1 /* 2 * linux/net/sunrpc/svc_xprt.c 3 * 4 * Author: Tom Tucker <tom@opengridcomputing.com> 5 */ 6 7 #include <linux/sched.h> 8 #include <linux/errno.h> 9 #include <linux/freezer.h> 10 #include <linux/kthread.h> 11 #include <linux/slab.h> 12 #include <net/sock.h> 13 #include <linux/sunrpc/stats.h> 14 #include <linux/sunrpc/svc_xprt.h> 15 #include <linux/sunrpc/svcsock.h> 16 #include <linux/sunrpc/xprt.h> 17 #include <linux/module.h> 18 19 #define RPCDBG_FACILITY RPCDBG_SVCXPRT 20 21 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt); 22 static int svc_deferred_recv(struct svc_rqst *rqstp); 23 static struct cache_deferred_req *svc_defer(struct cache_req *req); 24 static void svc_age_temp_xprts(unsigned long closure); 25 static void svc_delete_xprt(struct svc_xprt *xprt); 26 27 /* apparently the "standard" is that clients close 28 * idle connections after 5 minutes, servers after 29 * 6 minutes 30 * http://www.connectathon.org/talks96/nfstcp.pdf 31 */ 32 static int svc_conn_age_period = 6*60; 33 34 /* List of registered transport classes */ 35 static DEFINE_SPINLOCK(svc_xprt_class_lock); 36 static LIST_HEAD(svc_xprt_class_list); 37 38 /* SMP locking strategy: 39 * 40 * svc_pool->sp_lock protects most of the fields of that pool. 41 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt. 42 * when both need to be taken (rare), svc_serv->sv_lock is first. 43 * BKL protects svc_serv->sv_nrthread. 44 * svc_sock->sk_lock protects the svc_sock->sk_deferred list 45 * and the ->sk_info_authunix cache. 46 * 47 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being 48 * enqueued multiply. During normal transport processing this bit 49 * is set by svc_xprt_enqueue and cleared by svc_xprt_received. 50 * Providers should not manipulate this bit directly. 51 * 52 * Some flags can be set to certain values at any time 53 * providing that certain rules are followed: 54 * 55 * XPT_CONN, XPT_DATA: 56 * - Can be set or cleared at any time. 57 * - After a set, svc_xprt_enqueue must be called to enqueue 58 * the transport for processing. 59 * - After a clear, the transport must be read/accepted. 60 * If this succeeds, it must be set again. 61 * XPT_CLOSE: 62 * - Can set at any time. It is never cleared. 63 * XPT_DEAD: 64 * - Can only be set while XPT_BUSY is held which ensures 65 * that no other thread will be using the transport or will 66 * try to set XPT_DEAD. 67 */ 68 69 int svc_reg_xprt_class(struct svc_xprt_class *xcl) 70 { 71 struct svc_xprt_class *cl; 72 int res = -EEXIST; 73 74 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name); 75 76 INIT_LIST_HEAD(&xcl->xcl_list); 77 spin_lock(&svc_xprt_class_lock); 78 /* Make sure there isn't already a class with the same name */ 79 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) { 80 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0) 81 goto out; 82 } 83 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list); 84 res = 0; 85 out: 86 spin_unlock(&svc_xprt_class_lock); 87 return res; 88 } 89 EXPORT_SYMBOL_GPL(svc_reg_xprt_class); 90 91 void svc_unreg_xprt_class(struct svc_xprt_class *xcl) 92 { 93 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name); 94 spin_lock(&svc_xprt_class_lock); 95 list_del_init(&xcl->xcl_list); 96 spin_unlock(&svc_xprt_class_lock); 97 } 98 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class); 99 100 /* 101 * Format the transport list for printing 102 */ 103 int svc_print_xprts(char *buf, int maxlen) 104 { 105 struct svc_xprt_class *xcl; 106 char tmpstr[80]; 107 int len = 0; 108 buf[0] = '\0'; 109 110 spin_lock(&svc_xprt_class_lock); 111 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { 112 int slen; 113 114 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload); 115 slen = strlen(tmpstr); 116 if (len + slen > maxlen) 117 break; 118 len += slen; 119 strcat(buf, tmpstr); 120 } 121 spin_unlock(&svc_xprt_class_lock); 122 123 return len; 124 } 125 126 static void svc_xprt_free(struct kref *kref) 127 { 128 struct svc_xprt *xprt = 129 container_of(kref, struct svc_xprt, xpt_ref); 130 struct module *owner = xprt->xpt_class->xcl_owner; 131 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags)) 132 svcauth_unix_info_release(xprt); 133 put_net(xprt->xpt_net); 134 /* See comment on corresponding get in xs_setup_bc_tcp(): */ 135 if (xprt->xpt_bc_xprt) 136 xprt_put(xprt->xpt_bc_xprt); 137 xprt->xpt_ops->xpo_free(xprt); 138 module_put(owner); 139 } 140 141 void svc_xprt_put(struct svc_xprt *xprt) 142 { 143 kref_put(&xprt->xpt_ref, svc_xprt_free); 144 } 145 EXPORT_SYMBOL_GPL(svc_xprt_put); 146 147 /* 148 * Called by transport drivers to initialize the transport independent 149 * portion of the transport instance. 150 */ 151 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl, 152 struct svc_xprt *xprt, struct svc_serv *serv) 153 { 154 memset(xprt, 0, sizeof(*xprt)); 155 xprt->xpt_class = xcl; 156 xprt->xpt_ops = xcl->xcl_ops; 157 kref_init(&xprt->xpt_ref); 158 xprt->xpt_server = serv; 159 INIT_LIST_HEAD(&xprt->xpt_list); 160 INIT_LIST_HEAD(&xprt->xpt_ready); 161 INIT_LIST_HEAD(&xprt->xpt_deferred); 162 INIT_LIST_HEAD(&xprt->xpt_users); 163 mutex_init(&xprt->xpt_mutex); 164 spin_lock_init(&xprt->xpt_lock); 165 set_bit(XPT_BUSY, &xprt->xpt_flags); 166 rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending"); 167 xprt->xpt_net = get_net(net); 168 } 169 EXPORT_SYMBOL_GPL(svc_xprt_init); 170 171 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl, 172 struct svc_serv *serv, 173 struct net *net, 174 const int family, 175 const unsigned short port, 176 int flags) 177 { 178 struct sockaddr_in sin = { 179 .sin_family = AF_INET, 180 .sin_addr.s_addr = htonl(INADDR_ANY), 181 .sin_port = htons(port), 182 }; 183 #if IS_ENABLED(CONFIG_IPV6) 184 struct sockaddr_in6 sin6 = { 185 .sin6_family = AF_INET6, 186 .sin6_addr = IN6ADDR_ANY_INIT, 187 .sin6_port = htons(port), 188 }; 189 #endif 190 struct sockaddr *sap; 191 size_t len; 192 193 switch (family) { 194 case PF_INET: 195 sap = (struct sockaddr *)&sin; 196 len = sizeof(sin); 197 break; 198 #if IS_ENABLED(CONFIG_IPV6) 199 case PF_INET6: 200 sap = (struct sockaddr *)&sin6; 201 len = sizeof(sin6); 202 break; 203 #endif 204 default: 205 return ERR_PTR(-EAFNOSUPPORT); 206 } 207 208 return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags); 209 } 210 211 /* 212 * svc_xprt_received conditionally queues the transport for processing 213 * by another thread. The caller must hold the XPT_BUSY bit and must 214 * not thereafter touch transport data. 215 * 216 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or 217 * insufficient) data. 218 */ 219 static void svc_xprt_received(struct svc_xprt *xprt) 220 { 221 WARN_ON_ONCE(!test_bit(XPT_BUSY, &xprt->xpt_flags)); 222 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) 223 return; 224 /* As soon as we clear busy, the xprt could be closed and 225 * 'put', so we need a reference to call svc_xprt_enqueue with: 226 */ 227 svc_xprt_get(xprt); 228 clear_bit(XPT_BUSY, &xprt->xpt_flags); 229 svc_xprt_enqueue(xprt); 230 svc_xprt_put(xprt); 231 } 232 233 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new) 234 { 235 clear_bit(XPT_TEMP, &new->xpt_flags); 236 spin_lock_bh(&serv->sv_lock); 237 list_add(&new->xpt_list, &serv->sv_permsocks); 238 spin_unlock_bh(&serv->sv_lock); 239 svc_xprt_received(new); 240 } 241 242 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name, 243 struct net *net, const int family, 244 const unsigned short port, int flags) 245 { 246 struct svc_xprt_class *xcl; 247 248 dprintk("svc: creating transport %s[%d]\n", xprt_name, port); 249 spin_lock(&svc_xprt_class_lock); 250 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { 251 struct svc_xprt *newxprt; 252 unsigned short newport; 253 254 if (strcmp(xprt_name, xcl->xcl_name)) 255 continue; 256 257 if (!try_module_get(xcl->xcl_owner)) 258 goto err; 259 260 spin_unlock(&svc_xprt_class_lock); 261 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags); 262 if (IS_ERR(newxprt)) { 263 module_put(xcl->xcl_owner); 264 return PTR_ERR(newxprt); 265 } 266 svc_add_new_perm_xprt(serv, newxprt); 267 newport = svc_xprt_local_port(newxprt); 268 return newport; 269 } 270 err: 271 spin_unlock(&svc_xprt_class_lock); 272 dprintk("svc: transport %s not found\n", xprt_name); 273 274 /* This errno is exposed to user space. Provide a reasonable 275 * perror msg for a bad transport. */ 276 return -EPROTONOSUPPORT; 277 } 278 EXPORT_SYMBOL_GPL(svc_create_xprt); 279 280 /* 281 * Copy the local and remote xprt addresses to the rqstp structure 282 */ 283 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt) 284 { 285 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen); 286 rqstp->rq_addrlen = xprt->xpt_remotelen; 287 288 /* 289 * Destination address in request is needed for binding the 290 * source address in RPC replies/callbacks later. 291 */ 292 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen); 293 rqstp->rq_daddrlen = xprt->xpt_locallen; 294 } 295 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs); 296 297 /** 298 * svc_print_addr - Format rq_addr field for printing 299 * @rqstp: svc_rqst struct containing address to print 300 * @buf: target buffer for formatted address 301 * @len: length of target buffer 302 * 303 */ 304 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len) 305 { 306 return __svc_print_addr(svc_addr(rqstp), buf, len); 307 } 308 EXPORT_SYMBOL_GPL(svc_print_addr); 309 310 /* 311 * Queue up an idle server thread. Must have pool->sp_lock held. 312 * Note: this is really a stack rather than a queue, so that we only 313 * use as many different threads as we need, and the rest don't pollute 314 * the cache. 315 */ 316 static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp) 317 { 318 list_add(&rqstp->rq_list, &pool->sp_threads); 319 } 320 321 /* 322 * Dequeue an nfsd thread. Must have pool->sp_lock held. 323 */ 324 static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp) 325 { 326 list_del(&rqstp->rq_list); 327 } 328 329 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt) 330 { 331 if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE))) 332 return true; 333 if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED))) 334 return xprt->xpt_ops->xpo_has_wspace(xprt); 335 return false; 336 } 337 338 /* 339 * Queue up a transport with data pending. If there are idle nfsd 340 * processes, wake 'em up. 341 * 342 */ 343 void svc_xprt_enqueue(struct svc_xprt *xprt) 344 { 345 struct svc_pool *pool; 346 struct svc_rqst *rqstp; 347 int cpu; 348 349 if (!svc_xprt_has_something_to_do(xprt)) 350 return; 351 352 cpu = get_cpu(); 353 pool = svc_pool_for_cpu(xprt->xpt_server, cpu); 354 put_cpu(); 355 356 spin_lock_bh(&pool->sp_lock); 357 358 if (!list_empty(&pool->sp_threads) && 359 !list_empty(&pool->sp_sockets)) 360 printk(KERN_ERR 361 "svc_xprt_enqueue: " 362 "threads and transports both waiting??\n"); 363 364 pool->sp_stats.packets++; 365 366 /* Mark transport as busy. It will remain in this state until 367 * the provider calls svc_xprt_received. We update XPT_BUSY 368 * atomically because it also guards against trying to enqueue 369 * the transport twice. 370 */ 371 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) { 372 /* Don't enqueue transport while already enqueued */ 373 dprintk("svc: transport %p busy, not enqueued\n", xprt); 374 goto out_unlock; 375 } 376 377 if (!list_empty(&pool->sp_threads)) { 378 rqstp = list_entry(pool->sp_threads.next, 379 struct svc_rqst, 380 rq_list); 381 dprintk("svc: transport %p served by daemon %p\n", 382 xprt, rqstp); 383 svc_thread_dequeue(pool, rqstp); 384 if (rqstp->rq_xprt) 385 printk(KERN_ERR 386 "svc_xprt_enqueue: server %p, rq_xprt=%p!\n", 387 rqstp, rqstp->rq_xprt); 388 rqstp->rq_xprt = xprt; 389 svc_xprt_get(xprt); 390 pool->sp_stats.threads_woken++; 391 wake_up(&rqstp->rq_wait); 392 } else { 393 dprintk("svc: transport %p put into queue\n", xprt); 394 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets); 395 pool->sp_stats.sockets_queued++; 396 } 397 398 out_unlock: 399 spin_unlock_bh(&pool->sp_lock); 400 } 401 EXPORT_SYMBOL_GPL(svc_xprt_enqueue); 402 403 /* 404 * Dequeue the first transport. Must be called with the pool->sp_lock held. 405 */ 406 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool) 407 { 408 struct svc_xprt *xprt; 409 410 if (list_empty(&pool->sp_sockets)) 411 return NULL; 412 413 xprt = list_entry(pool->sp_sockets.next, 414 struct svc_xprt, xpt_ready); 415 list_del_init(&xprt->xpt_ready); 416 417 dprintk("svc: transport %p dequeued, inuse=%d\n", 418 xprt, atomic_read(&xprt->xpt_ref.refcount)); 419 420 return xprt; 421 } 422 423 /** 424 * svc_reserve - change the space reserved for the reply to a request. 425 * @rqstp: The request in question 426 * @space: new max space to reserve 427 * 428 * Each request reserves some space on the output queue of the transport 429 * to make sure the reply fits. This function reduces that reserved 430 * space to be the amount of space used already, plus @space. 431 * 432 */ 433 void svc_reserve(struct svc_rqst *rqstp, int space) 434 { 435 space += rqstp->rq_res.head[0].iov_len; 436 437 if (space < rqstp->rq_reserved) { 438 struct svc_xprt *xprt = rqstp->rq_xprt; 439 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved); 440 rqstp->rq_reserved = space; 441 442 svc_xprt_enqueue(xprt); 443 } 444 } 445 EXPORT_SYMBOL_GPL(svc_reserve); 446 447 static void svc_xprt_release(struct svc_rqst *rqstp) 448 { 449 struct svc_xprt *xprt = rqstp->rq_xprt; 450 451 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp); 452 453 kfree(rqstp->rq_deferred); 454 rqstp->rq_deferred = NULL; 455 456 svc_free_res_pages(rqstp); 457 rqstp->rq_res.page_len = 0; 458 rqstp->rq_res.page_base = 0; 459 460 /* Reset response buffer and release 461 * the reservation. 462 * But first, check that enough space was reserved 463 * for the reply, otherwise we have a bug! 464 */ 465 if ((rqstp->rq_res.len) > rqstp->rq_reserved) 466 printk(KERN_ERR "RPC request reserved %d but used %d\n", 467 rqstp->rq_reserved, 468 rqstp->rq_res.len); 469 470 rqstp->rq_res.head[0].iov_len = 0; 471 svc_reserve(rqstp, 0); 472 rqstp->rq_xprt = NULL; 473 474 svc_xprt_put(xprt); 475 } 476 477 /* 478 * External function to wake up a server waiting for data 479 * This really only makes sense for services like lockd 480 * which have exactly one thread anyway. 481 */ 482 void svc_wake_up(struct svc_serv *serv) 483 { 484 struct svc_rqst *rqstp; 485 unsigned int i; 486 struct svc_pool *pool; 487 488 for (i = 0; i < serv->sv_nrpools; i++) { 489 pool = &serv->sv_pools[i]; 490 491 spin_lock_bh(&pool->sp_lock); 492 if (!list_empty(&pool->sp_threads)) { 493 rqstp = list_entry(pool->sp_threads.next, 494 struct svc_rqst, 495 rq_list); 496 dprintk("svc: daemon %p woken up.\n", rqstp); 497 /* 498 svc_thread_dequeue(pool, rqstp); 499 rqstp->rq_xprt = NULL; 500 */ 501 wake_up(&rqstp->rq_wait); 502 } 503 spin_unlock_bh(&pool->sp_lock); 504 } 505 } 506 EXPORT_SYMBOL_GPL(svc_wake_up); 507 508 int svc_port_is_privileged(struct sockaddr *sin) 509 { 510 switch (sin->sa_family) { 511 case AF_INET: 512 return ntohs(((struct sockaddr_in *)sin)->sin_port) 513 < PROT_SOCK; 514 case AF_INET6: 515 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port) 516 < PROT_SOCK; 517 default: 518 return 0; 519 } 520 } 521 522 /* 523 * Make sure that we don't have too many active connections. If we have, 524 * something must be dropped. It's not clear what will happen if we allow 525 * "too many" connections, but when dealing with network-facing software, 526 * we have to code defensively. Here we do that by imposing hard limits. 527 * 528 * There's no point in trying to do random drop here for DoS 529 * prevention. The NFS clients does 1 reconnect in 15 seconds. An 530 * attacker can easily beat that. 531 * 532 * The only somewhat efficient mechanism would be if drop old 533 * connections from the same IP first. But right now we don't even 534 * record the client IP in svc_sock. 535 * 536 * single-threaded services that expect a lot of clients will probably 537 * need to set sv_maxconn to override the default value which is based 538 * on the number of threads 539 */ 540 static void svc_check_conn_limits(struct svc_serv *serv) 541 { 542 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn : 543 (serv->sv_nrthreads+3) * 20; 544 545 if (serv->sv_tmpcnt > limit) { 546 struct svc_xprt *xprt = NULL; 547 spin_lock_bh(&serv->sv_lock); 548 if (!list_empty(&serv->sv_tempsocks)) { 549 /* Try to help the admin */ 550 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n", 551 serv->sv_name, serv->sv_maxconn ? 552 "max number of connections" : 553 "number of threads"); 554 /* 555 * Always select the oldest connection. It's not fair, 556 * but so is life 557 */ 558 xprt = list_entry(serv->sv_tempsocks.prev, 559 struct svc_xprt, 560 xpt_list); 561 set_bit(XPT_CLOSE, &xprt->xpt_flags); 562 svc_xprt_get(xprt); 563 } 564 spin_unlock_bh(&serv->sv_lock); 565 566 if (xprt) { 567 svc_xprt_enqueue(xprt); 568 svc_xprt_put(xprt); 569 } 570 } 571 } 572 573 int svc_alloc_arg(struct svc_rqst *rqstp) 574 { 575 struct svc_serv *serv = rqstp->rq_server; 576 struct xdr_buf *arg; 577 int pages; 578 int i; 579 580 /* now allocate needed pages. If we get a failure, sleep briefly */ 581 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE; 582 WARN_ON_ONCE(pages >= RPCSVC_MAXPAGES); 583 if (pages >= RPCSVC_MAXPAGES) 584 /* use as many pages as possible */ 585 pages = RPCSVC_MAXPAGES - 1; 586 for (i = 0; i < pages ; i++) 587 while (rqstp->rq_pages[i] == NULL) { 588 struct page *p = alloc_page(GFP_KERNEL); 589 if (!p) { 590 set_current_state(TASK_INTERRUPTIBLE); 591 if (signalled() || kthread_should_stop()) { 592 set_current_state(TASK_RUNNING); 593 return -EINTR; 594 } 595 schedule_timeout(msecs_to_jiffies(500)); 596 } 597 rqstp->rq_pages[i] = p; 598 } 599 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */ 600 601 /* Make arg->head point to first page and arg->pages point to rest */ 602 arg = &rqstp->rq_arg; 603 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]); 604 arg->head[0].iov_len = PAGE_SIZE; 605 arg->pages = rqstp->rq_pages + 1; 606 arg->page_base = 0; 607 /* save at least one page for response */ 608 arg->page_len = (pages-2)*PAGE_SIZE; 609 arg->len = (pages-1)*PAGE_SIZE; 610 arg->tail[0].iov_len = 0; 611 return 0; 612 } 613 614 struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout) 615 { 616 struct svc_xprt *xprt; 617 struct svc_pool *pool = rqstp->rq_pool; 618 DECLARE_WAITQUEUE(wait, current); 619 long time_left; 620 621 /* Normally we will wait up to 5 seconds for any required 622 * cache information to be provided. 623 */ 624 rqstp->rq_chandle.thread_wait = 5*HZ; 625 626 spin_lock_bh(&pool->sp_lock); 627 xprt = svc_xprt_dequeue(pool); 628 if (xprt) { 629 rqstp->rq_xprt = xprt; 630 svc_xprt_get(xprt); 631 632 /* As there is a shortage of threads and this request 633 * had to be queued, don't allow the thread to wait so 634 * long for cache updates. 635 */ 636 rqstp->rq_chandle.thread_wait = 1*HZ; 637 } else { 638 /* No data pending. Go to sleep */ 639 svc_thread_enqueue(pool, rqstp); 640 641 /* 642 * We have to be able to interrupt this wait 643 * to bring down the daemons ... 644 */ 645 set_current_state(TASK_INTERRUPTIBLE); 646 647 /* 648 * checking kthread_should_stop() here allows us to avoid 649 * locking and signalling when stopping kthreads that call 650 * svc_recv. If the thread has already been woken up, then 651 * we can exit here without sleeping. If not, then it 652 * it'll be woken up quickly during the schedule_timeout 653 */ 654 if (kthread_should_stop()) { 655 set_current_state(TASK_RUNNING); 656 spin_unlock_bh(&pool->sp_lock); 657 return ERR_PTR(-EINTR); 658 } 659 660 add_wait_queue(&rqstp->rq_wait, &wait); 661 spin_unlock_bh(&pool->sp_lock); 662 663 time_left = schedule_timeout(timeout); 664 665 try_to_freeze(); 666 667 spin_lock_bh(&pool->sp_lock); 668 remove_wait_queue(&rqstp->rq_wait, &wait); 669 if (!time_left) 670 pool->sp_stats.threads_timedout++; 671 672 xprt = rqstp->rq_xprt; 673 if (!xprt) { 674 svc_thread_dequeue(pool, rqstp); 675 spin_unlock_bh(&pool->sp_lock); 676 dprintk("svc: server %p, no data yet\n", rqstp); 677 if (signalled() || kthread_should_stop()) 678 return ERR_PTR(-EINTR); 679 else 680 return ERR_PTR(-EAGAIN); 681 } 682 } 683 spin_unlock_bh(&pool->sp_lock); 684 return xprt; 685 } 686 687 void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt) 688 { 689 spin_lock_bh(&serv->sv_lock); 690 set_bit(XPT_TEMP, &newxpt->xpt_flags); 691 list_add(&newxpt->xpt_list, &serv->sv_tempsocks); 692 serv->sv_tmpcnt++; 693 if (serv->sv_temptimer.function == NULL) { 694 /* setup timer to age temp transports */ 695 setup_timer(&serv->sv_temptimer, svc_age_temp_xprts, 696 (unsigned long)serv); 697 mod_timer(&serv->sv_temptimer, 698 jiffies + svc_conn_age_period * HZ); 699 } 700 spin_unlock_bh(&serv->sv_lock); 701 svc_xprt_received(newxpt); 702 } 703 704 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt) 705 { 706 struct svc_serv *serv = rqstp->rq_server; 707 int len = 0; 708 709 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) { 710 dprintk("svc_recv: found XPT_CLOSE\n"); 711 svc_delete_xprt(xprt); 712 /* Leave XPT_BUSY set on the dead xprt: */ 713 return 0; 714 } 715 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) { 716 struct svc_xprt *newxpt; 717 /* 718 * We know this module_get will succeed because the 719 * listener holds a reference too 720 */ 721 __module_get(xprt->xpt_class->xcl_owner); 722 svc_check_conn_limits(xprt->xpt_server); 723 newxpt = xprt->xpt_ops->xpo_accept(xprt); 724 if (newxpt) 725 svc_add_new_temp_xprt(serv, newxpt); 726 } else if (xprt->xpt_ops->xpo_has_wspace(xprt)) { 727 /* XPT_DATA|XPT_DEFERRED case: */ 728 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n", 729 rqstp, rqstp->rq_pool->sp_id, xprt, 730 atomic_read(&xprt->xpt_ref.refcount)); 731 rqstp->rq_deferred = svc_deferred_dequeue(xprt); 732 if (rqstp->rq_deferred) 733 len = svc_deferred_recv(rqstp); 734 else 735 len = xprt->xpt_ops->xpo_recvfrom(rqstp); 736 dprintk("svc: got len=%d\n", len); 737 rqstp->rq_reserved = serv->sv_max_mesg; 738 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved); 739 } 740 /* clear XPT_BUSY: */ 741 svc_xprt_received(xprt); 742 return len; 743 } 744 745 /* 746 * Receive the next request on any transport. This code is carefully 747 * organised not to touch any cachelines in the shared svc_serv 748 * structure, only cachelines in the local svc_pool. 749 */ 750 int svc_recv(struct svc_rqst *rqstp, long timeout) 751 { 752 struct svc_xprt *xprt = NULL; 753 struct svc_serv *serv = rqstp->rq_server; 754 int len, err; 755 756 dprintk("svc: server %p waiting for data (to = %ld)\n", 757 rqstp, timeout); 758 759 if (rqstp->rq_xprt) 760 printk(KERN_ERR 761 "svc_recv: service %p, transport not NULL!\n", 762 rqstp); 763 if (waitqueue_active(&rqstp->rq_wait)) 764 printk(KERN_ERR 765 "svc_recv: service %p, wait queue active!\n", 766 rqstp); 767 768 err = svc_alloc_arg(rqstp); 769 if (err) 770 return err; 771 772 try_to_freeze(); 773 cond_resched(); 774 if (signalled() || kthread_should_stop()) 775 return -EINTR; 776 777 xprt = svc_get_next_xprt(rqstp, timeout); 778 if (IS_ERR(xprt)) 779 return PTR_ERR(xprt); 780 781 len = svc_handle_xprt(rqstp, xprt); 782 783 /* No data, incomplete (TCP) read, or accept() */ 784 if (len <= 0) 785 goto out; 786 787 clear_bit(XPT_OLD, &xprt->xpt_flags); 788 789 rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp)); 790 rqstp->rq_chandle.defer = svc_defer; 791 792 if (serv->sv_stats) 793 serv->sv_stats->netcnt++; 794 return len; 795 out: 796 rqstp->rq_res.len = 0; 797 svc_xprt_release(rqstp); 798 return -EAGAIN; 799 } 800 EXPORT_SYMBOL_GPL(svc_recv); 801 802 /* 803 * Drop request 804 */ 805 void svc_drop(struct svc_rqst *rqstp) 806 { 807 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt); 808 svc_xprt_release(rqstp); 809 } 810 EXPORT_SYMBOL_GPL(svc_drop); 811 812 /* 813 * Return reply to client. 814 */ 815 int svc_send(struct svc_rqst *rqstp) 816 { 817 struct svc_xprt *xprt; 818 int len; 819 struct xdr_buf *xb; 820 821 xprt = rqstp->rq_xprt; 822 if (!xprt) 823 return -EFAULT; 824 825 /* release the receive skb before sending the reply */ 826 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp); 827 828 /* calculate over-all length */ 829 xb = &rqstp->rq_res; 830 xb->len = xb->head[0].iov_len + 831 xb->page_len + 832 xb->tail[0].iov_len; 833 834 /* Grab mutex to serialize outgoing data. */ 835 mutex_lock(&xprt->xpt_mutex); 836 if (test_bit(XPT_DEAD, &xprt->xpt_flags) 837 || test_bit(XPT_CLOSE, &xprt->xpt_flags)) 838 len = -ENOTCONN; 839 else 840 len = xprt->xpt_ops->xpo_sendto(rqstp); 841 mutex_unlock(&xprt->xpt_mutex); 842 rpc_wake_up(&xprt->xpt_bc_pending); 843 svc_xprt_release(rqstp); 844 845 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN) 846 return 0; 847 return len; 848 } 849 850 /* 851 * Timer function to close old temporary transports, using 852 * a mark-and-sweep algorithm. 853 */ 854 static void svc_age_temp_xprts(unsigned long closure) 855 { 856 struct svc_serv *serv = (struct svc_serv *)closure; 857 struct svc_xprt *xprt; 858 struct list_head *le, *next; 859 LIST_HEAD(to_be_aged); 860 861 dprintk("svc_age_temp_xprts\n"); 862 863 if (!spin_trylock_bh(&serv->sv_lock)) { 864 /* busy, try again 1 sec later */ 865 dprintk("svc_age_temp_xprts: busy\n"); 866 mod_timer(&serv->sv_temptimer, jiffies + HZ); 867 return; 868 } 869 870 list_for_each_safe(le, next, &serv->sv_tempsocks) { 871 xprt = list_entry(le, struct svc_xprt, xpt_list); 872 873 /* First time through, just mark it OLD. Second time 874 * through, close it. */ 875 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags)) 876 continue; 877 if (atomic_read(&xprt->xpt_ref.refcount) > 1 || 878 test_bit(XPT_BUSY, &xprt->xpt_flags)) 879 continue; 880 svc_xprt_get(xprt); 881 list_move(le, &to_be_aged); 882 set_bit(XPT_CLOSE, &xprt->xpt_flags); 883 set_bit(XPT_DETACHED, &xprt->xpt_flags); 884 } 885 spin_unlock_bh(&serv->sv_lock); 886 887 while (!list_empty(&to_be_aged)) { 888 le = to_be_aged.next; 889 /* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */ 890 list_del_init(le); 891 xprt = list_entry(le, struct svc_xprt, xpt_list); 892 893 dprintk("queuing xprt %p for closing\n", xprt); 894 895 /* a thread will dequeue and close it soon */ 896 svc_xprt_enqueue(xprt); 897 svc_xprt_put(xprt); 898 } 899 900 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ); 901 } 902 903 static void call_xpt_users(struct svc_xprt *xprt) 904 { 905 struct svc_xpt_user *u; 906 907 spin_lock(&xprt->xpt_lock); 908 while (!list_empty(&xprt->xpt_users)) { 909 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list); 910 list_del(&u->list); 911 u->callback(u); 912 } 913 spin_unlock(&xprt->xpt_lock); 914 } 915 916 /* 917 * Remove a dead transport 918 */ 919 static void svc_delete_xprt(struct svc_xprt *xprt) 920 { 921 struct svc_serv *serv = xprt->xpt_server; 922 struct svc_deferred_req *dr; 923 924 /* Only do this once */ 925 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags)) 926 BUG(); 927 928 dprintk("svc: svc_delete_xprt(%p)\n", xprt); 929 xprt->xpt_ops->xpo_detach(xprt); 930 931 spin_lock_bh(&serv->sv_lock); 932 if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags)) 933 list_del_init(&xprt->xpt_list); 934 WARN_ON_ONCE(!list_empty(&xprt->xpt_ready)); 935 if (test_bit(XPT_TEMP, &xprt->xpt_flags)) 936 serv->sv_tmpcnt--; 937 spin_unlock_bh(&serv->sv_lock); 938 939 while ((dr = svc_deferred_dequeue(xprt)) != NULL) 940 kfree(dr); 941 942 call_xpt_users(xprt); 943 svc_xprt_put(xprt); 944 } 945 946 void svc_close_xprt(struct svc_xprt *xprt) 947 { 948 set_bit(XPT_CLOSE, &xprt->xpt_flags); 949 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) 950 /* someone else will have to effect the close */ 951 return; 952 /* 953 * We expect svc_close_xprt() to work even when no threads are 954 * running (e.g., while configuring the server before starting 955 * any threads), so if the transport isn't busy, we delete 956 * it ourself: 957 */ 958 svc_delete_xprt(xprt); 959 } 960 EXPORT_SYMBOL_GPL(svc_close_xprt); 961 962 static void svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net) 963 { 964 struct svc_xprt *xprt; 965 966 spin_lock(&serv->sv_lock); 967 list_for_each_entry(xprt, xprt_list, xpt_list) { 968 if (xprt->xpt_net != net) 969 continue; 970 set_bit(XPT_CLOSE, &xprt->xpt_flags); 971 set_bit(XPT_BUSY, &xprt->xpt_flags); 972 } 973 spin_unlock(&serv->sv_lock); 974 } 975 976 static void svc_clear_pools(struct svc_serv *serv, struct net *net) 977 { 978 struct svc_pool *pool; 979 struct svc_xprt *xprt; 980 struct svc_xprt *tmp; 981 int i; 982 983 for (i = 0; i < serv->sv_nrpools; i++) { 984 pool = &serv->sv_pools[i]; 985 986 spin_lock_bh(&pool->sp_lock); 987 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) { 988 if (xprt->xpt_net != net) 989 continue; 990 list_del_init(&xprt->xpt_ready); 991 } 992 spin_unlock_bh(&pool->sp_lock); 993 } 994 } 995 996 static void svc_clear_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net) 997 { 998 struct svc_xprt *xprt; 999 struct svc_xprt *tmp; 1000 LIST_HEAD(victims); 1001 1002 spin_lock(&serv->sv_lock); 1003 list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) { 1004 if (xprt->xpt_net != net) 1005 continue; 1006 list_move(&xprt->xpt_list, &victims); 1007 } 1008 spin_unlock(&serv->sv_lock); 1009 1010 list_for_each_entry_safe(xprt, tmp, &victims, xpt_list) 1011 svc_delete_xprt(xprt); 1012 } 1013 1014 void svc_close_net(struct svc_serv *serv, struct net *net) 1015 { 1016 svc_close_list(serv, &serv->sv_tempsocks, net); 1017 svc_close_list(serv, &serv->sv_permsocks, net); 1018 1019 svc_clear_pools(serv, net); 1020 /* 1021 * At this point the sp_sockets lists will stay empty, since 1022 * svc_xprt_enqueue will not add new entries without taking the 1023 * sp_lock and checking XPT_BUSY. 1024 */ 1025 svc_clear_list(serv, &serv->sv_tempsocks, net); 1026 svc_clear_list(serv, &serv->sv_permsocks, net); 1027 } 1028 1029 /* 1030 * Handle defer and revisit of requests 1031 */ 1032 1033 static void svc_revisit(struct cache_deferred_req *dreq, int too_many) 1034 { 1035 struct svc_deferred_req *dr = 1036 container_of(dreq, struct svc_deferred_req, handle); 1037 struct svc_xprt *xprt = dr->xprt; 1038 1039 spin_lock(&xprt->xpt_lock); 1040 set_bit(XPT_DEFERRED, &xprt->xpt_flags); 1041 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) { 1042 spin_unlock(&xprt->xpt_lock); 1043 dprintk("revisit canceled\n"); 1044 svc_xprt_put(xprt); 1045 kfree(dr); 1046 return; 1047 } 1048 dprintk("revisit queued\n"); 1049 dr->xprt = NULL; 1050 list_add(&dr->handle.recent, &xprt->xpt_deferred); 1051 spin_unlock(&xprt->xpt_lock); 1052 svc_xprt_enqueue(xprt); 1053 svc_xprt_put(xprt); 1054 } 1055 1056 /* 1057 * Save the request off for later processing. The request buffer looks 1058 * like this: 1059 * 1060 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail> 1061 * 1062 * This code can only handle requests that consist of an xprt-header 1063 * and rpc-header. 1064 */ 1065 static struct cache_deferred_req *svc_defer(struct cache_req *req) 1066 { 1067 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle); 1068 struct svc_deferred_req *dr; 1069 1070 if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral) 1071 return NULL; /* if more than a page, give up FIXME */ 1072 if (rqstp->rq_deferred) { 1073 dr = rqstp->rq_deferred; 1074 rqstp->rq_deferred = NULL; 1075 } else { 1076 size_t skip; 1077 size_t size; 1078 /* FIXME maybe discard if size too large */ 1079 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len; 1080 dr = kmalloc(size, GFP_KERNEL); 1081 if (dr == NULL) 1082 return NULL; 1083 1084 dr->handle.owner = rqstp->rq_server; 1085 dr->prot = rqstp->rq_prot; 1086 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen); 1087 dr->addrlen = rqstp->rq_addrlen; 1088 dr->daddr = rqstp->rq_daddr; 1089 dr->argslen = rqstp->rq_arg.len >> 2; 1090 dr->xprt_hlen = rqstp->rq_xprt_hlen; 1091 1092 /* back up head to the start of the buffer and copy */ 1093 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len; 1094 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip, 1095 dr->argslen << 2); 1096 } 1097 svc_xprt_get(rqstp->rq_xprt); 1098 dr->xprt = rqstp->rq_xprt; 1099 rqstp->rq_dropme = true; 1100 1101 dr->handle.revisit = svc_revisit; 1102 return &dr->handle; 1103 } 1104 1105 /* 1106 * recv data from a deferred request into an active one 1107 */ 1108 static int svc_deferred_recv(struct svc_rqst *rqstp) 1109 { 1110 struct svc_deferred_req *dr = rqstp->rq_deferred; 1111 1112 /* setup iov_base past transport header */ 1113 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2); 1114 /* The iov_len does not include the transport header bytes */ 1115 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen; 1116 rqstp->rq_arg.page_len = 0; 1117 /* The rq_arg.len includes the transport header bytes */ 1118 rqstp->rq_arg.len = dr->argslen<<2; 1119 rqstp->rq_prot = dr->prot; 1120 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen); 1121 rqstp->rq_addrlen = dr->addrlen; 1122 /* Save off transport header len in case we get deferred again */ 1123 rqstp->rq_xprt_hlen = dr->xprt_hlen; 1124 rqstp->rq_daddr = dr->daddr; 1125 rqstp->rq_respages = rqstp->rq_pages; 1126 return (dr->argslen<<2) - dr->xprt_hlen; 1127 } 1128 1129 1130 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt) 1131 { 1132 struct svc_deferred_req *dr = NULL; 1133 1134 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags)) 1135 return NULL; 1136 spin_lock(&xprt->xpt_lock); 1137 if (!list_empty(&xprt->xpt_deferred)) { 1138 dr = list_entry(xprt->xpt_deferred.next, 1139 struct svc_deferred_req, 1140 handle.recent); 1141 list_del_init(&dr->handle.recent); 1142 } else 1143 clear_bit(XPT_DEFERRED, &xprt->xpt_flags); 1144 spin_unlock(&xprt->xpt_lock); 1145 return dr; 1146 } 1147 1148 /** 1149 * svc_find_xprt - find an RPC transport instance 1150 * @serv: pointer to svc_serv to search 1151 * @xcl_name: C string containing transport's class name 1152 * @net: owner net pointer 1153 * @af: Address family of transport's local address 1154 * @port: transport's IP port number 1155 * 1156 * Return the transport instance pointer for the endpoint accepting 1157 * connections/peer traffic from the specified transport class, 1158 * address family and port. 1159 * 1160 * Specifying 0 for the address family or port is effectively a 1161 * wild-card, and will result in matching the first transport in the 1162 * service's list that has a matching class name. 1163 */ 1164 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name, 1165 struct net *net, const sa_family_t af, 1166 const unsigned short port) 1167 { 1168 struct svc_xprt *xprt; 1169 struct svc_xprt *found = NULL; 1170 1171 /* Sanity check the args */ 1172 if (serv == NULL || xcl_name == NULL) 1173 return found; 1174 1175 spin_lock_bh(&serv->sv_lock); 1176 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { 1177 if (xprt->xpt_net != net) 1178 continue; 1179 if (strcmp(xprt->xpt_class->xcl_name, xcl_name)) 1180 continue; 1181 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family) 1182 continue; 1183 if (port != 0 && port != svc_xprt_local_port(xprt)) 1184 continue; 1185 found = xprt; 1186 svc_xprt_get(xprt); 1187 break; 1188 } 1189 spin_unlock_bh(&serv->sv_lock); 1190 return found; 1191 } 1192 EXPORT_SYMBOL_GPL(svc_find_xprt); 1193 1194 static int svc_one_xprt_name(const struct svc_xprt *xprt, 1195 char *pos, int remaining) 1196 { 1197 int len; 1198 1199 len = snprintf(pos, remaining, "%s %u\n", 1200 xprt->xpt_class->xcl_name, 1201 svc_xprt_local_port(xprt)); 1202 if (len >= remaining) 1203 return -ENAMETOOLONG; 1204 return len; 1205 } 1206 1207 /** 1208 * svc_xprt_names - format a buffer with a list of transport names 1209 * @serv: pointer to an RPC service 1210 * @buf: pointer to a buffer to be filled in 1211 * @buflen: length of buffer to be filled in 1212 * 1213 * Fills in @buf with a string containing a list of transport names, 1214 * each name terminated with '\n'. 1215 * 1216 * Returns positive length of the filled-in string on success; otherwise 1217 * a negative errno value is returned if an error occurs. 1218 */ 1219 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen) 1220 { 1221 struct svc_xprt *xprt; 1222 int len, totlen; 1223 char *pos; 1224 1225 /* Sanity check args */ 1226 if (!serv) 1227 return 0; 1228 1229 spin_lock_bh(&serv->sv_lock); 1230 1231 pos = buf; 1232 totlen = 0; 1233 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { 1234 len = svc_one_xprt_name(xprt, pos, buflen - totlen); 1235 if (len < 0) { 1236 *buf = '\0'; 1237 totlen = len; 1238 } 1239 if (len <= 0) 1240 break; 1241 1242 pos += len; 1243 totlen += len; 1244 } 1245 1246 spin_unlock_bh(&serv->sv_lock); 1247 return totlen; 1248 } 1249 EXPORT_SYMBOL_GPL(svc_xprt_names); 1250 1251 1252 /*----------------------------------------------------------------------------*/ 1253 1254 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos) 1255 { 1256 unsigned int pidx = (unsigned int)*pos; 1257 struct svc_serv *serv = m->private; 1258 1259 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx); 1260 1261 if (!pidx) 1262 return SEQ_START_TOKEN; 1263 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]); 1264 } 1265 1266 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos) 1267 { 1268 struct svc_pool *pool = p; 1269 struct svc_serv *serv = m->private; 1270 1271 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos); 1272 1273 if (p == SEQ_START_TOKEN) { 1274 pool = &serv->sv_pools[0]; 1275 } else { 1276 unsigned int pidx = (pool - &serv->sv_pools[0]); 1277 if (pidx < serv->sv_nrpools-1) 1278 pool = &serv->sv_pools[pidx+1]; 1279 else 1280 pool = NULL; 1281 } 1282 ++*pos; 1283 return pool; 1284 } 1285 1286 static void svc_pool_stats_stop(struct seq_file *m, void *p) 1287 { 1288 } 1289 1290 static int svc_pool_stats_show(struct seq_file *m, void *p) 1291 { 1292 struct svc_pool *pool = p; 1293 1294 if (p == SEQ_START_TOKEN) { 1295 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n"); 1296 return 0; 1297 } 1298 1299 seq_printf(m, "%u %lu %lu %lu %lu\n", 1300 pool->sp_id, 1301 pool->sp_stats.packets, 1302 pool->sp_stats.sockets_queued, 1303 pool->sp_stats.threads_woken, 1304 pool->sp_stats.threads_timedout); 1305 1306 return 0; 1307 } 1308 1309 static const struct seq_operations svc_pool_stats_seq_ops = { 1310 .start = svc_pool_stats_start, 1311 .next = svc_pool_stats_next, 1312 .stop = svc_pool_stats_stop, 1313 .show = svc_pool_stats_show, 1314 }; 1315 1316 int svc_pool_stats_open(struct svc_serv *serv, struct file *file) 1317 { 1318 int err; 1319 1320 err = seq_open(file, &svc_pool_stats_seq_ops); 1321 if (!err) 1322 ((struct seq_file *) file->private_data)->private = serv; 1323 return err; 1324 } 1325 EXPORT_SYMBOL(svc_pool_stats_open); 1326 1327 /*----------------------------------------------------------------------------*/ 1328