1 /* 2 * linux/net/sunrpc/svc_xprt.c 3 * 4 * Author: Tom Tucker <tom@opengridcomputing.com> 5 */ 6 7 #include <linux/sched.h> 8 #include <linux/errno.h> 9 #include <linux/freezer.h> 10 #include <linux/kthread.h> 11 #include <net/sock.h> 12 #include <linux/sunrpc/stats.h> 13 #include <linux/sunrpc/svc_xprt.h> 14 15 #define RPCDBG_FACILITY RPCDBG_SVCXPRT 16 17 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt); 18 static int svc_deferred_recv(struct svc_rqst *rqstp); 19 static struct cache_deferred_req *svc_defer(struct cache_req *req); 20 static void svc_age_temp_xprts(unsigned long closure); 21 22 /* apparently the "standard" is that clients close 23 * idle connections after 5 minutes, servers after 24 * 6 minutes 25 * http://www.connectathon.org/talks96/nfstcp.pdf 26 */ 27 static int svc_conn_age_period = 6*60; 28 29 /* List of registered transport classes */ 30 static DEFINE_SPINLOCK(svc_xprt_class_lock); 31 static LIST_HEAD(svc_xprt_class_list); 32 33 /* SMP locking strategy: 34 * 35 * svc_pool->sp_lock protects most of the fields of that pool. 36 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt. 37 * when both need to be taken (rare), svc_serv->sv_lock is first. 38 * BKL protects svc_serv->sv_nrthread. 39 * svc_sock->sk_lock protects the svc_sock->sk_deferred list 40 * and the ->sk_info_authunix cache. 41 * 42 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being 43 * enqueued multiply. During normal transport processing this bit 44 * is set by svc_xprt_enqueue and cleared by svc_xprt_received. 45 * Providers should not manipulate this bit directly. 46 * 47 * Some flags can be set to certain values at any time 48 * providing that certain rules are followed: 49 * 50 * XPT_CONN, XPT_DATA: 51 * - Can be set or cleared at any time. 52 * - After a set, svc_xprt_enqueue must be called to enqueue 53 * the transport for processing. 54 * - After a clear, the transport must be read/accepted. 55 * If this succeeds, it must be set again. 56 * XPT_CLOSE: 57 * - Can set at any time. It is never cleared. 58 * XPT_DEAD: 59 * - Can only be set while XPT_BUSY is held which ensures 60 * that no other thread will be using the transport or will 61 * try to set XPT_DEAD. 62 */ 63 64 int svc_reg_xprt_class(struct svc_xprt_class *xcl) 65 { 66 struct svc_xprt_class *cl; 67 int res = -EEXIST; 68 69 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name); 70 71 INIT_LIST_HEAD(&xcl->xcl_list); 72 spin_lock(&svc_xprt_class_lock); 73 /* Make sure there isn't already a class with the same name */ 74 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) { 75 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0) 76 goto out; 77 } 78 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list); 79 res = 0; 80 out: 81 spin_unlock(&svc_xprt_class_lock); 82 return res; 83 } 84 EXPORT_SYMBOL_GPL(svc_reg_xprt_class); 85 86 void svc_unreg_xprt_class(struct svc_xprt_class *xcl) 87 { 88 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name); 89 spin_lock(&svc_xprt_class_lock); 90 list_del_init(&xcl->xcl_list); 91 spin_unlock(&svc_xprt_class_lock); 92 } 93 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class); 94 95 /* 96 * Format the transport list for printing 97 */ 98 int svc_print_xprts(char *buf, int maxlen) 99 { 100 struct list_head *le; 101 char tmpstr[80]; 102 int len = 0; 103 buf[0] = '\0'; 104 105 spin_lock(&svc_xprt_class_lock); 106 list_for_each(le, &svc_xprt_class_list) { 107 int slen; 108 struct svc_xprt_class *xcl = 109 list_entry(le, struct svc_xprt_class, xcl_list); 110 111 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload); 112 slen = strlen(tmpstr); 113 if (len + slen > maxlen) 114 break; 115 len += slen; 116 strcat(buf, tmpstr); 117 } 118 spin_unlock(&svc_xprt_class_lock); 119 120 return len; 121 } 122 123 static void svc_xprt_free(struct kref *kref) 124 { 125 struct svc_xprt *xprt = 126 container_of(kref, struct svc_xprt, xpt_ref); 127 struct module *owner = xprt->xpt_class->xcl_owner; 128 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags) 129 && xprt->xpt_auth_cache != NULL) 130 svcauth_unix_info_release(xprt->xpt_auth_cache); 131 xprt->xpt_ops->xpo_free(xprt); 132 module_put(owner); 133 } 134 135 void svc_xprt_put(struct svc_xprt *xprt) 136 { 137 kref_put(&xprt->xpt_ref, svc_xprt_free); 138 } 139 EXPORT_SYMBOL_GPL(svc_xprt_put); 140 141 /* 142 * Called by transport drivers to initialize the transport independent 143 * portion of the transport instance. 144 */ 145 void svc_xprt_init(struct svc_xprt_class *xcl, struct svc_xprt *xprt, 146 struct svc_serv *serv) 147 { 148 memset(xprt, 0, sizeof(*xprt)); 149 xprt->xpt_class = xcl; 150 xprt->xpt_ops = xcl->xcl_ops; 151 kref_init(&xprt->xpt_ref); 152 xprt->xpt_server = serv; 153 INIT_LIST_HEAD(&xprt->xpt_list); 154 INIT_LIST_HEAD(&xprt->xpt_ready); 155 INIT_LIST_HEAD(&xprt->xpt_deferred); 156 mutex_init(&xprt->xpt_mutex); 157 spin_lock_init(&xprt->xpt_lock); 158 set_bit(XPT_BUSY, &xprt->xpt_flags); 159 } 160 EXPORT_SYMBOL_GPL(svc_xprt_init); 161 162 int svc_create_xprt(struct svc_serv *serv, char *xprt_name, unsigned short port, 163 int flags) 164 { 165 struct svc_xprt_class *xcl; 166 struct sockaddr_in sin = { 167 .sin_family = AF_INET, 168 .sin_addr.s_addr = htonl(INADDR_ANY), 169 .sin_port = htons(port), 170 }; 171 dprintk("svc: creating transport %s[%d]\n", xprt_name, port); 172 spin_lock(&svc_xprt_class_lock); 173 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { 174 struct svc_xprt *newxprt; 175 176 if (strcmp(xprt_name, xcl->xcl_name)) 177 continue; 178 179 if (!try_module_get(xcl->xcl_owner)) 180 goto err; 181 182 spin_unlock(&svc_xprt_class_lock); 183 newxprt = xcl->xcl_ops-> 184 xpo_create(serv, (struct sockaddr *)&sin, sizeof(sin), 185 flags); 186 if (IS_ERR(newxprt)) { 187 module_put(xcl->xcl_owner); 188 return PTR_ERR(newxprt); 189 } 190 191 clear_bit(XPT_TEMP, &newxprt->xpt_flags); 192 spin_lock_bh(&serv->sv_lock); 193 list_add(&newxprt->xpt_list, &serv->sv_permsocks); 194 spin_unlock_bh(&serv->sv_lock); 195 clear_bit(XPT_BUSY, &newxprt->xpt_flags); 196 return svc_xprt_local_port(newxprt); 197 } 198 err: 199 spin_unlock(&svc_xprt_class_lock); 200 dprintk("svc: transport %s not found\n", xprt_name); 201 return -ENOENT; 202 } 203 EXPORT_SYMBOL_GPL(svc_create_xprt); 204 205 /* 206 * Copy the local and remote xprt addresses to the rqstp structure 207 */ 208 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt) 209 { 210 struct sockaddr *sin; 211 212 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen); 213 rqstp->rq_addrlen = xprt->xpt_remotelen; 214 215 /* 216 * Destination address in request is needed for binding the 217 * source address in RPC replies/callbacks later. 218 */ 219 sin = (struct sockaddr *)&xprt->xpt_local; 220 switch (sin->sa_family) { 221 case AF_INET: 222 rqstp->rq_daddr.addr = ((struct sockaddr_in *)sin)->sin_addr; 223 break; 224 case AF_INET6: 225 rqstp->rq_daddr.addr6 = ((struct sockaddr_in6 *)sin)->sin6_addr; 226 break; 227 } 228 } 229 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs); 230 231 /** 232 * svc_print_addr - Format rq_addr field for printing 233 * @rqstp: svc_rqst struct containing address to print 234 * @buf: target buffer for formatted address 235 * @len: length of target buffer 236 * 237 */ 238 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len) 239 { 240 return __svc_print_addr(svc_addr(rqstp), buf, len); 241 } 242 EXPORT_SYMBOL_GPL(svc_print_addr); 243 244 /* 245 * Queue up an idle server thread. Must have pool->sp_lock held. 246 * Note: this is really a stack rather than a queue, so that we only 247 * use as many different threads as we need, and the rest don't pollute 248 * the cache. 249 */ 250 static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp) 251 { 252 list_add(&rqstp->rq_list, &pool->sp_threads); 253 } 254 255 /* 256 * Dequeue an nfsd thread. Must have pool->sp_lock held. 257 */ 258 static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp) 259 { 260 list_del(&rqstp->rq_list); 261 } 262 263 /* 264 * Queue up a transport with data pending. If there are idle nfsd 265 * processes, wake 'em up. 266 * 267 */ 268 void svc_xprt_enqueue(struct svc_xprt *xprt) 269 { 270 struct svc_serv *serv = xprt->xpt_server; 271 struct svc_pool *pool; 272 struct svc_rqst *rqstp; 273 int cpu; 274 275 if (!(xprt->xpt_flags & 276 ((1<<XPT_CONN)|(1<<XPT_DATA)|(1<<XPT_CLOSE)|(1<<XPT_DEFERRED)))) 277 return; 278 279 cpu = get_cpu(); 280 pool = svc_pool_for_cpu(xprt->xpt_server, cpu); 281 put_cpu(); 282 283 spin_lock_bh(&pool->sp_lock); 284 285 if (!list_empty(&pool->sp_threads) && 286 !list_empty(&pool->sp_sockets)) 287 printk(KERN_ERR 288 "svc_xprt_enqueue: " 289 "threads and transports both waiting??\n"); 290 291 if (test_bit(XPT_DEAD, &xprt->xpt_flags)) { 292 /* Don't enqueue dead transports */ 293 dprintk("svc: transport %p is dead, not enqueued\n", xprt); 294 goto out_unlock; 295 } 296 297 /* Mark transport as busy. It will remain in this state until 298 * the provider calls svc_xprt_received. We update XPT_BUSY 299 * atomically because it also guards against trying to enqueue 300 * the transport twice. 301 */ 302 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) { 303 /* Don't enqueue transport while already enqueued */ 304 dprintk("svc: transport %p busy, not enqueued\n", xprt); 305 goto out_unlock; 306 } 307 BUG_ON(xprt->xpt_pool != NULL); 308 xprt->xpt_pool = pool; 309 310 /* Handle pending connection */ 311 if (test_bit(XPT_CONN, &xprt->xpt_flags)) 312 goto process; 313 314 /* Handle close in-progress */ 315 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) 316 goto process; 317 318 /* Check if we have space to reply to a request */ 319 if (!xprt->xpt_ops->xpo_has_wspace(xprt)) { 320 /* Don't enqueue while not enough space for reply */ 321 dprintk("svc: no write space, transport %p not enqueued\n", 322 xprt); 323 xprt->xpt_pool = NULL; 324 clear_bit(XPT_BUSY, &xprt->xpt_flags); 325 goto out_unlock; 326 } 327 328 process: 329 if (!list_empty(&pool->sp_threads)) { 330 rqstp = list_entry(pool->sp_threads.next, 331 struct svc_rqst, 332 rq_list); 333 dprintk("svc: transport %p served by daemon %p\n", 334 xprt, rqstp); 335 svc_thread_dequeue(pool, rqstp); 336 if (rqstp->rq_xprt) 337 printk(KERN_ERR 338 "svc_xprt_enqueue: server %p, rq_xprt=%p!\n", 339 rqstp, rqstp->rq_xprt); 340 rqstp->rq_xprt = xprt; 341 svc_xprt_get(xprt); 342 rqstp->rq_reserved = serv->sv_max_mesg; 343 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved); 344 BUG_ON(xprt->xpt_pool != pool); 345 wake_up(&rqstp->rq_wait); 346 } else { 347 dprintk("svc: transport %p put into queue\n", xprt); 348 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets); 349 BUG_ON(xprt->xpt_pool != pool); 350 } 351 352 out_unlock: 353 spin_unlock_bh(&pool->sp_lock); 354 } 355 EXPORT_SYMBOL_GPL(svc_xprt_enqueue); 356 357 /* 358 * Dequeue the first transport. Must be called with the pool->sp_lock held. 359 */ 360 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool) 361 { 362 struct svc_xprt *xprt; 363 364 if (list_empty(&pool->sp_sockets)) 365 return NULL; 366 367 xprt = list_entry(pool->sp_sockets.next, 368 struct svc_xprt, xpt_ready); 369 list_del_init(&xprt->xpt_ready); 370 371 dprintk("svc: transport %p dequeued, inuse=%d\n", 372 xprt, atomic_read(&xprt->xpt_ref.refcount)); 373 374 return xprt; 375 } 376 377 /* 378 * svc_xprt_received conditionally queues the transport for processing 379 * by another thread. The caller must hold the XPT_BUSY bit and must 380 * not thereafter touch transport data. 381 * 382 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or 383 * insufficient) data. 384 */ 385 void svc_xprt_received(struct svc_xprt *xprt) 386 { 387 BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags)); 388 xprt->xpt_pool = NULL; 389 clear_bit(XPT_BUSY, &xprt->xpt_flags); 390 svc_xprt_enqueue(xprt); 391 } 392 EXPORT_SYMBOL_GPL(svc_xprt_received); 393 394 /** 395 * svc_reserve - change the space reserved for the reply to a request. 396 * @rqstp: The request in question 397 * @space: new max space to reserve 398 * 399 * Each request reserves some space on the output queue of the transport 400 * to make sure the reply fits. This function reduces that reserved 401 * space to be the amount of space used already, plus @space. 402 * 403 */ 404 void svc_reserve(struct svc_rqst *rqstp, int space) 405 { 406 space += rqstp->rq_res.head[0].iov_len; 407 408 if (space < rqstp->rq_reserved) { 409 struct svc_xprt *xprt = rqstp->rq_xprt; 410 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved); 411 rqstp->rq_reserved = space; 412 413 svc_xprt_enqueue(xprt); 414 } 415 } 416 EXPORT_SYMBOL(svc_reserve); 417 418 static void svc_xprt_release(struct svc_rqst *rqstp) 419 { 420 struct svc_xprt *xprt = rqstp->rq_xprt; 421 422 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp); 423 424 svc_free_res_pages(rqstp); 425 rqstp->rq_res.page_len = 0; 426 rqstp->rq_res.page_base = 0; 427 428 /* Reset response buffer and release 429 * the reservation. 430 * But first, check that enough space was reserved 431 * for the reply, otherwise we have a bug! 432 */ 433 if ((rqstp->rq_res.len) > rqstp->rq_reserved) 434 printk(KERN_ERR "RPC request reserved %d but used %d\n", 435 rqstp->rq_reserved, 436 rqstp->rq_res.len); 437 438 rqstp->rq_res.head[0].iov_len = 0; 439 svc_reserve(rqstp, 0); 440 rqstp->rq_xprt = NULL; 441 442 svc_xprt_put(xprt); 443 } 444 445 /* 446 * External function to wake up a server waiting for data 447 * This really only makes sense for services like lockd 448 * which have exactly one thread anyway. 449 */ 450 void svc_wake_up(struct svc_serv *serv) 451 { 452 struct svc_rqst *rqstp; 453 unsigned int i; 454 struct svc_pool *pool; 455 456 for (i = 0; i < serv->sv_nrpools; i++) { 457 pool = &serv->sv_pools[i]; 458 459 spin_lock_bh(&pool->sp_lock); 460 if (!list_empty(&pool->sp_threads)) { 461 rqstp = list_entry(pool->sp_threads.next, 462 struct svc_rqst, 463 rq_list); 464 dprintk("svc: daemon %p woken up.\n", rqstp); 465 /* 466 svc_thread_dequeue(pool, rqstp); 467 rqstp->rq_xprt = NULL; 468 */ 469 wake_up(&rqstp->rq_wait); 470 } 471 spin_unlock_bh(&pool->sp_lock); 472 } 473 } 474 EXPORT_SYMBOL(svc_wake_up); 475 476 int svc_port_is_privileged(struct sockaddr *sin) 477 { 478 switch (sin->sa_family) { 479 case AF_INET: 480 return ntohs(((struct sockaddr_in *)sin)->sin_port) 481 < PROT_SOCK; 482 case AF_INET6: 483 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port) 484 < PROT_SOCK; 485 default: 486 return 0; 487 } 488 } 489 490 /* 491 * Make sure that we don't have too many active connections. If we 492 * have, something must be dropped. 493 * 494 * There's no point in trying to do random drop here for DoS 495 * prevention. The NFS clients does 1 reconnect in 15 seconds. An 496 * attacker can easily beat that. 497 * 498 * The only somewhat efficient mechanism would be if drop old 499 * connections from the same IP first. But right now we don't even 500 * record the client IP in svc_sock. 501 */ 502 static void svc_check_conn_limits(struct svc_serv *serv) 503 { 504 if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) { 505 struct svc_xprt *xprt = NULL; 506 spin_lock_bh(&serv->sv_lock); 507 if (!list_empty(&serv->sv_tempsocks)) { 508 if (net_ratelimit()) { 509 /* Try to help the admin */ 510 printk(KERN_NOTICE "%s: too many open " 511 "connections, consider increasing the " 512 "number of nfsd threads\n", 513 serv->sv_name); 514 } 515 /* 516 * Always select the oldest connection. It's not fair, 517 * but so is life 518 */ 519 xprt = list_entry(serv->sv_tempsocks.prev, 520 struct svc_xprt, 521 xpt_list); 522 set_bit(XPT_CLOSE, &xprt->xpt_flags); 523 svc_xprt_get(xprt); 524 } 525 spin_unlock_bh(&serv->sv_lock); 526 527 if (xprt) { 528 svc_xprt_enqueue(xprt); 529 svc_xprt_put(xprt); 530 } 531 } 532 } 533 534 /* 535 * Receive the next request on any transport. This code is carefully 536 * organised not to touch any cachelines in the shared svc_serv 537 * structure, only cachelines in the local svc_pool. 538 */ 539 int svc_recv(struct svc_rqst *rqstp, long timeout) 540 { 541 struct svc_xprt *xprt = NULL; 542 struct svc_serv *serv = rqstp->rq_server; 543 struct svc_pool *pool = rqstp->rq_pool; 544 int len, i; 545 int pages; 546 struct xdr_buf *arg; 547 DECLARE_WAITQUEUE(wait, current); 548 549 dprintk("svc: server %p waiting for data (to = %ld)\n", 550 rqstp, timeout); 551 552 if (rqstp->rq_xprt) 553 printk(KERN_ERR 554 "svc_recv: service %p, transport not NULL!\n", 555 rqstp); 556 if (waitqueue_active(&rqstp->rq_wait)) 557 printk(KERN_ERR 558 "svc_recv: service %p, wait queue active!\n", 559 rqstp); 560 561 /* now allocate needed pages. If we get a failure, sleep briefly */ 562 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE; 563 for (i = 0; i < pages ; i++) 564 while (rqstp->rq_pages[i] == NULL) { 565 struct page *p = alloc_page(GFP_KERNEL); 566 if (!p) { 567 set_current_state(TASK_INTERRUPTIBLE); 568 if (signalled() || kthread_should_stop()) { 569 set_current_state(TASK_RUNNING); 570 return -EINTR; 571 } 572 schedule_timeout(msecs_to_jiffies(500)); 573 } 574 rqstp->rq_pages[i] = p; 575 } 576 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */ 577 BUG_ON(pages >= RPCSVC_MAXPAGES); 578 579 /* Make arg->head point to first page and arg->pages point to rest */ 580 arg = &rqstp->rq_arg; 581 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]); 582 arg->head[0].iov_len = PAGE_SIZE; 583 arg->pages = rqstp->rq_pages + 1; 584 arg->page_base = 0; 585 /* save at least one page for response */ 586 arg->page_len = (pages-2)*PAGE_SIZE; 587 arg->len = (pages-1)*PAGE_SIZE; 588 arg->tail[0].iov_len = 0; 589 590 try_to_freeze(); 591 cond_resched(); 592 if (signalled() || kthread_should_stop()) 593 return -EINTR; 594 595 spin_lock_bh(&pool->sp_lock); 596 xprt = svc_xprt_dequeue(pool); 597 if (xprt) { 598 rqstp->rq_xprt = xprt; 599 svc_xprt_get(xprt); 600 rqstp->rq_reserved = serv->sv_max_mesg; 601 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved); 602 } else { 603 /* No data pending. Go to sleep */ 604 svc_thread_enqueue(pool, rqstp); 605 606 /* 607 * We have to be able to interrupt this wait 608 * to bring down the daemons ... 609 */ 610 set_current_state(TASK_INTERRUPTIBLE); 611 612 /* 613 * checking kthread_should_stop() here allows us to avoid 614 * locking and signalling when stopping kthreads that call 615 * svc_recv. If the thread has already been woken up, then 616 * we can exit here without sleeping. If not, then it 617 * it'll be woken up quickly during the schedule_timeout 618 */ 619 if (kthread_should_stop()) { 620 set_current_state(TASK_RUNNING); 621 spin_unlock_bh(&pool->sp_lock); 622 return -EINTR; 623 } 624 625 add_wait_queue(&rqstp->rq_wait, &wait); 626 spin_unlock_bh(&pool->sp_lock); 627 628 schedule_timeout(timeout); 629 630 try_to_freeze(); 631 632 spin_lock_bh(&pool->sp_lock); 633 remove_wait_queue(&rqstp->rq_wait, &wait); 634 635 xprt = rqstp->rq_xprt; 636 if (!xprt) { 637 svc_thread_dequeue(pool, rqstp); 638 spin_unlock_bh(&pool->sp_lock); 639 dprintk("svc: server %p, no data yet\n", rqstp); 640 if (signalled() || kthread_should_stop()) 641 return -EINTR; 642 else 643 return -EAGAIN; 644 } 645 } 646 spin_unlock_bh(&pool->sp_lock); 647 648 len = 0; 649 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) { 650 dprintk("svc_recv: found XPT_CLOSE\n"); 651 svc_delete_xprt(xprt); 652 } else if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) { 653 struct svc_xprt *newxpt; 654 newxpt = xprt->xpt_ops->xpo_accept(xprt); 655 if (newxpt) { 656 /* 657 * We know this module_get will succeed because the 658 * listener holds a reference too 659 */ 660 __module_get(newxpt->xpt_class->xcl_owner); 661 svc_check_conn_limits(xprt->xpt_server); 662 spin_lock_bh(&serv->sv_lock); 663 set_bit(XPT_TEMP, &newxpt->xpt_flags); 664 list_add(&newxpt->xpt_list, &serv->sv_tempsocks); 665 serv->sv_tmpcnt++; 666 if (serv->sv_temptimer.function == NULL) { 667 /* setup timer to age temp transports */ 668 setup_timer(&serv->sv_temptimer, 669 svc_age_temp_xprts, 670 (unsigned long)serv); 671 mod_timer(&serv->sv_temptimer, 672 jiffies + svc_conn_age_period * HZ); 673 } 674 spin_unlock_bh(&serv->sv_lock); 675 svc_xprt_received(newxpt); 676 } 677 svc_xprt_received(xprt); 678 } else { 679 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n", 680 rqstp, pool->sp_id, xprt, 681 atomic_read(&xprt->xpt_ref.refcount)); 682 rqstp->rq_deferred = svc_deferred_dequeue(xprt); 683 if (rqstp->rq_deferred) { 684 svc_xprt_received(xprt); 685 len = svc_deferred_recv(rqstp); 686 } else 687 len = xprt->xpt_ops->xpo_recvfrom(rqstp); 688 dprintk("svc: got len=%d\n", len); 689 } 690 691 /* No data, incomplete (TCP) read, or accept() */ 692 if (len == 0 || len == -EAGAIN) { 693 rqstp->rq_res.len = 0; 694 svc_xprt_release(rqstp); 695 return -EAGAIN; 696 } 697 clear_bit(XPT_OLD, &xprt->xpt_flags); 698 699 rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp)); 700 rqstp->rq_chandle.defer = svc_defer; 701 702 if (serv->sv_stats) 703 serv->sv_stats->netcnt++; 704 return len; 705 } 706 EXPORT_SYMBOL(svc_recv); 707 708 /* 709 * Drop request 710 */ 711 void svc_drop(struct svc_rqst *rqstp) 712 { 713 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt); 714 svc_xprt_release(rqstp); 715 } 716 EXPORT_SYMBOL(svc_drop); 717 718 /* 719 * Return reply to client. 720 */ 721 int svc_send(struct svc_rqst *rqstp) 722 { 723 struct svc_xprt *xprt; 724 int len; 725 struct xdr_buf *xb; 726 727 xprt = rqstp->rq_xprt; 728 if (!xprt) 729 return -EFAULT; 730 731 /* release the receive skb before sending the reply */ 732 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp); 733 734 /* calculate over-all length */ 735 xb = &rqstp->rq_res; 736 xb->len = xb->head[0].iov_len + 737 xb->page_len + 738 xb->tail[0].iov_len; 739 740 /* Grab mutex to serialize outgoing data. */ 741 mutex_lock(&xprt->xpt_mutex); 742 if (test_bit(XPT_DEAD, &xprt->xpt_flags)) 743 len = -ENOTCONN; 744 else 745 len = xprt->xpt_ops->xpo_sendto(rqstp); 746 mutex_unlock(&xprt->xpt_mutex); 747 svc_xprt_release(rqstp); 748 749 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN) 750 return 0; 751 return len; 752 } 753 754 /* 755 * Timer function to close old temporary transports, using 756 * a mark-and-sweep algorithm. 757 */ 758 static void svc_age_temp_xprts(unsigned long closure) 759 { 760 struct svc_serv *serv = (struct svc_serv *)closure; 761 struct svc_xprt *xprt; 762 struct list_head *le, *next; 763 LIST_HEAD(to_be_aged); 764 765 dprintk("svc_age_temp_xprts\n"); 766 767 if (!spin_trylock_bh(&serv->sv_lock)) { 768 /* busy, try again 1 sec later */ 769 dprintk("svc_age_temp_xprts: busy\n"); 770 mod_timer(&serv->sv_temptimer, jiffies + HZ); 771 return; 772 } 773 774 list_for_each_safe(le, next, &serv->sv_tempsocks) { 775 xprt = list_entry(le, struct svc_xprt, xpt_list); 776 777 /* First time through, just mark it OLD. Second time 778 * through, close it. */ 779 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags)) 780 continue; 781 if (atomic_read(&xprt->xpt_ref.refcount) > 1 782 || test_bit(XPT_BUSY, &xprt->xpt_flags)) 783 continue; 784 svc_xprt_get(xprt); 785 list_move(le, &to_be_aged); 786 set_bit(XPT_CLOSE, &xprt->xpt_flags); 787 set_bit(XPT_DETACHED, &xprt->xpt_flags); 788 } 789 spin_unlock_bh(&serv->sv_lock); 790 791 while (!list_empty(&to_be_aged)) { 792 le = to_be_aged.next; 793 /* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */ 794 list_del_init(le); 795 xprt = list_entry(le, struct svc_xprt, xpt_list); 796 797 dprintk("queuing xprt %p for closing\n", xprt); 798 799 /* a thread will dequeue and close it soon */ 800 svc_xprt_enqueue(xprt); 801 svc_xprt_put(xprt); 802 } 803 804 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ); 805 } 806 807 /* 808 * Remove a dead transport 809 */ 810 void svc_delete_xprt(struct svc_xprt *xprt) 811 { 812 struct svc_serv *serv = xprt->xpt_server; 813 814 dprintk("svc: svc_delete_xprt(%p)\n", xprt); 815 xprt->xpt_ops->xpo_detach(xprt); 816 817 spin_lock_bh(&serv->sv_lock); 818 if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags)) 819 list_del_init(&xprt->xpt_list); 820 /* 821 * We used to delete the transport from whichever list 822 * it's sk_xprt.xpt_ready node was on, but we don't actually 823 * need to. This is because the only time we're called 824 * while still attached to a queue, the queue itself 825 * is about to be destroyed (in svc_destroy). 826 */ 827 if (!test_and_set_bit(XPT_DEAD, &xprt->xpt_flags)) { 828 BUG_ON(atomic_read(&xprt->xpt_ref.refcount) < 2); 829 if (test_bit(XPT_TEMP, &xprt->xpt_flags)) 830 serv->sv_tmpcnt--; 831 svc_xprt_put(xprt); 832 } 833 spin_unlock_bh(&serv->sv_lock); 834 } 835 836 void svc_close_xprt(struct svc_xprt *xprt) 837 { 838 set_bit(XPT_CLOSE, &xprt->xpt_flags); 839 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) 840 /* someone else will have to effect the close */ 841 return; 842 843 svc_xprt_get(xprt); 844 svc_delete_xprt(xprt); 845 clear_bit(XPT_BUSY, &xprt->xpt_flags); 846 svc_xprt_put(xprt); 847 } 848 EXPORT_SYMBOL_GPL(svc_close_xprt); 849 850 void svc_close_all(struct list_head *xprt_list) 851 { 852 struct svc_xprt *xprt; 853 struct svc_xprt *tmp; 854 855 list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) { 856 set_bit(XPT_CLOSE, &xprt->xpt_flags); 857 if (test_bit(XPT_BUSY, &xprt->xpt_flags)) { 858 /* Waiting to be processed, but no threads left, 859 * So just remove it from the waiting list 860 */ 861 list_del_init(&xprt->xpt_ready); 862 clear_bit(XPT_BUSY, &xprt->xpt_flags); 863 } 864 svc_close_xprt(xprt); 865 } 866 } 867 868 /* 869 * Handle defer and revisit of requests 870 */ 871 872 static void svc_revisit(struct cache_deferred_req *dreq, int too_many) 873 { 874 struct svc_deferred_req *dr = 875 container_of(dreq, struct svc_deferred_req, handle); 876 struct svc_xprt *xprt = dr->xprt; 877 878 if (too_many) { 879 svc_xprt_put(xprt); 880 kfree(dr); 881 return; 882 } 883 dprintk("revisit queued\n"); 884 dr->xprt = NULL; 885 spin_lock(&xprt->xpt_lock); 886 list_add(&dr->handle.recent, &xprt->xpt_deferred); 887 spin_unlock(&xprt->xpt_lock); 888 set_bit(XPT_DEFERRED, &xprt->xpt_flags); 889 svc_xprt_enqueue(xprt); 890 svc_xprt_put(xprt); 891 } 892 893 /* 894 * Save the request off for later processing. The request buffer looks 895 * like this: 896 * 897 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail> 898 * 899 * This code can only handle requests that consist of an xprt-header 900 * and rpc-header. 901 */ 902 static struct cache_deferred_req *svc_defer(struct cache_req *req) 903 { 904 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle); 905 struct svc_deferred_req *dr; 906 907 if (rqstp->rq_arg.page_len) 908 return NULL; /* if more than a page, give up FIXME */ 909 if (rqstp->rq_deferred) { 910 dr = rqstp->rq_deferred; 911 rqstp->rq_deferred = NULL; 912 } else { 913 size_t skip; 914 size_t size; 915 /* FIXME maybe discard if size too large */ 916 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len; 917 dr = kmalloc(size, GFP_KERNEL); 918 if (dr == NULL) 919 return NULL; 920 921 dr->handle.owner = rqstp->rq_server; 922 dr->prot = rqstp->rq_prot; 923 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen); 924 dr->addrlen = rqstp->rq_addrlen; 925 dr->daddr = rqstp->rq_daddr; 926 dr->argslen = rqstp->rq_arg.len >> 2; 927 dr->xprt_hlen = rqstp->rq_xprt_hlen; 928 929 /* back up head to the start of the buffer and copy */ 930 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len; 931 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip, 932 dr->argslen << 2); 933 } 934 svc_xprt_get(rqstp->rq_xprt); 935 dr->xprt = rqstp->rq_xprt; 936 937 dr->handle.revisit = svc_revisit; 938 return &dr->handle; 939 } 940 941 /* 942 * recv data from a deferred request into an active one 943 */ 944 static int svc_deferred_recv(struct svc_rqst *rqstp) 945 { 946 struct svc_deferred_req *dr = rqstp->rq_deferred; 947 948 /* setup iov_base past transport header */ 949 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2); 950 /* The iov_len does not include the transport header bytes */ 951 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen; 952 rqstp->rq_arg.page_len = 0; 953 /* The rq_arg.len includes the transport header bytes */ 954 rqstp->rq_arg.len = dr->argslen<<2; 955 rqstp->rq_prot = dr->prot; 956 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen); 957 rqstp->rq_addrlen = dr->addrlen; 958 /* Save off transport header len in case we get deferred again */ 959 rqstp->rq_xprt_hlen = dr->xprt_hlen; 960 rqstp->rq_daddr = dr->daddr; 961 rqstp->rq_respages = rqstp->rq_pages; 962 return (dr->argslen<<2) - dr->xprt_hlen; 963 } 964 965 966 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt) 967 { 968 struct svc_deferred_req *dr = NULL; 969 970 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags)) 971 return NULL; 972 spin_lock(&xprt->xpt_lock); 973 clear_bit(XPT_DEFERRED, &xprt->xpt_flags); 974 if (!list_empty(&xprt->xpt_deferred)) { 975 dr = list_entry(xprt->xpt_deferred.next, 976 struct svc_deferred_req, 977 handle.recent); 978 list_del_init(&dr->handle.recent); 979 set_bit(XPT_DEFERRED, &xprt->xpt_flags); 980 } 981 spin_unlock(&xprt->xpt_lock); 982 return dr; 983 } 984 985 /* 986 * Return the transport instance pointer for the endpoint accepting 987 * connections/peer traffic from the specified transport class, 988 * address family and port. 989 * 990 * Specifying 0 for the address family or port is effectively a 991 * wild-card, and will result in matching the first transport in the 992 * service's list that has a matching class name. 993 */ 994 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, char *xcl_name, 995 int af, int port) 996 { 997 struct svc_xprt *xprt; 998 struct svc_xprt *found = NULL; 999 1000 /* Sanity check the args */ 1001 if (!serv || !xcl_name) 1002 return found; 1003 1004 spin_lock_bh(&serv->sv_lock); 1005 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { 1006 if (strcmp(xprt->xpt_class->xcl_name, xcl_name)) 1007 continue; 1008 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family) 1009 continue; 1010 if (port && port != svc_xprt_local_port(xprt)) 1011 continue; 1012 found = xprt; 1013 svc_xprt_get(xprt); 1014 break; 1015 } 1016 spin_unlock_bh(&serv->sv_lock); 1017 return found; 1018 } 1019 EXPORT_SYMBOL_GPL(svc_find_xprt); 1020 1021 /* 1022 * Format a buffer with a list of the active transports. A zero for 1023 * the buflen parameter disables target buffer overflow checking. 1024 */ 1025 int svc_xprt_names(struct svc_serv *serv, char *buf, int buflen) 1026 { 1027 struct svc_xprt *xprt; 1028 char xprt_str[64]; 1029 int totlen = 0; 1030 int len; 1031 1032 /* Sanity check args */ 1033 if (!serv) 1034 return 0; 1035 1036 spin_lock_bh(&serv->sv_lock); 1037 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { 1038 len = snprintf(xprt_str, sizeof(xprt_str), 1039 "%s %d\n", xprt->xpt_class->xcl_name, 1040 svc_xprt_local_port(xprt)); 1041 /* If the string was truncated, replace with error string */ 1042 if (len >= sizeof(xprt_str)) 1043 strcpy(xprt_str, "name-too-long\n"); 1044 /* Don't overflow buffer */ 1045 len = strlen(xprt_str); 1046 if (buflen && (len + totlen >= buflen)) 1047 break; 1048 strcpy(buf+totlen, xprt_str); 1049 totlen += len; 1050 } 1051 spin_unlock_bh(&serv->sv_lock); 1052 return totlen; 1053 } 1054 EXPORT_SYMBOL_GPL(svc_xprt_names); 1055