 * @port: transport's IP port number 1295 * 1296 * Return the transport instance pointer for the endpoint accepting 1297 * connections/peer traffic from the specified transport class, 1298 * address family and port. 1299 * 1300 * Specifying 0 for the address family or port is effectively a 1301 * wild-card, and will result in matching the first transport in the 1302 * service's list that has a matching class name. 1303 */ 1304 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name, 1305 struct net *net, const sa_family_t af, 1306 const unsigned short port) 1307 { 1308 struct svc_xprt *xprt; 1309 struct svc_xprt *found = NULL; 1310 1311 /* Sanity check the args */ 1312 if (serv == NULL || xcl_name == NULL) 1313 return found; 1314 1315 spin_lock_bh(&serv->sv_lock); 1316 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { 1317 if (xprt->xpt_net != net) 1318 continue; 1319 if (strcmp(xprt->xpt_class->xcl_name, xcl_name)) 1320 continue; 1321 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family) 1322 continue; 1323 if (port != 0 && port != svc_xprt_local_port(xprt)) 1324 continue; 1325 found = xprt; 1326 svc_xprt_get(xprt); 1327 break; 1328 } 1329 spin_unlock_bh(&serv->sv_lock); 1330 return found; 1331 } 1332 EXPORT_SYMBOL_GPL(svc_find_xprt); 1333 1334 static int svc_one_xprt_name(const struct svc_xprt *xprt, 1335 char *pos, int remaining) 1336 { 1337 int len; 1338 1339 len = snprintf(pos, remaining, "%s %u\n", 1340 xprt->xpt_class->xcl_name, 1341 svc_xprt_local_port(xprt)); 1342 if (len >= remaining) 1343 return -ENAMETOOLONG; 1344 return len; 1345 } 1346 1347 /** 1348 * svc_xprt_names - format a buffer with a list of transport names 1349 * @serv: pointer to an RPC service 1350 * @buf: pointer to a buffer to be filled in 1351 * @buflen: length of buffer to be filled in 1352 * 1353 * Fills in @buf with a string containing a list of transport names, 1354 * each name terminated with '\n'. 1355 * 1356 * Returns positive length of the filled-in string on success; otherwise 1357 * a negative errno value is returned if an error occurs. 1358 */ 1359 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen) 1360 { 1361 struct svc_xprt *xprt; 1362 int len, totlen; 1363 char *pos; 1364 1365 /* Sanity check args */ 1366 if (!serv) 1367 return 0; 1368 1369 spin_lock_bh(&serv->sv_lock); 1370 1371 pos = buf; 1372 totlen = 0; 1373 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { 1374 len = svc_one_xprt_name(xprt, pos, buflen - totlen); 1375 if (len < 0) { 1376 *buf = '\0'; 1377 totlen = len; 1378 } 1379 if (len <= 0) 1380 break; 1381 1382 pos += len; 1383 totlen += len; 1384 } 1385 1386 spin_unlock_bh(&serv->sv_lock); 1387 return totlen; 1388 } 1389 EXPORT_SYMBOL_GPL(svc_xprt_names); 1390 1391 1392 /*----------------------------------------------------------------------------*/ 1393 1394 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos) 1395 { 1396 unsigned int pidx = (unsigned int)*pos; 1397 struct svc_serv *serv = m->private; 1398 1399 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx); 1400 1401 if (!pidx) 1402 return SEQ_START_TOKEN; 1403 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]); 1404 } 1405 1406 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos) 1407 { 1408 struct svc_pool *pool = p; 1409 struct svc_serv *serv = m->private; 1410 1411 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos); 1412 1413 if (p == SEQ_START_TOKEN) { 1414 pool = &serv->sv_pools[0]; 1415 } else { 1416 unsigned int pidx = (pool - &serv->sv_pools[0]); 1417 if (pidx < serv->sv_nrpools-1) 1418 pool = &serv->sv_pools[pidx+1]; 1419 else 1420 pool = NULL; 1421 } 1422 ++*pos; 1423 return pool; 1424 } 1425 1426 static void svc_pool_stats_stop(struct seq_file *m, void *p) 1427 { 1428 } 1429 1430 static int svc_pool_stats_show(struct seq_file *m, void *p) 1431 { 1432 struct svc_pool *pool = p; 1433 1434 if (p == SEQ_START_TOKEN) { 1435 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n"); 1436 return 0; 1437 } 1438 1439 seq_printf(m, "%u %llu %llu %llu %llu\n", 1440 pool->sp_id, 1441 percpu_counter_sum_positive(&pool->sp_sockets_queued), 1442 percpu_counter_sum_positive(&pool->sp_sockets_queued), 1443 percpu_counter_sum_positive(&pool->sp_threads_woken), 1444 percpu_counter_sum_positive(&pool->sp_threads_timedout)); 1445 1446 return 0; 1447 } 1448 1449 static const struct seq_operations svc_pool_stats_seq_ops = { 1450 .start = svc_pool_stats_start, 1451 .next = svc_pool_stats_next, 1452 .stop = svc_pool_stats_stop, 1453 .show = svc_pool_stats_show, 1454 }; 1455 1456 int svc_pool_stats_open(struct svc_serv *serv, struct file *file) 1457 { 1458 int err; 1459 1460 err = seq_open(file, &svc_pool_stats_seq_ops); 1461 if (!err) 1462 ((struct seq_file *) file->private_data)->private = serv; 1463 return err; 1464 } 1465 EXPORT_SYMBOL(svc_pool_stats_open); 1466 1467 /*----------------------------------------------------------------------------*/ 1468