xref: /openbmc/linux/net/sunrpc/svc_xprt.c (revision 7dd65feb)
1 /*
2  * linux/net/sunrpc/svc_xprt.c
3  *
4  * Author: Tom Tucker <tom@opengridcomputing.com>
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/smp_lock.h>
9 #include <linux/errno.h>
10 #include <linux/freezer.h>
11 #include <linux/kthread.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/stats.h>
14 #include <linux/sunrpc/svc_xprt.h>
15 #include <linux/sunrpc/svcsock.h>
16 
17 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
18 
19 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
20 static int svc_deferred_recv(struct svc_rqst *rqstp);
21 static struct cache_deferred_req *svc_defer(struct cache_req *req);
22 static void svc_age_temp_xprts(unsigned long closure);
23 
24 /* apparently the "standard" is that clients close
25  * idle connections after 5 minutes, servers after
26  * 6 minutes
27  *   http://www.connectathon.org/talks96/nfstcp.pdf
28  */
29 static int svc_conn_age_period = 6*60;
30 
31 /* List of registered transport classes */
32 static DEFINE_SPINLOCK(svc_xprt_class_lock);
33 static LIST_HEAD(svc_xprt_class_list);
34 
35 /* SMP locking strategy:
36  *
37  *	svc_pool->sp_lock protects most of the fields of that pool.
38  *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
39  *	when both need to be taken (rare), svc_serv->sv_lock is first.
40  *	BKL protects svc_serv->sv_nrthread.
41  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
42  *             and the ->sk_info_authunix cache.
43  *
44  *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
45  *	enqueued multiply. During normal transport processing this bit
46  *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
47  *	Providers should not manipulate this bit directly.
48  *
49  *	Some flags can be set to certain values at any time
50  *	providing that certain rules are followed:
51  *
52  *	XPT_CONN, XPT_DATA:
53  *		- Can be set or cleared at any time.
54  *		- After a set, svc_xprt_enqueue must be called to enqueue
55  *		  the transport for processing.
56  *		- After a clear, the transport must be read/accepted.
57  *		  If this succeeds, it must be set again.
58  *	XPT_CLOSE:
59  *		- Can set at any time. It is never cleared.
60  *      XPT_DEAD:
61  *		- Can only be set while XPT_BUSY is held which ensures
62  *		  that no other thread will be using the transport or will
63  *		  try to set XPT_DEAD.
64  */
65 
66 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
67 {
68 	struct svc_xprt_class *cl;
69 	int res = -EEXIST;
70 
71 	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
72 
73 	INIT_LIST_HEAD(&xcl->xcl_list);
74 	spin_lock(&svc_xprt_class_lock);
75 	/* Make sure there isn't already a class with the same name */
76 	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
77 		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
78 			goto out;
79 	}
80 	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
81 	res = 0;
82 out:
83 	spin_unlock(&svc_xprt_class_lock);
84 	return res;
85 }
86 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
87 
88 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
89 {
90 	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
91 	spin_lock(&svc_xprt_class_lock);
92 	list_del_init(&xcl->xcl_list);
93 	spin_unlock(&svc_xprt_class_lock);
94 }
95 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
96 
97 /*
98  * Format the transport list for printing
99  */
100 int svc_print_xprts(char *buf, int maxlen)
101 {
102 	struct list_head *le;
103 	char tmpstr[80];
104 	int len = 0;
105 	buf[0] = '\0';
106 
107 	spin_lock(&svc_xprt_class_lock);
108 	list_for_each(le, &svc_xprt_class_list) {
109 		int slen;
110 		struct svc_xprt_class *xcl =
111 			list_entry(le, struct svc_xprt_class, xcl_list);
112 
113 		sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
114 		slen = strlen(tmpstr);
115 		if (len + slen > maxlen)
116 			break;
117 		len += slen;
118 		strcat(buf, tmpstr);
119 	}
120 	spin_unlock(&svc_xprt_class_lock);
121 
122 	return len;
123 }
124 
125 static void svc_xprt_free(struct kref *kref)
126 {
127 	struct svc_xprt *xprt =
128 		container_of(kref, struct svc_xprt, xpt_ref);
129 	struct module *owner = xprt->xpt_class->xcl_owner;
130 	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags) &&
131 	    xprt->xpt_auth_cache != NULL)
132 		svcauth_unix_info_release(xprt->xpt_auth_cache);
133 	xprt->xpt_ops->xpo_free(xprt);
134 	module_put(owner);
135 }
136 
137 void svc_xprt_put(struct svc_xprt *xprt)
138 {
139 	kref_put(&xprt->xpt_ref, svc_xprt_free);
140 }
141 EXPORT_SYMBOL_GPL(svc_xprt_put);
142 
143 /*
144  * Called by transport drivers to initialize the transport independent
145  * portion of the transport instance.
146  */
147 void svc_xprt_init(struct svc_xprt_class *xcl, struct svc_xprt *xprt,
148 		   struct svc_serv *serv)
149 {
150 	memset(xprt, 0, sizeof(*xprt));
151 	xprt->xpt_class = xcl;
152 	xprt->xpt_ops = xcl->xcl_ops;
153 	kref_init(&xprt->xpt_ref);
154 	xprt->xpt_server = serv;
155 	INIT_LIST_HEAD(&xprt->xpt_list);
156 	INIT_LIST_HEAD(&xprt->xpt_ready);
157 	INIT_LIST_HEAD(&xprt->xpt_deferred);
158 	mutex_init(&xprt->xpt_mutex);
159 	spin_lock_init(&xprt->xpt_lock);
160 	set_bit(XPT_BUSY, &xprt->xpt_flags);
161 	rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
162 }
163 EXPORT_SYMBOL_GPL(svc_xprt_init);
164 
165 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
166 					 struct svc_serv *serv,
167 					 const int family,
168 					 const unsigned short port,
169 					 int flags)
170 {
171 	struct sockaddr_in sin = {
172 		.sin_family		= AF_INET,
173 		.sin_addr.s_addr	= htonl(INADDR_ANY),
174 		.sin_port		= htons(port),
175 	};
176 	struct sockaddr_in6 sin6 = {
177 		.sin6_family		= AF_INET6,
178 		.sin6_addr		= IN6ADDR_ANY_INIT,
179 		.sin6_port		= htons(port),
180 	};
181 	struct sockaddr *sap;
182 	size_t len;
183 
184 	switch (family) {
185 	case PF_INET:
186 		sap = (struct sockaddr *)&sin;
187 		len = sizeof(sin);
188 		break;
189 	case PF_INET6:
190 		sap = (struct sockaddr *)&sin6;
191 		len = sizeof(sin6);
192 		break;
193 	default:
194 		return ERR_PTR(-EAFNOSUPPORT);
195 	}
196 
197 	return xcl->xcl_ops->xpo_create(serv, sap, len, flags);
198 }
199 
200 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
201 		    const int family, const unsigned short port,
202 		    int flags)
203 {
204 	struct svc_xprt_class *xcl;
205 
206 	dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
207 	spin_lock(&svc_xprt_class_lock);
208 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
209 		struct svc_xprt *newxprt;
210 
211 		if (strcmp(xprt_name, xcl->xcl_name))
212 			continue;
213 
214 		if (!try_module_get(xcl->xcl_owner))
215 			goto err;
216 
217 		spin_unlock(&svc_xprt_class_lock);
218 		newxprt = __svc_xpo_create(xcl, serv, family, port, flags);
219 		if (IS_ERR(newxprt)) {
220 			module_put(xcl->xcl_owner);
221 			return PTR_ERR(newxprt);
222 		}
223 
224 		clear_bit(XPT_TEMP, &newxprt->xpt_flags);
225 		spin_lock_bh(&serv->sv_lock);
226 		list_add(&newxprt->xpt_list, &serv->sv_permsocks);
227 		spin_unlock_bh(&serv->sv_lock);
228 		clear_bit(XPT_BUSY, &newxprt->xpt_flags);
229 		return svc_xprt_local_port(newxprt);
230 	}
231  err:
232 	spin_unlock(&svc_xprt_class_lock);
233 	dprintk("svc: transport %s not found\n", xprt_name);
234 	return -ENOENT;
235 }
236 EXPORT_SYMBOL_GPL(svc_create_xprt);
237 
238 /*
239  * Copy the local and remote xprt addresses to the rqstp structure
240  */
241 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
242 {
243 	struct sockaddr *sin;
244 
245 	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
246 	rqstp->rq_addrlen = xprt->xpt_remotelen;
247 
248 	/*
249 	 * Destination address in request is needed for binding the
250 	 * source address in RPC replies/callbacks later.
251 	 */
252 	sin = (struct sockaddr *)&xprt->xpt_local;
253 	switch (sin->sa_family) {
254 	case AF_INET:
255 		rqstp->rq_daddr.addr = ((struct sockaddr_in *)sin)->sin_addr;
256 		break;
257 	case AF_INET6:
258 		rqstp->rq_daddr.addr6 = ((struct sockaddr_in6 *)sin)->sin6_addr;
259 		break;
260 	}
261 }
262 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
263 
264 /**
265  * svc_print_addr - Format rq_addr field for printing
266  * @rqstp: svc_rqst struct containing address to print
267  * @buf: target buffer for formatted address
268  * @len: length of target buffer
269  *
270  */
271 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
272 {
273 	return __svc_print_addr(svc_addr(rqstp), buf, len);
274 }
275 EXPORT_SYMBOL_GPL(svc_print_addr);
276 
277 /*
278  * Queue up an idle server thread.  Must have pool->sp_lock held.
279  * Note: this is really a stack rather than a queue, so that we only
280  * use as many different threads as we need, and the rest don't pollute
281  * the cache.
282  */
283 static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
284 {
285 	list_add(&rqstp->rq_list, &pool->sp_threads);
286 }
287 
288 /*
289  * Dequeue an nfsd thread.  Must have pool->sp_lock held.
290  */
291 static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
292 {
293 	list_del(&rqstp->rq_list);
294 }
295 
296 /*
297  * Queue up a transport with data pending. If there are idle nfsd
298  * processes, wake 'em up.
299  *
300  */
301 void svc_xprt_enqueue(struct svc_xprt *xprt)
302 {
303 	struct svc_serv	*serv = xprt->xpt_server;
304 	struct svc_pool *pool;
305 	struct svc_rqst	*rqstp;
306 	int cpu;
307 
308 	if (!(xprt->xpt_flags &
309 	      ((1<<XPT_CONN)|(1<<XPT_DATA)|(1<<XPT_CLOSE)|(1<<XPT_DEFERRED))))
310 		return;
311 
312 	cpu = get_cpu();
313 	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
314 	put_cpu();
315 
316 	spin_lock_bh(&pool->sp_lock);
317 
318 	if (!list_empty(&pool->sp_threads) &&
319 	    !list_empty(&pool->sp_sockets))
320 		printk(KERN_ERR
321 		       "svc_xprt_enqueue: "
322 		       "threads and transports both waiting??\n");
323 
324 	if (test_bit(XPT_DEAD, &xprt->xpt_flags)) {
325 		/* Don't enqueue dead transports */
326 		dprintk("svc: transport %p is dead, not enqueued\n", xprt);
327 		goto out_unlock;
328 	}
329 
330 	pool->sp_stats.packets++;
331 
332 	/* Mark transport as busy. It will remain in this state until
333 	 * the provider calls svc_xprt_received. We update XPT_BUSY
334 	 * atomically because it also guards against trying to enqueue
335 	 * the transport twice.
336 	 */
337 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
338 		/* Don't enqueue transport while already enqueued */
339 		dprintk("svc: transport %p busy, not enqueued\n", xprt);
340 		goto out_unlock;
341 	}
342 	BUG_ON(xprt->xpt_pool != NULL);
343 	xprt->xpt_pool = pool;
344 
345 	/* Handle pending connection */
346 	if (test_bit(XPT_CONN, &xprt->xpt_flags))
347 		goto process;
348 
349 	/* Handle close in-progress */
350 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags))
351 		goto process;
352 
353 	/* Check if we have space to reply to a request */
354 	if (!xprt->xpt_ops->xpo_has_wspace(xprt)) {
355 		/* Don't enqueue while not enough space for reply */
356 		dprintk("svc: no write space, transport %p  not enqueued\n",
357 			xprt);
358 		xprt->xpt_pool = NULL;
359 		clear_bit(XPT_BUSY, &xprt->xpt_flags);
360 		goto out_unlock;
361 	}
362 
363  process:
364 	if (!list_empty(&pool->sp_threads)) {
365 		rqstp = list_entry(pool->sp_threads.next,
366 				   struct svc_rqst,
367 				   rq_list);
368 		dprintk("svc: transport %p served by daemon %p\n",
369 			xprt, rqstp);
370 		svc_thread_dequeue(pool, rqstp);
371 		if (rqstp->rq_xprt)
372 			printk(KERN_ERR
373 				"svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
374 				rqstp, rqstp->rq_xprt);
375 		rqstp->rq_xprt = xprt;
376 		svc_xprt_get(xprt);
377 		rqstp->rq_reserved = serv->sv_max_mesg;
378 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
379 		pool->sp_stats.threads_woken++;
380 		BUG_ON(xprt->xpt_pool != pool);
381 		wake_up(&rqstp->rq_wait);
382 	} else {
383 		dprintk("svc: transport %p put into queue\n", xprt);
384 		list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
385 		pool->sp_stats.sockets_queued++;
386 		BUG_ON(xprt->xpt_pool != pool);
387 	}
388 
389 out_unlock:
390 	spin_unlock_bh(&pool->sp_lock);
391 }
392 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
393 
394 /*
395  * Dequeue the first transport.  Must be called with the pool->sp_lock held.
396  */
397 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
398 {
399 	struct svc_xprt	*xprt;
400 
401 	if (list_empty(&pool->sp_sockets))
402 		return NULL;
403 
404 	xprt = list_entry(pool->sp_sockets.next,
405 			  struct svc_xprt, xpt_ready);
406 	list_del_init(&xprt->xpt_ready);
407 
408 	dprintk("svc: transport %p dequeued, inuse=%d\n",
409 		xprt, atomic_read(&xprt->xpt_ref.refcount));
410 
411 	return xprt;
412 }
413 
414 /*
415  * svc_xprt_received conditionally queues the transport for processing
416  * by another thread. The caller must hold the XPT_BUSY bit and must
417  * not thereafter touch transport data.
418  *
419  * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
420  * insufficient) data.
421  */
422 void svc_xprt_received(struct svc_xprt *xprt)
423 {
424 	BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
425 	xprt->xpt_pool = NULL;
426 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
427 	svc_xprt_enqueue(xprt);
428 }
429 EXPORT_SYMBOL_GPL(svc_xprt_received);
430 
431 /**
432  * svc_reserve - change the space reserved for the reply to a request.
433  * @rqstp:  The request in question
434  * @space: new max space to reserve
435  *
436  * Each request reserves some space on the output queue of the transport
437  * to make sure the reply fits.  This function reduces that reserved
438  * space to be the amount of space used already, plus @space.
439  *
440  */
441 void svc_reserve(struct svc_rqst *rqstp, int space)
442 {
443 	space += rqstp->rq_res.head[0].iov_len;
444 
445 	if (space < rqstp->rq_reserved) {
446 		struct svc_xprt *xprt = rqstp->rq_xprt;
447 		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
448 		rqstp->rq_reserved = space;
449 
450 		svc_xprt_enqueue(xprt);
451 	}
452 }
453 EXPORT_SYMBOL_GPL(svc_reserve);
454 
455 static void svc_xprt_release(struct svc_rqst *rqstp)
456 {
457 	struct svc_xprt	*xprt = rqstp->rq_xprt;
458 
459 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
460 
461 	kfree(rqstp->rq_deferred);
462 	rqstp->rq_deferred = NULL;
463 
464 	svc_free_res_pages(rqstp);
465 	rqstp->rq_res.page_len = 0;
466 	rqstp->rq_res.page_base = 0;
467 
468 	/* Reset response buffer and release
469 	 * the reservation.
470 	 * But first, check that enough space was reserved
471 	 * for the reply, otherwise we have a bug!
472 	 */
473 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
474 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
475 		       rqstp->rq_reserved,
476 		       rqstp->rq_res.len);
477 
478 	rqstp->rq_res.head[0].iov_len = 0;
479 	svc_reserve(rqstp, 0);
480 	rqstp->rq_xprt = NULL;
481 
482 	svc_xprt_put(xprt);
483 }
484 
485 /*
486  * External function to wake up a server waiting for data
487  * This really only makes sense for services like lockd
488  * which have exactly one thread anyway.
489  */
490 void svc_wake_up(struct svc_serv *serv)
491 {
492 	struct svc_rqst	*rqstp;
493 	unsigned int i;
494 	struct svc_pool *pool;
495 
496 	for (i = 0; i < serv->sv_nrpools; i++) {
497 		pool = &serv->sv_pools[i];
498 
499 		spin_lock_bh(&pool->sp_lock);
500 		if (!list_empty(&pool->sp_threads)) {
501 			rqstp = list_entry(pool->sp_threads.next,
502 					   struct svc_rqst,
503 					   rq_list);
504 			dprintk("svc: daemon %p woken up.\n", rqstp);
505 			/*
506 			svc_thread_dequeue(pool, rqstp);
507 			rqstp->rq_xprt = NULL;
508 			 */
509 			wake_up(&rqstp->rq_wait);
510 		}
511 		spin_unlock_bh(&pool->sp_lock);
512 	}
513 }
514 EXPORT_SYMBOL_GPL(svc_wake_up);
515 
516 int svc_port_is_privileged(struct sockaddr *sin)
517 {
518 	switch (sin->sa_family) {
519 	case AF_INET:
520 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
521 			< PROT_SOCK;
522 	case AF_INET6:
523 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
524 			< PROT_SOCK;
525 	default:
526 		return 0;
527 	}
528 }
529 
530 /*
531  * Make sure that we don't have too many active connections. If we have,
532  * something must be dropped. It's not clear what will happen if we allow
533  * "too many" connections, but when dealing with network-facing software,
534  * we have to code defensively. Here we do that by imposing hard limits.
535  *
536  * There's no point in trying to do random drop here for DoS
537  * prevention. The NFS clients does 1 reconnect in 15 seconds. An
538  * attacker can easily beat that.
539  *
540  * The only somewhat efficient mechanism would be if drop old
541  * connections from the same IP first. But right now we don't even
542  * record the client IP in svc_sock.
543  *
544  * single-threaded services that expect a lot of clients will probably
545  * need to set sv_maxconn to override the default value which is based
546  * on the number of threads
547  */
548 static void svc_check_conn_limits(struct svc_serv *serv)
549 {
550 	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
551 				(serv->sv_nrthreads+3) * 20;
552 
553 	if (serv->sv_tmpcnt > limit) {
554 		struct svc_xprt *xprt = NULL;
555 		spin_lock_bh(&serv->sv_lock);
556 		if (!list_empty(&serv->sv_tempsocks)) {
557 			if (net_ratelimit()) {
558 				/* Try to help the admin */
559 				printk(KERN_NOTICE "%s: too many open  "
560 				       "connections, consider increasing %s\n",
561 				       serv->sv_name, serv->sv_maxconn ?
562 				       "the max number of connections." :
563 				       "the number of threads.");
564 			}
565 			/*
566 			 * Always select the oldest connection. It's not fair,
567 			 * but so is life
568 			 */
569 			xprt = list_entry(serv->sv_tempsocks.prev,
570 					  struct svc_xprt,
571 					  xpt_list);
572 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
573 			svc_xprt_get(xprt);
574 		}
575 		spin_unlock_bh(&serv->sv_lock);
576 
577 		if (xprt) {
578 			svc_xprt_enqueue(xprt);
579 			svc_xprt_put(xprt);
580 		}
581 	}
582 }
583 
584 /*
585  * Receive the next request on any transport.  This code is carefully
586  * organised not to touch any cachelines in the shared svc_serv
587  * structure, only cachelines in the local svc_pool.
588  */
589 int svc_recv(struct svc_rqst *rqstp, long timeout)
590 {
591 	struct svc_xprt		*xprt = NULL;
592 	struct svc_serv		*serv = rqstp->rq_server;
593 	struct svc_pool		*pool = rqstp->rq_pool;
594 	int			len, i;
595 	int			pages;
596 	struct xdr_buf		*arg;
597 	DECLARE_WAITQUEUE(wait, current);
598 	long			time_left;
599 
600 	dprintk("svc: server %p waiting for data (to = %ld)\n",
601 		rqstp, timeout);
602 
603 	if (rqstp->rq_xprt)
604 		printk(KERN_ERR
605 			"svc_recv: service %p, transport not NULL!\n",
606 			 rqstp);
607 	if (waitqueue_active(&rqstp->rq_wait))
608 		printk(KERN_ERR
609 			"svc_recv: service %p, wait queue active!\n",
610 			 rqstp);
611 
612 	/* now allocate needed pages.  If we get a failure, sleep briefly */
613 	pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
614 	for (i = 0; i < pages ; i++)
615 		while (rqstp->rq_pages[i] == NULL) {
616 			struct page *p = alloc_page(GFP_KERNEL);
617 			if (!p) {
618 				set_current_state(TASK_INTERRUPTIBLE);
619 				if (signalled() || kthread_should_stop()) {
620 					set_current_state(TASK_RUNNING);
621 					return -EINTR;
622 				}
623 				schedule_timeout(msecs_to_jiffies(500));
624 			}
625 			rqstp->rq_pages[i] = p;
626 		}
627 	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
628 	BUG_ON(pages >= RPCSVC_MAXPAGES);
629 
630 	/* Make arg->head point to first page and arg->pages point to rest */
631 	arg = &rqstp->rq_arg;
632 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
633 	arg->head[0].iov_len = PAGE_SIZE;
634 	arg->pages = rqstp->rq_pages + 1;
635 	arg->page_base = 0;
636 	/* save at least one page for response */
637 	arg->page_len = (pages-2)*PAGE_SIZE;
638 	arg->len = (pages-1)*PAGE_SIZE;
639 	arg->tail[0].iov_len = 0;
640 
641 	try_to_freeze();
642 	cond_resched();
643 	if (signalled() || kthread_should_stop())
644 		return -EINTR;
645 
646 	spin_lock_bh(&pool->sp_lock);
647 	xprt = svc_xprt_dequeue(pool);
648 	if (xprt) {
649 		rqstp->rq_xprt = xprt;
650 		svc_xprt_get(xprt);
651 		rqstp->rq_reserved = serv->sv_max_mesg;
652 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
653 	} else {
654 		/* No data pending. Go to sleep */
655 		svc_thread_enqueue(pool, rqstp);
656 
657 		/*
658 		 * We have to be able to interrupt this wait
659 		 * to bring down the daemons ...
660 		 */
661 		set_current_state(TASK_INTERRUPTIBLE);
662 
663 		/*
664 		 * checking kthread_should_stop() here allows us to avoid
665 		 * locking and signalling when stopping kthreads that call
666 		 * svc_recv. If the thread has already been woken up, then
667 		 * we can exit here without sleeping. If not, then it
668 		 * it'll be woken up quickly during the schedule_timeout
669 		 */
670 		if (kthread_should_stop()) {
671 			set_current_state(TASK_RUNNING);
672 			spin_unlock_bh(&pool->sp_lock);
673 			return -EINTR;
674 		}
675 
676 		add_wait_queue(&rqstp->rq_wait, &wait);
677 		spin_unlock_bh(&pool->sp_lock);
678 
679 		time_left = schedule_timeout(timeout);
680 
681 		try_to_freeze();
682 
683 		spin_lock_bh(&pool->sp_lock);
684 		remove_wait_queue(&rqstp->rq_wait, &wait);
685 		if (!time_left)
686 			pool->sp_stats.threads_timedout++;
687 
688 		xprt = rqstp->rq_xprt;
689 		if (!xprt) {
690 			svc_thread_dequeue(pool, rqstp);
691 			spin_unlock_bh(&pool->sp_lock);
692 			dprintk("svc: server %p, no data yet\n", rqstp);
693 			if (signalled() || kthread_should_stop())
694 				return -EINTR;
695 			else
696 				return -EAGAIN;
697 		}
698 	}
699 	spin_unlock_bh(&pool->sp_lock);
700 
701 	len = 0;
702 	if (test_bit(XPT_LISTENER, &xprt->xpt_flags) &&
703 	    !test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
704 		struct svc_xprt *newxpt;
705 		newxpt = xprt->xpt_ops->xpo_accept(xprt);
706 		if (newxpt) {
707 			/*
708 			 * We know this module_get will succeed because the
709 			 * listener holds a reference too
710 			 */
711 			__module_get(newxpt->xpt_class->xcl_owner);
712 			svc_check_conn_limits(xprt->xpt_server);
713 			spin_lock_bh(&serv->sv_lock);
714 			set_bit(XPT_TEMP, &newxpt->xpt_flags);
715 			list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
716 			serv->sv_tmpcnt++;
717 			if (serv->sv_temptimer.function == NULL) {
718 				/* setup timer to age temp transports */
719 				setup_timer(&serv->sv_temptimer,
720 					    svc_age_temp_xprts,
721 					    (unsigned long)serv);
722 				mod_timer(&serv->sv_temptimer,
723 					  jiffies + svc_conn_age_period * HZ);
724 			}
725 			spin_unlock_bh(&serv->sv_lock);
726 			svc_xprt_received(newxpt);
727 		}
728 		svc_xprt_received(xprt);
729 	} else if (!test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
730 		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
731 			rqstp, pool->sp_id, xprt,
732 			atomic_read(&xprt->xpt_ref.refcount));
733 		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
734 		if (rqstp->rq_deferred) {
735 			svc_xprt_received(xprt);
736 			len = svc_deferred_recv(rqstp);
737 		} else
738 			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
739 		dprintk("svc: got len=%d\n", len);
740 	}
741 
742 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
743 		dprintk("svc_recv: found XPT_CLOSE\n");
744 		svc_delete_xprt(xprt);
745 	}
746 
747 	/* No data, incomplete (TCP) read, or accept() */
748 	if (len == 0 || len == -EAGAIN) {
749 		rqstp->rq_res.len = 0;
750 		svc_xprt_release(rqstp);
751 		return -EAGAIN;
752 	}
753 	clear_bit(XPT_OLD, &xprt->xpt_flags);
754 
755 	rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
756 	rqstp->rq_chandle.defer = svc_defer;
757 
758 	if (serv->sv_stats)
759 		serv->sv_stats->netcnt++;
760 	return len;
761 }
762 EXPORT_SYMBOL_GPL(svc_recv);
763 
764 /*
765  * Drop request
766  */
767 void svc_drop(struct svc_rqst *rqstp)
768 {
769 	dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
770 	svc_xprt_release(rqstp);
771 }
772 EXPORT_SYMBOL_GPL(svc_drop);
773 
774 /*
775  * Return reply to client.
776  */
777 int svc_send(struct svc_rqst *rqstp)
778 {
779 	struct svc_xprt	*xprt;
780 	int		len;
781 	struct xdr_buf	*xb;
782 
783 	xprt = rqstp->rq_xprt;
784 	if (!xprt)
785 		return -EFAULT;
786 
787 	/* release the receive skb before sending the reply */
788 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
789 
790 	/* calculate over-all length */
791 	xb = &rqstp->rq_res;
792 	xb->len = xb->head[0].iov_len +
793 		xb->page_len +
794 		xb->tail[0].iov_len;
795 
796 	/* Grab mutex to serialize outgoing data. */
797 	mutex_lock(&xprt->xpt_mutex);
798 	if (test_bit(XPT_DEAD, &xprt->xpt_flags))
799 		len = -ENOTCONN;
800 	else
801 		len = xprt->xpt_ops->xpo_sendto(rqstp);
802 	mutex_unlock(&xprt->xpt_mutex);
803 	rpc_wake_up(&xprt->xpt_bc_pending);
804 	svc_xprt_release(rqstp);
805 
806 	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
807 		return 0;
808 	return len;
809 }
810 
811 /*
812  * Timer function to close old temporary transports, using
813  * a mark-and-sweep algorithm.
814  */
815 static void svc_age_temp_xprts(unsigned long closure)
816 {
817 	struct svc_serv *serv = (struct svc_serv *)closure;
818 	struct svc_xprt *xprt;
819 	struct list_head *le, *next;
820 	LIST_HEAD(to_be_aged);
821 
822 	dprintk("svc_age_temp_xprts\n");
823 
824 	if (!spin_trylock_bh(&serv->sv_lock)) {
825 		/* busy, try again 1 sec later */
826 		dprintk("svc_age_temp_xprts: busy\n");
827 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
828 		return;
829 	}
830 
831 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
832 		xprt = list_entry(le, struct svc_xprt, xpt_list);
833 
834 		/* First time through, just mark it OLD. Second time
835 		 * through, close it. */
836 		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
837 			continue;
838 		if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
839 		    test_bit(XPT_BUSY, &xprt->xpt_flags))
840 			continue;
841 		svc_xprt_get(xprt);
842 		list_move(le, &to_be_aged);
843 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
844 		set_bit(XPT_DETACHED, &xprt->xpt_flags);
845 	}
846 	spin_unlock_bh(&serv->sv_lock);
847 
848 	while (!list_empty(&to_be_aged)) {
849 		le = to_be_aged.next;
850 		/* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
851 		list_del_init(le);
852 		xprt = list_entry(le, struct svc_xprt, xpt_list);
853 
854 		dprintk("queuing xprt %p for closing\n", xprt);
855 
856 		/* a thread will dequeue and close it soon */
857 		svc_xprt_enqueue(xprt);
858 		svc_xprt_put(xprt);
859 	}
860 
861 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
862 }
863 
864 /*
865  * Remove a dead transport
866  */
867 void svc_delete_xprt(struct svc_xprt *xprt)
868 {
869 	struct svc_serv	*serv = xprt->xpt_server;
870 	struct svc_deferred_req *dr;
871 
872 	/* Only do this once */
873 	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
874 		return;
875 
876 	dprintk("svc: svc_delete_xprt(%p)\n", xprt);
877 	xprt->xpt_ops->xpo_detach(xprt);
878 
879 	spin_lock_bh(&serv->sv_lock);
880 	if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
881 		list_del_init(&xprt->xpt_list);
882 	/*
883 	 * We used to delete the transport from whichever list
884 	 * it's sk_xprt.xpt_ready node was on, but we don't actually
885 	 * need to.  This is because the only time we're called
886 	 * while still attached to a queue, the queue itself
887 	 * is about to be destroyed (in svc_destroy).
888 	 */
889 	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
890 		serv->sv_tmpcnt--;
891 
892 	for (dr = svc_deferred_dequeue(xprt); dr;
893 	     dr = svc_deferred_dequeue(xprt)) {
894 		svc_xprt_put(xprt);
895 		kfree(dr);
896 	}
897 
898 	svc_xprt_put(xprt);
899 	spin_unlock_bh(&serv->sv_lock);
900 }
901 
902 void svc_close_xprt(struct svc_xprt *xprt)
903 {
904 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
905 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
906 		/* someone else will have to effect the close */
907 		return;
908 
909 	svc_xprt_get(xprt);
910 	svc_delete_xprt(xprt);
911 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
912 	svc_xprt_put(xprt);
913 }
914 EXPORT_SYMBOL_GPL(svc_close_xprt);
915 
916 void svc_close_all(struct list_head *xprt_list)
917 {
918 	struct svc_xprt *xprt;
919 	struct svc_xprt *tmp;
920 
921 	list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
922 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
923 		if (test_bit(XPT_BUSY, &xprt->xpt_flags)) {
924 			/* Waiting to be processed, but no threads left,
925 			 * So just remove it from the waiting list
926 			 */
927 			list_del_init(&xprt->xpt_ready);
928 			clear_bit(XPT_BUSY, &xprt->xpt_flags);
929 		}
930 		svc_close_xprt(xprt);
931 	}
932 }
933 
934 /*
935  * Handle defer and revisit of requests
936  */
937 
938 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
939 {
940 	struct svc_deferred_req *dr =
941 		container_of(dreq, struct svc_deferred_req, handle);
942 	struct svc_xprt *xprt = dr->xprt;
943 
944 	spin_lock(&xprt->xpt_lock);
945 	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
946 	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
947 		spin_unlock(&xprt->xpt_lock);
948 		dprintk("revisit canceled\n");
949 		svc_xprt_put(xprt);
950 		kfree(dr);
951 		return;
952 	}
953 	dprintk("revisit queued\n");
954 	dr->xprt = NULL;
955 	list_add(&dr->handle.recent, &xprt->xpt_deferred);
956 	spin_unlock(&xprt->xpt_lock);
957 	svc_xprt_enqueue(xprt);
958 	svc_xprt_put(xprt);
959 }
960 
961 /*
962  * Save the request off for later processing. The request buffer looks
963  * like this:
964  *
965  * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
966  *
967  * This code can only handle requests that consist of an xprt-header
968  * and rpc-header.
969  */
970 static struct cache_deferred_req *svc_defer(struct cache_req *req)
971 {
972 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
973 	struct svc_deferred_req *dr;
974 
975 	if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
976 		return NULL; /* if more than a page, give up FIXME */
977 	if (rqstp->rq_deferred) {
978 		dr = rqstp->rq_deferred;
979 		rqstp->rq_deferred = NULL;
980 	} else {
981 		size_t skip;
982 		size_t size;
983 		/* FIXME maybe discard if size too large */
984 		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
985 		dr = kmalloc(size, GFP_KERNEL);
986 		if (dr == NULL)
987 			return NULL;
988 
989 		dr->handle.owner = rqstp->rq_server;
990 		dr->prot = rqstp->rq_prot;
991 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
992 		dr->addrlen = rqstp->rq_addrlen;
993 		dr->daddr = rqstp->rq_daddr;
994 		dr->argslen = rqstp->rq_arg.len >> 2;
995 		dr->xprt_hlen = rqstp->rq_xprt_hlen;
996 
997 		/* back up head to the start of the buffer and copy */
998 		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
999 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1000 		       dr->argslen << 2);
1001 	}
1002 	svc_xprt_get(rqstp->rq_xprt);
1003 	dr->xprt = rqstp->rq_xprt;
1004 
1005 	dr->handle.revisit = svc_revisit;
1006 	return &dr->handle;
1007 }
1008 
1009 /*
1010  * recv data from a deferred request into an active one
1011  */
1012 static int svc_deferred_recv(struct svc_rqst *rqstp)
1013 {
1014 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1015 
1016 	/* setup iov_base past transport header */
1017 	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1018 	/* The iov_len does not include the transport header bytes */
1019 	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1020 	rqstp->rq_arg.page_len = 0;
1021 	/* The rq_arg.len includes the transport header bytes */
1022 	rqstp->rq_arg.len     = dr->argslen<<2;
1023 	rqstp->rq_prot        = dr->prot;
1024 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1025 	rqstp->rq_addrlen     = dr->addrlen;
1026 	/* Save off transport header len in case we get deferred again */
1027 	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1028 	rqstp->rq_daddr       = dr->daddr;
1029 	rqstp->rq_respages    = rqstp->rq_pages;
1030 	return (dr->argslen<<2) - dr->xprt_hlen;
1031 }
1032 
1033 
1034 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1035 {
1036 	struct svc_deferred_req *dr = NULL;
1037 
1038 	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1039 		return NULL;
1040 	spin_lock(&xprt->xpt_lock);
1041 	clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1042 	if (!list_empty(&xprt->xpt_deferred)) {
1043 		dr = list_entry(xprt->xpt_deferred.next,
1044 				struct svc_deferred_req,
1045 				handle.recent);
1046 		list_del_init(&dr->handle.recent);
1047 		set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1048 	}
1049 	spin_unlock(&xprt->xpt_lock);
1050 	return dr;
1051 }
1052 
1053 /**
1054  * svc_find_xprt - find an RPC transport instance
1055  * @serv: pointer to svc_serv to search
1056  * @xcl_name: C string containing transport's class name
1057  * @af: Address family of transport's local address
1058  * @port: transport's IP port number
1059  *
1060  * Return the transport instance pointer for the endpoint accepting
1061  * connections/peer traffic from the specified transport class,
1062  * address family and port.
1063  *
1064  * Specifying 0 for the address family or port is effectively a
1065  * wild-card, and will result in matching the first transport in the
1066  * service's list that has a matching class name.
1067  */
1068 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1069 			       const sa_family_t af, const unsigned short port)
1070 {
1071 	struct svc_xprt *xprt;
1072 	struct svc_xprt *found = NULL;
1073 
1074 	/* Sanity check the args */
1075 	if (serv == NULL || xcl_name == NULL)
1076 		return found;
1077 
1078 	spin_lock_bh(&serv->sv_lock);
1079 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1080 		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1081 			continue;
1082 		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1083 			continue;
1084 		if (port != 0 && port != svc_xprt_local_port(xprt))
1085 			continue;
1086 		found = xprt;
1087 		svc_xprt_get(xprt);
1088 		break;
1089 	}
1090 	spin_unlock_bh(&serv->sv_lock);
1091 	return found;
1092 }
1093 EXPORT_SYMBOL_GPL(svc_find_xprt);
1094 
1095 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1096 			     char *pos, int remaining)
1097 {
1098 	int len;
1099 
1100 	len = snprintf(pos, remaining, "%s %u\n",
1101 			xprt->xpt_class->xcl_name,
1102 			svc_xprt_local_port(xprt));
1103 	if (len >= remaining)
1104 		return -ENAMETOOLONG;
1105 	return len;
1106 }
1107 
1108 /**
1109  * svc_xprt_names - format a buffer with a list of transport names
1110  * @serv: pointer to an RPC service
1111  * @buf: pointer to a buffer to be filled in
1112  * @buflen: length of buffer to be filled in
1113  *
1114  * Fills in @buf with a string containing a list of transport names,
1115  * each name terminated with '\n'.
1116  *
1117  * Returns positive length of the filled-in string on success; otherwise
1118  * a negative errno value is returned if an error occurs.
1119  */
1120 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1121 {
1122 	struct svc_xprt *xprt;
1123 	int len, totlen;
1124 	char *pos;
1125 
1126 	/* Sanity check args */
1127 	if (!serv)
1128 		return 0;
1129 
1130 	spin_lock_bh(&serv->sv_lock);
1131 
1132 	pos = buf;
1133 	totlen = 0;
1134 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1135 		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1136 		if (len < 0) {
1137 			*buf = '\0';
1138 			totlen = len;
1139 		}
1140 		if (len <= 0)
1141 			break;
1142 
1143 		pos += len;
1144 		totlen += len;
1145 	}
1146 
1147 	spin_unlock_bh(&serv->sv_lock);
1148 	return totlen;
1149 }
1150 EXPORT_SYMBOL_GPL(svc_xprt_names);
1151 
1152 
1153 /*----------------------------------------------------------------------------*/
1154 
1155 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1156 {
1157 	unsigned int pidx = (unsigned int)*pos;
1158 	struct svc_serv *serv = m->private;
1159 
1160 	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1161 
1162 	if (!pidx)
1163 		return SEQ_START_TOKEN;
1164 	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1165 }
1166 
1167 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1168 {
1169 	struct svc_pool *pool = p;
1170 	struct svc_serv *serv = m->private;
1171 
1172 	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1173 
1174 	if (p == SEQ_START_TOKEN) {
1175 		pool = &serv->sv_pools[0];
1176 	} else {
1177 		unsigned int pidx = (pool - &serv->sv_pools[0]);
1178 		if (pidx < serv->sv_nrpools-1)
1179 			pool = &serv->sv_pools[pidx+1];
1180 		else
1181 			pool = NULL;
1182 	}
1183 	++*pos;
1184 	return pool;
1185 }
1186 
1187 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1188 {
1189 }
1190 
1191 static int svc_pool_stats_show(struct seq_file *m, void *p)
1192 {
1193 	struct svc_pool *pool = p;
1194 
1195 	if (p == SEQ_START_TOKEN) {
1196 		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1197 		return 0;
1198 	}
1199 
1200 	seq_printf(m, "%u %lu %lu %lu %lu\n",
1201 		pool->sp_id,
1202 		pool->sp_stats.packets,
1203 		pool->sp_stats.sockets_queued,
1204 		pool->sp_stats.threads_woken,
1205 		pool->sp_stats.threads_timedout);
1206 
1207 	return 0;
1208 }
1209 
1210 static const struct seq_operations svc_pool_stats_seq_ops = {
1211 	.start	= svc_pool_stats_start,
1212 	.next	= svc_pool_stats_next,
1213 	.stop	= svc_pool_stats_stop,
1214 	.show	= svc_pool_stats_show,
1215 };
1216 
1217 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1218 {
1219 	int err;
1220 
1221 	err = seq_open(file, &svc_pool_stats_seq_ops);
1222 	if (!err)
1223 		((struct seq_file *) file->private_data)->private = serv;
1224 	return err;
1225 }
1226 EXPORT_SYMBOL(svc_pool_stats_open);
1227 
1228 /*----------------------------------------------------------------------------*/
1229