xref: /openbmc/linux/net/sunrpc/svc_xprt.c (revision 54cbac81)
1 /*
2  * linux/net/sunrpc/svc_xprt.c
3  *
4  * Author: Tom Tucker <tom@opengridcomputing.com>
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/stats.h>
14 #include <linux/sunrpc/svc_xprt.h>
15 #include <linux/sunrpc/svcsock.h>
16 #include <linux/sunrpc/xprt.h>
17 #include <linux/module.h>
18 
19 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
20 
21 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
22 static int svc_deferred_recv(struct svc_rqst *rqstp);
23 static struct cache_deferred_req *svc_defer(struct cache_req *req);
24 static void svc_age_temp_xprts(unsigned long closure);
25 static void svc_delete_xprt(struct svc_xprt *xprt);
26 
27 /* apparently the "standard" is that clients close
28  * idle connections after 5 minutes, servers after
29  * 6 minutes
30  *   http://www.connectathon.org/talks96/nfstcp.pdf
31  */
32 static int svc_conn_age_period = 6*60;
33 
34 /* List of registered transport classes */
35 static DEFINE_SPINLOCK(svc_xprt_class_lock);
36 static LIST_HEAD(svc_xprt_class_list);
37 
38 /* SMP locking strategy:
39  *
40  *	svc_pool->sp_lock protects most of the fields of that pool.
41  *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
42  *	when both need to be taken (rare), svc_serv->sv_lock is first.
43  *	BKL protects svc_serv->sv_nrthread.
44  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
45  *             and the ->sk_info_authunix cache.
46  *
47  *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
48  *	enqueued multiply. During normal transport processing this bit
49  *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
50  *	Providers should not manipulate this bit directly.
51  *
52  *	Some flags can be set to certain values at any time
53  *	providing that certain rules are followed:
54  *
55  *	XPT_CONN, XPT_DATA:
56  *		- Can be set or cleared at any time.
57  *		- After a set, svc_xprt_enqueue must be called to enqueue
58  *		  the transport for processing.
59  *		- After a clear, the transport must be read/accepted.
60  *		  If this succeeds, it must be set again.
61  *	XPT_CLOSE:
62  *		- Can set at any time. It is never cleared.
63  *      XPT_DEAD:
64  *		- Can only be set while XPT_BUSY is held which ensures
65  *		  that no other thread will be using the transport or will
66  *		  try to set XPT_DEAD.
67  */
68 
69 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
70 {
71 	struct svc_xprt_class *cl;
72 	int res = -EEXIST;
73 
74 	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
75 
76 	INIT_LIST_HEAD(&xcl->xcl_list);
77 	spin_lock(&svc_xprt_class_lock);
78 	/* Make sure there isn't already a class with the same name */
79 	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
80 		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
81 			goto out;
82 	}
83 	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
84 	res = 0;
85 out:
86 	spin_unlock(&svc_xprt_class_lock);
87 	return res;
88 }
89 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
90 
91 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
92 {
93 	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
94 	spin_lock(&svc_xprt_class_lock);
95 	list_del_init(&xcl->xcl_list);
96 	spin_unlock(&svc_xprt_class_lock);
97 }
98 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
99 
100 /*
101  * Format the transport list for printing
102  */
103 int svc_print_xprts(char *buf, int maxlen)
104 {
105 	struct svc_xprt_class *xcl;
106 	char tmpstr[80];
107 	int len = 0;
108 	buf[0] = '\0';
109 
110 	spin_lock(&svc_xprt_class_lock);
111 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
112 		int slen;
113 
114 		sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
115 		slen = strlen(tmpstr);
116 		if (len + slen > maxlen)
117 			break;
118 		len += slen;
119 		strcat(buf, tmpstr);
120 	}
121 	spin_unlock(&svc_xprt_class_lock);
122 
123 	return len;
124 }
125 
126 static void svc_xprt_free(struct kref *kref)
127 {
128 	struct svc_xprt *xprt =
129 		container_of(kref, struct svc_xprt, xpt_ref);
130 	struct module *owner = xprt->xpt_class->xcl_owner;
131 	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
132 		svcauth_unix_info_release(xprt);
133 	put_net(xprt->xpt_net);
134 	/* See comment on corresponding get in xs_setup_bc_tcp(): */
135 	if (xprt->xpt_bc_xprt)
136 		xprt_put(xprt->xpt_bc_xprt);
137 	xprt->xpt_ops->xpo_free(xprt);
138 	module_put(owner);
139 }
140 
141 void svc_xprt_put(struct svc_xprt *xprt)
142 {
143 	kref_put(&xprt->xpt_ref, svc_xprt_free);
144 }
145 EXPORT_SYMBOL_GPL(svc_xprt_put);
146 
147 /*
148  * Called by transport drivers to initialize the transport independent
149  * portion of the transport instance.
150  */
151 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
152 		   struct svc_xprt *xprt, struct svc_serv *serv)
153 {
154 	memset(xprt, 0, sizeof(*xprt));
155 	xprt->xpt_class = xcl;
156 	xprt->xpt_ops = xcl->xcl_ops;
157 	kref_init(&xprt->xpt_ref);
158 	xprt->xpt_server = serv;
159 	INIT_LIST_HEAD(&xprt->xpt_list);
160 	INIT_LIST_HEAD(&xprt->xpt_ready);
161 	INIT_LIST_HEAD(&xprt->xpt_deferred);
162 	INIT_LIST_HEAD(&xprt->xpt_users);
163 	mutex_init(&xprt->xpt_mutex);
164 	spin_lock_init(&xprt->xpt_lock);
165 	set_bit(XPT_BUSY, &xprt->xpt_flags);
166 	rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
167 	xprt->xpt_net = get_net(net);
168 }
169 EXPORT_SYMBOL_GPL(svc_xprt_init);
170 
171 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
172 					 struct svc_serv *serv,
173 					 struct net *net,
174 					 const int family,
175 					 const unsigned short port,
176 					 int flags)
177 {
178 	struct sockaddr_in sin = {
179 		.sin_family		= AF_INET,
180 		.sin_addr.s_addr	= htonl(INADDR_ANY),
181 		.sin_port		= htons(port),
182 	};
183 #if IS_ENABLED(CONFIG_IPV6)
184 	struct sockaddr_in6 sin6 = {
185 		.sin6_family		= AF_INET6,
186 		.sin6_addr		= IN6ADDR_ANY_INIT,
187 		.sin6_port		= htons(port),
188 	};
189 #endif
190 	struct sockaddr *sap;
191 	size_t len;
192 
193 	switch (family) {
194 	case PF_INET:
195 		sap = (struct sockaddr *)&sin;
196 		len = sizeof(sin);
197 		break;
198 #if IS_ENABLED(CONFIG_IPV6)
199 	case PF_INET6:
200 		sap = (struct sockaddr *)&sin6;
201 		len = sizeof(sin6);
202 		break;
203 #endif
204 	default:
205 		return ERR_PTR(-EAFNOSUPPORT);
206 	}
207 
208 	return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
209 }
210 
211 /*
212  * svc_xprt_received conditionally queues the transport for processing
213  * by another thread. The caller must hold the XPT_BUSY bit and must
214  * not thereafter touch transport data.
215  *
216  * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
217  * insufficient) data.
218  */
219 static void svc_xprt_received(struct svc_xprt *xprt)
220 {
221 	WARN_ON_ONCE(!test_bit(XPT_BUSY, &xprt->xpt_flags));
222 	if (!test_bit(XPT_BUSY, &xprt->xpt_flags))
223 		return;
224 	/* As soon as we clear busy, the xprt could be closed and
225 	 * 'put', so we need a reference to call svc_xprt_enqueue with:
226 	 */
227 	svc_xprt_get(xprt);
228 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
229 	svc_xprt_enqueue(xprt);
230 	svc_xprt_put(xprt);
231 }
232 
233 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
234 {
235 	clear_bit(XPT_TEMP, &new->xpt_flags);
236 	spin_lock_bh(&serv->sv_lock);
237 	list_add(&new->xpt_list, &serv->sv_permsocks);
238 	spin_unlock_bh(&serv->sv_lock);
239 	svc_xprt_received(new);
240 }
241 
242 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
243 		    struct net *net, const int family,
244 		    const unsigned short port, int flags)
245 {
246 	struct svc_xprt_class *xcl;
247 
248 	dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
249 	spin_lock(&svc_xprt_class_lock);
250 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
251 		struct svc_xprt *newxprt;
252 		unsigned short newport;
253 
254 		if (strcmp(xprt_name, xcl->xcl_name))
255 			continue;
256 
257 		if (!try_module_get(xcl->xcl_owner))
258 			goto err;
259 
260 		spin_unlock(&svc_xprt_class_lock);
261 		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
262 		if (IS_ERR(newxprt)) {
263 			module_put(xcl->xcl_owner);
264 			return PTR_ERR(newxprt);
265 		}
266 		svc_add_new_perm_xprt(serv, newxprt);
267 		newport = svc_xprt_local_port(newxprt);
268 		return newport;
269 	}
270  err:
271 	spin_unlock(&svc_xprt_class_lock);
272 	dprintk("svc: transport %s not found\n", xprt_name);
273 
274 	/* This errno is exposed to user space.  Provide a reasonable
275 	 * perror msg for a bad transport. */
276 	return -EPROTONOSUPPORT;
277 }
278 EXPORT_SYMBOL_GPL(svc_create_xprt);
279 
280 /*
281  * Copy the local and remote xprt addresses to the rqstp structure
282  */
283 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
284 {
285 	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
286 	rqstp->rq_addrlen = xprt->xpt_remotelen;
287 
288 	/*
289 	 * Destination address in request is needed for binding the
290 	 * source address in RPC replies/callbacks later.
291 	 */
292 	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
293 	rqstp->rq_daddrlen = xprt->xpt_locallen;
294 }
295 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
296 
297 /**
298  * svc_print_addr - Format rq_addr field for printing
299  * @rqstp: svc_rqst struct containing address to print
300  * @buf: target buffer for formatted address
301  * @len: length of target buffer
302  *
303  */
304 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
305 {
306 	return __svc_print_addr(svc_addr(rqstp), buf, len);
307 }
308 EXPORT_SYMBOL_GPL(svc_print_addr);
309 
310 /*
311  * Queue up an idle server thread.  Must have pool->sp_lock held.
312  * Note: this is really a stack rather than a queue, so that we only
313  * use as many different threads as we need, and the rest don't pollute
314  * the cache.
315  */
316 static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
317 {
318 	list_add(&rqstp->rq_list, &pool->sp_threads);
319 }
320 
321 /*
322  * Dequeue an nfsd thread.  Must have pool->sp_lock held.
323  */
324 static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
325 {
326 	list_del(&rqstp->rq_list);
327 }
328 
329 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
330 {
331 	if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
332 		return true;
333 	if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED)))
334 		return xprt->xpt_ops->xpo_has_wspace(xprt);
335 	return false;
336 }
337 
338 /*
339  * Queue up a transport with data pending. If there are idle nfsd
340  * processes, wake 'em up.
341  *
342  */
343 void svc_xprt_enqueue(struct svc_xprt *xprt)
344 {
345 	struct svc_pool *pool;
346 	struct svc_rqst	*rqstp;
347 	int cpu;
348 
349 	if (!svc_xprt_has_something_to_do(xprt))
350 		return;
351 
352 	cpu = get_cpu();
353 	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
354 	put_cpu();
355 
356 	spin_lock_bh(&pool->sp_lock);
357 
358 	if (!list_empty(&pool->sp_threads) &&
359 	    !list_empty(&pool->sp_sockets))
360 		printk(KERN_ERR
361 		       "svc_xprt_enqueue: "
362 		       "threads and transports both waiting??\n");
363 
364 	pool->sp_stats.packets++;
365 
366 	/* Mark transport as busy. It will remain in this state until
367 	 * the provider calls svc_xprt_received. We update XPT_BUSY
368 	 * atomically because it also guards against trying to enqueue
369 	 * the transport twice.
370 	 */
371 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
372 		/* Don't enqueue transport while already enqueued */
373 		dprintk("svc: transport %p busy, not enqueued\n", xprt);
374 		goto out_unlock;
375 	}
376 
377 	if (!list_empty(&pool->sp_threads)) {
378 		rqstp = list_entry(pool->sp_threads.next,
379 				   struct svc_rqst,
380 				   rq_list);
381 		dprintk("svc: transport %p served by daemon %p\n",
382 			xprt, rqstp);
383 		svc_thread_dequeue(pool, rqstp);
384 		if (rqstp->rq_xprt)
385 			printk(KERN_ERR
386 				"svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
387 				rqstp, rqstp->rq_xprt);
388 		rqstp->rq_xprt = xprt;
389 		svc_xprt_get(xprt);
390 		pool->sp_stats.threads_woken++;
391 		wake_up(&rqstp->rq_wait);
392 	} else {
393 		dprintk("svc: transport %p put into queue\n", xprt);
394 		list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
395 		pool->sp_stats.sockets_queued++;
396 	}
397 
398 out_unlock:
399 	spin_unlock_bh(&pool->sp_lock);
400 }
401 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
402 
403 /*
404  * Dequeue the first transport.  Must be called with the pool->sp_lock held.
405  */
406 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
407 {
408 	struct svc_xprt	*xprt;
409 
410 	if (list_empty(&pool->sp_sockets))
411 		return NULL;
412 
413 	xprt = list_entry(pool->sp_sockets.next,
414 			  struct svc_xprt, xpt_ready);
415 	list_del_init(&xprt->xpt_ready);
416 
417 	dprintk("svc: transport %p dequeued, inuse=%d\n",
418 		xprt, atomic_read(&xprt->xpt_ref.refcount));
419 
420 	return xprt;
421 }
422 
423 /**
424  * svc_reserve - change the space reserved for the reply to a request.
425  * @rqstp:  The request in question
426  * @space: new max space to reserve
427  *
428  * Each request reserves some space on the output queue of the transport
429  * to make sure the reply fits.  This function reduces that reserved
430  * space to be the amount of space used already, plus @space.
431  *
432  */
433 void svc_reserve(struct svc_rqst *rqstp, int space)
434 {
435 	space += rqstp->rq_res.head[0].iov_len;
436 
437 	if (space < rqstp->rq_reserved) {
438 		struct svc_xprt *xprt = rqstp->rq_xprt;
439 		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
440 		rqstp->rq_reserved = space;
441 
442 		svc_xprt_enqueue(xprt);
443 	}
444 }
445 EXPORT_SYMBOL_GPL(svc_reserve);
446 
447 static void svc_xprt_release(struct svc_rqst *rqstp)
448 {
449 	struct svc_xprt	*xprt = rqstp->rq_xprt;
450 
451 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
452 
453 	kfree(rqstp->rq_deferred);
454 	rqstp->rq_deferred = NULL;
455 
456 	svc_free_res_pages(rqstp);
457 	rqstp->rq_res.page_len = 0;
458 	rqstp->rq_res.page_base = 0;
459 
460 	/* Reset response buffer and release
461 	 * the reservation.
462 	 * But first, check that enough space was reserved
463 	 * for the reply, otherwise we have a bug!
464 	 */
465 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
466 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
467 		       rqstp->rq_reserved,
468 		       rqstp->rq_res.len);
469 
470 	rqstp->rq_res.head[0].iov_len = 0;
471 	svc_reserve(rqstp, 0);
472 	rqstp->rq_xprt = NULL;
473 
474 	svc_xprt_put(xprt);
475 }
476 
477 /*
478  * External function to wake up a server waiting for data
479  * This really only makes sense for services like lockd
480  * which have exactly one thread anyway.
481  */
482 void svc_wake_up(struct svc_serv *serv)
483 {
484 	struct svc_rqst	*rqstp;
485 	unsigned int i;
486 	struct svc_pool *pool;
487 
488 	for (i = 0; i < serv->sv_nrpools; i++) {
489 		pool = &serv->sv_pools[i];
490 
491 		spin_lock_bh(&pool->sp_lock);
492 		if (!list_empty(&pool->sp_threads)) {
493 			rqstp = list_entry(pool->sp_threads.next,
494 					   struct svc_rqst,
495 					   rq_list);
496 			dprintk("svc: daemon %p woken up.\n", rqstp);
497 			/*
498 			svc_thread_dequeue(pool, rqstp);
499 			rqstp->rq_xprt = NULL;
500 			 */
501 			wake_up(&rqstp->rq_wait);
502 		}
503 		spin_unlock_bh(&pool->sp_lock);
504 	}
505 }
506 EXPORT_SYMBOL_GPL(svc_wake_up);
507 
508 int svc_port_is_privileged(struct sockaddr *sin)
509 {
510 	switch (sin->sa_family) {
511 	case AF_INET:
512 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
513 			< PROT_SOCK;
514 	case AF_INET6:
515 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
516 			< PROT_SOCK;
517 	default:
518 		return 0;
519 	}
520 }
521 
522 /*
523  * Make sure that we don't have too many active connections. If we have,
524  * something must be dropped. It's not clear what will happen if we allow
525  * "too many" connections, but when dealing with network-facing software,
526  * we have to code defensively. Here we do that by imposing hard limits.
527  *
528  * There's no point in trying to do random drop here for DoS
529  * prevention. The NFS clients does 1 reconnect in 15 seconds. An
530  * attacker can easily beat that.
531  *
532  * The only somewhat efficient mechanism would be if drop old
533  * connections from the same IP first. But right now we don't even
534  * record the client IP in svc_sock.
535  *
536  * single-threaded services that expect a lot of clients will probably
537  * need to set sv_maxconn to override the default value which is based
538  * on the number of threads
539  */
540 static void svc_check_conn_limits(struct svc_serv *serv)
541 {
542 	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
543 				(serv->sv_nrthreads+3) * 20;
544 
545 	if (serv->sv_tmpcnt > limit) {
546 		struct svc_xprt *xprt = NULL;
547 		spin_lock_bh(&serv->sv_lock);
548 		if (!list_empty(&serv->sv_tempsocks)) {
549 			/* Try to help the admin */
550 			net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
551 					       serv->sv_name, serv->sv_maxconn ?
552 					       "max number of connections" :
553 					       "number of threads");
554 			/*
555 			 * Always select the oldest connection. It's not fair,
556 			 * but so is life
557 			 */
558 			xprt = list_entry(serv->sv_tempsocks.prev,
559 					  struct svc_xprt,
560 					  xpt_list);
561 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
562 			svc_xprt_get(xprt);
563 		}
564 		spin_unlock_bh(&serv->sv_lock);
565 
566 		if (xprt) {
567 			svc_xprt_enqueue(xprt);
568 			svc_xprt_put(xprt);
569 		}
570 	}
571 }
572 
573 int svc_alloc_arg(struct svc_rqst *rqstp)
574 {
575 	struct svc_serv *serv = rqstp->rq_server;
576 	struct xdr_buf *arg;
577 	int pages;
578 	int i;
579 
580 	/* now allocate needed pages.  If we get a failure, sleep briefly */
581 	pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
582 	WARN_ON_ONCE(pages >= RPCSVC_MAXPAGES);
583 	if (pages >= RPCSVC_MAXPAGES)
584 		/* use as many pages as possible */
585 		pages = RPCSVC_MAXPAGES - 1;
586 	for (i = 0; i < pages ; i++)
587 		while (rqstp->rq_pages[i] == NULL) {
588 			struct page *p = alloc_page(GFP_KERNEL);
589 			if (!p) {
590 				set_current_state(TASK_INTERRUPTIBLE);
591 				if (signalled() || kthread_should_stop()) {
592 					set_current_state(TASK_RUNNING);
593 					return -EINTR;
594 				}
595 				schedule_timeout(msecs_to_jiffies(500));
596 			}
597 			rqstp->rq_pages[i] = p;
598 		}
599 	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
600 
601 	/* Make arg->head point to first page and arg->pages point to rest */
602 	arg = &rqstp->rq_arg;
603 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
604 	arg->head[0].iov_len = PAGE_SIZE;
605 	arg->pages = rqstp->rq_pages + 1;
606 	arg->page_base = 0;
607 	/* save at least one page for response */
608 	arg->page_len = (pages-2)*PAGE_SIZE;
609 	arg->len = (pages-1)*PAGE_SIZE;
610 	arg->tail[0].iov_len = 0;
611 	return 0;
612 }
613 
614 struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
615 {
616 	struct svc_xprt *xprt;
617 	struct svc_pool		*pool = rqstp->rq_pool;
618 	DECLARE_WAITQUEUE(wait, current);
619 	long			time_left;
620 
621 	/* Normally we will wait up to 5 seconds for any required
622 	 * cache information to be provided.
623 	 */
624 	rqstp->rq_chandle.thread_wait = 5*HZ;
625 
626 	spin_lock_bh(&pool->sp_lock);
627 	xprt = svc_xprt_dequeue(pool);
628 	if (xprt) {
629 		rqstp->rq_xprt = xprt;
630 		svc_xprt_get(xprt);
631 
632 		/* As there is a shortage of threads and this request
633 		 * had to be queued, don't allow the thread to wait so
634 		 * long for cache updates.
635 		 */
636 		rqstp->rq_chandle.thread_wait = 1*HZ;
637 	} else {
638 		/* No data pending. Go to sleep */
639 		svc_thread_enqueue(pool, rqstp);
640 
641 		/*
642 		 * We have to be able to interrupt this wait
643 		 * to bring down the daemons ...
644 		 */
645 		set_current_state(TASK_INTERRUPTIBLE);
646 
647 		/*
648 		 * checking kthread_should_stop() here allows us to avoid
649 		 * locking and signalling when stopping kthreads that call
650 		 * svc_recv. If the thread has already been woken up, then
651 		 * we can exit here without sleeping. If not, then it
652 		 * it'll be woken up quickly during the schedule_timeout
653 		 */
654 		if (kthread_should_stop()) {
655 			set_current_state(TASK_RUNNING);
656 			spin_unlock_bh(&pool->sp_lock);
657 			return ERR_PTR(-EINTR);
658 		}
659 
660 		add_wait_queue(&rqstp->rq_wait, &wait);
661 		spin_unlock_bh(&pool->sp_lock);
662 
663 		time_left = schedule_timeout(timeout);
664 
665 		try_to_freeze();
666 
667 		spin_lock_bh(&pool->sp_lock);
668 		remove_wait_queue(&rqstp->rq_wait, &wait);
669 		if (!time_left)
670 			pool->sp_stats.threads_timedout++;
671 
672 		xprt = rqstp->rq_xprt;
673 		if (!xprt) {
674 			svc_thread_dequeue(pool, rqstp);
675 			spin_unlock_bh(&pool->sp_lock);
676 			dprintk("svc: server %p, no data yet\n", rqstp);
677 			if (signalled() || kthread_should_stop())
678 				return ERR_PTR(-EINTR);
679 			else
680 				return ERR_PTR(-EAGAIN);
681 		}
682 	}
683 	spin_unlock_bh(&pool->sp_lock);
684 	return xprt;
685 }
686 
687 void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
688 {
689 	spin_lock_bh(&serv->sv_lock);
690 	set_bit(XPT_TEMP, &newxpt->xpt_flags);
691 	list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
692 	serv->sv_tmpcnt++;
693 	if (serv->sv_temptimer.function == NULL) {
694 		/* setup timer to age temp transports */
695 		setup_timer(&serv->sv_temptimer, svc_age_temp_xprts,
696 			    (unsigned long)serv);
697 		mod_timer(&serv->sv_temptimer,
698 			  jiffies + svc_conn_age_period * HZ);
699 	}
700 	spin_unlock_bh(&serv->sv_lock);
701 	svc_xprt_received(newxpt);
702 }
703 
704 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
705 {
706 	struct svc_serv *serv = rqstp->rq_server;
707 	int len = 0;
708 
709 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
710 		dprintk("svc_recv: found XPT_CLOSE\n");
711 		svc_delete_xprt(xprt);
712 		/* Leave XPT_BUSY set on the dead xprt: */
713 		return 0;
714 	}
715 	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
716 		struct svc_xprt *newxpt;
717 		/*
718 		 * We know this module_get will succeed because the
719 		 * listener holds a reference too
720 		 */
721 		__module_get(xprt->xpt_class->xcl_owner);
722 		svc_check_conn_limits(xprt->xpt_server);
723 		newxpt = xprt->xpt_ops->xpo_accept(xprt);
724 		if (newxpt)
725 			svc_add_new_temp_xprt(serv, newxpt);
726 	} else if (xprt->xpt_ops->xpo_has_wspace(xprt)) {
727 		/* XPT_DATA|XPT_DEFERRED case: */
728 		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
729 			rqstp, rqstp->rq_pool->sp_id, xprt,
730 			atomic_read(&xprt->xpt_ref.refcount));
731 		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
732 		if (rqstp->rq_deferred)
733 			len = svc_deferred_recv(rqstp);
734 		else
735 			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
736 		dprintk("svc: got len=%d\n", len);
737 		rqstp->rq_reserved = serv->sv_max_mesg;
738 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
739 	}
740 	/* clear XPT_BUSY: */
741 	svc_xprt_received(xprt);
742 	return len;
743 }
744 
745 /*
746  * Receive the next request on any transport.  This code is carefully
747  * organised not to touch any cachelines in the shared svc_serv
748  * structure, only cachelines in the local svc_pool.
749  */
750 int svc_recv(struct svc_rqst *rqstp, long timeout)
751 {
752 	struct svc_xprt		*xprt = NULL;
753 	struct svc_serv		*serv = rqstp->rq_server;
754 	int			len, err;
755 
756 	dprintk("svc: server %p waiting for data (to = %ld)\n",
757 		rqstp, timeout);
758 
759 	if (rqstp->rq_xprt)
760 		printk(KERN_ERR
761 			"svc_recv: service %p, transport not NULL!\n",
762 			 rqstp);
763 	if (waitqueue_active(&rqstp->rq_wait))
764 		printk(KERN_ERR
765 			"svc_recv: service %p, wait queue active!\n",
766 			 rqstp);
767 
768 	err = svc_alloc_arg(rqstp);
769 	if (err)
770 		return err;
771 
772 	try_to_freeze();
773 	cond_resched();
774 	if (signalled() || kthread_should_stop())
775 		return -EINTR;
776 
777 	xprt = svc_get_next_xprt(rqstp, timeout);
778 	if (IS_ERR(xprt))
779 		return PTR_ERR(xprt);
780 
781 	len = svc_handle_xprt(rqstp, xprt);
782 
783 	/* No data, incomplete (TCP) read, or accept() */
784 	if (len <= 0)
785 		goto out;
786 
787 	clear_bit(XPT_OLD, &xprt->xpt_flags);
788 
789 	rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
790 	rqstp->rq_chandle.defer = svc_defer;
791 
792 	if (serv->sv_stats)
793 		serv->sv_stats->netcnt++;
794 	return len;
795 out:
796 	rqstp->rq_res.len = 0;
797 	svc_xprt_release(rqstp);
798 	return -EAGAIN;
799 }
800 EXPORT_SYMBOL_GPL(svc_recv);
801 
802 /*
803  * Drop request
804  */
805 void svc_drop(struct svc_rqst *rqstp)
806 {
807 	dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
808 	svc_xprt_release(rqstp);
809 }
810 EXPORT_SYMBOL_GPL(svc_drop);
811 
812 /*
813  * Return reply to client.
814  */
815 int svc_send(struct svc_rqst *rqstp)
816 {
817 	struct svc_xprt	*xprt;
818 	int		len;
819 	struct xdr_buf	*xb;
820 
821 	xprt = rqstp->rq_xprt;
822 	if (!xprt)
823 		return -EFAULT;
824 
825 	/* release the receive skb before sending the reply */
826 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
827 
828 	/* calculate over-all length */
829 	xb = &rqstp->rq_res;
830 	xb->len = xb->head[0].iov_len +
831 		xb->page_len +
832 		xb->tail[0].iov_len;
833 
834 	/* Grab mutex to serialize outgoing data. */
835 	mutex_lock(&xprt->xpt_mutex);
836 	if (test_bit(XPT_DEAD, &xprt->xpt_flags)
837 			|| test_bit(XPT_CLOSE, &xprt->xpt_flags))
838 		len = -ENOTCONN;
839 	else
840 		len = xprt->xpt_ops->xpo_sendto(rqstp);
841 	mutex_unlock(&xprt->xpt_mutex);
842 	rpc_wake_up(&xprt->xpt_bc_pending);
843 	svc_xprt_release(rqstp);
844 
845 	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
846 		return 0;
847 	return len;
848 }
849 
850 /*
851  * Timer function to close old temporary transports, using
852  * a mark-and-sweep algorithm.
853  */
854 static void svc_age_temp_xprts(unsigned long closure)
855 {
856 	struct svc_serv *serv = (struct svc_serv *)closure;
857 	struct svc_xprt *xprt;
858 	struct list_head *le, *next;
859 	LIST_HEAD(to_be_aged);
860 
861 	dprintk("svc_age_temp_xprts\n");
862 
863 	if (!spin_trylock_bh(&serv->sv_lock)) {
864 		/* busy, try again 1 sec later */
865 		dprintk("svc_age_temp_xprts: busy\n");
866 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
867 		return;
868 	}
869 
870 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
871 		xprt = list_entry(le, struct svc_xprt, xpt_list);
872 
873 		/* First time through, just mark it OLD. Second time
874 		 * through, close it. */
875 		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
876 			continue;
877 		if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
878 		    test_bit(XPT_BUSY, &xprt->xpt_flags))
879 			continue;
880 		svc_xprt_get(xprt);
881 		list_move(le, &to_be_aged);
882 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
883 		set_bit(XPT_DETACHED, &xprt->xpt_flags);
884 	}
885 	spin_unlock_bh(&serv->sv_lock);
886 
887 	while (!list_empty(&to_be_aged)) {
888 		le = to_be_aged.next;
889 		/* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
890 		list_del_init(le);
891 		xprt = list_entry(le, struct svc_xprt, xpt_list);
892 
893 		dprintk("queuing xprt %p for closing\n", xprt);
894 
895 		/* a thread will dequeue and close it soon */
896 		svc_xprt_enqueue(xprt);
897 		svc_xprt_put(xprt);
898 	}
899 
900 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
901 }
902 
903 static void call_xpt_users(struct svc_xprt *xprt)
904 {
905 	struct svc_xpt_user *u;
906 
907 	spin_lock(&xprt->xpt_lock);
908 	while (!list_empty(&xprt->xpt_users)) {
909 		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
910 		list_del(&u->list);
911 		u->callback(u);
912 	}
913 	spin_unlock(&xprt->xpt_lock);
914 }
915 
916 /*
917  * Remove a dead transport
918  */
919 static void svc_delete_xprt(struct svc_xprt *xprt)
920 {
921 	struct svc_serv	*serv = xprt->xpt_server;
922 	struct svc_deferred_req *dr;
923 
924 	/* Only do this once */
925 	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
926 		BUG();
927 
928 	dprintk("svc: svc_delete_xprt(%p)\n", xprt);
929 	xprt->xpt_ops->xpo_detach(xprt);
930 
931 	spin_lock_bh(&serv->sv_lock);
932 	if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
933 		list_del_init(&xprt->xpt_list);
934 	WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
935 	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
936 		serv->sv_tmpcnt--;
937 	spin_unlock_bh(&serv->sv_lock);
938 
939 	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
940 		kfree(dr);
941 
942 	call_xpt_users(xprt);
943 	svc_xprt_put(xprt);
944 }
945 
946 void svc_close_xprt(struct svc_xprt *xprt)
947 {
948 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
949 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
950 		/* someone else will have to effect the close */
951 		return;
952 	/*
953 	 * We expect svc_close_xprt() to work even when no threads are
954 	 * running (e.g., while configuring the server before starting
955 	 * any threads), so if the transport isn't busy, we delete
956 	 * it ourself:
957 	 */
958 	svc_delete_xprt(xprt);
959 }
960 EXPORT_SYMBOL_GPL(svc_close_xprt);
961 
962 static void svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
963 {
964 	struct svc_xprt *xprt;
965 
966 	spin_lock(&serv->sv_lock);
967 	list_for_each_entry(xprt, xprt_list, xpt_list) {
968 		if (xprt->xpt_net != net)
969 			continue;
970 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
971 		set_bit(XPT_BUSY, &xprt->xpt_flags);
972 	}
973 	spin_unlock(&serv->sv_lock);
974 }
975 
976 static void svc_clear_pools(struct svc_serv *serv, struct net *net)
977 {
978 	struct svc_pool *pool;
979 	struct svc_xprt *xprt;
980 	struct svc_xprt *tmp;
981 	int i;
982 
983 	for (i = 0; i < serv->sv_nrpools; i++) {
984 		pool = &serv->sv_pools[i];
985 
986 		spin_lock_bh(&pool->sp_lock);
987 		list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
988 			if (xprt->xpt_net != net)
989 				continue;
990 			list_del_init(&xprt->xpt_ready);
991 		}
992 		spin_unlock_bh(&pool->sp_lock);
993 	}
994 }
995 
996 static void svc_clear_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
997 {
998 	struct svc_xprt *xprt;
999 	struct svc_xprt *tmp;
1000 	LIST_HEAD(victims);
1001 
1002 	spin_lock(&serv->sv_lock);
1003 	list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
1004 		if (xprt->xpt_net != net)
1005 			continue;
1006 		list_move(&xprt->xpt_list, &victims);
1007 	}
1008 	spin_unlock(&serv->sv_lock);
1009 
1010 	list_for_each_entry_safe(xprt, tmp, &victims, xpt_list)
1011 		svc_delete_xprt(xprt);
1012 }
1013 
1014 void svc_close_net(struct svc_serv *serv, struct net *net)
1015 {
1016 	svc_close_list(serv, &serv->sv_tempsocks, net);
1017 	svc_close_list(serv, &serv->sv_permsocks, net);
1018 
1019 	svc_clear_pools(serv, net);
1020 	/*
1021 	 * At this point the sp_sockets lists will stay empty, since
1022 	 * svc_xprt_enqueue will not add new entries without taking the
1023 	 * sp_lock and checking XPT_BUSY.
1024 	 */
1025 	svc_clear_list(serv, &serv->sv_tempsocks, net);
1026 	svc_clear_list(serv, &serv->sv_permsocks, net);
1027 }
1028 
1029 /*
1030  * Handle defer and revisit of requests
1031  */
1032 
1033 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1034 {
1035 	struct svc_deferred_req *dr =
1036 		container_of(dreq, struct svc_deferred_req, handle);
1037 	struct svc_xprt *xprt = dr->xprt;
1038 
1039 	spin_lock(&xprt->xpt_lock);
1040 	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1041 	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1042 		spin_unlock(&xprt->xpt_lock);
1043 		dprintk("revisit canceled\n");
1044 		svc_xprt_put(xprt);
1045 		kfree(dr);
1046 		return;
1047 	}
1048 	dprintk("revisit queued\n");
1049 	dr->xprt = NULL;
1050 	list_add(&dr->handle.recent, &xprt->xpt_deferred);
1051 	spin_unlock(&xprt->xpt_lock);
1052 	svc_xprt_enqueue(xprt);
1053 	svc_xprt_put(xprt);
1054 }
1055 
1056 /*
1057  * Save the request off for later processing. The request buffer looks
1058  * like this:
1059  *
1060  * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1061  *
1062  * This code can only handle requests that consist of an xprt-header
1063  * and rpc-header.
1064  */
1065 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1066 {
1067 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1068 	struct svc_deferred_req *dr;
1069 
1070 	if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
1071 		return NULL; /* if more than a page, give up FIXME */
1072 	if (rqstp->rq_deferred) {
1073 		dr = rqstp->rq_deferred;
1074 		rqstp->rq_deferred = NULL;
1075 	} else {
1076 		size_t skip;
1077 		size_t size;
1078 		/* FIXME maybe discard if size too large */
1079 		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1080 		dr = kmalloc(size, GFP_KERNEL);
1081 		if (dr == NULL)
1082 			return NULL;
1083 
1084 		dr->handle.owner = rqstp->rq_server;
1085 		dr->prot = rqstp->rq_prot;
1086 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1087 		dr->addrlen = rqstp->rq_addrlen;
1088 		dr->daddr = rqstp->rq_daddr;
1089 		dr->argslen = rqstp->rq_arg.len >> 2;
1090 		dr->xprt_hlen = rqstp->rq_xprt_hlen;
1091 
1092 		/* back up head to the start of the buffer and copy */
1093 		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1094 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1095 		       dr->argslen << 2);
1096 	}
1097 	svc_xprt_get(rqstp->rq_xprt);
1098 	dr->xprt = rqstp->rq_xprt;
1099 	rqstp->rq_dropme = true;
1100 
1101 	dr->handle.revisit = svc_revisit;
1102 	return &dr->handle;
1103 }
1104 
1105 /*
1106  * recv data from a deferred request into an active one
1107  */
1108 static int svc_deferred_recv(struct svc_rqst *rqstp)
1109 {
1110 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1111 
1112 	/* setup iov_base past transport header */
1113 	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1114 	/* The iov_len does not include the transport header bytes */
1115 	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1116 	rqstp->rq_arg.page_len = 0;
1117 	/* The rq_arg.len includes the transport header bytes */
1118 	rqstp->rq_arg.len     = dr->argslen<<2;
1119 	rqstp->rq_prot        = dr->prot;
1120 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1121 	rqstp->rq_addrlen     = dr->addrlen;
1122 	/* Save off transport header len in case we get deferred again */
1123 	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1124 	rqstp->rq_daddr       = dr->daddr;
1125 	rqstp->rq_respages    = rqstp->rq_pages;
1126 	return (dr->argslen<<2) - dr->xprt_hlen;
1127 }
1128 
1129 
1130 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1131 {
1132 	struct svc_deferred_req *dr = NULL;
1133 
1134 	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1135 		return NULL;
1136 	spin_lock(&xprt->xpt_lock);
1137 	if (!list_empty(&xprt->xpt_deferred)) {
1138 		dr = list_entry(xprt->xpt_deferred.next,
1139 				struct svc_deferred_req,
1140 				handle.recent);
1141 		list_del_init(&dr->handle.recent);
1142 	} else
1143 		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1144 	spin_unlock(&xprt->xpt_lock);
1145 	return dr;
1146 }
1147 
1148 /**
1149  * svc_find_xprt - find an RPC transport instance
1150  * @serv: pointer to svc_serv to search
1151  * @xcl_name: C string containing transport's class name
1152  * @net: owner net pointer
1153  * @af: Address family of transport's local address
1154  * @port: transport's IP port number
1155  *
1156  * Return the transport instance pointer for the endpoint accepting
1157  * connections/peer traffic from the specified transport class,
1158  * address family and port.
1159  *
1160  * Specifying 0 for the address family or port is effectively a
1161  * wild-card, and will result in matching the first transport in the
1162  * service's list that has a matching class name.
1163  */
1164 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1165 			       struct net *net, const sa_family_t af,
1166 			       const unsigned short port)
1167 {
1168 	struct svc_xprt *xprt;
1169 	struct svc_xprt *found = NULL;
1170 
1171 	/* Sanity check the args */
1172 	if (serv == NULL || xcl_name == NULL)
1173 		return found;
1174 
1175 	spin_lock_bh(&serv->sv_lock);
1176 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1177 		if (xprt->xpt_net != net)
1178 			continue;
1179 		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1180 			continue;
1181 		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1182 			continue;
1183 		if (port != 0 && port != svc_xprt_local_port(xprt))
1184 			continue;
1185 		found = xprt;
1186 		svc_xprt_get(xprt);
1187 		break;
1188 	}
1189 	spin_unlock_bh(&serv->sv_lock);
1190 	return found;
1191 }
1192 EXPORT_SYMBOL_GPL(svc_find_xprt);
1193 
1194 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1195 			     char *pos, int remaining)
1196 {
1197 	int len;
1198 
1199 	len = snprintf(pos, remaining, "%s %u\n",
1200 			xprt->xpt_class->xcl_name,
1201 			svc_xprt_local_port(xprt));
1202 	if (len >= remaining)
1203 		return -ENAMETOOLONG;
1204 	return len;
1205 }
1206 
1207 /**
1208  * svc_xprt_names - format a buffer with a list of transport names
1209  * @serv: pointer to an RPC service
1210  * @buf: pointer to a buffer to be filled in
1211  * @buflen: length of buffer to be filled in
1212  *
1213  * Fills in @buf with a string containing a list of transport names,
1214  * each name terminated with '\n'.
1215  *
1216  * Returns positive length of the filled-in string on success; otherwise
1217  * a negative errno value is returned if an error occurs.
1218  */
1219 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1220 {
1221 	struct svc_xprt *xprt;
1222 	int len, totlen;
1223 	char *pos;
1224 
1225 	/* Sanity check args */
1226 	if (!serv)
1227 		return 0;
1228 
1229 	spin_lock_bh(&serv->sv_lock);
1230 
1231 	pos = buf;
1232 	totlen = 0;
1233 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1234 		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1235 		if (len < 0) {
1236 			*buf = '\0';
1237 			totlen = len;
1238 		}
1239 		if (len <= 0)
1240 			break;
1241 
1242 		pos += len;
1243 		totlen += len;
1244 	}
1245 
1246 	spin_unlock_bh(&serv->sv_lock);
1247 	return totlen;
1248 }
1249 EXPORT_SYMBOL_GPL(svc_xprt_names);
1250 
1251 
1252 /*----------------------------------------------------------------------------*/
1253 
1254 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1255 {
1256 	unsigned int pidx = (unsigned int)*pos;
1257 	struct svc_serv *serv = m->private;
1258 
1259 	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1260 
1261 	if (!pidx)
1262 		return SEQ_START_TOKEN;
1263 	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1264 }
1265 
1266 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1267 {
1268 	struct svc_pool *pool = p;
1269 	struct svc_serv *serv = m->private;
1270 
1271 	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1272 
1273 	if (p == SEQ_START_TOKEN) {
1274 		pool = &serv->sv_pools[0];
1275 	} else {
1276 		unsigned int pidx = (pool - &serv->sv_pools[0]);
1277 		if (pidx < serv->sv_nrpools-1)
1278 			pool = &serv->sv_pools[pidx+1];
1279 		else
1280 			pool = NULL;
1281 	}
1282 	++*pos;
1283 	return pool;
1284 }
1285 
1286 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1287 {
1288 }
1289 
1290 static int svc_pool_stats_show(struct seq_file *m, void *p)
1291 {
1292 	struct svc_pool *pool = p;
1293 
1294 	if (p == SEQ_START_TOKEN) {
1295 		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1296 		return 0;
1297 	}
1298 
1299 	seq_printf(m, "%u %lu %lu %lu %lu\n",
1300 		pool->sp_id,
1301 		pool->sp_stats.packets,
1302 		pool->sp_stats.sockets_queued,
1303 		pool->sp_stats.threads_woken,
1304 		pool->sp_stats.threads_timedout);
1305 
1306 	return 0;
1307 }
1308 
1309 static const struct seq_operations svc_pool_stats_seq_ops = {
1310 	.start	= svc_pool_stats_start,
1311 	.next	= svc_pool_stats_next,
1312 	.stop	= svc_pool_stats_stop,
1313 	.show	= svc_pool_stats_show,
1314 };
1315 
1316 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1317 {
1318 	int err;
1319 
1320 	err = seq_open(file, &svc_pool_stats_seq_ops);
1321 	if (!err)
1322 		((struct seq_file *) file->private_data)->private = serv;
1323 	return err;
1324 }
1325 EXPORT_SYMBOL(svc_pool_stats_open);
1326 
1327 /*----------------------------------------------------------------------------*/
1328