xref: /openbmc/linux/net/sunrpc/svc_xprt.c (revision 75f25bd3)
1 /*
2  * linux/net/sunrpc/svc_xprt.c
3  *
4  * Author: Tom Tucker <tom@opengridcomputing.com>
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/stats.h>
14 #include <linux/sunrpc/svc_xprt.h>
15 #include <linux/sunrpc/svcsock.h>
16 #include <linux/sunrpc/xprt.h>
17 
18 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
19 
20 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
21 static int svc_deferred_recv(struct svc_rqst *rqstp);
22 static struct cache_deferred_req *svc_defer(struct cache_req *req);
23 static void svc_age_temp_xprts(unsigned long closure);
24 
25 /* apparently the "standard" is that clients close
26  * idle connections after 5 minutes, servers after
27  * 6 minutes
28  *   http://www.connectathon.org/talks96/nfstcp.pdf
29  */
30 static int svc_conn_age_period = 6*60;
31 
32 /* List of registered transport classes */
33 static DEFINE_SPINLOCK(svc_xprt_class_lock);
34 static LIST_HEAD(svc_xprt_class_list);
35 
36 /* SMP locking strategy:
37  *
38  *	svc_pool->sp_lock protects most of the fields of that pool.
39  *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
40  *	when both need to be taken (rare), svc_serv->sv_lock is first.
41  *	BKL protects svc_serv->sv_nrthread.
42  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
43  *             and the ->sk_info_authunix cache.
44  *
45  *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
46  *	enqueued multiply. During normal transport processing this bit
47  *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
48  *	Providers should not manipulate this bit directly.
49  *
50  *	Some flags can be set to certain values at any time
51  *	providing that certain rules are followed:
52  *
53  *	XPT_CONN, XPT_DATA:
54  *		- Can be set or cleared at any time.
55  *		- After a set, svc_xprt_enqueue must be called to enqueue
56  *		  the transport for processing.
57  *		- After a clear, the transport must be read/accepted.
58  *		  If this succeeds, it must be set again.
59  *	XPT_CLOSE:
60  *		- Can set at any time. It is never cleared.
61  *      XPT_DEAD:
62  *		- Can only be set while XPT_BUSY is held which ensures
63  *		  that no other thread will be using the transport or will
64  *		  try to set XPT_DEAD.
65  */
66 
67 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
68 {
69 	struct svc_xprt_class *cl;
70 	int res = -EEXIST;
71 
72 	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
73 
74 	INIT_LIST_HEAD(&xcl->xcl_list);
75 	spin_lock(&svc_xprt_class_lock);
76 	/* Make sure there isn't already a class with the same name */
77 	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
78 		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
79 			goto out;
80 	}
81 	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
82 	res = 0;
83 out:
84 	spin_unlock(&svc_xprt_class_lock);
85 	return res;
86 }
87 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
88 
89 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
90 {
91 	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
92 	spin_lock(&svc_xprt_class_lock);
93 	list_del_init(&xcl->xcl_list);
94 	spin_unlock(&svc_xprt_class_lock);
95 }
96 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
97 
98 /*
99  * Format the transport list for printing
100  */
101 int svc_print_xprts(char *buf, int maxlen)
102 {
103 	struct svc_xprt_class *xcl;
104 	char tmpstr[80];
105 	int len = 0;
106 	buf[0] = '\0';
107 
108 	spin_lock(&svc_xprt_class_lock);
109 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
110 		int slen;
111 
112 		sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
113 		slen = strlen(tmpstr);
114 		if (len + slen > maxlen)
115 			break;
116 		len += slen;
117 		strcat(buf, tmpstr);
118 	}
119 	spin_unlock(&svc_xprt_class_lock);
120 
121 	return len;
122 }
123 
124 static void svc_xprt_free(struct kref *kref)
125 {
126 	struct svc_xprt *xprt =
127 		container_of(kref, struct svc_xprt, xpt_ref);
128 	struct module *owner = xprt->xpt_class->xcl_owner;
129 	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
130 		svcauth_unix_info_release(xprt);
131 	put_net(xprt->xpt_net);
132 	/* See comment on corresponding get in xs_setup_bc_tcp(): */
133 	if (xprt->xpt_bc_xprt)
134 		xprt_put(xprt->xpt_bc_xprt);
135 	xprt->xpt_ops->xpo_free(xprt);
136 	module_put(owner);
137 }
138 
139 void svc_xprt_put(struct svc_xprt *xprt)
140 {
141 	kref_put(&xprt->xpt_ref, svc_xprt_free);
142 }
143 EXPORT_SYMBOL_GPL(svc_xprt_put);
144 
145 /*
146  * Called by transport drivers to initialize the transport independent
147  * portion of the transport instance.
148  */
149 void svc_xprt_init(struct svc_xprt_class *xcl, struct svc_xprt *xprt,
150 		   struct svc_serv *serv)
151 {
152 	memset(xprt, 0, sizeof(*xprt));
153 	xprt->xpt_class = xcl;
154 	xprt->xpt_ops = xcl->xcl_ops;
155 	kref_init(&xprt->xpt_ref);
156 	xprt->xpt_server = serv;
157 	INIT_LIST_HEAD(&xprt->xpt_list);
158 	INIT_LIST_HEAD(&xprt->xpt_ready);
159 	INIT_LIST_HEAD(&xprt->xpt_deferred);
160 	INIT_LIST_HEAD(&xprt->xpt_users);
161 	mutex_init(&xprt->xpt_mutex);
162 	spin_lock_init(&xprt->xpt_lock);
163 	set_bit(XPT_BUSY, &xprt->xpt_flags);
164 	rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
165 	xprt->xpt_net = get_net(&init_net);
166 }
167 EXPORT_SYMBOL_GPL(svc_xprt_init);
168 
169 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
170 					 struct svc_serv *serv,
171 					 struct net *net,
172 					 const int family,
173 					 const unsigned short port,
174 					 int flags)
175 {
176 	struct sockaddr_in sin = {
177 		.sin_family		= AF_INET,
178 		.sin_addr.s_addr	= htonl(INADDR_ANY),
179 		.sin_port		= htons(port),
180 	};
181 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
182 	struct sockaddr_in6 sin6 = {
183 		.sin6_family		= AF_INET6,
184 		.sin6_addr		= IN6ADDR_ANY_INIT,
185 		.sin6_port		= htons(port),
186 	};
187 #endif	/* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
188 	struct sockaddr *sap;
189 	size_t len;
190 
191 	switch (family) {
192 	case PF_INET:
193 		sap = (struct sockaddr *)&sin;
194 		len = sizeof(sin);
195 		break;
196 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
197 	case PF_INET6:
198 		sap = (struct sockaddr *)&sin6;
199 		len = sizeof(sin6);
200 		break;
201 #endif	/* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
202 	default:
203 		return ERR_PTR(-EAFNOSUPPORT);
204 	}
205 
206 	return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
207 }
208 
209 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
210 		    struct net *net, const int family,
211 		    const unsigned short port, int flags)
212 {
213 	struct svc_xprt_class *xcl;
214 
215 	dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
216 	spin_lock(&svc_xprt_class_lock);
217 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
218 		struct svc_xprt *newxprt;
219 		unsigned short newport;
220 
221 		if (strcmp(xprt_name, xcl->xcl_name))
222 			continue;
223 
224 		if (!try_module_get(xcl->xcl_owner))
225 			goto err;
226 
227 		spin_unlock(&svc_xprt_class_lock);
228 		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
229 		if (IS_ERR(newxprt)) {
230 			module_put(xcl->xcl_owner);
231 			return PTR_ERR(newxprt);
232 		}
233 
234 		clear_bit(XPT_TEMP, &newxprt->xpt_flags);
235 		spin_lock_bh(&serv->sv_lock);
236 		list_add(&newxprt->xpt_list, &serv->sv_permsocks);
237 		spin_unlock_bh(&serv->sv_lock);
238 		newport = svc_xprt_local_port(newxprt);
239 		clear_bit(XPT_BUSY, &newxprt->xpt_flags);
240 		return newport;
241 	}
242  err:
243 	spin_unlock(&svc_xprt_class_lock);
244 	dprintk("svc: transport %s not found\n", xprt_name);
245 
246 	/* This errno is exposed to user space.  Provide a reasonable
247 	 * perror msg for a bad transport. */
248 	return -EPROTONOSUPPORT;
249 }
250 EXPORT_SYMBOL_GPL(svc_create_xprt);
251 
252 /*
253  * Copy the local and remote xprt addresses to the rqstp structure
254  */
255 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
256 {
257 	struct sockaddr *sin;
258 
259 	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
260 	rqstp->rq_addrlen = xprt->xpt_remotelen;
261 
262 	/*
263 	 * Destination address in request is needed for binding the
264 	 * source address in RPC replies/callbacks later.
265 	 */
266 	sin = (struct sockaddr *)&xprt->xpt_local;
267 	switch (sin->sa_family) {
268 	case AF_INET:
269 		rqstp->rq_daddr.addr = ((struct sockaddr_in *)sin)->sin_addr;
270 		break;
271 	case AF_INET6:
272 		rqstp->rq_daddr.addr6 = ((struct sockaddr_in6 *)sin)->sin6_addr;
273 		break;
274 	}
275 }
276 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
277 
278 /**
279  * svc_print_addr - Format rq_addr field for printing
280  * @rqstp: svc_rqst struct containing address to print
281  * @buf: target buffer for formatted address
282  * @len: length of target buffer
283  *
284  */
285 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
286 {
287 	return __svc_print_addr(svc_addr(rqstp), buf, len);
288 }
289 EXPORT_SYMBOL_GPL(svc_print_addr);
290 
291 /*
292  * Queue up an idle server thread.  Must have pool->sp_lock held.
293  * Note: this is really a stack rather than a queue, so that we only
294  * use as many different threads as we need, and the rest don't pollute
295  * the cache.
296  */
297 static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
298 {
299 	list_add(&rqstp->rq_list, &pool->sp_threads);
300 }
301 
302 /*
303  * Dequeue an nfsd thread.  Must have pool->sp_lock held.
304  */
305 static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
306 {
307 	list_del(&rqstp->rq_list);
308 }
309 
310 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
311 {
312 	if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
313 		return true;
314 	if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED)))
315 		return xprt->xpt_ops->xpo_has_wspace(xprt);
316 	return false;
317 }
318 
319 /*
320  * Queue up a transport with data pending. If there are idle nfsd
321  * processes, wake 'em up.
322  *
323  */
324 void svc_xprt_enqueue(struct svc_xprt *xprt)
325 {
326 	struct svc_serv	*serv = xprt->xpt_server;
327 	struct svc_pool *pool;
328 	struct svc_rqst	*rqstp;
329 	int cpu;
330 
331 	if (!svc_xprt_has_something_to_do(xprt))
332 		return;
333 
334 	cpu = get_cpu();
335 	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
336 	put_cpu();
337 
338 	spin_lock_bh(&pool->sp_lock);
339 
340 	if (!list_empty(&pool->sp_threads) &&
341 	    !list_empty(&pool->sp_sockets))
342 		printk(KERN_ERR
343 		       "svc_xprt_enqueue: "
344 		       "threads and transports both waiting??\n");
345 
346 	pool->sp_stats.packets++;
347 
348 	/* Mark transport as busy. It will remain in this state until
349 	 * the provider calls svc_xprt_received. We update XPT_BUSY
350 	 * atomically because it also guards against trying to enqueue
351 	 * the transport twice.
352 	 */
353 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
354 		/* Don't enqueue transport while already enqueued */
355 		dprintk("svc: transport %p busy, not enqueued\n", xprt);
356 		goto out_unlock;
357 	}
358 
359 	if (!list_empty(&pool->sp_threads)) {
360 		rqstp = list_entry(pool->sp_threads.next,
361 				   struct svc_rqst,
362 				   rq_list);
363 		dprintk("svc: transport %p served by daemon %p\n",
364 			xprt, rqstp);
365 		svc_thread_dequeue(pool, rqstp);
366 		if (rqstp->rq_xprt)
367 			printk(KERN_ERR
368 				"svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
369 				rqstp, rqstp->rq_xprt);
370 		rqstp->rq_xprt = xprt;
371 		svc_xprt_get(xprt);
372 		rqstp->rq_reserved = serv->sv_max_mesg;
373 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
374 		pool->sp_stats.threads_woken++;
375 		wake_up(&rqstp->rq_wait);
376 	} else {
377 		dprintk("svc: transport %p put into queue\n", xprt);
378 		list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
379 		pool->sp_stats.sockets_queued++;
380 	}
381 
382 out_unlock:
383 	spin_unlock_bh(&pool->sp_lock);
384 }
385 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
386 
387 /*
388  * Dequeue the first transport.  Must be called with the pool->sp_lock held.
389  */
390 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
391 {
392 	struct svc_xprt	*xprt;
393 
394 	if (list_empty(&pool->sp_sockets))
395 		return NULL;
396 
397 	xprt = list_entry(pool->sp_sockets.next,
398 			  struct svc_xprt, xpt_ready);
399 	list_del_init(&xprt->xpt_ready);
400 
401 	dprintk("svc: transport %p dequeued, inuse=%d\n",
402 		xprt, atomic_read(&xprt->xpt_ref.refcount));
403 
404 	return xprt;
405 }
406 
407 /*
408  * svc_xprt_received conditionally queues the transport for processing
409  * by another thread. The caller must hold the XPT_BUSY bit and must
410  * not thereafter touch transport data.
411  *
412  * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
413  * insufficient) data.
414  */
415 void svc_xprt_received(struct svc_xprt *xprt)
416 {
417 	BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
418 	/* As soon as we clear busy, the xprt could be closed and
419 	 * 'put', so we need a reference to call svc_xprt_enqueue with:
420 	 */
421 	svc_xprt_get(xprt);
422 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
423 	svc_xprt_enqueue(xprt);
424 	svc_xprt_put(xprt);
425 }
426 EXPORT_SYMBOL_GPL(svc_xprt_received);
427 
428 /**
429  * svc_reserve - change the space reserved for the reply to a request.
430  * @rqstp:  The request in question
431  * @space: new max space to reserve
432  *
433  * Each request reserves some space on the output queue of the transport
434  * to make sure the reply fits.  This function reduces that reserved
435  * space to be the amount of space used already, plus @space.
436  *
437  */
438 void svc_reserve(struct svc_rqst *rqstp, int space)
439 {
440 	space += rqstp->rq_res.head[0].iov_len;
441 
442 	if (space < rqstp->rq_reserved) {
443 		struct svc_xprt *xprt = rqstp->rq_xprt;
444 		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
445 		rqstp->rq_reserved = space;
446 
447 		svc_xprt_enqueue(xprt);
448 	}
449 }
450 EXPORT_SYMBOL_GPL(svc_reserve);
451 
452 static void svc_xprt_release(struct svc_rqst *rqstp)
453 {
454 	struct svc_xprt	*xprt = rqstp->rq_xprt;
455 
456 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
457 
458 	kfree(rqstp->rq_deferred);
459 	rqstp->rq_deferred = NULL;
460 
461 	svc_free_res_pages(rqstp);
462 	rqstp->rq_res.page_len = 0;
463 	rqstp->rq_res.page_base = 0;
464 
465 	/* Reset response buffer and release
466 	 * the reservation.
467 	 * But first, check that enough space was reserved
468 	 * for the reply, otherwise we have a bug!
469 	 */
470 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
471 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
472 		       rqstp->rq_reserved,
473 		       rqstp->rq_res.len);
474 
475 	rqstp->rq_res.head[0].iov_len = 0;
476 	svc_reserve(rqstp, 0);
477 	rqstp->rq_xprt = NULL;
478 
479 	svc_xprt_put(xprt);
480 }
481 
482 /*
483  * External function to wake up a server waiting for data
484  * This really only makes sense for services like lockd
485  * which have exactly one thread anyway.
486  */
487 void svc_wake_up(struct svc_serv *serv)
488 {
489 	struct svc_rqst	*rqstp;
490 	unsigned int i;
491 	struct svc_pool *pool;
492 
493 	for (i = 0; i < serv->sv_nrpools; i++) {
494 		pool = &serv->sv_pools[i];
495 
496 		spin_lock_bh(&pool->sp_lock);
497 		if (!list_empty(&pool->sp_threads)) {
498 			rqstp = list_entry(pool->sp_threads.next,
499 					   struct svc_rqst,
500 					   rq_list);
501 			dprintk("svc: daemon %p woken up.\n", rqstp);
502 			/*
503 			svc_thread_dequeue(pool, rqstp);
504 			rqstp->rq_xprt = NULL;
505 			 */
506 			wake_up(&rqstp->rq_wait);
507 		}
508 		spin_unlock_bh(&pool->sp_lock);
509 	}
510 }
511 EXPORT_SYMBOL_GPL(svc_wake_up);
512 
513 int svc_port_is_privileged(struct sockaddr *sin)
514 {
515 	switch (sin->sa_family) {
516 	case AF_INET:
517 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
518 			< PROT_SOCK;
519 	case AF_INET6:
520 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
521 			< PROT_SOCK;
522 	default:
523 		return 0;
524 	}
525 }
526 
527 /*
528  * Make sure that we don't have too many active connections. If we have,
529  * something must be dropped. It's not clear what will happen if we allow
530  * "too many" connections, but when dealing with network-facing software,
531  * we have to code defensively. Here we do that by imposing hard limits.
532  *
533  * There's no point in trying to do random drop here for DoS
534  * prevention. The NFS clients does 1 reconnect in 15 seconds. An
535  * attacker can easily beat that.
536  *
537  * The only somewhat efficient mechanism would be if drop old
538  * connections from the same IP first. But right now we don't even
539  * record the client IP in svc_sock.
540  *
541  * single-threaded services that expect a lot of clients will probably
542  * need to set sv_maxconn to override the default value which is based
543  * on the number of threads
544  */
545 static void svc_check_conn_limits(struct svc_serv *serv)
546 {
547 	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
548 				(serv->sv_nrthreads+3) * 20;
549 
550 	if (serv->sv_tmpcnt > limit) {
551 		struct svc_xprt *xprt = NULL;
552 		spin_lock_bh(&serv->sv_lock);
553 		if (!list_empty(&serv->sv_tempsocks)) {
554 			if (net_ratelimit()) {
555 				/* Try to help the admin */
556 				printk(KERN_NOTICE "%s: too many open  "
557 				       "connections, consider increasing %s\n",
558 				       serv->sv_name, serv->sv_maxconn ?
559 				       "the max number of connections." :
560 				       "the number of threads.");
561 			}
562 			/*
563 			 * Always select the oldest connection. It's not fair,
564 			 * but so is life
565 			 */
566 			xprt = list_entry(serv->sv_tempsocks.prev,
567 					  struct svc_xprt,
568 					  xpt_list);
569 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
570 			svc_xprt_get(xprt);
571 		}
572 		spin_unlock_bh(&serv->sv_lock);
573 
574 		if (xprt) {
575 			svc_xprt_enqueue(xprt);
576 			svc_xprt_put(xprt);
577 		}
578 	}
579 }
580 
581 /*
582  * Receive the next request on any transport.  This code is carefully
583  * organised not to touch any cachelines in the shared svc_serv
584  * structure, only cachelines in the local svc_pool.
585  */
586 int svc_recv(struct svc_rqst *rqstp, long timeout)
587 {
588 	struct svc_xprt		*xprt = NULL;
589 	struct svc_serv		*serv = rqstp->rq_server;
590 	struct svc_pool		*pool = rqstp->rq_pool;
591 	int			len, i;
592 	int			pages;
593 	struct xdr_buf		*arg;
594 	DECLARE_WAITQUEUE(wait, current);
595 	long			time_left;
596 
597 	dprintk("svc: server %p waiting for data (to = %ld)\n",
598 		rqstp, timeout);
599 
600 	if (rqstp->rq_xprt)
601 		printk(KERN_ERR
602 			"svc_recv: service %p, transport not NULL!\n",
603 			 rqstp);
604 	if (waitqueue_active(&rqstp->rq_wait))
605 		printk(KERN_ERR
606 			"svc_recv: service %p, wait queue active!\n",
607 			 rqstp);
608 
609 	/* now allocate needed pages.  If we get a failure, sleep briefly */
610 	pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
611 	for (i = 0; i < pages ; i++)
612 		while (rqstp->rq_pages[i] == NULL) {
613 			struct page *p = alloc_page(GFP_KERNEL);
614 			if (!p) {
615 				set_current_state(TASK_INTERRUPTIBLE);
616 				if (signalled() || kthread_should_stop()) {
617 					set_current_state(TASK_RUNNING);
618 					return -EINTR;
619 				}
620 				schedule_timeout(msecs_to_jiffies(500));
621 			}
622 			rqstp->rq_pages[i] = p;
623 		}
624 	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
625 	BUG_ON(pages >= RPCSVC_MAXPAGES);
626 
627 	/* Make arg->head point to first page and arg->pages point to rest */
628 	arg = &rqstp->rq_arg;
629 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
630 	arg->head[0].iov_len = PAGE_SIZE;
631 	arg->pages = rqstp->rq_pages + 1;
632 	arg->page_base = 0;
633 	/* save at least one page for response */
634 	arg->page_len = (pages-2)*PAGE_SIZE;
635 	arg->len = (pages-1)*PAGE_SIZE;
636 	arg->tail[0].iov_len = 0;
637 
638 	try_to_freeze();
639 	cond_resched();
640 	if (signalled() || kthread_should_stop())
641 		return -EINTR;
642 
643 	/* Normally we will wait up to 5 seconds for any required
644 	 * cache information to be provided.
645 	 */
646 	rqstp->rq_chandle.thread_wait = 5*HZ;
647 
648 	spin_lock_bh(&pool->sp_lock);
649 	xprt = svc_xprt_dequeue(pool);
650 	if (xprt) {
651 		rqstp->rq_xprt = xprt;
652 		svc_xprt_get(xprt);
653 		rqstp->rq_reserved = serv->sv_max_mesg;
654 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
655 
656 		/* As there is a shortage of threads and this request
657 		 * had to be queued, don't allow the thread to wait so
658 		 * long for cache updates.
659 		 */
660 		rqstp->rq_chandle.thread_wait = 1*HZ;
661 	} else {
662 		/* No data pending. Go to sleep */
663 		svc_thread_enqueue(pool, rqstp);
664 
665 		/*
666 		 * We have to be able to interrupt this wait
667 		 * to bring down the daemons ...
668 		 */
669 		set_current_state(TASK_INTERRUPTIBLE);
670 
671 		/*
672 		 * checking kthread_should_stop() here allows us to avoid
673 		 * locking and signalling when stopping kthreads that call
674 		 * svc_recv. If the thread has already been woken up, then
675 		 * we can exit here without sleeping. If not, then it
676 		 * it'll be woken up quickly during the schedule_timeout
677 		 */
678 		if (kthread_should_stop()) {
679 			set_current_state(TASK_RUNNING);
680 			spin_unlock_bh(&pool->sp_lock);
681 			return -EINTR;
682 		}
683 
684 		add_wait_queue(&rqstp->rq_wait, &wait);
685 		spin_unlock_bh(&pool->sp_lock);
686 
687 		time_left = schedule_timeout(timeout);
688 
689 		try_to_freeze();
690 
691 		spin_lock_bh(&pool->sp_lock);
692 		remove_wait_queue(&rqstp->rq_wait, &wait);
693 		if (!time_left)
694 			pool->sp_stats.threads_timedout++;
695 
696 		xprt = rqstp->rq_xprt;
697 		if (!xprt) {
698 			svc_thread_dequeue(pool, rqstp);
699 			spin_unlock_bh(&pool->sp_lock);
700 			dprintk("svc: server %p, no data yet\n", rqstp);
701 			if (signalled() || kthread_should_stop())
702 				return -EINTR;
703 			else
704 				return -EAGAIN;
705 		}
706 	}
707 	spin_unlock_bh(&pool->sp_lock);
708 
709 	len = 0;
710 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
711 		dprintk("svc_recv: found XPT_CLOSE\n");
712 		svc_delete_xprt(xprt);
713 		/* Leave XPT_BUSY set on the dead xprt: */
714 		goto out;
715 	}
716 	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
717 		struct svc_xprt *newxpt;
718 		newxpt = xprt->xpt_ops->xpo_accept(xprt);
719 		if (newxpt) {
720 			/*
721 			 * We know this module_get will succeed because the
722 			 * listener holds a reference too
723 			 */
724 			__module_get(newxpt->xpt_class->xcl_owner);
725 			svc_check_conn_limits(xprt->xpt_server);
726 			spin_lock_bh(&serv->sv_lock);
727 			set_bit(XPT_TEMP, &newxpt->xpt_flags);
728 			list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
729 			serv->sv_tmpcnt++;
730 			if (serv->sv_temptimer.function == NULL) {
731 				/* setup timer to age temp transports */
732 				setup_timer(&serv->sv_temptimer,
733 					    svc_age_temp_xprts,
734 					    (unsigned long)serv);
735 				mod_timer(&serv->sv_temptimer,
736 					  jiffies + svc_conn_age_period * HZ);
737 			}
738 			spin_unlock_bh(&serv->sv_lock);
739 			svc_xprt_received(newxpt);
740 		}
741 	} else if (xprt->xpt_ops->xpo_has_wspace(xprt)) {
742 		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
743 			rqstp, pool->sp_id, xprt,
744 			atomic_read(&xprt->xpt_ref.refcount));
745 		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
746 		if (rqstp->rq_deferred)
747 			len = svc_deferred_recv(rqstp);
748 		else
749 			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
750 		dprintk("svc: got len=%d\n", len);
751 	}
752 	svc_xprt_received(xprt);
753 
754 	/* No data, incomplete (TCP) read, or accept() */
755 	if (len == 0 || len == -EAGAIN)
756 		goto out;
757 
758 	clear_bit(XPT_OLD, &xprt->xpt_flags);
759 
760 	rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
761 	rqstp->rq_chandle.defer = svc_defer;
762 
763 	if (serv->sv_stats)
764 		serv->sv_stats->netcnt++;
765 	return len;
766 out:
767 	rqstp->rq_res.len = 0;
768 	svc_xprt_release(rqstp);
769 	return -EAGAIN;
770 }
771 EXPORT_SYMBOL_GPL(svc_recv);
772 
773 /*
774  * Drop request
775  */
776 void svc_drop(struct svc_rqst *rqstp)
777 {
778 	dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
779 	svc_xprt_release(rqstp);
780 }
781 EXPORT_SYMBOL_GPL(svc_drop);
782 
783 /*
784  * Return reply to client.
785  */
786 int svc_send(struct svc_rqst *rqstp)
787 {
788 	struct svc_xprt	*xprt;
789 	int		len;
790 	struct xdr_buf	*xb;
791 
792 	xprt = rqstp->rq_xprt;
793 	if (!xprt)
794 		return -EFAULT;
795 
796 	/* release the receive skb before sending the reply */
797 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
798 
799 	/* calculate over-all length */
800 	xb = &rqstp->rq_res;
801 	xb->len = xb->head[0].iov_len +
802 		xb->page_len +
803 		xb->tail[0].iov_len;
804 
805 	/* Grab mutex to serialize outgoing data. */
806 	mutex_lock(&xprt->xpt_mutex);
807 	if (test_bit(XPT_DEAD, &xprt->xpt_flags))
808 		len = -ENOTCONN;
809 	else
810 		len = xprt->xpt_ops->xpo_sendto(rqstp);
811 	mutex_unlock(&xprt->xpt_mutex);
812 	rpc_wake_up(&xprt->xpt_bc_pending);
813 	svc_xprt_release(rqstp);
814 
815 	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
816 		return 0;
817 	return len;
818 }
819 
820 /*
821  * Timer function to close old temporary transports, using
822  * a mark-and-sweep algorithm.
823  */
824 static void svc_age_temp_xprts(unsigned long closure)
825 {
826 	struct svc_serv *serv = (struct svc_serv *)closure;
827 	struct svc_xprt *xprt;
828 	struct list_head *le, *next;
829 	LIST_HEAD(to_be_aged);
830 
831 	dprintk("svc_age_temp_xprts\n");
832 
833 	if (!spin_trylock_bh(&serv->sv_lock)) {
834 		/* busy, try again 1 sec later */
835 		dprintk("svc_age_temp_xprts: busy\n");
836 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
837 		return;
838 	}
839 
840 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
841 		xprt = list_entry(le, struct svc_xprt, xpt_list);
842 
843 		/* First time through, just mark it OLD. Second time
844 		 * through, close it. */
845 		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
846 			continue;
847 		if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
848 		    test_bit(XPT_BUSY, &xprt->xpt_flags))
849 			continue;
850 		svc_xprt_get(xprt);
851 		list_move(le, &to_be_aged);
852 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
853 		set_bit(XPT_DETACHED, &xprt->xpt_flags);
854 	}
855 	spin_unlock_bh(&serv->sv_lock);
856 
857 	while (!list_empty(&to_be_aged)) {
858 		le = to_be_aged.next;
859 		/* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
860 		list_del_init(le);
861 		xprt = list_entry(le, struct svc_xprt, xpt_list);
862 
863 		dprintk("queuing xprt %p for closing\n", xprt);
864 
865 		/* a thread will dequeue and close it soon */
866 		svc_xprt_enqueue(xprt);
867 		svc_xprt_put(xprt);
868 	}
869 
870 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
871 }
872 
873 static void call_xpt_users(struct svc_xprt *xprt)
874 {
875 	struct svc_xpt_user *u;
876 
877 	spin_lock(&xprt->xpt_lock);
878 	while (!list_empty(&xprt->xpt_users)) {
879 		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
880 		list_del(&u->list);
881 		u->callback(u);
882 	}
883 	spin_unlock(&xprt->xpt_lock);
884 }
885 
886 /*
887  * Remove a dead transport
888  */
889 void svc_delete_xprt(struct svc_xprt *xprt)
890 {
891 	struct svc_serv	*serv = xprt->xpt_server;
892 	struct svc_deferred_req *dr;
893 
894 	/* Only do this once */
895 	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
896 		BUG();
897 
898 	dprintk("svc: svc_delete_xprt(%p)\n", xprt);
899 	xprt->xpt_ops->xpo_detach(xprt);
900 
901 	spin_lock_bh(&serv->sv_lock);
902 	if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
903 		list_del_init(&xprt->xpt_list);
904 	/*
905 	 * The only time we're called while xpt_ready is still on a list
906 	 * is while the list itself is about to be destroyed (in
907 	 * svc_destroy).  BUT svc_xprt_enqueue could still be attempting
908 	 * to add new entries to the sp_sockets list, so we can't leave
909 	 * a freed xprt on it.
910 	 */
911 	list_del_init(&xprt->xpt_ready);
912 	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
913 		serv->sv_tmpcnt--;
914 	spin_unlock_bh(&serv->sv_lock);
915 
916 	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
917 		kfree(dr);
918 
919 	call_xpt_users(xprt);
920 	svc_xprt_put(xprt);
921 }
922 
923 void svc_close_xprt(struct svc_xprt *xprt)
924 {
925 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
926 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
927 		/* someone else will have to effect the close */
928 		return;
929 	/*
930 	 * We expect svc_close_xprt() to work even when no threads are
931 	 * running (e.g., while configuring the server before starting
932 	 * any threads), so if the transport isn't busy, we delete
933 	 * it ourself:
934 	 */
935 	svc_delete_xprt(xprt);
936 }
937 EXPORT_SYMBOL_GPL(svc_close_xprt);
938 
939 void svc_close_all(struct list_head *xprt_list)
940 {
941 	struct svc_xprt *xprt;
942 	struct svc_xprt *tmp;
943 
944 	/*
945 	 * The server is shutting down, and no more threads are running.
946 	 * svc_xprt_enqueue() might still be running, but at worst it
947 	 * will re-add the xprt to sp_sockets, which will soon get
948 	 * freed.  So we don't bother with any more locking, and don't
949 	 * leave the close to the (nonexistent) server threads:
950 	 */
951 	list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
952 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
953 		svc_delete_xprt(xprt);
954 	}
955 }
956 
957 /*
958  * Handle defer and revisit of requests
959  */
960 
961 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
962 {
963 	struct svc_deferred_req *dr =
964 		container_of(dreq, struct svc_deferred_req, handle);
965 	struct svc_xprt *xprt = dr->xprt;
966 
967 	spin_lock(&xprt->xpt_lock);
968 	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
969 	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
970 		spin_unlock(&xprt->xpt_lock);
971 		dprintk("revisit canceled\n");
972 		svc_xprt_put(xprt);
973 		kfree(dr);
974 		return;
975 	}
976 	dprintk("revisit queued\n");
977 	dr->xprt = NULL;
978 	list_add(&dr->handle.recent, &xprt->xpt_deferred);
979 	spin_unlock(&xprt->xpt_lock);
980 	svc_xprt_enqueue(xprt);
981 	svc_xprt_put(xprt);
982 }
983 
984 /*
985  * Save the request off for later processing. The request buffer looks
986  * like this:
987  *
988  * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
989  *
990  * This code can only handle requests that consist of an xprt-header
991  * and rpc-header.
992  */
993 static struct cache_deferred_req *svc_defer(struct cache_req *req)
994 {
995 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
996 	struct svc_deferred_req *dr;
997 
998 	if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
999 		return NULL; /* if more than a page, give up FIXME */
1000 	if (rqstp->rq_deferred) {
1001 		dr = rqstp->rq_deferred;
1002 		rqstp->rq_deferred = NULL;
1003 	} else {
1004 		size_t skip;
1005 		size_t size;
1006 		/* FIXME maybe discard if size too large */
1007 		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1008 		dr = kmalloc(size, GFP_KERNEL);
1009 		if (dr == NULL)
1010 			return NULL;
1011 
1012 		dr->handle.owner = rqstp->rq_server;
1013 		dr->prot = rqstp->rq_prot;
1014 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1015 		dr->addrlen = rqstp->rq_addrlen;
1016 		dr->daddr = rqstp->rq_daddr;
1017 		dr->argslen = rqstp->rq_arg.len >> 2;
1018 		dr->xprt_hlen = rqstp->rq_xprt_hlen;
1019 
1020 		/* back up head to the start of the buffer and copy */
1021 		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1022 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1023 		       dr->argslen << 2);
1024 	}
1025 	svc_xprt_get(rqstp->rq_xprt);
1026 	dr->xprt = rqstp->rq_xprt;
1027 	rqstp->rq_dropme = true;
1028 
1029 	dr->handle.revisit = svc_revisit;
1030 	return &dr->handle;
1031 }
1032 
1033 /*
1034  * recv data from a deferred request into an active one
1035  */
1036 static int svc_deferred_recv(struct svc_rqst *rqstp)
1037 {
1038 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1039 
1040 	/* setup iov_base past transport header */
1041 	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1042 	/* The iov_len does not include the transport header bytes */
1043 	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1044 	rqstp->rq_arg.page_len = 0;
1045 	/* The rq_arg.len includes the transport header bytes */
1046 	rqstp->rq_arg.len     = dr->argslen<<2;
1047 	rqstp->rq_prot        = dr->prot;
1048 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1049 	rqstp->rq_addrlen     = dr->addrlen;
1050 	/* Save off transport header len in case we get deferred again */
1051 	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1052 	rqstp->rq_daddr       = dr->daddr;
1053 	rqstp->rq_respages    = rqstp->rq_pages;
1054 	return (dr->argslen<<2) - dr->xprt_hlen;
1055 }
1056 
1057 
1058 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1059 {
1060 	struct svc_deferred_req *dr = NULL;
1061 
1062 	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1063 		return NULL;
1064 	spin_lock(&xprt->xpt_lock);
1065 	if (!list_empty(&xprt->xpt_deferred)) {
1066 		dr = list_entry(xprt->xpt_deferred.next,
1067 				struct svc_deferred_req,
1068 				handle.recent);
1069 		list_del_init(&dr->handle.recent);
1070 	} else
1071 		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1072 	spin_unlock(&xprt->xpt_lock);
1073 	return dr;
1074 }
1075 
1076 /**
1077  * svc_find_xprt - find an RPC transport instance
1078  * @serv: pointer to svc_serv to search
1079  * @xcl_name: C string containing transport's class name
1080  * @af: Address family of transport's local address
1081  * @port: transport's IP port number
1082  *
1083  * Return the transport instance pointer for the endpoint accepting
1084  * connections/peer traffic from the specified transport class,
1085  * address family and port.
1086  *
1087  * Specifying 0 for the address family or port is effectively a
1088  * wild-card, and will result in matching the first transport in the
1089  * service's list that has a matching class name.
1090  */
1091 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1092 			       const sa_family_t af, const unsigned short port)
1093 {
1094 	struct svc_xprt *xprt;
1095 	struct svc_xprt *found = NULL;
1096 
1097 	/* Sanity check the args */
1098 	if (serv == NULL || xcl_name == NULL)
1099 		return found;
1100 
1101 	spin_lock_bh(&serv->sv_lock);
1102 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1103 		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1104 			continue;
1105 		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1106 			continue;
1107 		if (port != 0 && port != svc_xprt_local_port(xprt))
1108 			continue;
1109 		found = xprt;
1110 		svc_xprt_get(xprt);
1111 		break;
1112 	}
1113 	spin_unlock_bh(&serv->sv_lock);
1114 	return found;
1115 }
1116 EXPORT_SYMBOL_GPL(svc_find_xprt);
1117 
1118 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1119 			     char *pos, int remaining)
1120 {
1121 	int len;
1122 
1123 	len = snprintf(pos, remaining, "%s %u\n",
1124 			xprt->xpt_class->xcl_name,
1125 			svc_xprt_local_port(xprt));
1126 	if (len >= remaining)
1127 		return -ENAMETOOLONG;
1128 	return len;
1129 }
1130 
1131 /**
1132  * svc_xprt_names - format a buffer with a list of transport names
1133  * @serv: pointer to an RPC service
1134  * @buf: pointer to a buffer to be filled in
1135  * @buflen: length of buffer to be filled in
1136  *
1137  * Fills in @buf with a string containing a list of transport names,
1138  * each name terminated with '\n'.
1139  *
1140  * Returns positive length of the filled-in string on success; otherwise
1141  * a negative errno value is returned if an error occurs.
1142  */
1143 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1144 {
1145 	struct svc_xprt *xprt;
1146 	int len, totlen;
1147 	char *pos;
1148 
1149 	/* Sanity check args */
1150 	if (!serv)
1151 		return 0;
1152 
1153 	spin_lock_bh(&serv->sv_lock);
1154 
1155 	pos = buf;
1156 	totlen = 0;
1157 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1158 		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1159 		if (len < 0) {
1160 			*buf = '\0';
1161 			totlen = len;
1162 		}
1163 		if (len <= 0)
1164 			break;
1165 
1166 		pos += len;
1167 		totlen += len;
1168 	}
1169 
1170 	spin_unlock_bh(&serv->sv_lock);
1171 	return totlen;
1172 }
1173 EXPORT_SYMBOL_GPL(svc_xprt_names);
1174 
1175 
1176 /*----------------------------------------------------------------------------*/
1177 
1178 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1179 {
1180 	unsigned int pidx = (unsigned int)*pos;
1181 	struct svc_serv *serv = m->private;
1182 
1183 	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1184 
1185 	if (!pidx)
1186 		return SEQ_START_TOKEN;
1187 	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1188 }
1189 
1190 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1191 {
1192 	struct svc_pool *pool = p;
1193 	struct svc_serv *serv = m->private;
1194 
1195 	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1196 
1197 	if (p == SEQ_START_TOKEN) {
1198 		pool = &serv->sv_pools[0];
1199 	} else {
1200 		unsigned int pidx = (pool - &serv->sv_pools[0]);
1201 		if (pidx < serv->sv_nrpools-1)
1202 			pool = &serv->sv_pools[pidx+1];
1203 		else
1204 			pool = NULL;
1205 	}
1206 	++*pos;
1207 	return pool;
1208 }
1209 
1210 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1211 {
1212 }
1213 
1214 static int svc_pool_stats_show(struct seq_file *m, void *p)
1215 {
1216 	struct svc_pool *pool = p;
1217 
1218 	if (p == SEQ_START_TOKEN) {
1219 		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1220 		return 0;
1221 	}
1222 
1223 	seq_printf(m, "%u %lu %lu %lu %lu\n",
1224 		pool->sp_id,
1225 		pool->sp_stats.packets,
1226 		pool->sp_stats.sockets_queued,
1227 		pool->sp_stats.threads_woken,
1228 		pool->sp_stats.threads_timedout);
1229 
1230 	return 0;
1231 }
1232 
1233 static const struct seq_operations svc_pool_stats_seq_ops = {
1234 	.start	= svc_pool_stats_start,
1235 	.next	= svc_pool_stats_next,
1236 	.stop	= svc_pool_stats_stop,
1237 	.show	= svc_pool_stats_show,
1238 };
1239 
1240 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1241 {
1242 	int err;
1243 
1244 	err = seq_open(file, &svc_pool_stats_seq_ops);
1245 	if (!err)
1246 		((struct seq_file *) file->private_data)->private = serv;
1247 	return err;
1248 }
1249 EXPORT_SYMBOL(svc_pool_stats_open);
1250 
1251 /*----------------------------------------------------------------------------*/
1252