xref: /openbmc/linux/net/sunrpc/svc_xprt.c (revision 615c36f5)
1 /*
2  * linux/net/sunrpc/svc_xprt.c
3  *
4  * Author: Tom Tucker <tom@opengridcomputing.com>
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/stats.h>
14 #include <linux/sunrpc/svc_xprt.h>
15 #include <linux/sunrpc/svcsock.h>
16 #include <linux/sunrpc/xprt.h>
17 #include <linux/module.h>
18 
19 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
20 
21 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
22 static int svc_deferred_recv(struct svc_rqst *rqstp);
23 static struct cache_deferred_req *svc_defer(struct cache_req *req);
24 static void svc_age_temp_xprts(unsigned long closure);
25 
26 /* apparently the "standard" is that clients close
27  * idle connections after 5 minutes, servers after
28  * 6 minutes
29  *   http://www.connectathon.org/talks96/nfstcp.pdf
30  */
31 static int svc_conn_age_period = 6*60;
32 
33 /* List of registered transport classes */
34 static DEFINE_SPINLOCK(svc_xprt_class_lock);
35 static LIST_HEAD(svc_xprt_class_list);
36 
37 /* SMP locking strategy:
38  *
39  *	svc_pool->sp_lock protects most of the fields of that pool.
40  *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
41  *	when both need to be taken (rare), svc_serv->sv_lock is first.
42  *	BKL protects svc_serv->sv_nrthread.
43  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
44  *             and the ->sk_info_authunix cache.
45  *
46  *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
47  *	enqueued multiply. During normal transport processing this bit
48  *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
49  *	Providers should not manipulate this bit directly.
50  *
51  *	Some flags can be set to certain values at any time
52  *	providing that certain rules are followed:
53  *
54  *	XPT_CONN, XPT_DATA:
55  *		- Can be set or cleared at any time.
56  *		- After a set, svc_xprt_enqueue must be called to enqueue
57  *		  the transport for processing.
58  *		- After a clear, the transport must be read/accepted.
59  *		  If this succeeds, it must be set again.
60  *	XPT_CLOSE:
61  *		- Can set at any time. It is never cleared.
62  *      XPT_DEAD:
63  *		- Can only be set while XPT_BUSY is held which ensures
64  *		  that no other thread will be using the transport or will
65  *		  try to set XPT_DEAD.
66  */
67 
68 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
69 {
70 	struct svc_xprt_class *cl;
71 	int res = -EEXIST;
72 
73 	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
74 
75 	INIT_LIST_HEAD(&xcl->xcl_list);
76 	spin_lock(&svc_xprt_class_lock);
77 	/* Make sure there isn't already a class with the same name */
78 	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
79 		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
80 			goto out;
81 	}
82 	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
83 	res = 0;
84 out:
85 	spin_unlock(&svc_xprt_class_lock);
86 	return res;
87 }
88 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
89 
90 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
91 {
92 	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
93 	spin_lock(&svc_xprt_class_lock);
94 	list_del_init(&xcl->xcl_list);
95 	spin_unlock(&svc_xprt_class_lock);
96 }
97 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
98 
99 /*
100  * Format the transport list for printing
101  */
102 int svc_print_xprts(char *buf, int maxlen)
103 {
104 	struct svc_xprt_class *xcl;
105 	char tmpstr[80];
106 	int len = 0;
107 	buf[0] = '\0';
108 
109 	spin_lock(&svc_xprt_class_lock);
110 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
111 		int slen;
112 
113 		sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
114 		slen = strlen(tmpstr);
115 		if (len + slen > maxlen)
116 			break;
117 		len += slen;
118 		strcat(buf, tmpstr);
119 	}
120 	spin_unlock(&svc_xprt_class_lock);
121 
122 	return len;
123 }
124 
125 static void svc_xprt_free(struct kref *kref)
126 {
127 	struct svc_xprt *xprt =
128 		container_of(kref, struct svc_xprt, xpt_ref);
129 	struct module *owner = xprt->xpt_class->xcl_owner;
130 	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
131 		svcauth_unix_info_release(xprt);
132 	put_net(xprt->xpt_net);
133 	/* See comment on corresponding get in xs_setup_bc_tcp(): */
134 	if (xprt->xpt_bc_xprt)
135 		xprt_put(xprt->xpt_bc_xprt);
136 	xprt->xpt_ops->xpo_free(xprt);
137 	module_put(owner);
138 }
139 
140 void svc_xprt_put(struct svc_xprt *xprt)
141 {
142 	kref_put(&xprt->xpt_ref, svc_xprt_free);
143 }
144 EXPORT_SYMBOL_GPL(svc_xprt_put);
145 
146 /*
147  * Called by transport drivers to initialize the transport independent
148  * portion of the transport instance.
149  */
150 void svc_xprt_init(struct svc_xprt_class *xcl, struct svc_xprt *xprt,
151 		   struct svc_serv *serv)
152 {
153 	memset(xprt, 0, sizeof(*xprt));
154 	xprt->xpt_class = xcl;
155 	xprt->xpt_ops = xcl->xcl_ops;
156 	kref_init(&xprt->xpt_ref);
157 	xprt->xpt_server = serv;
158 	INIT_LIST_HEAD(&xprt->xpt_list);
159 	INIT_LIST_HEAD(&xprt->xpt_ready);
160 	INIT_LIST_HEAD(&xprt->xpt_deferred);
161 	INIT_LIST_HEAD(&xprt->xpt_users);
162 	mutex_init(&xprt->xpt_mutex);
163 	spin_lock_init(&xprt->xpt_lock);
164 	set_bit(XPT_BUSY, &xprt->xpt_flags);
165 	rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
166 	xprt->xpt_net = get_net(&init_net);
167 }
168 EXPORT_SYMBOL_GPL(svc_xprt_init);
169 
170 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
171 					 struct svc_serv *serv,
172 					 struct net *net,
173 					 const int family,
174 					 const unsigned short port,
175 					 int flags)
176 {
177 	struct sockaddr_in sin = {
178 		.sin_family		= AF_INET,
179 		.sin_addr.s_addr	= htonl(INADDR_ANY),
180 		.sin_port		= htons(port),
181 	};
182 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
183 	struct sockaddr_in6 sin6 = {
184 		.sin6_family		= AF_INET6,
185 		.sin6_addr		= IN6ADDR_ANY_INIT,
186 		.sin6_port		= htons(port),
187 	};
188 #endif	/* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
189 	struct sockaddr *sap;
190 	size_t len;
191 
192 	switch (family) {
193 	case PF_INET:
194 		sap = (struct sockaddr *)&sin;
195 		len = sizeof(sin);
196 		break;
197 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
198 	case PF_INET6:
199 		sap = (struct sockaddr *)&sin6;
200 		len = sizeof(sin6);
201 		break;
202 #endif	/* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
203 	default:
204 		return ERR_PTR(-EAFNOSUPPORT);
205 	}
206 
207 	return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
208 }
209 
210 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
211 		    struct net *net, const int family,
212 		    const unsigned short port, int flags)
213 {
214 	struct svc_xprt_class *xcl;
215 
216 	dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
217 	spin_lock(&svc_xprt_class_lock);
218 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
219 		struct svc_xprt *newxprt;
220 		unsigned short newport;
221 
222 		if (strcmp(xprt_name, xcl->xcl_name))
223 			continue;
224 
225 		if (!try_module_get(xcl->xcl_owner))
226 			goto err;
227 
228 		spin_unlock(&svc_xprt_class_lock);
229 		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
230 		if (IS_ERR(newxprt)) {
231 			module_put(xcl->xcl_owner);
232 			return PTR_ERR(newxprt);
233 		}
234 
235 		clear_bit(XPT_TEMP, &newxprt->xpt_flags);
236 		spin_lock_bh(&serv->sv_lock);
237 		list_add(&newxprt->xpt_list, &serv->sv_permsocks);
238 		spin_unlock_bh(&serv->sv_lock);
239 		newport = svc_xprt_local_port(newxprt);
240 		clear_bit(XPT_BUSY, &newxprt->xpt_flags);
241 		return newport;
242 	}
243  err:
244 	spin_unlock(&svc_xprt_class_lock);
245 	dprintk("svc: transport %s not found\n", xprt_name);
246 
247 	/* This errno is exposed to user space.  Provide a reasonable
248 	 * perror msg for a bad transport. */
249 	return -EPROTONOSUPPORT;
250 }
251 EXPORT_SYMBOL_GPL(svc_create_xprt);
252 
253 /*
254  * Copy the local and remote xprt addresses to the rqstp structure
255  */
256 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
257 {
258 	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
259 	rqstp->rq_addrlen = xprt->xpt_remotelen;
260 
261 	/*
262 	 * Destination address in request is needed for binding the
263 	 * source address in RPC replies/callbacks later.
264 	 */
265 	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
266 	rqstp->rq_daddrlen = xprt->xpt_locallen;
267 }
268 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
269 
270 /**
271  * svc_print_addr - Format rq_addr field for printing
272  * @rqstp: svc_rqst struct containing address to print
273  * @buf: target buffer for formatted address
274  * @len: length of target buffer
275  *
276  */
277 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
278 {
279 	return __svc_print_addr(svc_addr(rqstp), buf, len);
280 }
281 EXPORT_SYMBOL_GPL(svc_print_addr);
282 
283 /*
284  * Queue up an idle server thread.  Must have pool->sp_lock held.
285  * Note: this is really a stack rather than a queue, so that we only
286  * use as many different threads as we need, and the rest don't pollute
287  * the cache.
288  */
289 static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
290 {
291 	list_add(&rqstp->rq_list, &pool->sp_threads);
292 }
293 
294 /*
295  * Dequeue an nfsd thread.  Must have pool->sp_lock held.
296  */
297 static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
298 {
299 	list_del(&rqstp->rq_list);
300 }
301 
302 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
303 {
304 	if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
305 		return true;
306 	if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED)))
307 		return xprt->xpt_ops->xpo_has_wspace(xprt);
308 	return false;
309 }
310 
311 /*
312  * Queue up a transport with data pending. If there are idle nfsd
313  * processes, wake 'em up.
314  *
315  */
316 void svc_xprt_enqueue(struct svc_xprt *xprt)
317 {
318 	struct svc_serv	*serv = xprt->xpt_server;
319 	struct svc_pool *pool;
320 	struct svc_rqst	*rqstp;
321 	int cpu;
322 
323 	if (!svc_xprt_has_something_to_do(xprt))
324 		return;
325 
326 	cpu = get_cpu();
327 	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
328 	put_cpu();
329 
330 	spin_lock_bh(&pool->sp_lock);
331 
332 	if (!list_empty(&pool->sp_threads) &&
333 	    !list_empty(&pool->sp_sockets))
334 		printk(KERN_ERR
335 		       "svc_xprt_enqueue: "
336 		       "threads and transports both waiting??\n");
337 
338 	pool->sp_stats.packets++;
339 
340 	/* Mark transport as busy. It will remain in this state until
341 	 * the provider calls svc_xprt_received. We update XPT_BUSY
342 	 * atomically because it also guards against trying to enqueue
343 	 * the transport twice.
344 	 */
345 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
346 		/* Don't enqueue transport while already enqueued */
347 		dprintk("svc: transport %p busy, not enqueued\n", xprt);
348 		goto out_unlock;
349 	}
350 
351 	if (!list_empty(&pool->sp_threads)) {
352 		rqstp = list_entry(pool->sp_threads.next,
353 				   struct svc_rqst,
354 				   rq_list);
355 		dprintk("svc: transport %p served by daemon %p\n",
356 			xprt, rqstp);
357 		svc_thread_dequeue(pool, rqstp);
358 		if (rqstp->rq_xprt)
359 			printk(KERN_ERR
360 				"svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
361 				rqstp, rqstp->rq_xprt);
362 		rqstp->rq_xprt = xprt;
363 		svc_xprt_get(xprt);
364 		rqstp->rq_reserved = serv->sv_max_mesg;
365 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
366 		pool->sp_stats.threads_woken++;
367 		wake_up(&rqstp->rq_wait);
368 	} else {
369 		dprintk("svc: transport %p put into queue\n", xprt);
370 		list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
371 		pool->sp_stats.sockets_queued++;
372 	}
373 
374 out_unlock:
375 	spin_unlock_bh(&pool->sp_lock);
376 }
377 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
378 
379 /*
380  * Dequeue the first transport.  Must be called with the pool->sp_lock held.
381  */
382 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
383 {
384 	struct svc_xprt	*xprt;
385 
386 	if (list_empty(&pool->sp_sockets))
387 		return NULL;
388 
389 	xprt = list_entry(pool->sp_sockets.next,
390 			  struct svc_xprt, xpt_ready);
391 	list_del_init(&xprt->xpt_ready);
392 
393 	dprintk("svc: transport %p dequeued, inuse=%d\n",
394 		xprt, atomic_read(&xprt->xpt_ref.refcount));
395 
396 	return xprt;
397 }
398 
399 /*
400  * svc_xprt_received conditionally queues the transport for processing
401  * by another thread. The caller must hold the XPT_BUSY bit and must
402  * not thereafter touch transport data.
403  *
404  * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
405  * insufficient) data.
406  */
407 void svc_xprt_received(struct svc_xprt *xprt)
408 {
409 	BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
410 	/* As soon as we clear busy, the xprt could be closed and
411 	 * 'put', so we need a reference to call svc_xprt_enqueue with:
412 	 */
413 	svc_xprt_get(xprt);
414 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
415 	svc_xprt_enqueue(xprt);
416 	svc_xprt_put(xprt);
417 }
418 EXPORT_SYMBOL_GPL(svc_xprt_received);
419 
420 /**
421  * svc_reserve - change the space reserved for the reply to a request.
422  * @rqstp:  The request in question
423  * @space: new max space to reserve
424  *
425  * Each request reserves some space on the output queue of the transport
426  * to make sure the reply fits.  This function reduces that reserved
427  * space to be the amount of space used already, plus @space.
428  *
429  */
430 void svc_reserve(struct svc_rqst *rqstp, int space)
431 {
432 	space += rqstp->rq_res.head[0].iov_len;
433 
434 	if (space < rqstp->rq_reserved) {
435 		struct svc_xprt *xprt = rqstp->rq_xprt;
436 		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
437 		rqstp->rq_reserved = space;
438 
439 		svc_xprt_enqueue(xprt);
440 	}
441 }
442 EXPORT_SYMBOL_GPL(svc_reserve);
443 
444 static void svc_xprt_release(struct svc_rqst *rqstp)
445 {
446 	struct svc_xprt	*xprt = rqstp->rq_xprt;
447 
448 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
449 
450 	kfree(rqstp->rq_deferred);
451 	rqstp->rq_deferred = NULL;
452 
453 	svc_free_res_pages(rqstp);
454 	rqstp->rq_res.page_len = 0;
455 	rqstp->rq_res.page_base = 0;
456 
457 	/* Reset response buffer and release
458 	 * the reservation.
459 	 * But first, check that enough space was reserved
460 	 * for the reply, otherwise we have a bug!
461 	 */
462 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
463 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
464 		       rqstp->rq_reserved,
465 		       rqstp->rq_res.len);
466 
467 	rqstp->rq_res.head[0].iov_len = 0;
468 	svc_reserve(rqstp, 0);
469 	rqstp->rq_xprt = NULL;
470 
471 	svc_xprt_put(xprt);
472 }
473 
474 /*
475  * External function to wake up a server waiting for data
476  * This really only makes sense for services like lockd
477  * which have exactly one thread anyway.
478  */
479 void svc_wake_up(struct svc_serv *serv)
480 {
481 	struct svc_rqst	*rqstp;
482 	unsigned int i;
483 	struct svc_pool *pool;
484 
485 	for (i = 0; i < serv->sv_nrpools; i++) {
486 		pool = &serv->sv_pools[i];
487 
488 		spin_lock_bh(&pool->sp_lock);
489 		if (!list_empty(&pool->sp_threads)) {
490 			rqstp = list_entry(pool->sp_threads.next,
491 					   struct svc_rqst,
492 					   rq_list);
493 			dprintk("svc: daemon %p woken up.\n", rqstp);
494 			/*
495 			svc_thread_dequeue(pool, rqstp);
496 			rqstp->rq_xprt = NULL;
497 			 */
498 			wake_up(&rqstp->rq_wait);
499 		}
500 		spin_unlock_bh(&pool->sp_lock);
501 	}
502 }
503 EXPORT_SYMBOL_GPL(svc_wake_up);
504 
505 int svc_port_is_privileged(struct sockaddr *sin)
506 {
507 	switch (sin->sa_family) {
508 	case AF_INET:
509 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
510 			< PROT_SOCK;
511 	case AF_INET6:
512 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
513 			< PROT_SOCK;
514 	default:
515 		return 0;
516 	}
517 }
518 
519 /*
520  * Make sure that we don't have too many active connections. If we have,
521  * something must be dropped. It's not clear what will happen if we allow
522  * "too many" connections, but when dealing with network-facing software,
523  * we have to code defensively. Here we do that by imposing hard limits.
524  *
525  * There's no point in trying to do random drop here for DoS
526  * prevention. The NFS clients does 1 reconnect in 15 seconds. An
527  * attacker can easily beat that.
528  *
529  * The only somewhat efficient mechanism would be if drop old
530  * connections from the same IP first. But right now we don't even
531  * record the client IP in svc_sock.
532  *
533  * single-threaded services that expect a lot of clients will probably
534  * need to set sv_maxconn to override the default value which is based
535  * on the number of threads
536  */
537 static void svc_check_conn_limits(struct svc_serv *serv)
538 {
539 	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
540 				(serv->sv_nrthreads+3) * 20;
541 
542 	if (serv->sv_tmpcnt > limit) {
543 		struct svc_xprt *xprt = NULL;
544 		spin_lock_bh(&serv->sv_lock);
545 		if (!list_empty(&serv->sv_tempsocks)) {
546 			if (net_ratelimit()) {
547 				/* Try to help the admin */
548 				printk(KERN_NOTICE "%s: too many open  "
549 				       "connections, consider increasing %s\n",
550 				       serv->sv_name, serv->sv_maxconn ?
551 				       "the max number of connections." :
552 				       "the number of threads.");
553 			}
554 			/*
555 			 * Always select the oldest connection. It's not fair,
556 			 * but so is life
557 			 */
558 			xprt = list_entry(serv->sv_tempsocks.prev,
559 					  struct svc_xprt,
560 					  xpt_list);
561 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
562 			svc_xprt_get(xprt);
563 		}
564 		spin_unlock_bh(&serv->sv_lock);
565 
566 		if (xprt) {
567 			svc_xprt_enqueue(xprt);
568 			svc_xprt_put(xprt);
569 		}
570 	}
571 }
572 
573 /*
574  * Receive the next request on any transport.  This code is carefully
575  * organised not to touch any cachelines in the shared svc_serv
576  * structure, only cachelines in the local svc_pool.
577  */
578 int svc_recv(struct svc_rqst *rqstp, long timeout)
579 {
580 	struct svc_xprt		*xprt = NULL;
581 	struct svc_serv		*serv = rqstp->rq_server;
582 	struct svc_pool		*pool = rqstp->rq_pool;
583 	int			len, i;
584 	int			pages;
585 	struct xdr_buf		*arg;
586 	DECLARE_WAITQUEUE(wait, current);
587 	long			time_left;
588 
589 	dprintk("svc: server %p waiting for data (to = %ld)\n",
590 		rqstp, timeout);
591 
592 	if (rqstp->rq_xprt)
593 		printk(KERN_ERR
594 			"svc_recv: service %p, transport not NULL!\n",
595 			 rqstp);
596 	if (waitqueue_active(&rqstp->rq_wait))
597 		printk(KERN_ERR
598 			"svc_recv: service %p, wait queue active!\n",
599 			 rqstp);
600 
601 	/* now allocate needed pages.  If we get a failure, sleep briefly */
602 	pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
603 	for (i = 0; i < pages ; i++)
604 		while (rqstp->rq_pages[i] == NULL) {
605 			struct page *p = alloc_page(GFP_KERNEL);
606 			if (!p) {
607 				set_current_state(TASK_INTERRUPTIBLE);
608 				if (signalled() || kthread_should_stop()) {
609 					set_current_state(TASK_RUNNING);
610 					return -EINTR;
611 				}
612 				schedule_timeout(msecs_to_jiffies(500));
613 			}
614 			rqstp->rq_pages[i] = p;
615 		}
616 	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
617 	BUG_ON(pages >= RPCSVC_MAXPAGES);
618 
619 	/* Make arg->head point to first page and arg->pages point to rest */
620 	arg = &rqstp->rq_arg;
621 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
622 	arg->head[0].iov_len = PAGE_SIZE;
623 	arg->pages = rqstp->rq_pages + 1;
624 	arg->page_base = 0;
625 	/* save at least one page for response */
626 	arg->page_len = (pages-2)*PAGE_SIZE;
627 	arg->len = (pages-1)*PAGE_SIZE;
628 	arg->tail[0].iov_len = 0;
629 
630 	try_to_freeze();
631 	cond_resched();
632 	if (signalled() || kthread_should_stop())
633 		return -EINTR;
634 
635 	/* Normally we will wait up to 5 seconds for any required
636 	 * cache information to be provided.
637 	 */
638 	rqstp->rq_chandle.thread_wait = 5*HZ;
639 
640 	spin_lock_bh(&pool->sp_lock);
641 	xprt = svc_xprt_dequeue(pool);
642 	if (xprt) {
643 		rqstp->rq_xprt = xprt;
644 		svc_xprt_get(xprt);
645 		rqstp->rq_reserved = serv->sv_max_mesg;
646 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
647 
648 		/* As there is a shortage of threads and this request
649 		 * had to be queued, don't allow the thread to wait so
650 		 * long for cache updates.
651 		 */
652 		rqstp->rq_chandle.thread_wait = 1*HZ;
653 	} else {
654 		/* No data pending. Go to sleep */
655 		svc_thread_enqueue(pool, rqstp);
656 
657 		/*
658 		 * We have to be able to interrupt this wait
659 		 * to bring down the daemons ...
660 		 */
661 		set_current_state(TASK_INTERRUPTIBLE);
662 
663 		/*
664 		 * checking kthread_should_stop() here allows us to avoid
665 		 * locking and signalling when stopping kthreads that call
666 		 * svc_recv. If the thread has already been woken up, then
667 		 * we can exit here without sleeping. If not, then it
668 		 * it'll be woken up quickly during the schedule_timeout
669 		 */
670 		if (kthread_should_stop()) {
671 			set_current_state(TASK_RUNNING);
672 			spin_unlock_bh(&pool->sp_lock);
673 			return -EINTR;
674 		}
675 
676 		add_wait_queue(&rqstp->rq_wait, &wait);
677 		spin_unlock_bh(&pool->sp_lock);
678 
679 		time_left = schedule_timeout(timeout);
680 
681 		try_to_freeze();
682 
683 		spin_lock_bh(&pool->sp_lock);
684 		remove_wait_queue(&rqstp->rq_wait, &wait);
685 		if (!time_left)
686 			pool->sp_stats.threads_timedout++;
687 
688 		xprt = rqstp->rq_xprt;
689 		if (!xprt) {
690 			svc_thread_dequeue(pool, rqstp);
691 			spin_unlock_bh(&pool->sp_lock);
692 			dprintk("svc: server %p, no data yet\n", rqstp);
693 			if (signalled() || kthread_should_stop())
694 				return -EINTR;
695 			else
696 				return -EAGAIN;
697 		}
698 	}
699 	spin_unlock_bh(&pool->sp_lock);
700 
701 	len = 0;
702 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
703 		dprintk("svc_recv: found XPT_CLOSE\n");
704 		svc_delete_xprt(xprt);
705 		/* Leave XPT_BUSY set on the dead xprt: */
706 		goto out;
707 	}
708 	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
709 		struct svc_xprt *newxpt;
710 		newxpt = xprt->xpt_ops->xpo_accept(xprt);
711 		if (newxpt) {
712 			/*
713 			 * We know this module_get will succeed because the
714 			 * listener holds a reference too
715 			 */
716 			__module_get(newxpt->xpt_class->xcl_owner);
717 			svc_check_conn_limits(xprt->xpt_server);
718 			spin_lock_bh(&serv->sv_lock);
719 			set_bit(XPT_TEMP, &newxpt->xpt_flags);
720 			list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
721 			serv->sv_tmpcnt++;
722 			if (serv->sv_temptimer.function == NULL) {
723 				/* setup timer to age temp transports */
724 				setup_timer(&serv->sv_temptimer,
725 					    svc_age_temp_xprts,
726 					    (unsigned long)serv);
727 				mod_timer(&serv->sv_temptimer,
728 					  jiffies + svc_conn_age_period * HZ);
729 			}
730 			spin_unlock_bh(&serv->sv_lock);
731 			svc_xprt_received(newxpt);
732 		}
733 	} else if (xprt->xpt_ops->xpo_has_wspace(xprt)) {
734 		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
735 			rqstp, pool->sp_id, xprt,
736 			atomic_read(&xprt->xpt_ref.refcount));
737 		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
738 		if (rqstp->rq_deferred)
739 			len = svc_deferred_recv(rqstp);
740 		else
741 			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
742 		dprintk("svc: got len=%d\n", len);
743 	}
744 	svc_xprt_received(xprt);
745 
746 	/* No data, incomplete (TCP) read, or accept() */
747 	if (len == 0 || len == -EAGAIN)
748 		goto out;
749 
750 	clear_bit(XPT_OLD, &xprt->xpt_flags);
751 
752 	rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
753 	rqstp->rq_chandle.defer = svc_defer;
754 
755 	if (serv->sv_stats)
756 		serv->sv_stats->netcnt++;
757 	return len;
758 out:
759 	rqstp->rq_res.len = 0;
760 	svc_xprt_release(rqstp);
761 	return -EAGAIN;
762 }
763 EXPORT_SYMBOL_GPL(svc_recv);
764 
765 /*
766  * Drop request
767  */
768 void svc_drop(struct svc_rqst *rqstp)
769 {
770 	dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
771 	svc_xprt_release(rqstp);
772 }
773 EXPORT_SYMBOL_GPL(svc_drop);
774 
775 /*
776  * Return reply to client.
777  */
778 int svc_send(struct svc_rqst *rqstp)
779 {
780 	struct svc_xprt	*xprt;
781 	int		len;
782 	struct xdr_buf	*xb;
783 
784 	xprt = rqstp->rq_xprt;
785 	if (!xprt)
786 		return -EFAULT;
787 
788 	/* release the receive skb before sending the reply */
789 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
790 
791 	/* calculate over-all length */
792 	xb = &rqstp->rq_res;
793 	xb->len = xb->head[0].iov_len +
794 		xb->page_len +
795 		xb->tail[0].iov_len;
796 
797 	/* Grab mutex to serialize outgoing data. */
798 	mutex_lock(&xprt->xpt_mutex);
799 	if (test_bit(XPT_DEAD, &xprt->xpt_flags))
800 		len = -ENOTCONN;
801 	else
802 		len = xprt->xpt_ops->xpo_sendto(rqstp);
803 	mutex_unlock(&xprt->xpt_mutex);
804 	rpc_wake_up(&xprt->xpt_bc_pending);
805 	svc_xprt_release(rqstp);
806 
807 	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
808 		return 0;
809 	return len;
810 }
811 
812 /*
813  * Timer function to close old temporary transports, using
814  * a mark-and-sweep algorithm.
815  */
816 static void svc_age_temp_xprts(unsigned long closure)
817 {
818 	struct svc_serv *serv = (struct svc_serv *)closure;
819 	struct svc_xprt *xprt;
820 	struct list_head *le, *next;
821 	LIST_HEAD(to_be_aged);
822 
823 	dprintk("svc_age_temp_xprts\n");
824 
825 	if (!spin_trylock_bh(&serv->sv_lock)) {
826 		/* busy, try again 1 sec later */
827 		dprintk("svc_age_temp_xprts: busy\n");
828 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
829 		return;
830 	}
831 
832 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
833 		xprt = list_entry(le, struct svc_xprt, xpt_list);
834 
835 		/* First time through, just mark it OLD. Second time
836 		 * through, close it. */
837 		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
838 			continue;
839 		if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
840 		    test_bit(XPT_BUSY, &xprt->xpt_flags))
841 			continue;
842 		svc_xprt_get(xprt);
843 		list_move(le, &to_be_aged);
844 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
845 		set_bit(XPT_DETACHED, &xprt->xpt_flags);
846 	}
847 	spin_unlock_bh(&serv->sv_lock);
848 
849 	while (!list_empty(&to_be_aged)) {
850 		le = to_be_aged.next;
851 		/* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
852 		list_del_init(le);
853 		xprt = list_entry(le, struct svc_xprt, xpt_list);
854 
855 		dprintk("queuing xprt %p for closing\n", xprt);
856 
857 		/* a thread will dequeue and close it soon */
858 		svc_xprt_enqueue(xprt);
859 		svc_xprt_put(xprt);
860 	}
861 
862 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
863 }
864 
865 static void call_xpt_users(struct svc_xprt *xprt)
866 {
867 	struct svc_xpt_user *u;
868 
869 	spin_lock(&xprt->xpt_lock);
870 	while (!list_empty(&xprt->xpt_users)) {
871 		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
872 		list_del(&u->list);
873 		u->callback(u);
874 	}
875 	spin_unlock(&xprt->xpt_lock);
876 }
877 
878 /*
879  * Remove a dead transport
880  */
881 void svc_delete_xprt(struct svc_xprt *xprt)
882 {
883 	struct svc_serv	*serv = xprt->xpt_server;
884 	struct svc_deferred_req *dr;
885 
886 	/* Only do this once */
887 	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
888 		BUG();
889 
890 	dprintk("svc: svc_delete_xprt(%p)\n", xprt);
891 	xprt->xpt_ops->xpo_detach(xprt);
892 
893 	spin_lock_bh(&serv->sv_lock);
894 	if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
895 		list_del_init(&xprt->xpt_list);
896 	/*
897 	 * The only time we're called while xpt_ready is still on a list
898 	 * is while the list itself is about to be destroyed (in
899 	 * svc_destroy).  BUT svc_xprt_enqueue could still be attempting
900 	 * to add new entries to the sp_sockets list, so we can't leave
901 	 * a freed xprt on it.
902 	 */
903 	list_del_init(&xprt->xpt_ready);
904 	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
905 		serv->sv_tmpcnt--;
906 	spin_unlock_bh(&serv->sv_lock);
907 
908 	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
909 		kfree(dr);
910 
911 	call_xpt_users(xprt);
912 	svc_xprt_put(xprt);
913 }
914 
915 void svc_close_xprt(struct svc_xprt *xprt)
916 {
917 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
918 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
919 		/* someone else will have to effect the close */
920 		return;
921 	/*
922 	 * We expect svc_close_xprt() to work even when no threads are
923 	 * running (e.g., while configuring the server before starting
924 	 * any threads), so if the transport isn't busy, we delete
925 	 * it ourself:
926 	 */
927 	svc_delete_xprt(xprt);
928 }
929 EXPORT_SYMBOL_GPL(svc_close_xprt);
930 
931 void svc_close_all(struct list_head *xprt_list)
932 {
933 	struct svc_xprt *xprt;
934 	struct svc_xprt *tmp;
935 
936 	/*
937 	 * The server is shutting down, and no more threads are running.
938 	 * svc_xprt_enqueue() might still be running, but at worst it
939 	 * will re-add the xprt to sp_sockets, which will soon get
940 	 * freed.  So we don't bother with any more locking, and don't
941 	 * leave the close to the (nonexistent) server threads:
942 	 */
943 	list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
944 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
945 		svc_delete_xprt(xprt);
946 	}
947 }
948 
949 /*
950  * Handle defer and revisit of requests
951  */
952 
953 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
954 {
955 	struct svc_deferred_req *dr =
956 		container_of(dreq, struct svc_deferred_req, handle);
957 	struct svc_xprt *xprt = dr->xprt;
958 
959 	spin_lock(&xprt->xpt_lock);
960 	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
961 	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
962 		spin_unlock(&xprt->xpt_lock);
963 		dprintk("revisit canceled\n");
964 		svc_xprt_put(xprt);
965 		kfree(dr);
966 		return;
967 	}
968 	dprintk("revisit queued\n");
969 	dr->xprt = NULL;
970 	list_add(&dr->handle.recent, &xprt->xpt_deferred);
971 	spin_unlock(&xprt->xpt_lock);
972 	svc_xprt_enqueue(xprt);
973 	svc_xprt_put(xprt);
974 }
975 
976 /*
977  * Save the request off for later processing. The request buffer looks
978  * like this:
979  *
980  * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
981  *
982  * This code can only handle requests that consist of an xprt-header
983  * and rpc-header.
984  */
985 static struct cache_deferred_req *svc_defer(struct cache_req *req)
986 {
987 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
988 	struct svc_deferred_req *dr;
989 
990 	if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
991 		return NULL; /* if more than a page, give up FIXME */
992 	if (rqstp->rq_deferred) {
993 		dr = rqstp->rq_deferred;
994 		rqstp->rq_deferred = NULL;
995 	} else {
996 		size_t skip;
997 		size_t size;
998 		/* FIXME maybe discard if size too large */
999 		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1000 		dr = kmalloc(size, GFP_KERNEL);
1001 		if (dr == NULL)
1002 			return NULL;
1003 
1004 		dr->handle.owner = rqstp->rq_server;
1005 		dr->prot = rqstp->rq_prot;
1006 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1007 		dr->addrlen = rqstp->rq_addrlen;
1008 		dr->daddr = rqstp->rq_daddr;
1009 		dr->argslen = rqstp->rq_arg.len >> 2;
1010 		dr->xprt_hlen = rqstp->rq_xprt_hlen;
1011 
1012 		/* back up head to the start of the buffer and copy */
1013 		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1014 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1015 		       dr->argslen << 2);
1016 	}
1017 	svc_xprt_get(rqstp->rq_xprt);
1018 	dr->xprt = rqstp->rq_xprt;
1019 	rqstp->rq_dropme = true;
1020 
1021 	dr->handle.revisit = svc_revisit;
1022 	return &dr->handle;
1023 }
1024 
1025 /*
1026  * recv data from a deferred request into an active one
1027  */
1028 static int svc_deferred_recv(struct svc_rqst *rqstp)
1029 {
1030 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1031 
1032 	/* setup iov_base past transport header */
1033 	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1034 	/* The iov_len does not include the transport header bytes */
1035 	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1036 	rqstp->rq_arg.page_len = 0;
1037 	/* The rq_arg.len includes the transport header bytes */
1038 	rqstp->rq_arg.len     = dr->argslen<<2;
1039 	rqstp->rq_prot        = dr->prot;
1040 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1041 	rqstp->rq_addrlen     = dr->addrlen;
1042 	/* Save off transport header len in case we get deferred again */
1043 	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1044 	rqstp->rq_daddr       = dr->daddr;
1045 	rqstp->rq_respages    = rqstp->rq_pages;
1046 	return (dr->argslen<<2) - dr->xprt_hlen;
1047 }
1048 
1049 
1050 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1051 {
1052 	struct svc_deferred_req *dr = NULL;
1053 
1054 	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1055 		return NULL;
1056 	spin_lock(&xprt->xpt_lock);
1057 	if (!list_empty(&xprt->xpt_deferred)) {
1058 		dr = list_entry(xprt->xpt_deferred.next,
1059 				struct svc_deferred_req,
1060 				handle.recent);
1061 		list_del_init(&dr->handle.recent);
1062 	} else
1063 		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1064 	spin_unlock(&xprt->xpt_lock);
1065 	return dr;
1066 }
1067 
1068 /**
1069  * svc_find_xprt - find an RPC transport instance
1070  * @serv: pointer to svc_serv to search
1071  * @xcl_name: C string containing transport's class name
1072  * @af: Address family of transport's local address
1073  * @port: transport's IP port number
1074  *
1075  * Return the transport instance pointer for the endpoint accepting
1076  * connections/peer traffic from the specified transport class,
1077  * address family and port.
1078  *
1079  * Specifying 0 for the address family or port is effectively a
1080  * wild-card, and will result in matching the first transport in the
1081  * service's list that has a matching class name.
1082  */
1083 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1084 			       const sa_family_t af, const unsigned short port)
1085 {
1086 	struct svc_xprt *xprt;
1087 	struct svc_xprt *found = NULL;
1088 
1089 	/* Sanity check the args */
1090 	if (serv == NULL || xcl_name == NULL)
1091 		return found;
1092 
1093 	spin_lock_bh(&serv->sv_lock);
1094 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1095 		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1096 			continue;
1097 		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1098 			continue;
1099 		if (port != 0 && port != svc_xprt_local_port(xprt))
1100 			continue;
1101 		found = xprt;
1102 		svc_xprt_get(xprt);
1103 		break;
1104 	}
1105 	spin_unlock_bh(&serv->sv_lock);
1106 	return found;
1107 }
1108 EXPORT_SYMBOL_GPL(svc_find_xprt);
1109 
1110 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1111 			     char *pos, int remaining)
1112 {
1113 	int len;
1114 
1115 	len = snprintf(pos, remaining, "%s %u\n",
1116 			xprt->xpt_class->xcl_name,
1117 			svc_xprt_local_port(xprt));
1118 	if (len >= remaining)
1119 		return -ENAMETOOLONG;
1120 	return len;
1121 }
1122 
1123 /**
1124  * svc_xprt_names - format a buffer with a list of transport names
1125  * @serv: pointer to an RPC service
1126  * @buf: pointer to a buffer to be filled in
1127  * @buflen: length of buffer to be filled in
1128  *
1129  * Fills in @buf with a string containing a list of transport names,
1130  * each name terminated with '\n'.
1131  *
1132  * Returns positive length of the filled-in string on success; otherwise
1133  * a negative errno value is returned if an error occurs.
1134  */
1135 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1136 {
1137 	struct svc_xprt *xprt;
1138 	int len, totlen;
1139 	char *pos;
1140 
1141 	/* Sanity check args */
1142 	if (!serv)
1143 		return 0;
1144 
1145 	spin_lock_bh(&serv->sv_lock);
1146 
1147 	pos = buf;
1148 	totlen = 0;
1149 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1150 		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1151 		if (len < 0) {
1152 			*buf = '\0';
1153 			totlen = len;
1154 		}
1155 		if (len <= 0)
1156 			break;
1157 
1158 		pos += len;
1159 		totlen += len;
1160 	}
1161 
1162 	spin_unlock_bh(&serv->sv_lock);
1163 	return totlen;
1164 }
1165 EXPORT_SYMBOL_GPL(svc_xprt_names);
1166 
1167 
1168 /*----------------------------------------------------------------------------*/
1169 
1170 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1171 {
1172 	unsigned int pidx = (unsigned int)*pos;
1173 	struct svc_serv *serv = m->private;
1174 
1175 	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1176 
1177 	if (!pidx)
1178 		return SEQ_START_TOKEN;
1179 	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1180 }
1181 
1182 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1183 {
1184 	struct svc_pool *pool = p;
1185 	struct svc_serv *serv = m->private;
1186 
1187 	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1188 
1189 	if (p == SEQ_START_TOKEN) {
1190 		pool = &serv->sv_pools[0];
1191 	} else {
1192 		unsigned int pidx = (pool - &serv->sv_pools[0]);
1193 		if (pidx < serv->sv_nrpools-1)
1194 			pool = &serv->sv_pools[pidx+1];
1195 		else
1196 			pool = NULL;
1197 	}
1198 	++*pos;
1199 	return pool;
1200 }
1201 
1202 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1203 {
1204 }
1205 
1206 static int svc_pool_stats_show(struct seq_file *m, void *p)
1207 {
1208 	struct svc_pool *pool = p;
1209 
1210 	if (p == SEQ_START_TOKEN) {
1211 		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1212 		return 0;
1213 	}
1214 
1215 	seq_printf(m, "%u %lu %lu %lu %lu\n",
1216 		pool->sp_id,
1217 		pool->sp_stats.packets,
1218 		pool->sp_stats.sockets_queued,
1219 		pool->sp_stats.threads_woken,
1220 		pool->sp_stats.threads_timedout);
1221 
1222 	return 0;
1223 }
1224 
1225 static const struct seq_operations svc_pool_stats_seq_ops = {
1226 	.start	= svc_pool_stats_start,
1227 	.next	= svc_pool_stats_next,
1228 	.stop	= svc_pool_stats_stop,
1229 	.show	= svc_pool_stats_show,
1230 };
1231 
1232 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1233 {
1234 	int err;
1235 
1236 	err = seq_open(file, &svc_pool_stats_seq_ops);
1237 	if (!err)
1238 		((struct seq_file *) file->private_data)->private = serv;
1239 	return err;
1240 }
1241 EXPORT_SYMBOL(svc_pool_stats_open);
1242 
1243 /*----------------------------------------------------------------------------*/
1244