xref: /openbmc/linux/net/sunrpc/svc_xprt.c (revision 6774def6)
1 /*
2  * linux/net/sunrpc/svc_xprt.c
3  *
4  * Author: Tom Tucker <tom@opengridcomputing.com>
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/stats.h>
14 #include <linux/sunrpc/svc_xprt.h>
15 #include <linux/sunrpc/svcsock.h>
16 #include <linux/sunrpc/xprt.h>
17 #include <linux/module.h>
18 
19 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
20 
21 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
22 static int svc_deferred_recv(struct svc_rqst *rqstp);
23 static struct cache_deferred_req *svc_defer(struct cache_req *req);
24 static void svc_age_temp_xprts(unsigned long closure);
25 static void svc_delete_xprt(struct svc_xprt *xprt);
26 static void svc_xprt_do_enqueue(struct svc_xprt *xprt);
27 
28 /* apparently the "standard" is that clients close
29  * idle connections after 5 minutes, servers after
30  * 6 minutes
31  *   http://www.connectathon.org/talks96/nfstcp.pdf
32  */
33 static int svc_conn_age_period = 6*60;
34 
35 /* List of registered transport classes */
36 static DEFINE_SPINLOCK(svc_xprt_class_lock);
37 static LIST_HEAD(svc_xprt_class_list);
38 
39 /* SMP locking strategy:
40  *
41  *	svc_pool->sp_lock protects most of the fields of that pool.
42  *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
43  *	when both need to be taken (rare), svc_serv->sv_lock is first.
44  *	BKL protects svc_serv->sv_nrthread.
45  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
46  *             and the ->sk_info_authunix cache.
47  *
48  *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
49  *	enqueued multiply. During normal transport processing this bit
50  *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
51  *	Providers should not manipulate this bit directly.
52  *
53  *	Some flags can be set to certain values at any time
54  *	providing that certain rules are followed:
55  *
56  *	XPT_CONN, XPT_DATA:
57  *		- Can be set or cleared at any time.
58  *		- After a set, svc_xprt_enqueue must be called to enqueue
59  *		  the transport for processing.
60  *		- After a clear, the transport must be read/accepted.
61  *		  If this succeeds, it must be set again.
62  *	XPT_CLOSE:
63  *		- Can set at any time. It is never cleared.
64  *      XPT_DEAD:
65  *		- Can only be set while XPT_BUSY is held which ensures
66  *		  that no other thread will be using the transport or will
67  *		  try to set XPT_DEAD.
68  */
69 
70 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
71 {
72 	struct svc_xprt_class *cl;
73 	int res = -EEXIST;
74 
75 	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
76 
77 	INIT_LIST_HEAD(&xcl->xcl_list);
78 	spin_lock(&svc_xprt_class_lock);
79 	/* Make sure there isn't already a class with the same name */
80 	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
81 		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
82 			goto out;
83 	}
84 	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
85 	res = 0;
86 out:
87 	spin_unlock(&svc_xprt_class_lock);
88 	return res;
89 }
90 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
91 
92 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
93 {
94 	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
95 	spin_lock(&svc_xprt_class_lock);
96 	list_del_init(&xcl->xcl_list);
97 	spin_unlock(&svc_xprt_class_lock);
98 }
99 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
100 
101 /*
102  * Format the transport list for printing
103  */
104 int svc_print_xprts(char *buf, int maxlen)
105 {
106 	struct svc_xprt_class *xcl;
107 	char tmpstr[80];
108 	int len = 0;
109 	buf[0] = '\0';
110 
111 	spin_lock(&svc_xprt_class_lock);
112 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
113 		int slen;
114 
115 		sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
116 		slen = strlen(tmpstr);
117 		if (len + slen > maxlen)
118 			break;
119 		len += slen;
120 		strcat(buf, tmpstr);
121 	}
122 	spin_unlock(&svc_xprt_class_lock);
123 
124 	return len;
125 }
126 
127 static void svc_xprt_free(struct kref *kref)
128 {
129 	struct svc_xprt *xprt =
130 		container_of(kref, struct svc_xprt, xpt_ref);
131 	struct module *owner = xprt->xpt_class->xcl_owner;
132 	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
133 		svcauth_unix_info_release(xprt);
134 	put_net(xprt->xpt_net);
135 	/* See comment on corresponding get in xs_setup_bc_tcp(): */
136 	if (xprt->xpt_bc_xprt)
137 		xprt_put(xprt->xpt_bc_xprt);
138 	xprt->xpt_ops->xpo_free(xprt);
139 	module_put(owner);
140 }
141 
142 void svc_xprt_put(struct svc_xprt *xprt)
143 {
144 	kref_put(&xprt->xpt_ref, svc_xprt_free);
145 }
146 EXPORT_SYMBOL_GPL(svc_xprt_put);
147 
148 /*
149  * Called by transport drivers to initialize the transport independent
150  * portion of the transport instance.
151  */
152 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
153 		   struct svc_xprt *xprt, struct svc_serv *serv)
154 {
155 	memset(xprt, 0, sizeof(*xprt));
156 	xprt->xpt_class = xcl;
157 	xprt->xpt_ops = xcl->xcl_ops;
158 	kref_init(&xprt->xpt_ref);
159 	xprt->xpt_server = serv;
160 	INIT_LIST_HEAD(&xprt->xpt_list);
161 	INIT_LIST_HEAD(&xprt->xpt_ready);
162 	INIT_LIST_HEAD(&xprt->xpt_deferred);
163 	INIT_LIST_HEAD(&xprt->xpt_users);
164 	mutex_init(&xprt->xpt_mutex);
165 	spin_lock_init(&xprt->xpt_lock);
166 	set_bit(XPT_BUSY, &xprt->xpt_flags);
167 	rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
168 	xprt->xpt_net = get_net(net);
169 }
170 EXPORT_SYMBOL_GPL(svc_xprt_init);
171 
172 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
173 					 struct svc_serv *serv,
174 					 struct net *net,
175 					 const int family,
176 					 const unsigned short port,
177 					 int flags)
178 {
179 	struct sockaddr_in sin = {
180 		.sin_family		= AF_INET,
181 		.sin_addr.s_addr	= htonl(INADDR_ANY),
182 		.sin_port		= htons(port),
183 	};
184 #if IS_ENABLED(CONFIG_IPV6)
185 	struct sockaddr_in6 sin6 = {
186 		.sin6_family		= AF_INET6,
187 		.sin6_addr		= IN6ADDR_ANY_INIT,
188 		.sin6_port		= htons(port),
189 	};
190 #endif
191 	struct sockaddr *sap;
192 	size_t len;
193 
194 	switch (family) {
195 	case PF_INET:
196 		sap = (struct sockaddr *)&sin;
197 		len = sizeof(sin);
198 		break;
199 #if IS_ENABLED(CONFIG_IPV6)
200 	case PF_INET6:
201 		sap = (struct sockaddr *)&sin6;
202 		len = sizeof(sin6);
203 		break;
204 #endif
205 	default:
206 		return ERR_PTR(-EAFNOSUPPORT);
207 	}
208 
209 	return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
210 }
211 
212 /*
213  * svc_xprt_received conditionally queues the transport for processing
214  * by another thread. The caller must hold the XPT_BUSY bit and must
215  * not thereafter touch transport data.
216  *
217  * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
218  * insufficient) data.
219  */
220 static void svc_xprt_received(struct svc_xprt *xprt)
221 {
222 	WARN_ON_ONCE(!test_bit(XPT_BUSY, &xprt->xpt_flags));
223 	if (!test_bit(XPT_BUSY, &xprt->xpt_flags))
224 		return;
225 	/* As soon as we clear busy, the xprt could be closed and
226 	 * 'put', so we need a reference to call svc_xprt_do_enqueue with:
227 	 */
228 	svc_xprt_get(xprt);
229 	smp_mb__before_atomic();
230 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
231 	svc_xprt_do_enqueue(xprt);
232 	svc_xprt_put(xprt);
233 }
234 
235 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
236 {
237 	clear_bit(XPT_TEMP, &new->xpt_flags);
238 	spin_lock_bh(&serv->sv_lock);
239 	list_add(&new->xpt_list, &serv->sv_permsocks);
240 	spin_unlock_bh(&serv->sv_lock);
241 	svc_xprt_received(new);
242 }
243 
244 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
245 		    struct net *net, const int family,
246 		    const unsigned short port, int flags)
247 {
248 	struct svc_xprt_class *xcl;
249 
250 	dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
251 	spin_lock(&svc_xprt_class_lock);
252 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
253 		struct svc_xprt *newxprt;
254 		unsigned short newport;
255 
256 		if (strcmp(xprt_name, xcl->xcl_name))
257 			continue;
258 
259 		if (!try_module_get(xcl->xcl_owner))
260 			goto err;
261 
262 		spin_unlock(&svc_xprt_class_lock);
263 		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
264 		if (IS_ERR(newxprt)) {
265 			module_put(xcl->xcl_owner);
266 			return PTR_ERR(newxprt);
267 		}
268 		svc_add_new_perm_xprt(serv, newxprt);
269 		newport = svc_xprt_local_port(newxprt);
270 		return newport;
271 	}
272  err:
273 	spin_unlock(&svc_xprt_class_lock);
274 	dprintk("svc: transport %s not found\n", xprt_name);
275 
276 	/* This errno is exposed to user space.  Provide a reasonable
277 	 * perror msg for a bad transport. */
278 	return -EPROTONOSUPPORT;
279 }
280 EXPORT_SYMBOL_GPL(svc_create_xprt);
281 
282 /*
283  * Copy the local and remote xprt addresses to the rqstp structure
284  */
285 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
286 {
287 	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
288 	rqstp->rq_addrlen = xprt->xpt_remotelen;
289 
290 	/*
291 	 * Destination address in request is needed for binding the
292 	 * source address in RPC replies/callbacks later.
293 	 */
294 	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
295 	rqstp->rq_daddrlen = xprt->xpt_locallen;
296 }
297 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
298 
299 /**
300  * svc_print_addr - Format rq_addr field for printing
301  * @rqstp: svc_rqst struct containing address to print
302  * @buf: target buffer for formatted address
303  * @len: length of target buffer
304  *
305  */
306 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
307 {
308 	return __svc_print_addr(svc_addr(rqstp), buf, len);
309 }
310 EXPORT_SYMBOL_GPL(svc_print_addr);
311 
312 /*
313  * Queue up an idle server thread.  Must have pool->sp_lock held.
314  * Note: this is really a stack rather than a queue, so that we only
315  * use as many different threads as we need, and the rest don't pollute
316  * the cache.
317  */
318 static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
319 {
320 	list_add(&rqstp->rq_list, &pool->sp_threads);
321 }
322 
323 /*
324  * Dequeue an nfsd thread.  Must have pool->sp_lock held.
325  */
326 static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
327 {
328 	list_del(&rqstp->rq_list);
329 }
330 
331 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
332 {
333 	if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
334 		return true;
335 	if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED)))
336 		return xprt->xpt_ops->xpo_has_wspace(xprt);
337 	return false;
338 }
339 
340 static void svc_xprt_do_enqueue(struct svc_xprt *xprt)
341 {
342 	struct svc_pool *pool;
343 	struct svc_rqst	*rqstp;
344 	int cpu;
345 
346 	if (!svc_xprt_has_something_to_do(xprt))
347 		return;
348 
349 	/* Mark transport as busy. It will remain in this state until
350 	 * the provider calls svc_xprt_received. We update XPT_BUSY
351 	 * atomically because it also guards against trying to enqueue
352 	 * the transport twice.
353 	 */
354 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
355 		/* Don't enqueue transport while already enqueued */
356 		dprintk("svc: transport %p busy, not enqueued\n", xprt);
357 		return;
358 	}
359 
360 	cpu = get_cpu();
361 	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
362 	spin_lock_bh(&pool->sp_lock);
363 
364 	pool->sp_stats.packets++;
365 
366 	if (!list_empty(&pool->sp_threads)) {
367 		rqstp = list_entry(pool->sp_threads.next,
368 				   struct svc_rqst,
369 				   rq_list);
370 		dprintk("svc: transport %p served by daemon %p\n",
371 			xprt, rqstp);
372 		svc_thread_dequeue(pool, rqstp);
373 		if (rqstp->rq_xprt)
374 			printk(KERN_ERR
375 				"svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
376 				rqstp, rqstp->rq_xprt);
377 		/* Note the order of the following 3 lines:
378 		 * We want to assign xprt to rqstp->rq_xprt only _after_
379 		 * we've woken up the process, so that we don't race with
380 		 * the lockless check in svc_get_next_xprt().
381 		 */
382 		svc_xprt_get(xprt);
383 		wake_up_process(rqstp->rq_task);
384 		rqstp->rq_xprt = xprt;
385 		pool->sp_stats.threads_woken++;
386 	} else {
387 		dprintk("svc: transport %p put into queue\n", xprt);
388 		list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
389 		pool->sp_stats.sockets_queued++;
390 	}
391 
392 	spin_unlock_bh(&pool->sp_lock);
393 	put_cpu();
394 }
395 
396 /*
397  * Queue up a transport with data pending. If there are idle nfsd
398  * processes, wake 'em up.
399  *
400  */
401 void svc_xprt_enqueue(struct svc_xprt *xprt)
402 {
403 	if (test_bit(XPT_BUSY, &xprt->xpt_flags))
404 		return;
405 	svc_xprt_do_enqueue(xprt);
406 }
407 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
408 
409 /*
410  * Dequeue the first transport.  Must be called with the pool->sp_lock held.
411  */
412 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
413 {
414 	struct svc_xprt	*xprt;
415 
416 	if (list_empty(&pool->sp_sockets))
417 		return NULL;
418 
419 	xprt = list_entry(pool->sp_sockets.next,
420 			  struct svc_xprt, xpt_ready);
421 	list_del_init(&xprt->xpt_ready);
422 
423 	dprintk("svc: transport %p dequeued, inuse=%d\n",
424 		xprt, atomic_read(&xprt->xpt_ref.refcount));
425 
426 	return xprt;
427 }
428 
429 /**
430  * svc_reserve - change the space reserved for the reply to a request.
431  * @rqstp:  The request in question
432  * @space: new max space to reserve
433  *
434  * Each request reserves some space on the output queue of the transport
435  * to make sure the reply fits.  This function reduces that reserved
436  * space to be the amount of space used already, plus @space.
437  *
438  */
439 void svc_reserve(struct svc_rqst *rqstp, int space)
440 {
441 	space += rqstp->rq_res.head[0].iov_len;
442 
443 	if (space < rqstp->rq_reserved) {
444 		struct svc_xprt *xprt = rqstp->rq_xprt;
445 		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
446 		rqstp->rq_reserved = space;
447 
448 		if (xprt->xpt_ops->xpo_adjust_wspace)
449 			xprt->xpt_ops->xpo_adjust_wspace(xprt);
450 		svc_xprt_enqueue(xprt);
451 	}
452 }
453 EXPORT_SYMBOL_GPL(svc_reserve);
454 
455 static void svc_xprt_release(struct svc_rqst *rqstp)
456 {
457 	struct svc_xprt	*xprt = rqstp->rq_xprt;
458 
459 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
460 
461 	kfree(rqstp->rq_deferred);
462 	rqstp->rq_deferred = NULL;
463 
464 	svc_free_res_pages(rqstp);
465 	rqstp->rq_res.page_len = 0;
466 	rqstp->rq_res.page_base = 0;
467 
468 	/* Reset response buffer and release
469 	 * the reservation.
470 	 * But first, check that enough space was reserved
471 	 * for the reply, otherwise we have a bug!
472 	 */
473 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
474 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
475 		       rqstp->rq_reserved,
476 		       rqstp->rq_res.len);
477 
478 	rqstp->rq_res.head[0].iov_len = 0;
479 	svc_reserve(rqstp, 0);
480 	rqstp->rq_xprt = NULL;
481 
482 	svc_xprt_put(xprt);
483 }
484 
485 /*
486  * External function to wake up a server waiting for data
487  * This really only makes sense for services like lockd
488  * which have exactly one thread anyway.
489  */
490 void svc_wake_up(struct svc_serv *serv)
491 {
492 	struct svc_rqst	*rqstp;
493 	unsigned int i;
494 	struct svc_pool *pool;
495 
496 	for (i = 0; i < serv->sv_nrpools; i++) {
497 		pool = &serv->sv_pools[i];
498 
499 		spin_lock_bh(&pool->sp_lock);
500 		if (!list_empty(&pool->sp_threads)) {
501 			rqstp = list_entry(pool->sp_threads.next,
502 					   struct svc_rqst,
503 					   rq_list);
504 			dprintk("svc: daemon %p woken up.\n", rqstp);
505 			/*
506 			svc_thread_dequeue(pool, rqstp);
507 			rqstp->rq_xprt = NULL;
508 			 */
509 			wake_up_process(rqstp->rq_task);
510 		} else
511 			pool->sp_task_pending = 1;
512 		spin_unlock_bh(&pool->sp_lock);
513 	}
514 }
515 EXPORT_SYMBOL_GPL(svc_wake_up);
516 
517 int svc_port_is_privileged(struct sockaddr *sin)
518 {
519 	switch (sin->sa_family) {
520 	case AF_INET:
521 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
522 			< PROT_SOCK;
523 	case AF_INET6:
524 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
525 			< PROT_SOCK;
526 	default:
527 		return 0;
528 	}
529 }
530 
531 /*
532  * Make sure that we don't have too many active connections. If we have,
533  * something must be dropped. It's not clear what will happen if we allow
534  * "too many" connections, but when dealing with network-facing software,
535  * we have to code defensively. Here we do that by imposing hard limits.
536  *
537  * There's no point in trying to do random drop here for DoS
538  * prevention. The NFS clients does 1 reconnect in 15 seconds. An
539  * attacker can easily beat that.
540  *
541  * The only somewhat efficient mechanism would be if drop old
542  * connections from the same IP first. But right now we don't even
543  * record the client IP in svc_sock.
544  *
545  * single-threaded services that expect a lot of clients will probably
546  * need to set sv_maxconn to override the default value which is based
547  * on the number of threads
548  */
549 static void svc_check_conn_limits(struct svc_serv *serv)
550 {
551 	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
552 				(serv->sv_nrthreads+3) * 20;
553 
554 	if (serv->sv_tmpcnt > limit) {
555 		struct svc_xprt *xprt = NULL;
556 		spin_lock_bh(&serv->sv_lock);
557 		if (!list_empty(&serv->sv_tempsocks)) {
558 			/* Try to help the admin */
559 			net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
560 					       serv->sv_name, serv->sv_maxconn ?
561 					       "max number of connections" :
562 					       "number of threads");
563 			/*
564 			 * Always select the oldest connection. It's not fair,
565 			 * but so is life
566 			 */
567 			xprt = list_entry(serv->sv_tempsocks.prev,
568 					  struct svc_xprt,
569 					  xpt_list);
570 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
571 			svc_xprt_get(xprt);
572 		}
573 		spin_unlock_bh(&serv->sv_lock);
574 
575 		if (xprt) {
576 			svc_xprt_enqueue(xprt);
577 			svc_xprt_put(xprt);
578 		}
579 	}
580 }
581 
582 static int svc_alloc_arg(struct svc_rqst *rqstp)
583 {
584 	struct svc_serv *serv = rqstp->rq_server;
585 	struct xdr_buf *arg;
586 	int pages;
587 	int i;
588 
589 	/* now allocate needed pages.  If we get a failure, sleep briefly */
590 	pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
591 	WARN_ON_ONCE(pages >= RPCSVC_MAXPAGES);
592 	if (pages >= RPCSVC_MAXPAGES)
593 		/* use as many pages as possible */
594 		pages = RPCSVC_MAXPAGES - 1;
595 	for (i = 0; i < pages ; i++)
596 		while (rqstp->rq_pages[i] == NULL) {
597 			struct page *p = alloc_page(GFP_KERNEL);
598 			if (!p) {
599 				set_current_state(TASK_INTERRUPTIBLE);
600 				if (signalled() || kthread_should_stop()) {
601 					set_current_state(TASK_RUNNING);
602 					return -EINTR;
603 				}
604 				schedule_timeout(msecs_to_jiffies(500));
605 			}
606 			rqstp->rq_pages[i] = p;
607 		}
608 	rqstp->rq_page_end = &rqstp->rq_pages[i];
609 	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
610 
611 	/* Make arg->head point to first page and arg->pages point to rest */
612 	arg = &rqstp->rq_arg;
613 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
614 	arg->head[0].iov_len = PAGE_SIZE;
615 	arg->pages = rqstp->rq_pages + 1;
616 	arg->page_base = 0;
617 	/* save at least one page for response */
618 	arg->page_len = (pages-2)*PAGE_SIZE;
619 	arg->len = (pages-1)*PAGE_SIZE;
620 	arg->tail[0].iov_len = 0;
621 	return 0;
622 }
623 
624 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
625 {
626 	struct svc_xprt *xprt;
627 	struct svc_pool		*pool = rqstp->rq_pool;
628 	long			time_left = 0;
629 
630 	/* Normally we will wait up to 5 seconds for any required
631 	 * cache information to be provided.
632 	 */
633 	rqstp->rq_chandle.thread_wait = 5*HZ;
634 
635 	spin_lock_bh(&pool->sp_lock);
636 	xprt = svc_xprt_dequeue(pool);
637 	if (xprt) {
638 		rqstp->rq_xprt = xprt;
639 		svc_xprt_get(xprt);
640 
641 		/* As there is a shortage of threads and this request
642 		 * had to be queued, don't allow the thread to wait so
643 		 * long for cache updates.
644 		 */
645 		rqstp->rq_chandle.thread_wait = 1*HZ;
646 		pool->sp_task_pending = 0;
647 	} else {
648 		if (pool->sp_task_pending) {
649 			pool->sp_task_pending = 0;
650 			xprt = ERR_PTR(-EAGAIN);
651 			goto out;
652 		}
653 		/*
654 		 * We have to be able to interrupt this wait
655 		 * to bring down the daemons ...
656 		 */
657 		set_current_state(TASK_INTERRUPTIBLE);
658 
659 		/* No data pending. Go to sleep */
660 		svc_thread_enqueue(pool, rqstp);
661 		spin_unlock_bh(&pool->sp_lock);
662 
663 		if (!(signalled() || kthread_should_stop())) {
664 			time_left = schedule_timeout(timeout);
665 			__set_current_state(TASK_RUNNING);
666 
667 			try_to_freeze();
668 
669 			xprt = rqstp->rq_xprt;
670 			if (xprt != NULL)
671 				return xprt;
672 		} else
673 			__set_current_state(TASK_RUNNING);
674 
675 		spin_lock_bh(&pool->sp_lock);
676 		if (!time_left)
677 			pool->sp_stats.threads_timedout++;
678 
679 		xprt = rqstp->rq_xprt;
680 		if (!xprt) {
681 			svc_thread_dequeue(pool, rqstp);
682 			spin_unlock_bh(&pool->sp_lock);
683 			dprintk("svc: server %p, no data yet\n", rqstp);
684 			if (signalled() || kthread_should_stop())
685 				return ERR_PTR(-EINTR);
686 			else
687 				return ERR_PTR(-EAGAIN);
688 		}
689 	}
690 out:
691 	spin_unlock_bh(&pool->sp_lock);
692 	return xprt;
693 }
694 
695 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
696 {
697 	spin_lock_bh(&serv->sv_lock);
698 	set_bit(XPT_TEMP, &newxpt->xpt_flags);
699 	list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
700 	serv->sv_tmpcnt++;
701 	if (serv->sv_temptimer.function == NULL) {
702 		/* setup timer to age temp transports */
703 		setup_timer(&serv->sv_temptimer, svc_age_temp_xprts,
704 			    (unsigned long)serv);
705 		mod_timer(&serv->sv_temptimer,
706 			  jiffies + svc_conn_age_period * HZ);
707 	}
708 	spin_unlock_bh(&serv->sv_lock);
709 	svc_xprt_received(newxpt);
710 }
711 
712 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
713 {
714 	struct svc_serv *serv = rqstp->rq_server;
715 	int len = 0;
716 
717 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
718 		dprintk("svc_recv: found XPT_CLOSE\n");
719 		svc_delete_xprt(xprt);
720 		/* Leave XPT_BUSY set on the dead xprt: */
721 		return 0;
722 	}
723 	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
724 		struct svc_xprt *newxpt;
725 		/*
726 		 * We know this module_get will succeed because the
727 		 * listener holds a reference too
728 		 */
729 		__module_get(xprt->xpt_class->xcl_owner);
730 		svc_check_conn_limits(xprt->xpt_server);
731 		newxpt = xprt->xpt_ops->xpo_accept(xprt);
732 		if (newxpt)
733 			svc_add_new_temp_xprt(serv, newxpt);
734 		else
735 			module_put(xprt->xpt_class->xcl_owner);
736 	} else {
737 		/* XPT_DATA|XPT_DEFERRED case: */
738 		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
739 			rqstp, rqstp->rq_pool->sp_id, xprt,
740 			atomic_read(&xprt->xpt_ref.refcount));
741 		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
742 		if (rqstp->rq_deferred)
743 			len = svc_deferred_recv(rqstp);
744 		else
745 			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
746 		dprintk("svc: got len=%d\n", len);
747 		rqstp->rq_reserved = serv->sv_max_mesg;
748 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
749 	}
750 	/* clear XPT_BUSY: */
751 	svc_xprt_received(xprt);
752 	return len;
753 }
754 
755 /*
756  * Receive the next request on any transport.  This code is carefully
757  * organised not to touch any cachelines in the shared svc_serv
758  * structure, only cachelines in the local svc_pool.
759  */
760 int svc_recv(struct svc_rqst *rqstp, long timeout)
761 {
762 	struct svc_xprt		*xprt = NULL;
763 	struct svc_serv		*serv = rqstp->rq_server;
764 	int			len, err;
765 
766 	dprintk("svc: server %p waiting for data (to = %ld)\n",
767 		rqstp, timeout);
768 
769 	if (rqstp->rq_xprt)
770 		printk(KERN_ERR
771 			"svc_recv: service %p, transport not NULL!\n",
772 			 rqstp);
773 
774 	err = svc_alloc_arg(rqstp);
775 	if (err)
776 		return err;
777 
778 	try_to_freeze();
779 	cond_resched();
780 	if (signalled() || kthread_should_stop())
781 		return -EINTR;
782 
783 	xprt = svc_get_next_xprt(rqstp, timeout);
784 	if (IS_ERR(xprt))
785 		return PTR_ERR(xprt);
786 
787 	len = svc_handle_xprt(rqstp, xprt);
788 
789 	/* No data, incomplete (TCP) read, or accept() */
790 	if (len <= 0)
791 		goto out;
792 
793 	clear_bit(XPT_OLD, &xprt->xpt_flags);
794 
795 	rqstp->rq_secure = xprt->xpt_ops->xpo_secure_port(rqstp);
796 	rqstp->rq_chandle.defer = svc_defer;
797 
798 	if (serv->sv_stats)
799 		serv->sv_stats->netcnt++;
800 	return len;
801 out:
802 	rqstp->rq_res.len = 0;
803 	svc_xprt_release(rqstp);
804 	return -EAGAIN;
805 }
806 EXPORT_SYMBOL_GPL(svc_recv);
807 
808 /*
809  * Drop request
810  */
811 void svc_drop(struct svc_rqst *rqstp)
812 {
813 	dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
814 	svc_xprt_release(rqstp);
815 }
816 EXPORT_SYMBOL_GPL(svc_drop);
817 
818 /*
819  * Return reply to client.
820  */
821 int svc_send(struct svc_rqst *rqstp)
822 {
823 	struct svc_xprt	*xprt;
824 	int		len;
825 	struct xdr_buf	*xb;
826 
827 	xprt = rqstp->rq_xprt;
828 	if (!xprt)
829 		return -EFAULT;
830 
831 	/* release the receive skb before sending the reply */
832 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
833 
834 	/* calculate over-all length */
835 	xb = &rqstp->rq_res;
836 	xb->len = xb->head[0].iov_len +
837 		xb->page_len +
838 		xb->tail[0].iov_len;
839 
840 	/* Grab mutex to serialize outgoing data. */
841 	mutex_lock(&xprt->xpt_mutex);
842 	if (test_bit(XPT_DEAD, &xprt->xpt_flags)
843 			|| test_bit(XPT_CLOSE, &xprt->xpt_flags))
844 		len = -ENOTCONN;
845 	else
846 		len = xprt->xpt_ops->xpo_sendto(rqstp);
847 	mutex_unlock(&xprt->xpt_mutex);
848 	rpc_wake_up(&xprt->xpt_bc_pending);
849 	svc_xprt_release(rqstp);
850 
851 	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
852 		return 0;
853 	return len;
854 }
855 
856 /*
857  * Timer function to close old temporary transports, using
858  * a mark-and-sweep algorithm.
859  */
860 static void svc_age_temp_xprts(unsigned long closure)
861 {
862 	struct svc_serv *serv = (struct svc_serv *)closure;
863 	struct svc_xprt *xprt;
864 	struct list_head *le, *next;
865 
866 	dprintk("svc_age_temp_xprts\n");
867 
868 	if (!spin_trylock_bh(&serv->sv_lock)) {
869 		/* busy, try again 1 sec later */
870 		dprintk("svc_age_temp_xprts: busy\n");
871 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
872 		return;
873 	}
874 
875 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
876 		xprt = list_entry(le, struct svc_xprt, xpt_list);
877 
878 		/* First time through, just mark it OLD. Second time
879 		 * through, close it. */
880 		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
881 			continue;
882 		if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
883 		    test_bit(XPT_BUSY, &xprt->xpt_flags))
884 			continue;
885 		list_del_init(le);
886 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
887 		set_bit(XPT_DETACHED, &xprt->xpt_flags);
888 		dprintk("queuing xprt %p for closing\n", xprt);
889 
890 		/* a thread will dequeue and close it soon */
891 		svc_xprt_enqueue(xprt);
892 	}
893 	spin_unlock_bh(&serv->sv_lock);
894 
895 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
896 }
897 
898 static void call_xpt_users(struct svc_xprt *xprt)
899 {
900 	struct svc_xpt_user *u;
901 
902 	spin_lock(&xprt->xpt_lock);
903 	while (!list_empty(&xprt->xpt_users)) {
904 		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
905 		list_del(&u->list);
906 		u->callback(u);
907 	}
908 	spin_unlock(&xprt->xpt_lock);
909 }
910 
911 /*
912  * Remove a dead transport
913  */
914 static void svc_delete_xprt(struct svc_xprt *xprt)
915 {
916 	struct svc_serv	*serv = xprt->xpt_server;
917 	struct svc_deferred_req *dr;
918 
919 	/* Only do this once */
920 	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
921 		BUG();
922 
923 	dprintk("svc: svc_delete_xprt(%p)\n", xprt);
924 	xprt->xpt_ops->xpo_detach(xprt);
925 
926 	spin_lock_bh(&serv->sv_lock);
927 	if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
928 		list_del_init(&xprt->xpt_list);
929 	WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
930 	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
931 		serv->sv_tmpcnt--;
932 	spin_unlock_bh(&serv->sv_lock);
933 
934 	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
935 		kfree(dr);
936 
937 	call_xpt_users(xprt);
938 	svc_xprt_put(xprt);
939 }
940 
941 void svc_close_xprt(struct svc_xprt *xprt)
942 {
943 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
944 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
945 		/* someone else will have to effect the close */
946 		return;
947 	/*
948 	 * We expect svc_close_xprt() to work even when no threads are
949 	 * running (e.g., while configuring the server before starting
950 	 * any threads), so if the transport isn't busy, we delete
951 	 * it ourself:
952 	 */
953 	svc_delete_xprt(xprt);
954 }
955 EXPORT_SYMBOL_GPL(svc_close_xprt);
956 
957 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
958 {
959 	struct svc_xprt *xprt;
960 	int ret = 0;
961 
962 	spin_lock(&serv->sv_lock);
963 	list_for_each_entry(xprt, xprt_list, xpt_list) {
964 		if (xprt->xpt_net != net)
965 			continue;
966 		ret++;
967 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
968 		svc_xprt_enqueue(xprt);
969 	}
970 	spin_unlock(&serv->sv_lock);
971 	return ret;
972 }
973 
974 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
975 {
976 	struct svc_pool *pool;
977 	struct svc_xprt *xprt;
978 	struct svc_xprt *tmp;
979 	int i;
980 
981 	for (i = 0; i < serv->sv_nrpools; i++) {
982 		pool = &serv->sv_pools[i];
983 
984 		spin_lock_bh(&pool->sp_lock);
985 		list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
986 			if (xprt->xpt_net != net)
987 				continue;
988 			list_del_init(&xprt->xpt_ready);
989 			spin_unlock_bh(&pool->sp_lock);
990 			return xprt;
991 		}
992 		spin_unlock_bh(&pool->sp_lock);
993 	}
994 	return NULL;
995 }
996 
997 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
998 {
999 	struct svc_xprt *xprt;
1000 
1001 	while ((xprt = svc_dequeue_net(serv, net))) {
1002 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1003 		svc_delete_xprt(xprt);
1004 	}
1005 }
1006 
1007 /*
1008  * Server threads may still be running (especially in the case where the
1009  * service is still running in other network namespaces).
1010  *
1011  * So we shut down sockets the same way we would on a running server, by
1012  * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1013  * the close.  In the case there are no such other threads,
1014  * threads running, svc_clean_up_xprts() does a simple version of a
1015  * server's main event loop, and in the case where there are other
1016  * threads, we may need to wait a little while and then check again to
1017  * see if they're done.
1018  */
1019 void svc_close_net(struct svc_serv *serv, struct net *net)
1020 {
1021 	int delay = 0;
1022 
1023 	while (svc_close_list(serv, &serv->sv_permsocks, net) +
1024 	       svc_close_list(serv, &serv->sv_tempsocks, net)) {
1025 
1026 		svc_clean_up_xprts(serv, net);
1027 		msleep(delay++);
1028 	}
1029 }
1030 
1031 /*
1032  * Handle defer and revisit of requests
1033  */
1034 
1035 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1036 {
1037 	struct svc_deferred_req *dr =
1038 		container_of(dreq, struct svc_deferred_req, handle);
1039 	struct svc_xprt *xprt = dr->xprt;
1040 
1041 	spin_lock(&xprt->xpt_lock);
1042 	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1043 	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1044 		spin_unlock(&xprt->xpt_lock);
1045 		dprintk("revisit canceled\n");
1046 		svc_xprt_put(xprt);
1047 		kfree(dr);
1048 		return;
1049 	}
1050 	dprintk("revisit queued\n");
1051 	dr->xprt = NULL;
1052 	list_add(&dr->handle.recent, &xprt->xpt_deferred);
1053 	spin_unlock(&xprt->xpt_lock);
1054 	svc_xprt_enqueue(xprt);
1055 	svc_xprt_put(xprt);
1056 }
1057 
1058 /*
1059  * Save the request off for later processing. The request buffer looks
1060  * like this:
1061  *
1062  * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1063  *
1064  * This code can only handle requests that consist of an xprt-header
1065  * and rpc-header.
1066  */
1067 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1068 {
1069 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1070 	struct svc_deferred_req *dr;
1071 
1072 	if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
1073 		return NULL; /* if more than a page, give up FIXME */
1074 	if (rqstp->rq_deferred) {
1075 		dr = rqstp->rq_deferred;
1076 		rqstp->rq_deferred = NULL;
1077 	} else {
1078 		size_t skip;
1079 		size_t size;
1080 		/* FIXME maybe discard if size too large */
1081 		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1082 		dr = kmalloc(size, GFP_KERNEL);
1083 		if (dr == NULL)
1084 			return NULL;
1085 
1086 		dr->handle.owner = rqstp->rq_server;
1087 		dr->prot = rqstp->rq_prot;
1088 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1089 		dr->addrlen = rqstp->rq_addrlen;
1090 		dr->daddr = rqstp->rq_daddr;
1091 		dr->argslen = rqstp->rq_arg.len >> 2;
1092 		dr->xprt_hlen = rqstp->rq_xprt_hlen;
1093 
1094 		/* back up head to the start of the buffer and copy */
1095 		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1096 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1097 		       dr->argslen << 2);
1098 	}
1099 	svc_xprt_get(rqstp->rq_xprt);
1100 	dr->xprt = rqstp->rq_xprt;
1101 	rqstp->rq_dropme = true;
1102 
1103 	dr->handle.revisit = svc_revisit;
1104 	return &dr->handle;
1105 }
1106 
1107 /*
1108  * recv data from a deferred request into an active one
1109  */
1110 static int svc_deferred_recv(struct svc_rqst *rqstp)
1111 {
1112 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1113 
1114 	/* setup iov_base past transport header */
1115 	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1116 	/* The iov_len does not include the transport header bytes */
1117 	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1118 	rqstp->rq_arg.page_len = 0;
1119 	/* The rq_arg.len includes the transport header bytes */
1120 	rqstp->rq_arg.len     = dr->argslen<<2;
1121 	rqstp->rq_prot        = dr->prot;
1122 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1123 	rqstp->rq_addrlen     = dr->addrlen;
1124 	/* Save off transport header len in case we get deferred again */
1125 	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1126 	rqstp->rq_daddr       = dr->daddr;
1127 	rqstp->rq_respages    = rqstp->rq_pages;
1128 	return (dr->argslen<<2) - dr->xprt_hlen;
1129 }
1130 
1131 
1132 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1133 {
1134 	struct svc_deferred_req *dr = NULL;
1135 
1136 	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1137 		return NULL;
1138 	spin_lock(&xprt->xpt_lock);
1139 	if (!list_empty(&xprt->xpt_deferred)) {
1140 		dr = list_entry(xprt->xpt_deferred.next,
1141 				struct svc_deferred_req,
1142 				handle.recent);
1143 		list_del_init(&dr->handle.recent);
1144 	} else
1145 		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1146 	spin_unlock(&xprt->xpt_lock);
1147 	return dr;
1148 }
1149 
1150 /**
1151  * svc_find_xprt - find an RPC transport instance
1152  * @serv: pointer to svc_serv to search
1153  * @xcl_name: C string containing transport's class name
1154  * @net: owner net pointer
1155  * @af: Address family of transport's local address
1156  * @port: transport's IP port number
1157  *
1158  * Return the transport instance pointer for the endpoint accepting
1159  * connections/peer traffic from the specified transport class,
1160  * address family and port.
1161  *
1162  * Specifying 0 for the address family or port is effectively a
1163  * wild-card, and will result in matching the first transport in the
1164  * service's list that has a matching class name.
1165  */
1166 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1167 			       struct net *net, const sa_family_t af,
1168 			       const unsigned short port)
1169 {
1170 	struct svc_xprt *xprt;
1171 	struct svc_xprt *found = NULL;
1172 
1173 	/* Sanity check the args */
1174 	if (serv == NULL || xcl_name == NULL)
1175 		return found;
1176 
1177 	spin_lock_bh(&serv->sv_lock);
1178 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1179 		if (xprt->xpt_net != net)
1180 			continue;
1181 		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1182 			continue;
1183 		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1184 			continue;
1185 		if (port != 0 && port != svc_xprt_local_port(xprt))
1186 			continue;
1187 		found = xprt;
1188 		svc_xprt_get(xprt);
1189 		break;
1190 	}
1191 	spin_unlock_bh(&serv->sv_lock);
1192 	return found;
1193 }
1194 EXPORT_SYMBOL_GPL(svc_find_xprt);
1195 
1196 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1197 			     char *pos, int remaining)
1198 {
1199 	int len;
1200 
1201 	len = snprintf(pos, remaining, "%s %u\n",
1202 			xprt->xpt_class->xcl_name,
1203 			svc_xprt_local_port(xprt));
1204 	if (len >= remaining)
1205 		return -ENAMETOOLONG;
1206 	return len;
1207 }
1208 
1209 /**
1210  * svc_xprt_names - format a buffer with a list of transport names
1211  * @serv: pointer to an RPC service
1212  * @buf: pointer to a buffer to be filled in
1213  * @buflen: length of buffer to be filled in
1214  *
1215  * Fills in @buf with a string containing a list of transport names,
1216  * each name terminated with '\n'.
1217  *
1218  * Returns positive length of the filled-in string on success; otherwise
1219  * a negative errno value is returned if an error occurs.
1220  */
1221 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1222 {
1223 	struct svc_xprt *xprt;
1224 	int len, totlen;
1225 	char *pos;
1226 
1227 	/* Sanity check args */
1228 	if (!serv)
1229 		return 0;
1230 
1231 	spin_lock_bh(&serv->sv_lock);
1232 
1233 	pos = buf;
1234 	totlen = 0;
1235 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1236 		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1237 		if (len < 0) {
1238 			*buf = '\0';
1239 			totlen = len;
1240 		}
1241 		if (len <= 0)
1242 			break;
1243 
1244 		pos += len;
1245 		totlen += len;
1246 	}
1247 
1248 	spin_unlock_bh(&serv->sv_lock);
1249 	return totlen;
1250 }
1251 EXPORT_SYMBOL_GPL(svc_xprt_names);
1252 
1253 
1254 /*----------------------------------------------------------------------------*/
1255 
1256 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1257 {
1258 	unsigned int pidx = (unsigned int)*pos;
1259 	struct svc_serv *serv = m->private;
1260 
1261 	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1262 
1263 	if (!pidx)
1264 		return SEQ_START_TOKEN;
1265 	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1266 }
1267 
1268 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1269 {
1270 	struct svc_pool *pool = p;
1271 	struct svc_serv *serv = m->private;
1272 
1273 	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1274 
1275 	if (p == SEQ_START_TOKEN) {
1276 		pool = &serv->sv_pools[0];
1277 	} else {
1278 		unsigned int pidx = (pool - &serv->sv_pools[0]);
1279 		if (pidx < serv->sv_nrpools-1)
1280 			pool = &serv->sv_pools[pidx+1];
1281 		else
1282 			pool = NULL;
1283 	}
1284 	++*pos;
1285 	return pool;
1286 }
1287 
1288 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1289 {
1290 }
1291 
1292 static int svc_pool_stats_show(struct seq_file *m, void *p)
1293 {
1294 	struct svc_pool *pool = p;
1295 
1296 	if (p == SEQ_START_TOKEN) {
1297 		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1298 		return 0;
1299 	}
1300 
1301 	seq_printf(m, "%u %lu %lu %lu %lu\n",
1302 		pool->sp_id,
1303 		pool->sp_stats.packets,
1304 		pool->sp_stats.sockets_queued,
1305 		pool->sp_stats.threads_woken,
1306 		pool->sp_stats.threads_timedout);
1307 
1308 	return 0;
1309 }
1310 
1311 static const struct seq_operations svc_pool_stats_seq_ops = {
1312 	.start	= svc_pool_stats_start,
1313 	.next	= svc_pool_stats_next,
1314 	.stop	= svc_pool_stats_stop,
1315 	.show	= svc_pool_stats_show,
1316 };
1317 
1318 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1319 {
1320 	int err;
1321 
1322 	err = seq_open(file, &svc_pool_stats_seq_ops);
1323 	if (!err)
1324 		((struct seq_file *) file->private_data)->private = serv;
1325 	return err;
1326 }
1327 EXPORT_SYMBOL(svc_pool_stats_open);
1328 
1329 /*----------------------------------------------------------------------------*/
1330