xref: /openbmc/linux/net/sunrpc/svc_xprt.c (revision 7f8256ae)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/svc_xprt.c
4  *
5  * Author: Tom Tucker <tom@opengridcomputing.com>
6  */
7 
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/errno.h>
11 #include <linux/freezer.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <net/sock.h>
15 #include <linux/sunrpc/addr.h>
16 #include <linux/sunrpc/stats.h>
17 #include <linux/sunrpc/svc_xprt.h>
18 #include <linux/sunrpc/svcsock.h>
19 #include <linux/sunrpc/xprt.h>
20 #include <linux/module.h>
21 #include <linux/netdevice.h>
22 #include <trace/events/sunrpc.h>
23 
24 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
25 
26 static unsigned int svc_rpc_per_connection_limit __read_mostly;
27 module_param(svc_rpc_per_connection_limit, uint, 0644);
28 
29 
30 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
31 static int svc_deferred_recv(struct svc_rqst *rqstp);
32 static struct cache_deferred_req *svc_defer(struct cache_req *req);
33 static void svc_age_temp_xprts(struct timer_list *t);
34 static void svc_delete_xprt(struct svc_xprt *xprt);
35 
36 /* apparently the "standard" is that clients close
37  * idle connections after 5 minutes, servers after
38  * 6 minutes
39  *   http://nfsv4bat.org/Documents/ConnectAThon/1996/nfstcp.pdf
40  */
41 static int svc_conn_age_period = 6*60;
42 
43 /* List of registered transport classes */
44 static DEFINE_SPINLOCK(svc_xprt_class_lock);
45 static LIST_HEAD(svc_xprt_class_list);
46 
47 /* SMP locking strategy:
48  *
49  *	svc_pool->sp_lock protects most of the fields of that pool.
50  *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
51  *	when both need to be taken (rare), svc_serv->sv_lock is first.
52  *	The "service mutex" protects svc_serv->sv_nrthread.
53  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
54  *             and the ->sk_info_authunix cache.
55  *
56  *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
57  *	enqueued multiply. During normal transport processing this bit
58  *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
59  *	Providers should not manipulate this bit directly.
60  *
61  *	Some flags can be set to certain values at any time
62  *	providing that certain rules are followed:
63  *
64  *	XPT_CONN, XPT_DATA:
65  *		- Can be set or cleared at any time.
66  *		- After a set, svc_xprt_enqueue must be called to enqueue
67  *		  the transport for processing.
68  *		- After a clear, the transport must be read/accepted.
69  *		  If this succeeds, it must be set again.
70  *	XPT_CLOSE:
71  *		- Can set at any time. It is never cleared.
72  *      XPT_DEAD:
73  *		- Can only be set while XPT_BUSY is held which ensures
74  *		  that no other thread will be using the transport or will
75  *		  try to set XPT_DEAD.
76  */
77 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
78 {
79 	struct svc_xprt_class *cl;
80 	int res = -EEXIST;
81 
82 	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
83 
84 	INIT_LIST_HEAD(&xcl->xcl_list);
85 	spin_lock(&svc_xprt_class_lock);
86 	/* Make sure there isn't already a class with the same name */
87 	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
88 		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
89 			goto out;
90 	}
91 	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
92 	res = 0;
93 out:
94 	spin_unlock(&svc_xprt_class_lock);
95 	return res;
96 }
97 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
98 
99 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
100 {
101 	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
102 	spin_lock(&svc_xprt_class_lock);
103 	list_del_init(&xcl->xcl_list);
104 	spin_unlock(&svc_xprt_class_lock);
105 }
106 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
107 
108 /**
109  * svc_print_xprts - Format the transport list for printing
110  * @buf: target buffer for formatted address
111  * @maxlen: length of target buffer
112  *
113  * Fills in @buf with a string containing a list of transport names, each name
114  * terminated with '\n'. If the buffer is too small, some entries may be
115  * missing, but it is guaranteed that all lines in the output buffer are
116  * complete.
117  *
118  * Returns positive length of the filled-in string.
119  */
120 int svc_print_xprts(char *buf, int maxlen)
121 {
122 	struct svc_xprt_class *xcl;
123 	char tmpstr[80];
124 	int len = 0;
125 	buf[0] = '\0';
126 
127 	spin_lock(&svc_xprt_class_lock);
128 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
129 		int slen;
130 
131 		slen = snprintf(tmpstr, sizeof(tmpstr), "%s %d\n",
132 				xcl->xcl_name, xcl->xcl_max_payload);
133 		if (slen >= sizeof(tmpstr) || len + slen >= maxlen)
134 			break;
135 		len += slen;
136 		strcat(buf, tmpstr);
137 	}
138 	spin_unlock(&svc_xprt_class_lock);
139 
140 	return len;
141 }
142 
143 /**
144  * svc_xprt_deferred_close - Close a transport
145  * @xprt: transport instance
146  *
147  * Used in contexts that need to defer the work of shutting down
148  * the transport to an nfsd thread.
149  */
150 void svc_xprt_deferred_close(struct svc_xprt *xprt)
151 {
152 	if (!test_and_set_bit(XPT_CLOSE, &xprt->xpt_flags))
153 		svc_xprt_enqueue(xprt);
154 }
155 EXPORT_SYMBOL_GPL(svc_xprt_deferred_close);
156 
157 static void svc_xprt_free(struct kref *kref)
158 {
159 	struct svc_xprt *xprt =
160 		container_of(kref, struct svc_xprt, xpt_ref);
161 	struct module *owner = xprt->xpt_class->xcl_owner;
162 	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
163 		svcauth_unix_info_release(xprt);
164 	put_cred(xprt->xpt_cred);
165 	put_net_track(xprt->xpt_net, &xprt->ns_tracker);
166 	/* See comment on corresponding get in xs_setup_bc_tcp(): */
167 	if (xprt->xpt_bc_xprt)
168 		xprt_put(xprt->xpt_bc_xprt);
169 	if (xprt->xpt_bc_xps)
170 		xprt_switch_put(xprt->xpt_bc_xps);
171 	trace_svc_xprt_free(xprt);
172 	xprt->xpt_ops->xpo_free(xprt);
173 	module_put(owner);
174 }
175 
176 void svc_xprt_put(struct svc_xprt *xprt)
177 {
178 	kref_put(&xprt->xpt_ref, svc_xprt_free);
179 }
180 EXPORT_SYMBOL_GPL(svc_xprt_put);
181 
182 /*
183  * Called by transport drivers to initialize the transport independent
184  * portion of the transport instance.
185  */
186 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
187 		   struct svc_xprt *xprt, struct svc_serv *serv)
188 {
189 	memset(xprt, 0, sizeof(*xprt));
190 	xprt->xpt_class = xcl;
191 	xprt->xpt_ops = xcl->xcl_ops;
192 	kref_init(&xprt->xpt_ref);
193 	xprt->xpt_server = serv;
194 	INIT_LIST_HEAD(&xprt->xpt_list);
195 	INIT_LIST_HEAD(&xprt->xpt_ready);
196 	INIT_LIST_HEAD(&xprt->xpt_deferred);
197 	INIT_LIST_HEAD(&xprt->xpt_users);
198 	mutex_init(&xprt->xpt_mutex);
199 	spin_lock_init(&xprt->xpt_lock);
200 	set_bit(XPT_BUSY, &xprt->xpt_flags);
201 	xprt->xpt_net = get_net_track(net, &xprt->ns_tracker, GFP_ATOMIC);
202 	strcpy(xprt->xpt_remotebuf, "uninitialized");
203 }
204 EXPORT_SYMBOL_GPL(svc_xprt_init);
205 
206 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
207 					 struct svc_serv *serv,
208 					 struct net *net,
209 					 const int family,
210 					 const unsigned short port,
211 					 int flags)
212 {
213 	struct sockaddr_in sin = {
214 		.sin_family		= AF_INET,
215 		.sin_addr.s_addr	= htonl(INADDR_ANY),
216 		.sin_port		= htons(port),
217 	};
218 #if IS_ENABLED(CONFIG_IPV6)
219 	struct sockaddr_in6 sin6 = {
220 		.sin6_family		= AF_INET6,
221 		.sin6_addr		= IN6ADDR_ANY_INIT,
222 		.sin6_port		= htons(port),
223 	};
224 #endif
225 	struct svc_xprt *xprt;
226 	struct sockaddr *sap;
227 	size_t len;
228 
229 	switch (family) {
230 	case PF_INET:
231 		sap = (struct sockaddr *)&sin;
232 		len = sizeof(sin);
233 		break;
234 #if IS_ENABLED(CONFIG_IPV6)
235 	case PF_INET6:
236 		sap = (struct sockaddr *)&sin6;
237 		len = sizeof(sin6);
238 		break;
239 #endif
240 	default:
241 		return ERR_PTR(-EAFNOSUPPORT);
242 	}
243 
244 	xprt = xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
245 	if (IS_ERR(xprt))
246 		trace_svc_xprt_create_err(serv->sv_program->pg_name,
247 					  xcl->xcl_name, sap, len, xprt);
248 	return xprt;
249 }
250 
251 /**
252  * svc_xprt_received - start next receiver thread
253  * @xprt: controlling transport
254  *
255  * The caller must hold the XPT_BUSY bit and must
256  * not thereafter touch transport data.
257  *
258  * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
259  * insufficient) data.
260  */
261 void svc_xprt_received(struct svc_xprt *xprt)
262 {
263 	if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
264 		WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
265 		return;
266 	}
267 
268 	/* As soon as we clear busy, the xprt could be closed and
269 	 * 'put', so we need a reference to call svc_xprt_enqueue with:
270 	 */
271 	svc_xprt_get(xprt);
272 	smp_mb__before_atomic();
273 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
274 	svc_xprt_enqueue(xprt);
275 	svc_xprt_put(xprt);
276 }
277 EXPORT_SYMBOL_GPL(svc_xprt_received);
278 
279 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
280 {
281 	clear_bit(XPT_TEMP, &new->xpt_flags);
282 	spin_lock_bh(&serv->sv_lock);
283 	list_add(&new->xpt_list, &serv->sv_permsocks);
284 	spin_unlock_bh(&serv->sv_lock);
285 	svc_xprt_received(new);
286 }
287 
288 static int _svc_xprt_create(struct svc_serv *serv, const char *xprt_name,
289 			    struct net *net, const int family,
290 			    const unsigned short port, int flags,
291 			    const struct cred *cred)
292 {
293 	struct svc_xprt_class *xcl;
294 
295 	spin_lock(&svc_xprt_class_lock);
296 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
297 		struct svc_xprt *newxprt;
298 		unsigned short newport;
299 
300 		if (strcmp(xprt_name, xcl->xcl_name))
301 			continue;
302 
303 		if (!try_module_get(xcl->xcl_owner))
304 			goto err;
305 
306 		spin_unlock(&svc_xprt_class_lock);
307 		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
308 		if (IS_ERR(newxprt)) {
309 			module_put(xcl->xcl_owner);
310 			return PTR_ERR(newxprt);
311 		}
312 		newxprt->xpt_cred = get_cred(cred);
313 		svc_add_new_perm_xprt(serv, newxprt);
314 		newport = svc_xprt_local_port(newxprt);
315 		return newport;
316 	}
317  err:
318 	spin_unlock(&svc_xprt_class_lock);
319 	/* This errno is exposed to user space.  Provide a reasonable
320 	 * perror msg for a bad transport. */
321 	return -EPROTONOSUPPORT;
322 }
323 
324 /**
325  * svc_xprt_create - Add a new listener to @serv
326  * @serv: target RPC service
327  * @xprt_name: transport class name
328  * @net: network namespace
329  * @family: network address family
330  * @port: listener port
331  * @flags: SVC_SOCK flags
332  * @cred: credential to bind to this transport
333  *
334  * Return values:
335  *   %0: New listener added successfully
336  *   %-EPROTONOSUPPORT: Requested transport type not supported
337  */
338 int svc_xprt_create(struct svc_serv *serv, const char *xprt_name,
339 		    struct net *net, const int family,
340 		    const unsigned short port, int flags,
341 		    const struct cred *cred)
342 {
343 	int err;
344 
345 	err = _svc_xprt_create(serv, xprt_name, net, family, port, flags, cred);
346 	if (err == -EPROTONOSUPPORT) {
347 		request_module("svc%s", xprt_name);
348 		err = _svc_xprt_create(serv, xprt_name, net, family, port, flags, cred);
349 	}
350 	return err;
351 }
352 EXPORT_SYMBOL_GPL(svc_xprt_create);
353 
354 /*
355  * Copy the local and remote xprt addresses to the rqstp structure
356  */
357 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
358 {
359 	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
360 	rqstp->rq_addrlen = xprt->xpt_remotelen;
361 
362 	/*
363 	 * Destination address in request is needed for binding the
364 	 * source address in RPC replies/callbacks later.
365 	 */
366 	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
367 	rqstp->rq_daddrlen = xprt->xpt_locallen;
368 }
369 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
370 
371 /**
372  * svc_print_addr - Format rq_addr field for printing
373  * @rqstp: svc_rqst struct containing address to print
374  * @buf: target buffer for formatted address
375  * @len: length of target buffer
376  *
377  */
378 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
379 {
380 	return __svc_print_addr(svc_addr(rqstp), buf, len);
381 }
382 EXPORT_SYMBOL_GPL(svc_print_addr);
383 
384 static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
385 {
386 	unsigned int limit = svc_rpc_per_connection_limit;
387 	int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
388 
389 	return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
390 }
391 
392 static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
393 {
394 	if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
395 		if (!svc_xprt_slots_in_range(xprt))
396 			return false;
397 		atomic_inc(&xprt->xpt_nr_rqsts);
398 		set_bit(RQ_DATA, &rqstp->rq_flags);
399 	}
400 	return true;
401 }
402 
403 static void svc_xprt_release_slot(struct svc_rqst *rqstp)
404 {
405 	struct svc_xprt	*xprt = rqstp->rq_xprt;
406 	if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
407 		atomic_dec(&xprt->xpt_nr_rqsts);
408 		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
409 		svc_xprt_enqueue(xprt);
410 	}
411 }
412 
413 static bool svc_xprt_ready(struct svc_xprt *xprt)
414 {
415 	unsigned long xpt_flags;
416 
417 	/*
418 	 * If another cpu has recently updated xpt_flags,
419 	 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to
420 	 * know about it; otherwise it's possible that both that cpu and
421 	 * this one could call svc_xprt_enqueue() without either
422 	 * svc_xprt_enqueue() recognizing that the conditions below
423 	 * are satisfied, and we could stall indefinitely:
424 	 */
425 	smp_rmb();
426 	xpt_flags = READ_ONCE(xprt->xpt_flags);
427 
428 	if (xpt_flags & BIT(XPT_BUSY))
429 		return false;
430 	if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE) | BIT(XPT_HANDSHAKE)))
431 		return true;
432 	if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) {
433 		if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
434 		    svc_xprt_slots_in_range(xprt))
435 			return true;
436 		trace_svc_xprt_no_write_space(xprt);
437 		return false;
438 	}
439 	return false;
440 }
441 
442 /**
443  * svc_xprt_enqueue - Queue a transport on an idle nfsd thread
444  * @xprt: transport with data pending
445  *
446  */
447 void svc_xprt_enqueue(struct svc_xprt *xprt)
448 {
449 	struct svc_pool *pool;
450 	struct svc_rqst	*rqstp = NULL;
451 
452 	if (!svc_xprt_ready(xprt))
453 		return;
454 
455 	/* Mark transport as busy. It will remain in this state until
456 	 * the provider calls svc_xprt_received. We update XPT_BUSY
457 	 * atomically because it also guards against trying to enqueue
458 	 * the transport twice.
459 	 */
460 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
461 		return;
462 
463 	pool = svc_pool_for_cpu(xprt->xpt_server);
464 
465 	percpu_counter_inc(&pool->sp_sockets_queued);
466 	spin_lock_bh(&pool->sp_lock);
467 	list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
468 	spin_unlock_bh(&pool->sp_lock);
469 
470 	/* find a thread for this xprt */
471 	rcu_read_lock();
472 	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
473 		if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags))
474 			continue;
475 		percpu_counter_inc(&pool->sp_threads_woken);
476 		rqstp->rq_qtime = ktime_get();
477 		wake_up_process(rqstp->rq_task);
478 		goto out_unlock;
479 	}
480 	set_bit(SP_CONGESTED, &pool->sp_flags);
481 	rqstp = NULL;
482 out_unlock:
483 	rcu_read_unlock();
484 	trace_svc_xprt_enqueue(xprt, rqstp);
485 }
486 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
487 
488 /*
489  * Dequeue the first transport, if there is one.
490  */
491 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
492 {
493 	struct svc_xprt	*xprt = NULL;
494 
495 	if (list_empty(&pool->sp_sockets))
496 		goto out;
497 
498 	spin_lock_bh(&pool->sp_lock);
499 	if (likely(!list_empty(&pool->sp_sockets))) {
500 		xprt = list_first_entry(&pool->sp_sockets,
501 					struct svc_xprt, xpt_ready);
502 		list_del_init(&xprt->xpt_ready);
503 		svc_xprt_get(xprt);
504 	}
505 	spin_unlock_bh(&pool->sp_lock);
506 out:
507 	return xprt;
508 }
509 
510 /**
511  * svc_reserve - change the space reserved for the reply to a request.
512  * @rqstp:  The request in question
513  * @space: new max space to reserve
514  *
515  * Each request reserves some space on the output queue of the transport
516  * to make sure the reply fits.  This function reduces that reserved
517  * space to be the amount of space used already, plus @space.
518  *
519  */
520 void svc_reserve(struct svc_rqst *rqstp, int space)
521 {
522 	struct svc_xprt *xprt = rqstp->rq_xprt;
523 
524 	space += rqstp->rq_res.head[0].iov_len;
525 
526 	if (xprt && space < rqstp->rq_reserved) {
527 		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
528 		rqstp->rq_reserved = space;
529 		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
530 		svc_xprt_enqueue(xprt);
531 	}
532 }
533 EXPORT_SYMBOL_GPL(svc_reserve);
534 
535 static void svc_xprt_release(struct svc_rqst *rqstp)
536 {
537 	struct svc_xprt	*xprt = rqstp->rq_xprt;
538 
539 	xprt->xpt_ops->xpo_release_rqst(rqstp);
540 
541 	kfree(rqstp->rq_deferred);
542 	rqstp->rq_deferred = NULL;
543 
544 	svc_rqst_release_pages(rqstp);
545 	rqstp->rq_res.page_len = 0;
546 	rqstp->rq_res.page_base = 0;
547 
548 	/* Reset response buffer and release
549 	 * the reservation.
550 	 * But first, check that enough space was reserved
551 	 * for the reply, otherwise we have a bug!
552 	 */
553 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
554 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
555 		       rqstp->rq_reserved,
556 		       rqstp->rq_res.len);
557 
558 	rqstp->rq_res.head[0].iov_len = 0;
559 	svc_reserve(rqstp, 0);
560 	svc_xprt_release_slot(rqstp);
561 	rqstp->rq_xprt = NULL;
562 	svc_xprt_put(xprt);
563 }
564 
565 /*
566  * Some svc_serv's will have occasional work to do, even when a xprt is not
567  * waiting to be serviced. This function is there to "kick" a task in one of
568  * those services so that it can wake up and do that work. Note that we only
569  * bother with pool 0 as we don't need to wake up more than one thread for
570  * this purpose.
571  */
572 void svc_wake_up(struct svc_serv *serv)
573 {
574 	struct svc_rqst	*rqstp;
575 	struct svc_pool *pool;
576 
577 	pool = &serv->sv_pools[0];
578 
579 	rcu_read_lock();
580 	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
581 		/* skip any that aren't queued */
582 		if (test_bit(RQ_BUSY, &rqstp->rq_flags))
583 			continue;
584 		rcu_read_unlock();
585 		wake_up_process(rqstp->rq_task);
586 		trace_svc_wake_up(rqstp->rq_task->pid);
587 		return;
588 	}
589 	rcu_read_unlock();
590 
591 	/* No free entries available */
592 	set_bit(SP_TASK_PENDING, &pool->sp_flags);
593 	smp_wmb();
594 	trace_svc_wake_up(0);
595 }
596 EXPORT_SYMBOL_GPL(svc_wake_up);
597 
598 int svc_port_is_privileged(struct sockaddr *sin)
599 {
600 	switch (sin->sa_family) {
601 	case AF_INET:
602 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
603 			< PROT_SOCK;
604 	case AF_INET6:
605 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
606 			< PROT_SOCK;
607 	default:
608 		return 0;
609 	}
610 }
611 
612 /*
613  * Make sure that we don't have too many active connections. If we have,
614  * something must be dropped. It's not clear what will happen if we allow
615  * "too many" connections, but when dealing with network-facing software,
616  * we have to code defensively. Here we do that by imposing hard limits.
617  *
618  * There's no point in trying to do random drop here for DoS
619  * prevention. The NFS clients does 1 reconnect in 15 seconds. An
620  * attacker can easily beat that.
621  *
622  * The only somewhat efficient mechanism would be if drop old
623  * connections from the same IP first. But right now we don't even
624  * record the client IP in svc_sock.
625  *
626  * single-threaded services that expect a lot of clients will probably
627  * need to set sv_maxconn to override the default value which is based
628  * on the number of threads
629  */
630 static void svc_check_conn_limits(struct svc_serv *serv)
631 {
632 	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
633 				(serv->sv_nrthreads+3) * 20;
634 
635 	if (serv->sv_tmpcnt > limit) {
636 		struct svc_xprt *xprt = NULL;
637 		spin_lock_bh(&serv->sv_lock);
638 		if (!list_empty(&serv->sv_tempsocks)) {
639 			/* Try to help the admin */
640 			net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
641 					       serv->sv_name, serv->sv_maxconn ?
642 					       "max number of connections" :
643 					       "number of threads");
644 			/*
645 			 * Always select the oldest connection. It's not fair,
646 			 * but so is life
647 			 */
648 			xprt = list_entry(serv->sv_tempsocks.prev,
649 					  struct svc_xprt,
650 					  xpt_list);
651 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
652 			svc_xprt_get(xprt);
653 		}
654 		spin_unlock_bh(&serv->sv_lock);
655 
656 		if (xprt) {
657 			svc_xprt_enqueue(xprt);
658 			svc_xprt_put(xprt);
659 		}
660 	}
661 }
662 
663 static int svc_alloc_arg(struct svc_rqst *rqstp)
664 {
665 	struct svc_serv *serv = rqstp->rq_server;
666 	struct xdr_buf *arg = &rqstp->rq_arg;
667 	unsigned long pages, filled, ret;
668 
669 	pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
670 	if (pages > RPCSVC_MAXPAGES) {
671 		pr_warn_once("svc: warning: pages=%lu > RPCSVC_MAXPAGES=%lu\n",
672 			     pages, RPCSVC_MAXPAGES);
673 		/* use as many pages as possible */
674 		pages = RPCSVC_MAXPAGES;
675 	}
676 
677 	for (filled = 0; filled < pages; filled = ret) {
678 		ret = alloc_pages_bulk_array(GFP_KERNEL, pages,
679 					     rqstp->rq_pages);
680 		if (ret > filled)
681 			/* Made progress, don't sleep yet */
682 			continue;
683 
684 		set_current_state(TASK_INTERRUPTIBLE);
685 		if (signalled() || kthread_should_stop()) {
686 			set_current_state(TASK_RUNNING);
687 			return -EINTR;
688 		}
689 		trace_svc_alloc_arg_err(pages, ret);
690 		memalloc_retry_wait(GFP_KERNEL);
691 	}
692 	rqstp->rq_page_end = &rqstp->rq_pages[pages];
693 	rqstp->rq_pages[pages] = NULL; /* this might be seen in nfsd_splice_actor() */
694 
695 	/* Make arg->head point to first page and arg->pages point to rest */
696 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
697 	arg->head[0].iov_len = PAGE_SIZE;
698 	arg->pages = rqstp->rq_pages + 1;
699 	arg->page_base = 0;
700 	/* save at least one page for response */
701 	arg->page_len = (pages-2)*PAGE_SIZE;
702 	arg->len = (pages-1)*PAGE_SIZE;
703 	arg->tail[0].iov_len = 0;
704 
705 	rqstp->rq_xid = xdr_zero;
706 	return 0;
707 }
708 
709 static bool
710 rqst_should_sleep(struct svc_rqst *rqstp)
711 {
712 	struct svc_pool		*pool = rqstp->rq_pool;
713 
714 	/* did someone call svc_wake_up? */
715 	if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
716 		return false;
717 
718 	/* was a socket queued? */
719 	if (!list_empty(&pool->sp_sockets))
720 		return false;
721 
722 	/* are we shutting down? */
723 	if (signalled() || kthread_should_stop())
724 		return false;
725 
726 	/* are we freezing? */
727 	if (freezing(current))
728 		return false;
729 
730 	return true;
731 }
732 
733 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
734 {
735 	struct svc_pool		*pool = rqstp->rq_pool;
736 	long			time_left = 0;
737 
738 	/* rq_xprt should be clear on entry */
739 	WARN_ON_ONCE(rqstp->rq_xprt);
740 
741 	rqstp->rq_xprt = svc_xprt_dequeue(pool);
742 	if (rqstp->rq_xprt)
743 		goto out_found;
744 
745 	/*
746 	 * We have to be able to interrupt this wait
747 	 * to bring down the daemons ...
748 	 */
749 	set_current_state(TASK_INTERRUPTIBLE);
750 	smp_mb__before_atomic();
751 	clear_bit(SP_CONGESTED, &pool->sp_flags);
752 	clear_bit(RQ_BUSY, &rqstp->rq_flags);
753 	smp_mb__after_atomic();
754 
755 	if (likely(rqst_should_sleep(rqstp)))
756 		time_left = schedule_timeout(timeout);
757 	else
758 		__set_current_state(TASK_RUNNING);
759 
760 	try_to_freeze();
761 
762 	set_bit(RQ_BUSY, &rqstp->rq_flags);
763 	smp_mb__after_atomic();
764 	rqstp->rq_xprt = svc_xprt_dequeue(pool);
765 	if (rqstp->rq_xprt)
766 		goto out_found;
767 
768 	if (!time_left)
769 		percpu_counter_inc(&pool->sp_threads_timedout);
770 
771 	if (signalled() || kthread_should_stop())
772 		return ERR_PTR(-EINTR);
773 	return ERR_PTR(-EAGAIN);
774 out_found:
775 	/* Normally we will wait up to 5 seconds for any required
776 	 * cache information to be provided.
777 	 */
778 	if (!test_bit(SP_CONGESTED, &pool->sp_flags))
779 		rqstp->rq_chandle.thread_wait = 5*HZ;
780 	else
781 		rqstp->rq_chandle.thread_wait = 1*HZ;
782 	trace_svc_xprt_dequeue(rqstp);
783 	return rqstp->rq_xprt;
784 }
785 
786 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
787 {
788 	spin_lock_bh(&serv->sv_lock);
789 	set_bit(XPT_TEMP, &newxpt->xpt_flags);
790 	list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
791 	serv->sv_tmpcnt++;
792 	if (serv->sv_temptimer.function == NULL) {
793 		/* setup timer to age temp transports */
794 		serv->sv_temptimer.function = svc_age_temp_xprts;
795 		mod_timer(&serv->sv_temptimer,
796 			  jiffies + svc_conn_age_period * HZ);
797 	}
798 	spin_unlock_bh(&serv->sv_lock);
799 	svc_xprt_received(newxpt);
800 }
801 
802 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
803 {
804 	struct svc_serv *serv = rqstp->rq_server;
805 	int len = 0;
806 
807 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
808 		if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
809 			xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
810 		svc_delete_xprt(xprt);
811 		/* Leave XPT_BUSY set on the dead xprt: */
812 		goto out;
813 	}
814 	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
815 		struct svc_xprt *newxpt;
816 		/*
817 		 * We know this module_get will succeed because the
818 		 * listener holds a reference too
819 		 */
820 		__module_get(xprt->xpt_class->xcl_owner);
821 		svc_check_conn_limits(xprt->xpt_server);
822 		newxpt = xprt->xpt_ops->xpo_accept(xprt);
823 		if (newxpt) {
824 			newxpt->xpt_cred = get_cred(xprt->xpt_cred);
825 			svc_add_new_temp_xprt(serv, newxpt);
826 			trace_svc_xprt_accept(newxpt, serv->sv_name);
827 		} else {
828 			module_put(xprt->xpt_class->xcl_owner);
829 		}
830 		svc_xprt_received(xprt);
831 	} else if (test_bit(XPT_HANDSHAKE, &xprt->xpt_flags)) {
832 		xprt->xpt_ops->xpo_handshake(xprt);
833 		svc_xprt_received(xprt);
834 	} else if (svc_xprt_reserve_slot(rqstp, xprt)) {
835 		/* XPT_DATA|XPT_DEFERRED case: */
836 		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
837 			rqstp, rqstp->rq_pool->sp_id, xprt,
838 			kref_read(&xprt->xpt_ref));
839 		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
840 		if (rqstp->rq_deferred)
841 			len = svc_deferred_recv(rqstp);
842 		else
843 			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
844 		rqstp->rq_stime = ktime_get();
845 		rqstp->rq_reserved = serv->sv_max_mesg;
846 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
847 	} else
848 		svc_xprt_received(xprt);
849 
850 out:
851 	return len;
852 }
853 
854 /*
855  * Receive the next request on any transport.  This code is carefully
856  * organised not to touch any cachelines in the shared svc_serv
857  * structure, only cachelines in the local svc_pool.
858  */
859 int svc_recv(struct svc_rqst *rqstp, long timeout)
860 {
861 	struct svc_xprt		*xprt = NULL;
862 	struct svc_serv		*serv = rqstp->rq_server;
863 	int			len, err;
864 
865 	err = svc_alloc_arg(rqstp);
866 	if (err)
867 		goto out;
868 
869 	try_to_freeze();
870 	cond_resched();
871 	err = -EINTR;
872 	if (signalled() || kthread_should_stop())
873 		goto out;
874 
875 	xprt = svc_get_next_xprt(rqstp, timeout);
876 	if (IS_ERR(xprt)) {
877 		err = PTR_ERR(xprt);
878 		goto out;
879 	}
880 
881 	len = svc_handle_xprt(rqstp, xprt);
882 
883 	/* No data, incomplete (TCP) read, or accept() */
884 	err = -EAGAIN;
885 	if (len <= 0)
886 		goto out_release;
887 	trace_svc_xdr_recvfrom(&rqstp->rq_arg);
888 
889 	clear_bit(XPT_OLD, &xprt->xpt_flags);
890 
891 	rqstp->rq_chandle.defer = svc_defer;
892 
893 	if (serv->sv_stats)
894 		serv->sv_stats->netcnt++;
895 	return len;
896 out_release:
897 	rqstp->rq_res.len = 0;
898 	svc_xprt_release(rqstp);
899 out:
900 	return err;
901 }
902 EXPORT_SYMBOL_GPL(svc_recv);
903 
904 /*
905  * Drop request
906  */
907 void svc_drop(struct svc_rqst *rqstp)
908 {
909 	trace_svc_drop(rqstp);
910 	svc_xprt_release(rqstp);
911 }
912 EXPORT_SYMBOL_GPL(svc_drop);
913 
914 /**
915  * svc_send - Return reply to client
916  * @rqstp: RPC transaction context
917  *
918  */
919 void svc_send(struct svc_rqst *rqstp)
920 {
921 	struct svc_xprt	*xprt;
922 	struct xdr_buf	*xb;
923 	int status;
924 
925 	xprt = rqstp->rq_xprt;
926 	if (!xprt)
927 		return;
928 
929 	/* calculate over-all length */
930 	xb = &rqstp->rq_res;
931 	xb->len = xb->head[0].iov_len +
932 		xb->page_len +
933 		xb->tail[0].iov_len;
934 	trace_svc_xdr_sendto(rqstp->rq_xid, xb);
935 	trace_svc_stats_latency(rqstp);
936 
937 	status = xprt->xpt_ops->xpo_sendto(rqstp);
938 
939 	trace_svc_send(rqstp, status);
940 	svc_xprt_release(rqstp);
941 }
942 
943 /*
944  * Timer function to close old temporary transports, using
945  * a mark-and-sweep algorithm.
946  */
947 static void svc_age_temp_xprts(struct timer_list *t)
948 {
949 	struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
950 	struct svc_xprt *xprt;
951 	struct list_head *le, *next;
952 
953 	dprintk("svc_age_temp_xprts\n");
954 
955 	if (!spin_trylock_bh(&serv->sv_lock)) {
956 		/* busy, try again 1 sec later */
957 		dprintk("svc_age_temp_xprts: busy\n");
958 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
959 		return;
960 	}
961 
962 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
963 		xprt = list_entry(le, struct svc_xprt, xpt_list);
964 
965 		/* First time through, just mark it OLD. Second time
966 		 * through, close it. */
967 		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
968 			continue;
969 		if (kref_read(&xprt->xpt_ref) > 1 ||
970 		    test_bit(XPT_BUSY, &xprt->xpt_flags))
971 			continue;
972 		list_del_init(le);
973 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
974 		dprintk("queuing xprt %p for closing\n", xprt);
975 
976 		/* a thread will dequeue and close it soon */
977 		svc_xprt_enqueue(xprt);
978 	}
979 	spin_unlock_bh(&serv->sv_lock);
980 
981 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
982 }
983 
984 /* Close temporary transports whose xpt_local matches server_addr immediately
985  * instead of waiting for them to be picked up by the timer.
986  *
987  * This is meant to be called from a notifier_block that runs when an ip
988  * address is deleted.
989  */
990 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
991 {
992 	struct svc_xprt *xprt;
993 	struct list_head *le, *next;
994 	LIST_HEAD(to_be_closed);
995 
996 	spin_lock_bh(&serv->sv_lock);
997 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
998 		xprt = list_entry(le, struct svc_xprt, xpt_list);
999 		if (rpc_cmp_addr(server_addr, (struct sockaddr *)
1000 				&xprt->xpt_local)) {
1001 			dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
1002 			list_move(le, &to_be_closed);
1003 		}
1004 	}
1005 	spin_unlock_bh(&serv->sv_lock);
1006 
1007 	while (!list_empty(&to_be_closed)) {
1008 		le = to_be_closed.next;
1009 		list_del_init(le);
1010 		xprt = list_entry(le, struct svc_xprt, xpt_list);
1011 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1012 		set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
1013 		dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
1014 				xprt);
1015 		svc_xprt_enqueue(xprt);
1016 	}
1017 }
1018 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
1019 
1020 static void call_xpt_users(struct svc_xprt *xprt)
1021 {
1022 	struct svc_xpt_user *u;
1023 
1024 	spin_lock(&xprt->xpt_lock);
1025 	while (!list_empty(&xprt->xpt_users)) {
1026 		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1027 		list_del_init(&u->list);
1028 		u->callback(u);
1029 	}
1030 	spin_unlock(&xprt->xpt_lock);
1031 }
1032 
1033 /*
1034  * Remove a dead transport
1035  */
1036 static void svc_delete_xprt(struct svc_xprt *xprt)
1037 {
1038 	struct svc_serv	*serv = xprt->xpt_server;
1039 	struct svc_deferred_req *dr;
1040 
1041 	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1042 		return;
1043 
1044 	trace_svc_xprt_detach(xprt);
1045 	xprt->xpt_ops->xpo_detach(xprt);
1046 	if (xprt->xpt_bc_xprt)
1047 		xprt->xpt_bc_xprt->ops->close(xprt->xpt_bc_xprt);
1048 
1049 	spin_lock_bh(&serv->sv_lock);
1050 	list_del_init(&xprt->xpt_list);
1051 	WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1052 	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1053 		serv->sv_tmpcnt--;
1054 	spin_unlock_bh(&serv->sv_lock);
1055 
1056 	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1057 		kfree(dr);
1058 
1059 	call_xpt_users(xprt);
1060 	svc_xprt_put(xprt);
1061 }
1062 
1063 /**
1064  * svc_xprt_close - Close a client connection
1065  * @xprt: transport to disconnect
1066  *
1067  */
1068 void svc_xprt_close(struct svc_xprt *xprt)
1069 {
1070 	trace_svc_xprt_close(xprt);
1071 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
1072 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1073 		/* someone else will have to effect the close */
1074 		return;
1075 	/*
1076 	 * We expect svc_close_xprt() to work even when no threads are
1077 	 * running (e.g., while configuring the server before starting
1078 	 * any threads), so if the transport isn't busy, we delete
1079 	 * it ourself:
1080 	 */
1081 	svc_delete_xprt(xprt);
1082 }
1083 EXPORT_SYMBOL_GPL(svc_xprt_close);
1084 
1085 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1086 {
1087 	struct svc_xprt *xprt;
1088 	int ret = 0;
1089 
1090 	spin_lock_bh(&serv->sv_lock);
1091 	list_for_each_entry(xprt, xprt_list, xpt_list) {
1092 		if (xprt->xpt_net != net)
1093 			continue;
1094 		ret++;
1095 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1096 		svc_xprt_enqueue(xprt);
1097 	}
1098 	spin_unlock_bh(&serv->sv_lock);
1099 	return ret;
1100 }
1101 
1102 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1103 {
1104 	struct svc_pool *pool;
1105 	struct svc_xprt *xprt;
1106 	struct svc_xprt *tmp;
1107 	int i;
1108 
1109 	for (i = 0; i < serv->sv_nrpools; i++) {
1110 		pool = &serv->sv_pools[i];
1111 
1112 		spin_lock_bh(&pool->sp_lock);
1113 		list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1114 			if (xprt->xpt_net != net)
1115 				continue;
1116 			list_del_init(&xprt->xpt_ready);
1117 			spin_unlock_bh(&pool->sp_lock);
1118 			return xprt;
1119 		}
1120 		spin_unlock_bh(&pool->sp_lock);
1121 	}
1122 	return NULL;
1123 }
1124 
1125 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1126 {
1127 	struct svc_xprt *xprt;
1128 
1129 	while ((xprt = svc_dequeue_net(serv, net))) {
1130 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1131 		svc_delete_xprt(xprt);
1132 	}
1133 }
1134 
1135 /**
1136  * svc_xprt_destroy_all - Destroy transports associated with @serv
1137  * @serv: RPC service to be shut down
1138  * @net: target network namespace
1139  *
1140  * Server threads may still be running (especially in the case where the
1141  * service is still running in other network namespaces).
1142  *
1143  * So we shut down sockets the same way we would on a running server, by
1144  * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1145  * the close.  In the case there are no such other threads,
1146  * threads running, svc_clean_up_xprts() does a simple version of a
1147  * server's main event loop, and in the case where there are other
1148  * threads, we may need to wait a little while and then check again to
1149  * see if they're done.
1150  */
1151 void svc_xprt_destroy_all(struct svc_serv *serv, struct net *net)
1152 {
1153 	int delay = 0;
1154 
1155 	while (svc_close_list(serv, &serv->sv_permsocks, net) +
1156 	       svc_close_list(serv, &serv->sv_tempsocks, net)) {
1157 
1158 		svc_clean_up_xprts(serv, net);
1159 		msleep(delay++);
1160 	}
1161 }
1162 EXPORT_SYMBOL_GPL(svc_xprt_destroy_all);
1163 
1164 /*
1165  * Handle defer and revisit of requests
1166  */
1167 
1168 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1169 {
1170 	struct svc_deferred_req *dr =
1171 		container_of(dreq, struct svc_deferred_req, handle);
1172 	struct svc_xprt *xprt = dr->xprt;
1173 
1174 	spin_lock(&xprt->xpt_lock);
1175 	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1176 	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1177 		spin_unlock(&xprt->xpt_lock);
1178 		trace_svc_defer_drop(dr);
1179 		svc_xprt_put(xprt);
1180 		kfree(dr);
1181 		return;
1182 	}
1183 	dr->xprt = NULL;
1184 	list_add(&dr->handle.recent, &xprt->xpt_deferred);
1185 	spin_unlock(&xprt->xpt_lock);
1186 	trace_svc_defer_queue(dr);
1187 	svc_xprt_enqueue(xprt);
1188 	svc_xprt_put(xprt);
1189 }
1190 
1191 /*
1192  * Save the request off for later processing. The request buffer looks
1193  * like this:
1194  *
1195  * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1196  *
1197  * This code can only handle requests that consist of an xprt-header
1198  * and rpc-header.
1199  */
1200 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1201 {
1202 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1203 	struct svc_deferred_req *dr;
1204 
1205 	if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1206 		return NULL; /* if more than a page, give up FIXME */
1207 	if (rqstp->rq_deferred) {
1208 		dr = rqstp->rq_deferred;
1209 		rqstp->rq_deferred = NULL;
1210 	} else {
1211 		size_t skip;
1212 		size_t size;
1213 		/* FIXME maybe discard if size too large */
1214 		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1215 		dr = kmalloc(size, GFP_KERNEL);
1216 		if (dr == NULL)
1217 			return NULL;
1218 
1219 		dr->handle.owner = rqstp->rq_server;
1220 		dr->prot = rqstp->rq_prot;
1221 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1222 		dr->addrlen = rqstp->rq_addrlen;
1223 		dr->daddr = rqstp->rq_daddr;
1224 		dr->argslen = rqstp->rq_arg.len >> 2;
1225 		dr->xprt_ctxt = rqstp->rq_xprt_ctxt;
1226 		rqstp->rq_xprt_ctxt = NULL;
1227 
1228 		/* back up head to the start of the buffer and copy */
1229 		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1230 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1231 		       dr->argslen << 2);
1232 	}
1233 	trace_svc_defer(rqstp);
1234 	svc_xprt_get(rqstp->rq_xprt);
1235 	dr->xprt = rqstp->rq_xprt;
1236 	set_bit(RQ_DROPME, &rqstp->rq_flags);
1237 
1238 	dr->handle.revisit = svc_revisit;
1239 	return &dr->handle;
1240 }
1241 
1242 /*
1243  * recv data from a deferred request into an active one
1244  */
1245 static noinline int svc_deferred_recv(struct svc_rqst *rqstp)
1246 {
1247 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1248 
1249 	trace_svc_defer_recv(dr);
1250 
1251 	/* setup iov_base past transport header */
1252 	rqstp->rq_arg.head[0].iov_base = dr->args;
1253 	/* The iov_len does not include the transport header bytes */
1254 	rqstp->rq_arg.head[0].iov_len = dr->argslen << 2;
1255 	rqstp->rq_arg.page_len = 0;
1256 	/* The rq_arg.len includes the transport header bytes */
1257 	rqstp->rq_arg.len     = dr->argslen << 2;
1258 	rqstp->rq_prot        = dr->prot;
1259 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1260 	rqstp->rq_addrlen     = dr->addrlen;
1261 	/* Save off transport header len in case we get deferred again */
1262 	rqstp->rq_daddr       = dr->daddr;
1263 	rqstp->rq_respages    = rqstp->rq_pages;
1264 	rqstp->rq_xprt_ctxt   = dr->xprt_ctxt;
1265 	svc_xprt_received(rqstp->rq_xprt);
1266 	return dr->argslen << 2;
1267 }
1268 
1269 
1270 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1271 {
1272 	struct svc_deferred_req *dr = NULL;
1273 
1274 	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1275 		return NULL;
1276 	spin_lock(&xprt->xpt_lock);
1277 	if (!list_empty(&xprt->xpt_deferred)) {
1278 		dr = list_entry(xprt->xpt_deferred.next,
1279 				struct svc_deferred_req,
1280 				handle.recent);
1281 		list_del_init(&dr->handle.recent);
1282 	} else
1283 		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1284 	spin_unlock(&xprt->xpt_lock);
1285 	return dr;
1286 }
1287 
1288 /**
1289  * svc_find_xprt - find an RPC transport instance
1290  * @serv: pointer to svc_serv to search
1291  * @xcl_name: C string containing transport's class name
1292  * @net: owner net pointer
1293  * @af: Address family of transport's local address
1294  * @port: transport's IP port number
1295  *
1296  * Return the transport instance pointer for the endpoint accepting
1297  * connections/peer traffic from the specified transport class,
1298  * address family and port.
1299  *
1300  * Specifying 0 for the address family or port is effectively a
1301  * wild-card, and will result in matching the first transport in the
1302  * service's list that has a matching class name.
1303  */
1304 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1305 			       struct net *net, const sa_family_t af,
1306 			       const unsigned short port)
1307 {
1308 	struct svc_xprt *xprt;
1309 	struct svc_xprt *found = NULL;
1310 
1311 	/* Sanity check the args */
1312 	if (serv == NULL || xcl_name == NULL)
1313 		return found;
1314 
1315 	spin_lock_bh(&serv->sv_lock);
1316 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1317 		if (xprt->xpt_net != net)
1318 			continue;
1319 		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1320 			continue;
1321 		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1322 			continue;
1323 		if (port != 0 && port != svc_xprt_local_port(xprt))
1324 			continue;
1325 		found = xprt;
1326 		svc_xprt_get(xprt);
1327 		break;
1328 	}
1329 	spin_unlock_bh(&serv->sv_lock);
1330 	return found;
1331 }
1332 EXPORT_SYMBOL_GPL(svc_find_xprt);
1333 
1334 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1335 			     char *pos, int remaining)
1336 {
1337 	int len;
1338 
1339 	len = snprintf(pos, remaining, "%s %u\n",
1340 			xprt->xpt_class->xcl_name,
1341 			svc_xprt_local_port(xprt));
1342 	if (len >= remaining)
1343 		return -ENAMETOOLONG;
1344 	return len;
1345 }
1346 
1347 /**
1348  * svc_xprt_names - format a buffer with a list of transport names
1349  * @serv: pointer to an RPC service
1350  * @buf: pointer to a buffer to be filled in
1351  * @buflen: length of buffer to be filled in
1352  *
1353  * Fills in @buf with a string containing a list of transport names,
1354  * each name terminated with '\n'.
1355  *
1356  * Returns positive length of the filled-in string on success; otherwise
1357  * a negative errno value is returned if an error occurs.
1358  */
1359 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1360 {
1361 	struct svc_xprt *xprt;
1362 	int len, totlen;
1363 	char *pos;
1364 
1365 	/* Sanity check args */
1366 	if (!serv)
1367 		return 0;
1368 
1369 	spin_lock_bh(&serv->sv_lock);
1370 
1371 	pos = buf;
1372 	totlen = 0;
1373 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1374 		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1375 		if (len < 0) {
1376 			*buf = '\0';
1377 			totlen = len;
1378 		}
1379 		if (len <= 0)
1380 			break;
1381 
1382 		pos += len;
1383 		totlen += len;
1384 	}
1385 
1386 	spin_unlock_bh(&serv->sv_lock);
1387 	return totlen;
1388 }
1389 EXPORT_SYMBOL_GPL(svc_xprt_names);
1390 
1391 
1392 /*----------------------------------------------------------------------------*/
1393 
1394 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1395 {
1396 	unsigned int pidx = (unsigned int)*pos;
1397 	struct svc_serv *serv = m->private;
1398 
1399 	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1400 
1401 	if (!pidx)
1402 		return SEQ_START_TOKEN;
1403 	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1404 }
1405 
1406 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1407 {
1408 	struct svc_pool *pool = p;
1409 	struct svc_serv *serv = m->private;
1410 
1411 	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1412 
1413 	if (p == SEQ_START_TOKEN) {
1414 		pool = &serv->sv_pools[0];
1415 	} else {
1416 		unsigned int pidx = (pool - &serv->sv_pools[0]);
1417 		if (pidx < serv->sv_nrpools-1)
1418 			pool = &serv->sv_pools[pidx+1];
1419 		else
1420 			pool = NULL;
1421 	}
1422 	++*pos;
1423 	return pool;
1424 }
1425 
1426 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1427 {
1428 }
1429 
1430 static int svc_pool_stats_show(struct seq_file *m, void *p)
1431 {
1432 	struct svc_pool *pool = p;
1433 
1434 	if (p == SEQ_START_TOKEN) {
1435 		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1436 		return 0;
1437 	}
1438 
1439 	seq_printf(m, "%u %llu %llu %llu %llu\n",
1440 		pool->sp_id,
1441 		percpu_counter_sum_positive(&pool->sp_sockets_queued),
1442 		percpu_counter_sum_positive(&pool->sp_sockets_queued),
1443 		percpu_counter_sum_positive(&pool->sp_threads_woken),
1444 		percpu_counter_sum_positive(&pool->sp_threads_timedout));
1445 
1446 	return 0;
1447 }
1448 
1449 static const struct seq_operations svc_pool_stats_seq_ops = {
1450 	.start	= svc_pool_stats_start,
1451 	.next	= svc_pool_stats_next,
1452 	.stop	= svc_pool_stats_stop,
1453 	.show	= svc_pool_stats_show,
1454 };
1455 
1456 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1457 {
1458 	int err;
1459 
1460 	err = seq_open(file, &svc_pool_stats_seq_ops);
1461 	if (!err)
1462 		((struct seq_file *) file->private_data)->private = serv;
1463 	return err;
1464 }
1465 EXPORT_SYMBOL(svc_pool_stats_open);
1466 
1467 /*----------------------------------------------------------------------------*/
1468