xref: /openbmc/linux/net/sunrpc/svc_xprt.c (revision 6d99a79c)
1 /*
2  * linux/net/sunrpc/svc_xprt.c
3  *
4  * Author: Tom Tucker <tom@opengridcomputing.com>
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/addr.h>
14 #include <linux/sunrpc/stats.h>
15 #include <linux/sunrpc/svc_xprt.h>
16 #include <linux/sunrpc/svcsock.h>
17 #include <linux/sunrpc/xprt.h>
18 #include <linux/module.h>
19 #include <linux/netdevice.h>
20 #include <trace/events/sunrpc.h>
21 
22 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
23 
24 static unsigned int svc_rpc_per_connection_limit __read_mostly;
25 module_param(svc_rpc_per_connection_limit, uint, 0644);
26 
27 
28 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
29 static int svc_deferred_recv(struct svc_rqst *rqstp);
30 static struct cache_deferred_req *svc_defer(struct cache_req *req);
31 static void svc_age_temp_xprts(struct timer_list *t);
32 static void svc_delete_xprt(struct svc_xprt *xprt);
33 
34 /* apparently the "standard" is that clients close
35  * idle connections after 5 minutes, servers after
36  * 6 minutes
37  *   http://www.connectathon.org/talks96/nfstcp.pdf
38  */
39 static int svc_conn_age_period = 6*60;
40 
41 /* List of registered transport classes */
42 static DEFINE_SPINLOCK(svc_xprt_class_lock);
43 static LIST_HEAD(svc_xprt_class_list);
44 
45 /* SMP locking strategy:
46  *
47  *	svc_pool->sp_lock protects most of the fields of that pool.
48  *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
49  *	when both need to be taken (rare), svc_serv->sv_lock is first.
50  *	The "service mutex" protects svc_serv->sv_nrthread.
51  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
52  *             and the ->sk_info_authunix cache.
53  *
54  *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
55  *	enqueued multiply. During normal transport processing this bit
56  *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
57  *	Providers should not manipulate this bit directly.
58  *
59  *	Some flags can be set to certain values at any time
60  *	providing that certain rules are followed:
61  *
62  *	XPT_CONN, XPT_DATA:
63  *		- Can be set or cleared at any time.
64  *		- After a set, svc_xprt_enqueue must be called to enqueue
65  *		  the transport for processing.
66  *		- After a clear, the transport must be read/accepted.
67  *		  If this succeeds, it must be set again.
68  *	XPT_CLOSE:
69  *		- Can set at any time. It is never cleared.
70  *      XPT_DEAD:
71  *		- Can only be set while XPT_BUSY is held which ensures
72  *		  that no other thread will be using the transport or will
73  *		  try to set XPT_DEAD.
74  */
75 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
76 {
77 	struct svc_xprt_class *cl;
78 	int res = -EEXIST;
79 
80 	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
81 
82 	INIT_LIST_HEAD(&xcl->xcl_list);
83 	spin_lock(&svc_xprt_class_lock);
84 	/* Make sure there isn't already a class with the same name */
85 	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
86 		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
87 			goto out;
88 	}
89 	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
90 	res = 0;
91 out:
92 	spin_unlock(&svc_xprt_class_lock);
93 	return res;
94 }
95 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
96 
97 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
98 {
99 	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
100 	spin_lock(&svc_xprt_class_lock);
101 	list_del_init(&xcl->xcl_list);
102 	spin_unlock(&svc_xprt_class_lock);
103 }
104 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
105 
106 /*
107  * Format the transport list for printing
108  */
109 int svc_print_xprts(char *buf, int maxlen)
110 {
111 	struct svc_xprt_class *xcl;
112 	char tmpstr[80];
113 	int len = 0;
114 	buf[0] = '\0';
115 
116 	spin_lock(&svc_xprt_class_lock);
117 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
118 		int slen;
119 
120 		sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
121 		slen = strlen(tmpstr);
122 		if (len + slen > maxlen)
123 			break;
124 		len += slen;
125 		strcat(buf, tmpstr);
126 	}
127 	spin_unlock(&svc_xprt_class_lock);
128 
129 	return len;
130 }
131 
132 static void svc_xprt_free(struct kref *kref)
133 {
134 	struct svc_xprt *xprt =
135 		container_of(kref, struct svc_xprt, xpt_ref);
136 	struct module *owner = xprt->xpt_class->xcl_owner;
137 	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
138 		svcauth_unix_info_release(xprt);
139 	put_net(xprt->xpt_net);
140 	/* See comment on corresponding get in xs_setup_bc_tcp(): */
141 	if (xprt->xpt_bc_xprt)
142 		xprt_put(xprt->xpt_bc_xprt);
143 	if (xprt->xpt_bc_xps)
144 		xprt_switch_put(xprt->xpt_bc_xps);
145 	xprt->xpt_ops->xpo_free(xprt);
146 	module_put(owner);
147 }
148 
149 void svc_xprt_put(struct svc_xprt *xprt)
150 {
151 	kref_put(&xprt->xpt_ref, svc_xprt_free);
152 }
153 EXPORT_SYMBOL_GPL(svc_xprt_put);
154 
155 /*
156  * Called by transport drivers to initialize the transport independent
157  * portion of the transport instance.
158  */
159 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
160 		   struct svc_xprt *xprt, struct svc_serv *serv)
161 {
162 	memset(xprt, 0, sizeof(*xprt));
163 	xprt->xpt_class = xcl;
164 	xprt->xpt_ops = xcl->xcl_ops;
165 	kref_init(&xprt->xpt_ref);
166 	xprt->xpt_server = serv;
167 	INIT_LIST_HEAD(&xprt->xpt_list);
168 	INIT_LIST_HEAD(&xprt->xpt_ready);
169 	INIT_LIST_HEAD(&xprt->xpt_deferred);
170 	INIT_LIST_HEAD(&xprt->xpt_users);
171 	mutex_init(&xprt->xpt_mutex);
172 	spin_lock_init(&xprt->xpt_lock);
173 	set_bit(XPT_BUSY, &xprt->xpt_flags);
174 	xprt->xpt_net = get_net(net);
175 	strcpy(xprt->xpt_remotebuf, "uninitialized");
176 }
177 EXPORT_SYMBOL_GPL(svc_xprt_init);
178 
179 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
180 					 struct svc_serv *serv,
181 					 struct net *net,
182 					 const int family,
183 					 const unsigned short port,
184 					 int flags)
185 {
186 	struct sockaddr_in sin = {
187 		.sin_family		= AF_INET,
188 		.sin_addr.s_addr	= htonl(INADDR_ANY),
189 		.sin_port		= htons(port),
190 	};
191 #if IS_ENABLED(CONFIG_IPV6)
192 	struct sockaddr_in6 sin6 = {
193 		.sin6_family		= AF_INET6,
194 		.sin6_addr		= IN6ADDR_ANY_INIT,
195 		.sin6_port		= htons(port),
196 	};
197 #endif
198 	struct sockaddr *sap;
199 	size_t len;
200 
201 	switch (family) {
202 	case PF_INET:
203 		sap = (struct sockaddr *)&sin;
204 		len = sizeof(sin);
205 		break;
206 #if IS_ENABLED(CONFIG_IPV6)
207 	case PF_INET6:
208 		sap = (struct sockaddr *)&sin6;
209 		len = sizeof(sin6);
210 		break;
211 #endif
212 	default:
213 		return ERR_PTR(-EAFNOSUPPORT);
214 	}
215 
216 	return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
217 }
218 
219 /*
220  * svc_xprt_received conditionally queues the transport for processing
221  * by another thread. The caller must hold the XPT_BUSY bit and must
222  * not thereafter touch transport data.
223  *
224  * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
225  * insufficient) data.
226  */
227 static void svc_xprt_received(struct svc_xprt *xprt)
228 {
229 	if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
230 		WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
231 		return;
232 	}
233 
234 	/* As soon as we clear busy, the xprt could be closed and
235 	 * 'put', so we need a reference to call svc_enqueue_xprt with:
236 	 */
237 	svc_xprt_get(xprt);
238 	smp_mb__before_atomic();
239 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
240 	xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
241 	svc_xprt_put(xprt);
242 }
243 
244 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
245 {
246 	clear_bit(XPT_TEMP, &new->xpt_flags);
247 	spin_lock_bh(&serv->sv_lock);
248 	list_add(&new->xpt_list, &serv->sv_permsocks);
249 	spin_unlock_bh(&serv->sv_lock);
250 	svc_xprt_received(new);
251 }
252 
253 static int _svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
254 			    struct net *net, const int family,
255 			    const unsigned short port, int flags)
256 {
257 	struct svc_xprt_class *xcl;
258 
259 	spin_lock(&svc_xprt_class_lock);
260 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
261 		struct svc_xprt *newxprt;
262 		unsigned short newport;
263 
264 		if (strcmp(xprt_name, xcl->xcl_name))
265 			continue;
266 
267 		if (!try_module_get(xcl->xcl_owner))
268 			goto err;
269 
270 		spin_unlock(&svc_xprt_class_lock);
271 		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
272 		if (IS_ERR(newxprt)) {
273 			module_put(xcl->xcl_owner);
274 			return PTR_ERR(newxprt);
275 		}
276 		svc_add_new_perm_xprt(serv, newxprt);
277 		newport = svc_xprt_local_port(newxprt);
278 		return newport;
279 	}
280  err:
281 	spin_unlock(&svc_xprt_class_lock);
282 	/* This errno is exposed to user space.  Provide a reasonable
283 	 * perror msg for a bad transport. */
284 	return -EPROTONOSUPPORT;
285 }
286 
287 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
288 		    struct net *net, const int family,
289 		    const unsigned short port, int flags)
290 {
291 	int err;
292 
293 	dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
294 	err = _svc_create_xprt(serv, xprt_name, net, family, port, flags);
295 	if (err == -EPROTONOSUPPORT) {
296 		request_module("svc%s", xprt_name);
297 		err = _svc_create_xprt(serv, xprt_name, net, family, port, flags);
298 	}
299 	if (err)
300 		dprintk("svc: transport %s not found, err %d\n",
301 			xprt_name, err);
302 	return err;
303 }
304 EXPORT_SYMBOL_GPL(svc_create_xprt);
305 
306 /*
307  * Copy the local and remote xprt addresses to the rqstp structure
308  */
309 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
310 {
311 	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
312 	rqstp->rq_addrlen = xprt->xpt_remotelen;
313 
314 	/*
315 	 * Destination address in request is needed for binding the
316 	 * source address in RPC replies/callbacks later.
317 	 */
318 	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
319 	rqstp->rq_daddrlen = xprt->xpt_locallen;
320 }
321 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
322 
323 /**
324  * svc_print_addr - Format rq_addr field for printing
325  * @rqstp: svc_rqst struct containing address to print
326  * @buf: target buffer for formatted address
327  * @len: length of target buffer
328  *
329  */
330 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
331 {
332 	return __svc_print_addr(svc_addr(rqstp), buf, len);
333 }
334 EXPORT_SYMBOL_GPL(svc_print_addr);
335 
336 static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
337 {
338 	unsigned int limit = svc_rpc_per_connection_limit;
339 	int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
340 
341 	return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
342 }
343 
344 static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
345 {
346 	if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
347 		if (!svc_xprt_slots_in_range(xprt))
348 			return false;
349 		atomic_inc(&xprt->xpt_nr_rqsts);
350 		set_bit(RQ_DATA, &rqstp->rq_flags);
351 	}
352 	return true;
353 }
354 
355 static void svc_xprt_release_slot(struct svc_rqst *rqstp)
356 {
357 	struct svc_xprt	*xprt = rqstp->rq_xprt;
358 	if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
359 		atomic_dec(&xprt->xpt_nr_rqsts);
360 		svc_xprt_enqueue(xprt);
361 	}
362 }
363 
364 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
365 {
366 	if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
367 		return true;
368 	if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED))) {
369 		if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
370 		    svc_xprt_slots_in_range(xprt))
371 			return true;
372 		trace_svc_xprt_no_write_space(xprt);
373 		return false;
374 	}
375 	return false;
376 }
377 
378 void svc_xprt_do_enqueue(struct svc_xprt *xprt)
379 {
380 	struct svc_pool *pool;
381 	struct svc_rqst	*rqstp = NULL;
382 	int cpu;
383 
384 	if (!svc_xprt_has_something_to_do(xprt))
385 		return;
386 
387 	/* Mark transport as busy. It will remain in this state until
388 	 * the provider calls svc_xprt_received. We update XPT_BUSY
389 	 * atomically because it also guards against trying to enqueue
390 	 * the transport twice.
391 	 */
392 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
393 		return;
394 
395 	cpu = get_cpu();
396 	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
397 
398 	atomic_long_inc(&pool->sp_stats.packets);
399 
400 	spin_lock_bh(&pool->sp_lock);
401 	list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
402 	pool->sp_stats.sockets_queued++;
403 	spin_unlock_bh(&pool->sp_lock);
404 
405 	/* find a thread for this xprt */
406 	rcu_read_lock();
407 	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
408 		if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags))
409 			continue;
410 		atomic_long_inc(&pool->sp_stats.threads_woken);
411 		rqstp->rq_qtime = ktime_get();
412 		wake_up_process(rqstp->rq_task);
413 		goto out_unlock;
414 	}
415 	set_bit(SP_CONGESTED, &pool->sp_flags);
416 	rqstp = NULL;
417 out_unlock:
418 	rcu_read_unlock();
419 	put_cpu();
420 	trace_svc_xprt_do_enqueue(xprt, rqstp);
421 }
422 EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue);
423 
424 /*
425  * Queue up a transport with data pending. If there are idle nfsd
426  * processes, wake 'em up.
427  *
428  */
429 void svc_xprt_enqueue(struct svc_xprt *xprt)
430 {
431 	if (test_bit(XPT_BUSY, &xprt->xpt_flags))
432 		return;
433 	xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
434 }
435 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
436 
437 /*
438  * Dequeue the first transport, if there is one.
439  */
440 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
441 {
442 	struct svc_xprt	*xprt = NULL;
443 
444 	if (list_empty(&pool->sp_sockets))
445 		goto out;
446 
447 	spin_lock_bh(&pool->sp_lock);
448 	if (likely(!list_empty(&pool->sp_sockets))) {
449 		xprt = list_first_entry(&pool->sp_sockets,
450 					struct svc_xprt, xpt_ready);
451 		list_del_init(&xprt->xpt_ready);
452 		svc_xprt_get(xprt);
453 	}
454 	spin_unlock_bh(&pool->sp_lock);
455 out:
456 	return xprt;
457 }
458 
459 /**
460  * svc_reserve - change the space reserved for the reply to a request.
461  * @rqstp:  The request in question
462  * @space: new max space to reserve
463  *
464  * Each request reserves some space on the output queue of the transport
465  * to make sure the reply fits.  This function reduces that reserved
466  * space to be the amount of space used already, plus @space.
467  *
468  */
469 void svc_reserve(struct svc_rqst *rqstp, int space)
470 {
471 	space += rqstp->rq_res.head[0].iov_len;
472 
473 	if (space < rqstp->rq_reserved) {
474 		struct svc_xprt *xprt = rqstp->rq_xprt;
475 		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
476 		rqstp->rq_reserved = space;
477 
478 		svc_xprt_enqueue(xprt);
479 	}
480 }
481 EXPORT_SYMBOL_GPL(svc_reserve);
482 
483 static void svc_xprt_release(struct svc_rqst *rqstp)
484 {
485 	struct svc_xprt	*xprt = rqstp->rq_xprt;
486 
487 	xprt->xpt_ops->xpo_release_rqst(rqstp);
488 
489 	kfree(rqstp->rq_deferred);
490 	rqstp->rq_deferred = NULL;
491 
492 	svc_free_res_pages(rqstp);
493 	rqstp->rq_res.page_len = 0;
494 	rqstp->rq_res.page_base = 0;
495 
496 	/* Reset response buffer and release
497 	 * the reservation.
498 	 * But first, check that enough space was reserved
499 	 * for the reply, otherwise we have a bug!
500 	 */
501 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
502 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
503 		       rqstp->rq_reserved,
504 		       rqstp->rq_res.len);
505 
506 	rqstp->rq_res.head[0].iov_len = 0;
507 	svc_reserve(rqstp, 0);
508 	svc_xprt_release_slot(rqstp);
509 	rqstp->rq_xprt = NULL;
510 	svc_xprt_put(xprt);
511 }
512 
513 /*
514  * Some svc_serv's will have occasional work to do, even when a xprt is not
515  * waiting to be serviced. This function is there to "kick" a task in one of
516  * those services so that it can wake up and do that work. Note that we only
517  * bother with pool 0 as we don't need to wake up more than one thread for
518  * this purpose.
519  */
520 void svc_wake_up(struct svc_serv *serv)
521 {
522 	struct svc_rqst	*rqstp;
523 	struct svc_pool *pool;
524 
525 	pool = &serv->sv_pools[0];
526 
527 	rcu_read_lock();
528 	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
529 		/* skip any that aren't queued */
530 		if (test_bit(RQ_BUSY, &rqstp->rq_flags))
531 			continue;
532 		rcu_read_unlock();
533 		wake_up_process(rqstp->rq_task);
534 		trace_svc_wake_up(rqstp->rq_task->pid);
535 		return;
536 	}
537 	rcu_read_unlock();
538 
539 	/* No free entries available */
540 	set_bit(SP_TASK_PENDING, &pool->sp_flags);
541 	smp_wmb();
542 	trace_svc_wake_up(0);
543 }
544 EXPORT_SYMBOL_GPL(svc_wake_up);
545 
546 int svc_port_is_privileged(struct sockaddr *sin)
547 {
548 	switch (sin->sa_family) {
549 	case AF_INET:
550 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
551 			< PROT_SOCK;
552 	case AF_INET6:
553 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
554 			< PROT_SOCK;
555 	default:
556 		return 0;
557 	}
558 }
559 
560 /*
561  * Make sure that we don't have too many active connections. If we have,
562  * something must be dropped. It's not clear what will happen if we allow
563  * "too many" connections, but when dealing with network-facing software,
564  * we have to code defensively. Here we do that by imposing hard limits.
565  *
566  * There's no point in trying to do random drop here for DoS
567  * prevention. The NFS clients does 1 reconnect in 15 seconds. An
568  * attacker can easily beat that.
569  *
570  * The only somewhat efficient mechanism would be if drop old
571  * connections from the same IP first. But right now we don't even
572  * record the client IP in svc_sock.
573  *
574  * single-threaded services that expect a lot of clients will probably
575  * need to set sv_maxconn to override the default value which is based
576  * on the number of threads
577  */
578 static void svc_check_conn_limits(struct svc_serv *serv)
579 {
580 	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
581 				(serv->sv_nrthreads+3) * 20;
582 
583 	if (serv->sv_tmpcnt > limit) {
584 		struct svc_xprt *xprt = NULL;
585 		spin_lock_bh(&serv->sv_lock);
586 		if (!list_empty(&serv->sv_tempsocks)) {
587 			/* Try to help the admin */
588 			net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
589 					       serv->sv_name, serv->sv_maxconn ?
590 					       "max number of connections" :
591 					       "number of threads");
592 			/*
593 			 * Always select the oldest connection. It's not fair,
594 			 * but so is life
595 			 */
596 			xprt = list_entry(serv->sv_tempsocks.prev,
597 					  struct svc_xprt,
598 					  xpt_list);
599 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
600 			svc_xprt_get(xprt);
601 		}
602 		spin_unlock_bh(&serv->sv_lock);
603 
604 		if (xprt) {
605 			svc_xprt_enqueue(xprt);
606 			svc_xprt_put(xprt);
607 		}
608 	}
609 }
610 
611 static int svc_alloc_arg(struct svc_rqst *rqstp)
612 {
613 	struct svc_serv *serv = rqstp->rq_server;
614 	struct xdr_buf *arg;
615 	int pages;
616 	int i;
617 
618 	/* now allocate needed pages.  If we get a failure, sleep briefly */
619 	pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
620 	if (pages > RPCSVC_MAXPAGES) {
621 		pr_warn_once("svc: warning: pages=%u > RPCSVC_MAXPAGES=%lu\n",
622 			     pages, RPCSVC_MAXPAGES);
623 		/* use as many pages as possible */
624 		pages = RPCSVC_MAXPAGES;
625 	}
626 	for (i = 0; i < pages ; i++)
627 		while (rqstp->rq_pages[i] == NULL) {
628 			struct page *p = alloc_page(GFP_KERNEL);
629 			if (!p) {
630 				set_current_state(TASK_INTERRUPTIBLE);
631 				if (signalled() || kthread_should_stop()) {
632 					set_current_state(TASK_RUNNING);
633 					return -EINTR;
634 				}
635 				schedule_timeout(msecs_to_jiffies(500));
636 			}
637 			rqstp->rq_pages[i] = p;
638 		}
639 	rqstp->rq_page_end = &rqstp->rq_pages[i];
640 	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
641 
642 	/* Make arg->head point to first page and arg->pages point to rest */
643 	arg = &rqstp->rq_arg;
644 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
645 	arg->head[0].iov_len = PAGE_SIZE;
646 	arg->pages = rqstp->rq_pages + 1;
647 	arg->page_base = 0;
648 	/* save at least one page for response */
649 	arg->page_len = (pages-2)*PAGE_SIZE;
650 	arg->len = (pages-1)*PAGE_SIZE;
651 	arg->tail[0].iov_len = 0;
652 	return 0;
653 }
654 
655 static bool
656 rqst_should_sleep(struct svc_rqst *rqstp)
657 {
658 	struct svc_pool		*pool = rqstp->rq_pool;
659 
660 	/* did someone call svc_wake_up? */
661 	if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
662 		return false;
663 
664 	/* was a socket queued? */
665 	if (!list_empty(&pool->sp_sockets))
666 		return false;
667 
668 	/* are we shutting down? */
669 	if (signalled() || kthread_should_stop())
670 		return false;
671 
672 	/* are we freezing? */
673 	if (freezing(current))
674 		return false;
675 
676 	return true;
677 }
678 
679 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
680 {
681 	struct svc_pool		*pool = rqstp->rq_pool;
682 	long			time_left = 0;
683 
684 	/* rq_xprt should be clear on entry */
685 	WARN_ON_ONCE(rqstp->rq_xprt);
686 
687 	rqstp->rq_xprt = svc_xprt_dequeue(pool);
688 	if (rqstp->rq_xprt)
689 		goto out_found;
690 
691 	/*
692 	 * We have to be able to interrupt this wait
693 	 * to bring down the daemons ...
694 	 */
695 	set_current_state(TASK_INTERRUPTIBLE);
696 	smp_mb__before_atomic();
697 	clear_bit(SP_CONGESTED, &pool->sp_flags);
698 	clear_bit(RQ_BUSY, &rqstp->rq_flags);
699 	smp_mb__after_atomic();
700 
701 	if (likely(rqst_should_sleep(rqstp)))
702 		time_left = schedule_timeout(timeout);
703 	else
704 		__set_current_state(TASK_RUNNING);
705 
706 	try_to_freeze();
707 
708 	set_bit(RQ_BUSY, &rqstp->rq_flags);
709 	smp_mb__after_atomic();
710 	rqstp->rq_xprt = svc_xprt_dequeue(pool);
711 	if (rqstp->rq_xprt)
712 		goto out_found;
713 
714 	if (!time_left)
715 		atomic_long_inc(&pool->sp_stats.threads_timedout);
716 
717 	if (signalled() || kthread_should_stop())
718 		return ERR_PTR(-EINTR);
719 	return ERR_PTR(-EAGAIN);
720 out_found:
721 	/* Normally we will wait up to 5 seconds for any required
722 	 * cache information to be provided.
723 	 */
724 	if (!test_bit(SP_CONGESTED, &pool->sp_flags))
725 		rqstp->rq_chandle.thread_wait = 5*HZ;
726 	else
727 		rqstp->rq_chandle.thread_wait = 1*HZ;
728 	trace_svc_xprt_dequeue(rqstp);
729 	return rqstp->rq_xprt;
730 }
731 
732 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
733 {
734 	spin_lock_bh(&serv->sv_lock);
735 	set_bit(XPT_TEMP, &newxpt->xpt_flags);
736 	list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
737 	serv->sv_tmpcnt++;
738 	if (serv->sv_temptimer.function == NULL) {
739 		/* setup timer to age temp transports */
740 		serv->sv_temptimer.function = svc_age_temp_xprts;
741 		mod_timer(&serv->sv_temptimer,
742 			  jiffies + svc_conn_age_period * HZ);
743 	}
744 	spin_unlock_bh(&serv->sv_lock);
745 	svc_xprt_received(newxpt);
746 }
747 
748 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
749 {
750 	struct svc_serv *serv = rqstp->rq_server;
751 	int len = 0;
752 
753 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
754 		dprintk("svc_recv: found XPT_CLOSE\n");
755 		if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
756 			xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
757 		svc_delete_xprt(xprt);
758 		/* Leave XPT_BUSY set on the dead xprt: */
759 		goto out;
760 	}
761 	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
762 		struct svc_xprt *newxpt;
763 		/*
764 		 * We know this module_get will succeed because the
765 		 * listener holds a reference too
766 		 */
767 		__module_get(xprt->xpt_class->xcl_owner);
768 		svc_check_conn_limits(xprt->xpt_server);
769 		newxpt = xprt->xpt_ops->xpo_accept(xprt);
770 		if (newxpt)
771 			svc_add_new_temp_xprt(serv, newxpt);
772 		else
773 			module_put(xprt->xpt_class->xcl_owner);
774 	} else if (svc_xprt_reserve_slot(rqstp, xprt)) {
775 		/* XPT_DATA|XPT_DEFERRED case: */
776 		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
777 			rqstp, rqstp->rq_pool->sp_id, xprt,
778 			kref_read(&xprt->xpt_ref));
779 		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
780 		if (rqstp->rq_deferred)
781 			len = svc_deferred_recv(rqstp);
782 		else
783 			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
784 		rqstp->rq_stime = ktime_get();
785 		rqstp->rq_reserved = serv->sv_max_mesg;
786 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
787 	}
788 	/* clear XPT_BUSY: */
789 	svc_xprt_received(xprt);
790 out:
791 	trace_svc_handle_xprt(xprt, len);
792 	return len;
793 }
794 
795 /*
796  * Receive the next request on any transport.  This code is carefully
797  * organised not to touch any cachelines in the shared svc_serv
798  * structure, only cachelines in the local svc_pool.
799  */
800 int svc_recv(struct svc_rqst *rqstp, long timeout)
801 {
802 	struct svc_xprt		*xprt = NULL;
803 	struct svc_serv		*serv = rqstp->rq_server;
804 	int			len, err;
805 
806 	dprintk("svc: server %p waiting for data (to = %ld)\n",
807 		rqstp, timeout);
808 
809 	if (rqstp->rq_xprt)
810 		printk(KERN_ERR
811 			"svc_recv: service %p, transport not NULL!\n",
812 			 rqstp);
813 
814 	err = svc_alloc_arg(rqstp);
815 	if (err)
816 		goto out;
817 
818 	try_to_freeze();
819 	cond_resched();
820 	err = -EINTR;
821 	if (signalled() || kthread_should_stop())
822 		goto out;
823 
824 	xprt = svc_get_next_xprt(rqstp, timeout);
825 	if (IS_ERR(xprt)) {
826 		err = PTR_ERR(xprt);
827 		goto out;
828 	}
829 
830 	len = svc_handle_xprt(rqstp, xprt);
831 
832 	/* No data, incomplete (TCP) read, or accept() */
833 	err = -EAGAIN;
834 	if (len <= 0)
835 		goto out_release;
836 
837 	clear_bit(XPT_OLD, &xprt->xpt_flags);
838 
839 	xprt->xpt_ops->xpo_secure_port(rqstp);
840 	rqstp->rq_chandle.defer = svc_defer;
841 	rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
842 
843 	if (serv->sv_stats)
844 		serv->sv_stats->netcnt++;
845 	trace_svc_recv(rqstp, len);
846 	return len;
847 out_release:
848 	rqstp->rq_res.len = 0;
849 	svc_xprt_release(rqstp);
850 out:
851 	return err;
852 }
853 EXPORT_SYMBOL_GPL(svc_recv);
854 
855 /*
856  * Drop request
857  */
858 void svc_drop(struct svc_rqst *rqstp)
859 {
860 	trace_svc_drop(rqstp);
861 	dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
862 	svc_xprt_release(rqstp);
863 }
864 EXPORT_SYMBOL_GPL(svc_drop);
865 
866 /*
867  * Return reply to client.
868  */
869 int svc_send(struct svc_rqst *rqstp)
870 {
871 	struct svc_xprt	*xprt;
872 	int		len = -EFAULT;
873 	struct xdr_buf	*xb;
874 
875 	xprt = rqstp->rq_xprt;
876 	if (!xprt)
877 		goto out;
878 
879 	/* release the receive skb before sending the reply */
880 	xprt->xpt_ops->xpo_release_rqst(rqstp);
881 
882 	/* calculate over-all length */
883 	xb = &rqstp->rq_res;
884 	xb->len = xb->head[0].iov_len +
885 		xb->page_len +
886 		xb->tail[0].iov_len;
887 
888 	/* Grab mutex to serialize outgoing data. */
889 	mutex_lock(&xprt->xpt_mutex);
890 	trace_svc_stats_latency(rqstp);
891 	if (test_bit(XPT_DEAD, &xprt->xpt_flags)
892 			|| test_bit(XPT_CLOSE, &xprt->xpt_flags))
893 		len = -ENOTCONN;
894 	else
895 		len = xprt->xpt_ops->xpo_sendto(rqstp);
896 	mutex_unlock(&xprt->xpt_mutex);
897 	trace_svc_send(rqstp, len);
898 	svc_xprt_release(rqstp);
899 
900 	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
901 		len = 0;
902 out:
903 	return len;
904 }
905 
906 /*
907  * Timer function to close old temporary transports, using
908  * a mark-and-sweep algorithm.
909  */
910 static void svc_age_temp_xprts(struct timer_list *t)
911 {
912 	struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
913 	struct svc_xprt *xprt;
914 	struct list_head *le, *next;
915 
916 	dprintk("svc_age_temp_xprts\n");
917 
918 	if (!spin_trylock_bh(&serv->sv_lock)) {
919 		/* busy, try again 1 sec later */
920 		dprintk("svc_age_temp_xprts: busy\n");
921 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
922 		return;
923 	}
924 
925 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
926 		xprt = list_entry(le, struct svc_xprt, xpt_list);
927 
928 		/* First time through, just mark it OLD. Second time
929 		 * through, close it. */
930 		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
931 			continue;
932 		if (kref_read(&xprt->xpt_ref) > 1 ||
933 		    test_bit(XPT_BUSY, &xprt->xpt_flags))
934 			continue;
935 		list_del_init(le);
936 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
937 		dprintk("queuing xprt %p for closing\n", xprt);
938 
939 		/* a thread will dequeue and close it soon */
940 		svc_xprt_enqueue(xprt);
941 	}
942 	spin_unlock_bh(&serv->sv_lock);
943 
944 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
945 }
946 
947 /* Close temporary transports whose xpt_local matches server_addr immediately
948  * instead of waiting for them to be picked up by the timer.
949  *
950  * This is meant to be called from a notifier_block that runs when an ip
951  * address is deleted.
952  */
953 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
954 {
955 	struct svc_xprt *xprt;
956 	struct list_head *le, *next;
957 	LIST_HEAD(to_be_closed);
958 
959 	spin_lock_bh(&serv->sv_lock);
960 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
961 		xprt = list_entry(le, struct svc_xprt, xpt_list);
962 		if (rpc_cmp_addr(server_addr, (struct sockaddr *)
963 				&xprt->xpt_local)) {
964 			dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
965 			list_move(le, &to_be_closed);
966 		}
967 	}
968 	spin_unlock_bh(&serv->sv_lock);
969 
970 	while (!list_empty(&to_be_closed)) {
971 		le = to_be_closed.next;
972 		list_del_init(le);
973 		xprt = list_entry(le, struct svc_xprt, xpt_list);
974 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
975 		set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
976 		dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
977 				xprt);
978 		svc_xprt_enqueue(xprt);
979 	}
980 }
981 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
982 
983 static void call_xpt_users(struct svc_xprt *xprt)
984 {
985 	struct svc_xpt_user *u;
986 
987 	spin_lock(&xprt->xpt_lock);
988 	while (!list_empty(&xprt->xpt_users)) {
989 		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
990 		list_del_init(&u->list);
991 		u->callback(u);
992 	}
993 	spin_unlock(&xprt->xpt_lock);
994 }
995 
996 /*
997  * Remove a dead transport
998  */
999 static void svc_delete_xprt(struct svc_xprt *xprt)
1000 {
1001 	struct svc_serv	*serv = xprt->xpt_server;
1002 	struct svc_deferred_req *dr;
1003 
1004 	/* Only do this once */
1005 	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1006 		BUG();
1007 
1008 	dprintk("svc: svc_delete_xprt(%p)\n", xprt);
1009 	xprt->xpt_ops->xpo_detach(xprt);
1010 
1011 	spin_lock_bh(&serv->sv_lock);
1012 	list_del_init(&xprt->xpt_list);
1013 	WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1014 	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1015 		serv->sv_tmpcnt--;
1016 	spin_unlock_bh(&serv->sv_lock);
1017 
1018 	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1019 		kfree(dr);
1020 
1021 	call_xpt_users(xprt);
1022 	svc_xprt_put(xprt);
1023 }
1024 
1025 void svc_close_xprt(struct svc_xprt *xprt)
1026 {
1027 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
1028 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1029 		/* someone else will have to effect the close */
1030 		return;
1031 	/*
1032 	 * We expect svc_close_xprt() to work even when no threads are
1033 	 * running (e.g., while configuring the server before starting
1034 	 * any threads), so if the transport isn't busy, we delete
1035 	 * it ourself:
1036 	 */
1037 	svc_delete_xprt(xprt);
1038 }
1039 EXPORT_SYMBOL_GPL(svc_close_xprt);
1040 
1041 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1042 {
1043 	struct svc_xprt *xprt;
1044 	int ret = 0;
1045 
1046 	spin_lock(&serv->sv_lock);
1047 	list_for_each_entry(xprt, xprt_list, xpt_list) {
1048 		if (xprt->xpt_net != net)
1049 			continue;
1050 		ret++;
1051 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1052 		svc_xprt_enqueue(xprt);
1053 	}
1054 	spin_unlock(&serv->sv_lock);
1055 	return ret;
1056 }
1057 
1058 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1059 {
1060 	struct svc_pool *pool;
1061 	struct svc_xprt *xprt;
1062 	struct svc_xprt *tmp;
1063 	int i;
1064 
1065 	for (i = 0; i < serv->sv_nrpools; i++) {
1066 		pool = &serv->sv_pools[i];
1067 
1068 		spin_lock_bh(&pool->sp_lock);
1069 		list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1070 			if (xprt->xpt_net != net)
1071 				continue;
1072 			list_del_init(&xprt->xpt_ready);
1073 			spin_unlock_bh(&pool->sp_lock);
1074 			return xprt;
1075 		}
1076 		spin_unlock_bh(&pool->sp_lock);
1077 	}
1078 	return NULL;
1079 }
1080 
1081 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1082 {
1083 	struct svc_xprt *xprt;
1084 
1085 	while ((xprt = svc_dequeue_net(serv, net))) {
1086 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1087 		svc_delete_xprt(xprt);
1088 	}
1089 }
1090 
1091 /*
1092  * Server threads may still be running (especially in the case where the
1093  * service is still running in other network namespaces).
1094  *
1095  * So we shut down sockets the same way we would on a running server, by
1096  * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1097  * the close.  In the case there are no such other threads,
1098  * threads running, svc_clean_up_xprts() does a simple version of a
1099  * server's main event loop, and in the case where there are other
1100  * threads, we may need to wait a little while and then check again to
1101  * see if they're done.
1102  */
1103 void svc_close_net(struct svc_serv *serv, struct net *net)
1104 {
1105 	int delay = 0;
1106 
1107 	while (svc_close_list(serv, &serv->sv_permsocks, net) +
1108 	       svc_close_list(serv, &serv->sv_tempsocks, net)) {
1109 
1110 		svc_clean_up_xprts(serv, net);
1111 		msleep(delay++);
1112 	}
1113 }
1114 
1115 /*
1116  * Handle defer and revisit of requests
1117  */
1118 
1119 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1120 {
1121 	struct svc_deferred_req *dr =
1122 		container_of(dreq, struct svc_deferred_req, handle);
1123 	struct svc_xprt *xprt = dr->xprt;
1124 
1125 	spin_lock(&xprt->xpt_lock);
1126 	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1127 	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1128 		spin_unlock(&xprt->xpt_lock);
1129 		dprintk("revisit canceled\n");
1130 		svc_xprt_put(xprt);
1131 		trace_svc_drop_deferred(dr);
1132 		kfree(dr);
1133 		return;
1134 	}
1135 	dprintk("revisit queued\n");
1136 	dr->xprt = NULL;
1137 	list_add(&dr->handle.recent, &xprt->xpt_deferred);
1138 	spin_unlock(&xprt->xpt_lock);
1139 	svc_xprt_enqueue(xprt);
1140 	svc_xprt_put(xprt);
1141 }
1142 
1143 /*
1144  * Save the request off for later processing. The request buffer looks
1145  * like this:
1146  *
1147  * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1148  *
1149  * This code can only handle requests that consist of an xprt-header
1150  * and rpc-header.
1151  */
1152 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1153 {
1154 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1155 	struct svc_deferred_req *dr;
1156 
1157 	if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1158 		return NULL; /* if more than a page, give up FIXME */
1159 	if (rqstp->rq_deferred) {
1160 		dr = rqstp->rq_deferred;
1161 		rqstp->rq_deferred = NULL;
1162 	} else {
1163 		size_t skip;
1164 		size_t size;
1165 		/* FIXME maybe discard if size too large */
1166 		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1167 		dr = kmalloc(size, GFP_KERNEL);
1168 		if (dr == NULL)
1169 			return NULL;
1170 
1171 		dr->handle.owner = rqstp->rq_server;
1172 		dr->prot = rqstp->rq_prot;
1173 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1174 		dr->addrlen = rqstp->rq_addrlen;
1175 		dr->daddr = rqstp->rq_daddr;
1176 		dr->argslen = rqstp->rq_arg.len >> 2;
1177 		dr->xprt_hlen = rqstp->rq_xprt_hlen;
1178 
1179 		/* back up head to the start of the buffer and copy */
1180 		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1181 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1182 		       dr->argslen << 2);
1183 	}
1184 	svc_xprt_get(rqstp->rq_xprt);
1185 	dr->xprt = rqstp->rq_xprt;
1186 	set_bit(RQ_DROPME, &rqstp->rq_flags);
1187 
1188 	dr->handle.revisit = svc_revisit;
1189 	trace_svc_defer(rqstp);
1190 	return &dr->handle;
1191 }
1192 
1193 /*
1194  * recv data from a deferred request into an active one
1195  */
1196 static int svc_deferred_recv(struct svc_rqst *rqstp)
1197 {
1198 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1199 
1200 	/* setup iov_base past transport header */
1201 	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1202 	/* The iov_len does not include the transport header bytes */
1203 	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1204 	rqstp->rq_arg.page_len = 0;
1205 	/* The rq_arg.len includes the transport header bytes */
1206 	rqstp->rq_arg.len     = dr->argslen<<2;
1207 	rqstp->rq_prot        = dr->prot;
1208 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1209 	rqstp->rq_addrlen     = dr->addrlen;
1210 	/* Save off transport header len in case we get deferred again */
1211 	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1212 	rqstp->rq_daddr       = dr->daddr;
1213 	rqstp->rq_respages    = rqstp->rq_pages;
1214 	return (dr->argslen<<2) - dr->xprt_hlen;
1215 }
1216 
1217 
1218 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1219 {
1220 	struct svc_deferred_req *dr = NULL;
1221 
1222 	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1223 		return NULL;
1224 	spin_lock(&xprt->xpt_lock);
1225 	if (!list_empty(&xprt->xpt_deferred)) {
1226 		dr = list_entry(xprt->xpt_deferred.next,
1227 				struct svc_deferred_req,
1228 				handle.recent);
1229 		list_del_init(&dr->handle.recent);
1230 		trace_svc_revisit_deferred(dr);
1231 	} else
1232 		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1233 	spin_unlock(&xprt->xpt_lock);
1234 	return dr;
1235 }
1236 
1237 /**
1238  * svc_find_xprt - find an RPC transport instance
1239  * @serv: pointer to svc_serv to search
1240  * @xcl_name: C string containing transport's class name
1241  * @net: owner net pointer
1242  * @af: Address family of transport's local address
1243  * @port: transport's IP port number
1244  *
1245  * Return the transport instance pointer for the endpoint accepting
1246  * connections/peer traffic from the specified transport class,
1247  * address family and port.
1248  *
1249  * Specifying 0 for the address family or port is effectively a
1250  * wild-card, and will result in matching the first transport in the
1251  * service's list that has a matching class name.
1252  */
1253 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1254 			       struct net *net, const sa_family_t af,
1255 			       const unsigned short port)
1256 {
1257 	struct svc_xprt *xprt;
1258 	struct svc_xprt *found = NULL;
1259 
1260 	/* Sanity check the args */
1261 	if (serv == NULL || xcl_name == NULL)
1262 		return found;
1263 
1264 	spin_lock_bh(&serv->sv_lock);
1265 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1266 		if (xprt->xpt_net != net)
1267 			continue;
1268 		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1269 			continue;
1270 		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1271 			continue;
1272 		if (port != 0 && port != svc_xprt_local_port(xprt))
1273 			continue;
1274 		found = xprt;
1275 		svc_xprt_get(xprt);
1276 		break;
1277 	}
1278 	spin_unlock_bh(&serv->sv_lock);
1279 	return found;
1280 }
1281 EXPORT_SYMBOL_GPL(svc_find_xprt);
1282 
1283 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1284 			     char *pos, int remaining)
1285 {
1286 	int len;
1287 
1288 	len = snprintf(pos, remaining, "%s %u\n",
1289 			xprt->xpt_class->xcl_name,
1290 			svc_xprt_local_port(xprt));
1291 	if (len >= remaining)
1292 		return -ENAMETOOLONG;
1293 	return len;
1294 }
1295 
1296 /**
1297  * svc_xprt_names - format a buffer with a list of transport names
1298  * @serv: pointer to an RPC service
1299  * @buf: pointer to a buffer to be filled in
1300  * @buflen: length of buffer to be filled in
1301  *
1302  * Fills in @buf with a string containing a list of transport names,
1303  * each name terminated with '\n'.
1304  *
1305  * Returns positive length of the filled-in string on success; otherwise
1306  * a negative errno value is returned if an error occurs.
1307  */
1308 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1309 {
1310 	struct svc_xprt *xprt;
1311 	int len, totlen;
1312 	char *pos;
1313 
1314 	/* Sanity check args */
1315 	if (!serv)
1316 		return 0;
1317 
1318 	spin_lock_bh(&serv->sv_lock);
1319 
1320 	pos = buf;
1321 	totlen = 0;
1322 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1323 		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1324 		if (len < 0) {
1325 			*buf = '\0';
1326 			totlen = len;
1327 		}
1328 		if (len <= 0)
1329 			break;
1330 
1331 		pos += len;
1332 		totlen += len;
1333 	}
1334 
1335 	spin_unlock_bh(&serv->sv_lock);
1336 	return totlen;
1337 }
1338 EXPORT_SYMBOL_GPL(svc_xprt_names);
1339 
1340 
1341 /*----------------------------------------------------------------------------*/
1342 
1343 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1344 {
1345 	unsigned int pidx = (unsigned int)*pos;
1346 	struct svc_serv *serv = m->private;
1347 
1348 	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1349 
1350 	if (!pidx)
1351 		return SEQ_START_TOKEN;
1352 	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1353 }
1354 
1355 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1356 {
1357 	struct svc_pool *pool = p;
1358 	struct svc_serv *serv = m->private;
1359 
1360 	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1361 
1362 	if (p == SEQ_START_TOKEN) {
1363 		pool = &serv->sv_pools[0];
1364 	} else {
1365 		unsigned int pidx = (pool - &serv->sv_pools[0]);
1366 		if (pidx < serv->sv_nrpools-1)
1367 			pool = &serv->sv_pools[pidx+1];
1368 		else
1369 			pool = NULL;
1370 	}
1371 	++*pos;
1372 	return pool;
1373 }
1374 
1375 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1376 {
1377 }
1378 
1379 static int svc_pool_stats_show(struct seq_file *m, void *p)
1380 {
1381 	struct svc_pool *pool = p;
1382 
1383 	if (p == SEQ_START_TOKEN) {
1384 		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1385 		return 0;
1386 	}
1387 
1388 	seq_printf(m, "%u %lu %lu %lu %lu\n",
1389 		pool->sp_id,
1390 		(unsigned long)atomic_long_read(&pool->sp_stats.packets),
1391 		pool->sp_stats.sockets_queued,
1392 		(unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1393 		(unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1394 
1395 	return 0;
1396 }
1397 
1398 static const struct seq_operations svc_pool_stats_seq_ops = {
1399 	.start	= svc_pool_stats_start,
1400 	.next	= svc_pool_stats_next,
1401 	.stop	= svc_pool_stats_stop,
1402 	.show	= svc_pool_stats_show,
1403 };
1404 
1405 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1406 {
1407 	int err;
1408 
1409 	err = seq_open(file, &svc_pool_stats_seq_ops);
1410 	if (!err)
1411 		((struct seq_file *) file->private_data)->private = serv;
1412 	return err;
1413 }
1414 EXPORT_SYMBOL(svc_pool_stats_open);
1415 
1416 /*----------------------------------------------------------------------------*/
1417