1 /* 2 * linux/net/sunrpc/svc_xprt.c 3 * 4 * Author: Tom Tucker <tom@opengridcomputing.com> 5 */ 6 7 #include <linux/sched.h> 8 #include <linux/errno.h> 9 #include <linux/freezer.h> 10 #include <linux/kthread.h> 11 #include <linux/slab.h> 12 #include <net/sock.h> 13 #include <linux/sunrpc/stats.h> 14 #include <linux/sunrpc/svc_xprt.h> 15 #include <linux/sunrpc/svcsock.h> 16 #include <linux/sunrpc/xprt.h> 17 #include <linux/module.h> 18 19 #define RPCDBG_FACILITY RPCDBG_SVCXPRT 20 21 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt); 22 static int svc_deferred_recv(struct svc_rqst *rqstp); 23 static struct cache_deferred_req *svc_defer(struct cache_req *req); 24 static void svc_age_temp_xprts(unsigned long closure); 25 static void svc_delete_xprt(struct svc_xprt *xprt); 26 27 /* apparently the "standard" is that clients close 28 * idle connections after 5 minutes, servers after 29 * 6 minutes 30 * http://www.connectathon.org/talks96/nfstcp.pdf 31 */ 32 static int svc_conn_age_period = 6*60; 33 34 /* List of registered transport classes */ 35 static DEFINE_SPINLOCK(svc_xprt_class_lock); 36 static LIST_HEAD(svc_xprt_class_list); 37 38 /* SMP locking strategy: 39 * 40 * svc_pool->sp_lock protects most of the fields of that pool. 41 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt. 42 * when both need to be taken (rare), svc_serv->sv_lock is first. 43 * BKL protects svc_serv->sv_nrthread. 44 * svc_sock->sk_lock protects the svc_sock->sk_deferred list 45 * and the ->sk_info_authunix cache. 46 * 47 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being 48 * enqueued multiply. During normal transport processing this bit 49 * is set by svc_xprt_enqueue and cleared by svc_xprt_received. 50 * Providers should not manipulate this bit directly. 51 * 52 * Some flags can be set to certain values at any time 53 * providing that certain rules are followed: 54 * 55 * XPT_CONN, XPT_DATA: 56 * - Can be set or cleared at any time. 57 * - After a set, svc_xprt_enqueue must be called to enqueue 58 * the transport for processing. 59 * - After a clear, the transport must be read/accepted. 60 * If this succeeds, it must be set again. 61 * XPT_CLOSE: 62 * - Can set at any time. It is never cleared. 63 * XPT_DEAD: 64 * - Can only be set while XPT_BUSY is held which ensures 65 * that no other thread will be using the transport or will 66 * try to set XPT_DEAD. 67 */ 68 69 int svc_reg_xprt_class(struct svc_xprt_class *xcl) 70 { 71 struct svc_xprt_class *cl; 72 int res = -EEXIST; 73 74 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name); 75 76 INIT_LIST_HEAD(&xcl->xcl_list); 77 spin_lock(&svc_xprt_class_lock); 78 /* Make sure there isn't already a class with the same name */ 79 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) { 80 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0) 81 goto out; 82 } 83 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list); 84 res = 0; 85 out: 86 spin_unlock(&svc_xprt_class_lock); 87 return res; 88 } 89 EXPORT_SYMBOL_GPL(svc_reg_xprt_class); 90 91 void svc_unreg_xprt_class(struct svc_xprt_class *xcl) 92 { 93 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name); 94 spin_lock(&svc_xprt_class_lock); 95 list_del_init(&xcl->xcl_list); 96 spin_unlock(&svc_xprt_class_lock); 97 } 98 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class); 99 100 /* 101 * Format the transport list for printing 102 */ 103 int svc_print_xprts(char *buf, int maxlen) 104 { 105 struct svc_xprt_class *xcl; 106 char tmpstr[80]; 107 int len = 0; 108 buf[0] = '\0'; 109 110 spin_lock(&svc_xprt_class_lock); 111 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { 112 int slen; 113 114 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload); 115 slen = strlen(tmpstr); 116 if (len + slen > maxlen) 117 break; 118 len += slen; 119 strcat(buf, tmpstr); 120 } 121 spin_unlock(&svc_xprt_class_lock); 122 123 return len; 124 } 125 126 static void svc_xprt_free(struct kref *kref) 127 { 128 struct svc_xprt *xprt = 129 container_of(kref, struct svc_xprt, xpt_ref); 130 struct module *owner = xprt->xpt_class->xcl_owner; 131 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags)) 132 svcauth_unix_info_release(xprt); 133 put_net(xprt->xpt_net); 134 /* See comment on corresponding get in xs_setup_bc_tcp(): */ 135 if (xprt->xpt_bc_xprt) 136 xprt_put(xprt->xpt_bc_xprt); 137 xprt->xpt_ops->xpo_free(xprt); 138 module_put(owner); 139 } 140 141 void svc_xprt_put(struct svc_xprt *xprt) 142 { 143 kref_put(&xprt->xpt_ref, svc_xprt_free); 144 } 145 EXPORT_SYMBOL_GPL(svc_xprt_put); 146 147 /* 148 * Called by transport drivers to initialize the transport independent 149 * portion of the transport instance. 150 */ 151 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl, 152 struct svc_xprt *xprt, struct svc_serv *serv) 153 { 154 memset(xprt, 0, sizeof(*xprt)); 155 xprt->xpt_class = xcl; 156 xprt->xpt_ops = xcl->xcl_ops; 157 kref_init(&xprt->xpt_ref); 158 xprt->xpt_server = serv; 159 INIT_LIST_HEAD(&xprt->xpt_list); 160 INIT_LIST_HEAD(&xprt->xpt_ready); 161 INIT_LIST_HEAD(&xprt->xpt_deferred); 162 INIT_LIST_HEAD(&xprt->xpt_users); 163 mutex_init(&xprt->xpt_mutex); 164 spin_lock_init(&xprt->xpt_lock); 165 set_bit(XPT_BUSY, &xprt->xpt_flags); 166 rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending"); 167 xprt->xpt_net = get_net(net); 168 } 169 EXPORT_SYMBOL_GPL(svc_xprt_init); 170 171 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl, 172 struct svc_serv *serv, 173 struct net *net, 174 const int family, 175 const unsigned short port, 176 int flags) 177 { 178 struct sockaddr_in sin = { 179 .sin_family = AF_INET, 180 .sin_addr.s_addr = htonl(INADDR_ANY), 181 .sin_port = htons(port), 182 }; 183 #if IS_ENABLED(CONFIG_IPV6) 184 struct sockaddr_in6 sin6 = { 185 .sin6_family = AF_INET6, 186 .sin6_addr = IN6ADDR_ANY_INIT, 187 .sin6_port = htons(port), 188 }; 189 #endif 190 struct sockaddr *sap; 191 size_t len; 192 193 switch (family) { 194 case PF_INET: 195 sap = (struct sockaddr *)&sin; 196 len = sizeof(sin); 197 break; 198 #if IS_ENABLED(CONFIG_IPV6) 199 case PF_INET6: 200 sap = (struct sockaddr *)&sin6; 201 len = sizeof(sin6); 202 break; 203 #endif 204 default: 205 return ERR_PTR(-EAFNOSUPPORT); 206 } 207 208 return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags); 209 } 210 211 /* 212 * svc_xprt_received conditionally queues the transport for processing 213 * by another thread. The caller must hold the XPT_BUSY bit and must 214 * not thereafter touch transport data. 215 * 216 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or 217 * insufficient) data. 218 */ 219 static void svc_xprt_received(struct svc_xprt *xprt) 220 { 221 WARN_ON_ONCE(!test_bit(XPT_BUSY, &xprt->xpt_flags)); 222 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) 223 return; 224 /* As soon as we clear busy, the xprt could be closed and 225 * 'put', so we need a reference to call svc_xprt_enqueue with: 226 */ 227 svc_xprt_get(xprt); 228 clear_bit(XPT_BUSY, &xprt->xpt_flags); 229 svc_xprt_enqueue(xprt); 230 svc_xprt_put(xprt); 231 } 232 233 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new) 234 { 235 clear_bit(XPT_TEMP, &new->xpt_flags); 236 spin_lock_bh(&serv->sv_lock); 237 list_add(&new->xpt_list, &serv->sv_permsocks); 238 spin_unlock_bh(&serv->sv_lock); 239 svc_xprt_received(new); 240 } 241 242 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name, 243 struct net *net, const int family, 244 const unsigned short port, int flags) 245 { 246 struct svc_xprt_class *xcl; 247 248 dprintk("svc: creating transport %s[%d]\n", xprt_name, port); 249 spin_lock(&svc_xprt_class_lock); 250 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { 251 struct svc_xprt *newxprt; 252 unsigned short newport; 253 254 if (strcmp(xprt_name, xcl->xcl_name)) 255 continue; 256 257 if (!try_module_get(xcl->xcl_owner)) 258 goto err; 259 260 spin_unlock(&svc_xprt_class_lock); 261 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags); 262 if (IS_ERR(newxprt)) { 263 module_put(xcl->xcl_owner); 264 return PTR_ERR(newxprt); 265 } 266 svc_add_new_perm_xprt(serv, newxprt); 267 newport = svc_xprt_local_port(newxprt); 268 return newport; 269 } 270 err: 271 spin_unlock(&svc_xprt_class_lock); 272 dprintk("svc: transport %s not found\n", xprt_name); 273 274 /* This errno is exposed to user space. Provide a reasonable 275 * perror msg for a bad transport. */ 276 return -EPROTONOSUPPORT; 277 } 278 EXPORT_SYMBOL_GPL(svc_create_xprt); 279 280 /* 281 * Copy the local and remote xprt addresses to the rqstp structure 282 */ 283 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt) 284 { 285 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen); 286 rqstp->rq_addrlen = xprt->xpt_remotelen; 287 288 /* 289 * Destination address in request is needed for binding the 290 * source address in RPC replies/callbacks later. 291 */ 292 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen); 293 rqstp->rq_daddrlen = xprt->xpt_locallen; 294 } 295 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs); 296 297 /** 298 * svc_print_addr - Format rq_addr field for printing 299 * @rqstp: svc_rqst struct containing address to print 300 * @buf: target buffer for formatted address 301 * @len: length of target buffer 302 * 303 */ 304 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len) 305 { 306 return __svc_print_addr(svc_addr(rqstp), buf, len); 307 } 308 EXPORT_SYMBOL_GPL(svc_print_addr); 309 310 /* 311 * Queue up an idle server thread. Must have pool->sp_lock held. 312 * Note: this is really a stack rather than a queue, so that we only 313 * use as many different threads as we need, and the rest don't pollute 314 * the cache. 315 */ 316 static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp) 317 { 318 list_add(&rqstp->rq_list, &pool->sp_threads); 319 } 320 321 /* 322 * Dequeue an nfsd thread. Must have pool->sp_lock held. 323 */ 324 static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp) 325 { 326 list_del(&rqstp->rq_list); 327 } 328 329 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt) 330 { 331 if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE))) 332 return true; 333 if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED))) 334 return xprt->xpt_ops->xpo_has_wspace(xprt); 335 return false; 336 } 337 338 /* 339 * Queue up a transport with data pending. If there are idle nfsd 340 * processes, wake 'em up. 341 * 342 */ 343 void svc_xprt_enqueue(struct svc_xprt *xprt) 344 { 345 struct svc_pool *pool; 346 struct svc_rqst *rqstp; 347 int cpu; 348 349 if (!svc_xprt_has_something_to_do(xprt)) 350 return; 351 352 cpu = get_cpu(); 353 pool = svc_pool_for_cpu(xprt->xpt_server, cpu); 354 put_cpu(); 355 356 spin_lock_bh(&pool->sp_lock); 357 358 if (!list_empty(&pool->sp_threads) && 359 !list_empty(&pool->sp_sockets)) 360 printk(KERN_ERR 361 "svc_xprt_enqueue: " 362 "threads and transports both waiting??\n"); 363 364 pool->sp_stats.packets++; 365 366 /* Mark transport as busy. It will remain in this state until 367 * the provider calls svc_xprt_received. We update XPT_BUSY 368 * atomically because it also guards against trying to enqueue 369 * the transport twice. 370 */ 371 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) { 372 /* Don't enqueue transport while already enqueued */ 373 dprintk("svc: transport %p busy, not enqueued\n", xprt); 374 goto out_unlock; 375 } 376 377 if (!list_empty(&pool->sp_threads)) { 378 rqstp = list_entry(pool->sp_threads.next, 379 struct svc_rqst, 380 rq_list); 381 dprintk("svc: transport %p served by daemon %p\n", 382 xprt, rqstp); 383 svc_thread_dequeue(pool, rqstp); 384 if (rqstp->rq_xprt) 385 printk(KERN_ERR 386 "svc_xprt_enqueue: server %p, rq_xprt=%p!\n", 387 rqstp, rqstp->rq_xprt); 388 rqstp->rq_xprt = xprt; 389 svc_xprt_get(xprt); 390 pool->sp_stats.threads_woken++; 391 wake_up(&rqstp->rq_wait); 392 } else { 393 dprintk("svc: transport %p put into queue\n", xprt); 394 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets); 395 pool->sp_stats.sockets_queued++; 396 } 397 398 out_unlock: 399 spin_unlock_bh(&pool->sp_lock); 400 } 401 EXPORT_SYMBOL_GPL(svc_xprt_enqueue); 402 403 /* 404 * Dequeue the first transport. Must be called with the pool->sp_lock held. 405 */ 406 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool) 407 { 408 struct svc_xprt *xprt; 409 410 if (list_empty(&pool->sp_sockets)) 411 return NULL; 412 413 xprt = list_entry(pool->sp_sockets.next, 414 struct svc_xprt, xpt_ready); 415 list_del_init(&xprt->xpt_ready); 416 417 dprintk("svc: transport %p dequeued, inuse=%d\n", 418 xprt, atomic_read(&xprt->xpt_ref.refcount)); 419 420 return xprt; 421 } 422 423 /** 424 * svc_reserve - change the space reserved for the reply to a request. 425 * @rqstp: The request in question 426 * @space: new max space to reserve 427 * 428 * Each request reserves some space on the output queue of the transport 429 * to make sure the reply fits. This function reduces that reserved 430 * space to be the amount of space used already, plus @space. 431 * 432 */ 433 void svc_reserve(struct svc_rqst *rqstp, int space) 434 { 435 space += rqstp->rq_res.head[0].iov_len; 436 437 if (space < rqstp->rq_reserved) { 438 struct svc_xprt *xprt = rqstp->rq_xprt; 439 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved); 440 rqstp->rq_reserved = space; 441 442 svc_xprt_enqueue(xprt); 443 } 444 } 445 EXPORT_SYMBOL_GPL(svc_reserve); 446 447 static void svc_xprt_release(struct svc_rqst *rqstp) 448 { 449 struct svc_xprt *xprt = rqstp->rq_xprt; 450 451 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp); 452 453 kfree(rqstp->rq_deferred); 454 rqstp->rq_deferred = NULL; 455 456 svc_free_res_pages(rqstp); 457 rqstp->rq_res.page_len = 0; 458 rqstp->rq_res.page_base = 0; 459 460 /* Reset response buffer and release 461 * the reservation. 462 * But first, check that enough space was reserved 463 * for the reply, otherwise we have a bug! 464 */ 465 if ((rqstp->rq_res.len) > rqstp->rq_reserved) 466 printk(KERN_ERR "RPC request reserved %d but used %d\n", 467 rqstp->rq_reserved, 468 rqstp->rq_res.len); 469 470 rqstp->rq_res.head[0].iov_len = 0; 471 svc_reserve(rqstp, 0); 472 rqstp->rq_xprt = NULL; 473 474 svc_xprt_put(xprt); 475 } 476 477 /* 478 * External function to wake up a server waiting for data 479 * This really only makes sense for services like lockd 480 * which have exactly one thread anyway. 481 */ 482 void svc_wake_up(struct svc_serv *serv) 483 { 484 struct svc_rqst *rqstp; 485 unsigned int i; 486 struct svc_pool *pool; 487 488 for (i = 0; i < serv->sv_nrpools; i++) { 489 pool = &serv->sv_pools[i]; 490 491 spin_lock_bh(&pool->sp_lock); 492 if (!list_empty(&pool->sp_threads)) { 493 rqstp = list_entry(pool->sp_threads.next, 494 struct svc_rqst, 495 rq_list); 496 dprintk("svc: daemon %p woken up.\n", rqstp); 497 /* 498 svc_thread_dequeue(pool, rqstp); 499 rqstp->rq_xprt = NULL; 500 */ 501 wake_up(&rqstp->rq_wait); 502 } else 503 pool->sp_task_pending = 1; 504 spin_unlock_bh(&pool->sp_lock); 505 } 506 } 507 EXPORT_SYMBOL_GPL(svc_wake_up); 508 509 int svc_port_is_privileged(struct sockaddr *sin) 510 { 511 switch (sin->sa_family) { 512 case AF_INET: 513 return ntohs(((struct sockaddr_in *)sin)->sin_port) 514 < PROT_SOCK; 515 case AF_INET6: 516 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port) 517 < PROT_SOCK; 518 default: 519 return 0; 520 } 521 } 522 523 /* 524 * Make sure that we don't have too many active connections. If we have, 525 * something must be dropped. It's not clear what will happen if we allow 526 * "too many" connections, but when dealing with network-facing software, 527 * we have to code defensively. Here we do that by imposing hard limits. 528 * 529 * There's no point in trying to do random drop here for DoS 530 * prevention. The NFS clients does 1 reconnect in 15 seconds. An 531 * attacker can easily beat that. 532 * 533 * The only somewhat efficient mechanism would be if drop old 534 * connections from the same IP first. But right now we don't even 535 * record the client IP in svc_sock. 536 * 537 * single-threaded services that expect a lot of clients will probably 538 * need to set sv_maxconn to override the default value which is based 539 * on the number of threads 540 */ 541 static void svc_check_conn_limits(struct svc_serv *serv) 542 { 543 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn : 544 (serv->sv_nrthreads+3) * 20; 545 546 if (serv->sv_tmpcnt > limit) { 547 struct svc_xprt *xprt = NULL; 548 spin_lock_bh(&serv->sv_lock); 549 if (!list_empty(&serv->sv_tempsocks)) { 550 /* Try to help the admin */ 551 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n", 552 serv->sv_name, serv->sv_maxconn ? 553 "max number of connections" : 554 "number of threads"); 555 /* 556 * Always select the oldest connection. It's not fair, 557 * but so is life 558 */ 559 xprt = list_entry(serv->sv_tempsocks.prev, 560 struct svc_xprt, 561 xpt_list); 562 set_bit(XPT_CLOSE, &xprt->xpt_flags); 563 svc_xprt_get(xprt); 564 } 565 spin_unlock_bh(&serv->sv_lock); 566 567 if (xprt) { 568 svc_xprt_enqueue(xprt); 569 svc_xprt_put(xprt); 570 } 571 } 572 } 573 574 static int svc_alloc_arg(struct svc_rqst *rqstp) 575 { 576 struct svc_serv *serv = rqstp->rq_server; 577 struct xdr_buf *arg; 578 int pages; 579 int i; 580 581 /* now allocate needed pages. If we get a failure, sleep briefly */ 582 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE; 583 WARN_ON_ONCE(pages >= RPCSVC_MAXPAGES); 584 if (pages >= RPCSVC_MAXPAGES) 585 /* use as many pages as possible */ 586 pages = RPCSVC_MAXPAGES - 1; 587 for (i = 0; i < pages ; i++) 588 while (rqstp->rq_pages[i] == NULL) { 589 struct page *p = alloc_page(GFP_KERNEL); 590 if (!p) { 591 set_current_state(TASK_INTERRUPTIBLE); 592 if (signalled() || kthread_should_stop()) { 593 set_current_state(TASK_RUNNING); 594 return -EINTR; 595 } 596 schedule_timeout(msecs_to_jiffies(500)); 597 } 598 rqstp->rq_pages[i] = p; 599 } 600 rqstp->rq_page_end = &rqstp->rq_pages[i]; 601 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */ 602 603 /* Make arg->head point to first page and arg->pages point to rest */ 604 arg = &rqstp->rq_arg; 605 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]); 606 arg->head[0].iov_len = PAGE_SIZE; 607 arg->pages = rqstp->rq_pages + 1; 608 arg->page_base = 0; 609 /* save at least one page for response */ 610 arg->page_len = (pages-2)*PAGE_SIZE; 611 arg->len = (pages-1)*PAGE_SIZE; 612 arg->tail[0].iov_len = 0; 613 return 0; 614 } 615 616 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout) 617 { 618 struct svc_xprt *xprt; 619 struct svc_pool *pool = rqstp->rq_pool; 620 DECLARE_WAITQUEUE(wait, current); 621 long time_left; 622 623 /* Normally we will wait up to 5 seconds for any required 624 * cache information to be provided. 625 */ 626 rqstp->rq_chandle.thread_wait = 5*HZ; 627 628 spin_lock_bh(&pool->sp_lock); 629 xprt = svc_xprt_dequeue(pool); 630 if (xprt) { 631 rqstp->rq_xprt = xprt; 632 svc_xprt_get(xprt); 633 634 /* As there is a shortage of threads and this request 635 * had to be queued, don't allow the thread to wait so 636 * long for cache updates. 637 */ 638 rqstp->rq_chandle.thread_wait = 1*HZ; 639 pool->sp_task_pending = 0; 640 } else { 641 if (pool->sp_task_pending) { 642 pool->sp_task_pending = 0; 643 spin_unlock_bh(&pool->sp_lock); 644 return ERR_PTR(-EAGAIN); 645 } 646 /* No data pending. Go to sleep */ 647 svc_thread_enqueue(pool, rqstp); 648 649 /* 650 * We have to be able to interrupt this wait 651 * to bring down the daemons ... 652 */ 653 set_current_state(TASK_INTERRUPTIBLE); 654 655 /* 656 * checking kthread_should_stop() here allows us to avoid 657 * locking and signalling when stopping kthreads that call 658 * svc_recv. If the thread has already been woken up, then 659 * we can exit here without sleeping. If not, then it 660 * it'll be woken up quickly during the schedule_timeout 661 */ 662 if (kthread_should_stop()) { 663 set_current_state(TASK_RUNNING); 664 spin_unlock_bh(&pool->sp_lock); 665 return ERR_PTR(-EINTR); 666 } 667 668 add_wait_queue(&rqstp->rq_wait, &wait); 669 spin_unlock_bh(&pool->sp_lock); 670 671 time_left = schedule_timeout(timeout); 672 673 try_to_freeze(); 674 675 spin_lock_bh(&pool->sp_lock); 676 remove_wait_queue(&rqstp->rq_wait, &wait); 677 if (!time_left) 678 pool->sp_stats.threads_timedout++; 679 680 xprt = rqstp->rq_xprt; 681 if (!xprt) { 682 svc_thread_dequeue(pool, rqstp); 683 spin_unlock_bh(&pool->sp_lock); 684 dprintk("svc: server %p, no data yet\n", rqstp); 685 if (signalled() || kthread_should_stop()) 686 return ERR_PTR(-EINTR); 687 else 688 return ERR_PTR(-EAGAIN); 689 } 690 } 691 spin_unlock_bh(&pool->sp_lock); 692 return xprt; 693 } 694 695 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt) 696 { 697 spin_lock_bh(&serv->sv_lock); 698 set_bit(XPT_TEMP, &newxpt->xpt_flags); 699 list_add(&newxpt->xpt_list, &serv->sv_tempsocks); 700 serv->sv_tmpcnt++; 701 if (serv->sv_temptimer.function == NULL) { 702 /* setup timer to age temp transports */ 703 setup_timer(&serv->sv_temptimer, svc_age_temp_xprts, 704 (unsigned long)serv); 705 mod_timer(&serv->sv_temptimer, 706 jiffies + svc_conn_age_period * HZ); 707 } 708 spin_unlock_bh(&serv->sv_lock); 709 svc_xprt_received(newxpt); 710 } 711 712 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt) 713 { 714 struct svc_serv *serv = rqstp->rq_server; 715 int len = 0; 716 717 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) { 718 dprintk("svc_recv: found XPT_CLOSE\n"); 719 svc_delete_xprt(xprt); 720 /* Leave XPT_BUSY set on the dead xprt: */ 721 return 0; 722 } 723 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) { 724 struct svc_xprt *newxpt; 725 /* 726 * We know this module_get will succeed because the 727 * listener holds a reference too 728 */ 729 __module_get(xprt->xpt_class->xcl_owner); 730 svc_check_conn_limits(xprt->xpt_server); 731 newxpt = xprt->xpt_ops->xpo_accept(xprt); 732 if (newxpt) 733 svc_add_new_temp_xprt(serv, newxpt); 734 else 735 module_put(xprt->xpt_class->xcl_owner); 736 } else if (xprt->xpt_ops->xpo_has_wspace(xprt)) { 737 /* XPT_DATA|XPT_DEFERRED case: */ 738 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n", 739 rqstp, rqstp->rq_pool->sp_id, xprt, 740 atomic_read(&xprt->xpt_ref.refcount)); 741 rqstp->rq_deferred = svc_deferred_dequeue(xprt); 742 if (rqstp->rq_deferred) 743 len = svc_deferred_recv(rqstp); 744 else 745 len = xprt->xpt_ops->xpo_recvfrom(rqstp); 746 dprintk("svc: got len=%d\n", len); 747 rqstp->rq_reserved = serv->sv_max_mesg; 748 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved); 749 } 750 /* clear XPT_BUSY: */ 751 svc_xprt_received(xprt); 752 return len; 753 } 754 755 /* 756 * Receive the next request on any transport. This code is carefully 757 * organised not to touch any cachelines in the shared svc_serv 758 * structure, only cachelines in the local svc_pool. 759 */ 760 int svc_recv(struct svc_rqst *rqstp, long timeout) 761 { 762 struct svc_xprt *xprt = NULL; 763 struct svc_serv *serv = rqstp->rq_server; 764 int len, err; 765 766 dprintk("svc: server %p waiting for data (to = %ld)\n", 767 rqstp, timeout); 768 769 if (rqstp->rq_xprt) 770 printk(KERN_ERR 771 "svc_recv: service %p, transport not NULL!\n", 772 rqstp); 773 if (waitqueue_active(&rqstp->rq_wait)) 774 printk(KERN_ERR 775 "svc_recv: service %p, wait queue active!\n", 776 rqstp); 777 778 err = svc_alloc_arg(rqstp); 779 if (err) 780 return err; 781 782 try_to_freeze(); 783 cond_resched(); 784 if (signalled() || kthread_should_stop()) 785 return -EINTR; 786 787 xprt = svc_get_next_xprt(rqstp, timeout); 788 if (IS_ERR(xprt)) 789 return PTR_ERR(xprt); 790 791 len = svc_handle_xprt(rqstp, xprt); 792 793 /* No data, incomplete (TCP) read, or accept() */ 794 if (len <= 0) 795 goto out; 796 797 clear_bit(XPT_OLD, &xprt->xpt_flags); 798 799 rqstp->rq_secure = xprt->xpt_ops->xpo_secure_port(rqstp); 800 rqstp->rq_chandle.defer = svc_defer; 801 802 if (serv->sv_stats) 803 serv->sv_stats->netcnt++; 804 return len; 805 out: 806 rqstp->rq_res.len = 0; 807 svc_xprt_release(rqstp); 808 return -EAGAIN; 809 } 810 EXPORT_SYMBOL_GPL(svc_recv); 811 812 /* 813 * Drop request 814 */ 815 void svc_drop(struct svc_rqst *rqstp) 816 { 817 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt); 818 svc_xprt_release(rqstp); 819 } 820 EXPORT_SYMBOL_GPL(svc_drop); 821 822 /* 823 * Return reply to client. 824 */ 825 int svc_send(struct svc_rqst *rqstp) 826 { 827 struct svc_xprt *xprt; 828 int len; 829 struct xdr_buf *xb; 830 831 xprt = rqstp->rq_xprt; 832 if (!xprt) 833 return -EFAULT; 834 835 /* release the receive skb before sending the reply */ 836 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp); 837 838 /* calculate over-all length */ 839 xb = &rqstp->rq_res; 840 xb->len = xb->head[0].iov_len + 841 xb->page_len + 842 xb->tail[0].iov_len; 843 844 /* Grab mutex to serialize outgoing data. */ 845 mutex_lock(&xprt->xpt_mutex); 846 if (test_bit(XPT_DEAD, &xprt->xpt_flags) 847 || test_bit(XPT_CLOSE, &xprt->xpt_flags)) 848 len = -ENOTCONN; 849 else 850 len = xprt->xpt_ops->xpo_sendto(rqstp); 851 mutex_unlock(&xprt->xpt_mutex); 852 rpc_wake_up(&xprt->xpt_bc_pending); 853 svc_xprt_release(rqstp); 854 855 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN) 856 return 0; 857 return len; 858 } 859 860 /* 861 * Timer function to close old temporary transports, using 862 * a mark-and-sweep algorithm. 863 */ 864 static void svc_age_temp_xprts(unsigned long closure) 865 { 866 struct svc_serv *serv = (struct svc_serv *)closure; 867 struct svc_xprt *xprt; 868 struct list_head *le, *next; 869 870 dprintk("svc_age_temp_xprts\n"); 871 872 if (!spin_trylock_bh(&serv->sv_lock)) { 873 /* busy, try again 1 sec later */ 874 dprintk("svc_age_temp_xprts: busy\n"); 875 mod_timer(&serv->sv_temptimer, jiffies + HZ); 876 return; 877 } 878 879 list_for_each_safe(le, next, &serv->sv_tempsocks) { 880 xprt = list_entry(le, struct svc_xprt, xpt_list); 881 882 /* First time through, just mark it OLD. Second time 883 * through, close it. */ 884 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags)) 885 continue; 886 if (atomic_read(&xprt->xpt_ref.refcount) > 1 || 887 test_bit(XPT_BUSY, &xprt->xpt_flags)) 888 continue; 889 list_del_init(le); 890 set_bit(XPT_CLOSE, &xprt->xpt_flags); 891 set_bit(XPT_DETACHED, &xprt->xpt_flags); 892 dprintk("queuing xprt %p for closing\n", xprt); 893 894 /* a thread will dequeue and close it soon */ 895 svc_xprt_enqueue(xprt); 896 } 897 spin_unlock_bh(&serv->sv_lock); 898 899 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ); 900 } 901 902 static void call_xpt_users(struct svc_xprt *xprt) 903 { 904 struct svc_xpt_user *u; 905 906 spin_lock(&xprt->xpt_lock); 907 while (!list_empty(&xprt->xpt_users)) { 908 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list); 909 list_del(&u->list); 910 u->callback(u); 911 } 912 spin_unlock(&xprt->xpt_lock); 913 } 914 915 /* 916 * Remove a dead transport 917 */ 918 static void svc_delete_xprt(struct svc_xprt *xprt) 919 { 920 struct svc_serv *serv = xprt->xpt_server; 921 struct svc_deferred_req *dr; 922 923 /* Only do this once */ 924 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags)) 925 BUG(); 926 927 dprintk("svc: svc_delete_xprt(%p)\n", xprt); 928 xprt->xpt_ops->xpo_detach(xprt); 929 930 spin_lock_bh(&serv->sv_lock); 931 if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags)) 932 list_del_init(&xprt->xpt_list); 933 WARN_ON_ONCE(!list_empty(&xprt->xpt_ready)); 934 if (test_bit(XPT_TEMP, &xprt->xpt_flags)) 935 serv->sv_tmpcnt--; 936 spin_unlock_bh(&serv->sv_lock); 937 938 while ((dr = svc_deferred_dequeue(xprt)) != NULL) 939 kfree(dr); 940 941 call_xpt_users(xprt); 942 svc_xprt_put(xprt); 943 } 944 945 void svc_close_xprt(struct svc_xprt *xprt) 946 { 947 set_bit(XPT_CLOSE, &xprt->xpt_flags); 948 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) 949 /* someone else will have to effect the close */ 950 return; 951 /* 952 * We expect svc_close_xprt() to work even when no threads are 953 * running (e.g., while configuring the server before starting 954 * any threads), so if the transport isn't busy, we delete 955 * it ourself: 956 */ 957 svc_delete_xprt(xprt); 958 } 959 EXPORT_SYMBOL_GPL(svc_close_xprt); 960 961 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net) 962 { 963 struct svc_xprt *xprt; 964 int ret = 0; 965 966 spin_lock(&serv->sv_lock); 967 list_for_each_entry(xprt, xprt_list, xpt_list) { 968 if (xprt->xpt_net != net) 969 continue; 970 ret++; 971 set_bit(XPT_CLOSE, &xprt->xpt_flags); 972 svc_xprt_enqueue(xprt); 973 } 974 spin_unlock(&serv->sv_lock); 975 return ret; 976 } 977 978 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net) 979 { 980 struct svc_pool *pool; 981 struct svc_xprt *xprt; 982 struct svc_xprt *tmp; 983 int i; 984 985 for (i = 0; i < serv->sv_nrpools; i++) { 986 pool = &serv->sv_pools[i]; 987 988 spin_lock_bh(&pool->sp_lock); 989 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) { 990 if (xprt->xpt_net != net) 991 continue; 992 list_del_init(&xprt->xpt_ready); 993 spin_unlock_bh(&pool->sp_lock); 994 return xprt; 995 } 996 spin_unlock_bh(&pool->sp_lock); 997 } 998 return NULL; 999 } 1000 1001 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net) 1002 { 1003 struct svc_xprt *xprt; 1004 1005 while ((xprt = svc_dequeue_net(serv, net))) { 1006 set_bit(XPT_CLOSE, &xprt->xpt_flags); 1007 svc_delete_xprt(xprt); 1008 } 1009 } 1010 1011 /* 1012 * Server threads may still be running (especially in the case where the 1013 * service is still running in other network namespaces). 1014 * 1015 * So we shut down sockets the same way we would on a running server, by 1016 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do 1017 * the close. In the case there are no such other threads, 1018 * threads running, svc_clean_up_xprts() does a simple version of a 1019 * server's main event loop, and in the case where there are other 1020 * threads, we may need to wait a little while and then check again to 1021 * see if they're done. 1022 */ 1023 void svc_close_net(struct svc_serv *serv, struct net *net) 1024 { 1025 int delay = 0; 1026 1027 while (svc_close_list(serv, &serv->sv_permsocks, net) + 1028 svc_close_list(serv, &serv->sv_tempsocks, net)) { 1029 1030 svc_clean_up_xprts(serv, net); 1031 msleep(delay++); 1032 } 1033 } 1034 1035 /* 1036 * Handle defer and revisit of requests 1037 */ 1038 1039 static void svc_revisit(struct cache_deferred_req *dreq, int too_many) 1040 { 1041 struct svc_deferred_req *dr = 1042 container_of(dreq, struct svc_deferred_req, handle); 1043 struct svc_xprt *xprt = dr->xprt; 1044 1045 spin_lock(&xprt->xpt_lock); 1046 set_bit(XPT_DEFERRED, &xprt->xpt_flags); 1047 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) { 1048 spin_unlock(&xprt->xpt_lock); 1049 dprintk("revisit canceled\n"); 1050 svc_xprt_put(xprt); 1051 kfree(dr); 1052 return; 1053 } 1054 dprintk("revisit queued\n"); 1055 dr->xprt = NULL; 1056 list_add(&dr->handle.recent, &xprt->xpt_deferred); 1057 spin_unlock(&xprt->xpt_lock); 1058 svc_xprt_enqueue(xprt); 1059 svc_xprt_put(xprt); 1060 } 1061 1062 /* 1063 * Save the request off for later processing. The request buffer looks 1064 * like this: 1065 * 1066 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail> 1067 * 1068 * This code can only handle requests that consist of an xprt-header 1069 * and rpc-header. 1070 */ 1071 static struct cache_deferred_req *svc_defer(struct cache_req *req) 1072 { 1073 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle); 1074 struct svc_deferred_req *dr; 1075 1076 if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral) 1077 return NULL; /* if more than a page, give up FIXME */ 1078 if (rqstp->rq_deferred) { 1079 dr = rqstp->rq_deferred; 1080 rqstp->rq_deferred = NULL; 1081 } else { 1082 size_t skip; 1083 size_t size; 1084 /* FIXME maybe discard if size too large */ 1085 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len; 1086 dr = kmalloc(size, GFP_KERNEL); 1087 if (dr == NULL) 1088 return NULL; 1089 1090 dr->handle.owner = rqstp->rq_server; 1091 dr->prot = rqstp->rq_prot; 1092 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen); 1093 dr->addrlen = rqstp->rq_addrlen; 1094 dr->daddr = rqstp->rq_daddr; 1095 dr->argslen = rqstp->rq_arg.len >> 2; 1096 dr->xprt_hlen = rqstp->rq_xprt_hlen; 1097 1098 /* back up head to the start of the buffer and copy */ 1099 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len; 1100 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip, 1101 dr->argslen << 2); 1102 } 1103 svc_xprt_get(rqstp->rq_xprt); 1104 dr->xprt = rqstp->rq_xprt; 1105 rqstp->rq_dropme = true; 1106 1107 dr->handle.revisit = svc_revisit; 1108 return &dr->handle; 1109 } 1110 1111 /* 1112 * recv data from a deferred request into an active one 1113 */ 1114 static int svc_deferred_recv(struct svc_rqst *rqstp) 1115 { 1116 struct svc_deferred_req *dr = rqstp->rq_deferred; 1117 1118 /* setup iov_base past transport header */ 1119 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2); 1120 /* The iov_len does not include the transport header bytes */ 1121 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen; 1122 rqstp->rq_arg.page_len = 0; 1123 /* The rq_arg.len includes the transport header bytes */ 1124 rqstp->rq_arg.len = dr->argslen<<2; 1125 rqstp->rq_prot = dr->prot; 1126 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen); 1127 rqstp->rq_addrlen = dr->addrlen; 1128 /* Save off transport header len in case we get deferred again */ 1129 rqstp->rq_xprt_hlen = dr->xprt_hlen; 1130 rqstp->rq_daddr = dr->daddr; 1131 rqstp->rq_respages = rqstp->rq_pages; 1132 return (dr->argslen<<2) - dr->xprt_hlen; 1133 } 1134 1135 1136 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt) 1137 { 1138 struct svc_deferred_req *dr = NULL; 1139 1140 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags)) 1141 return NULL; 1142 spin_lock(&xprt->xpt_lock); 1143 if (!list_empty(&xprt->xpt_deferred)) { 1144 dr = list_entry(xprt->xpt_deferred.next, 1145 struct svc_deferred_req, 1146 handle.recent); 1147 list_del_init(&dr->handle.recent); 1148 } else 1149 clear_bit(XPT_DEFERRED, &xprt->xpt_flags); 1150 spin_unlock(&xprt->xpt_lock); 1151 return dr; 1152 } 1153 1154 /** 1155 * svc_find_xprt - find an RPC transport instance 1156 * @serv: pointer to svc_serv to search 1157 * @xcl_name: C string containing transport's class name 1158 * @net: owner net pointer 1159 * @af: Address family of transport's local address 1160 * @port: transport's IP port number 1161 * 1162 * Return the transport instance pointer for the endpoint accepting 1163 * connections/peer traffic from the specified transport class, 1164 * address family and port. 1165 * 1166 * Specifying 0 for the address family or port is effectively a 1167 * wild-card, and will result in matching the first transport in the 1168 * service's list that has a matching class name. 1169 */ 1170 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name, 1171 struct net *net, const sa_family_t af, 1172 const unsigned short port) 1173 { 1174 struct svc_xprt *xprt; 1175 struct svc_xprt *found = NULL; 1176 1177 /* Sanity check the args */ 1178 if (serv == NULL || xcl_name == NULL) 1179 return found; 1180 1181 spin_lock_bh(&serv->sv_lock); 1182 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { 1183 if (xprt->xpt_net != net) 1184 continue; 1185 if (strcmp(xprt->xpt_class->xcl_name, xcl_name)) 1186 continue; 1187 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family) 1188 continue; 1189 if (port != 0 && port != svc_xprt_local_port(xprt)) 1190 continue; 1191 found = xprt; 1192 svc_xprt_get(xprt); 1193 break; 1194 } 1195 spin_unlock_bh(&serv->sv_lock); 1196 return found; 1197 } 1198 EXPORT_SYMBOL_GPL(svc_find_xprt); 1199 1200 static int svc_one_xprt_name(const struct svc_xprt *xprt, 1201 char *pos, int remaining) 1202 { 1203 int len; 1204 1205 len = snprintf(pos, remaining, "%s %u\n", 1206 xprt->xpt_class->xcl_name, 1207 svc_xprt_local_port(xprt)); 1208 if (len >= remaining) 1209 return -ENAMETOOLONG; 1210 return len; 1211 } 1212 1213 /** 1214 * svc_xprt_names - format a buffer with a list of transport names 1215 * @serv: pointer to an RPC service 1216 * @buf: pointer to a buffer to be filled in 1217 * @buflen: length of buffer to be filled in 1218 * 1219 * Fills in @buf with a string containing a list of transport names, 1220 * each name terminated with '\n'. 1221 * 1222 * Returns positive length of the filled-in string on success; otherwise 1223 * a negative errno value is returned if an error occurs. 1224 */ 1225 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen) 1226 { 1227 struct svc_xprt *xprt; 1228 int len, totlen; 1229 char *pos; 1230 1231 /* Sanity check args */ 1232 if (!serv) 1233 return 0; 1234 1235 spin_lock_bh(&serv->sv_lock); 1236 1237 pos = buf; 1238 totlen = 0; 1239 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { 1240 len = svc_one_xprt_name(xprt, pos, buflen - totlen); 1241 if (len < 0) { 1242 *buf = '\0'; 1243 totlen = len; 1244 } 1245 if (len <= 0) 1246 break; 1247 1248 pos += len; 1249 totlen += len; 1250 } 1251 1252 spin_unlock_bh(&serv->sv_lock); 1253 return totlen; 1254 } 1255 EXPORT_SYMBOL_GPL(svc_xprt_names); 1256 1257 1258 /*----------------------------------------------------------------------------*/ 1259 1260 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos) 1261 { 1262 unsigned int pidx = (unsigned int)*pos; 1263 struct svc_serv *serv = m->private; 1264 1265 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx); 1266 1267 if (!pidx) 1268 return SEQ_START_TOKEN; 1269 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]); 1270 } 1271 1272 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos) 1273 { 1274 struct svc_pool *pool = p; 1275 struct svc_serv *serv = m->private; 1276 1277 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos); 1278 1279 if (p == SEQ_START_TOKEN) { 1280 pool = &serv->sv_pools[0]; 1281 } else { 1282 unsigned int pidx = (pool - &serv->sv_pools[0]); 1283 if (pidx < serv->sv_nrpools-1) 1284 pool = &serv->sv_pools[pidx+1]; 1285 else 1286 pool = NULL; 1287 } 1288 ++*pos; 1289 return pool; 1290 } 1291 1292 static void svc_pool_stats_stop(struct seq_file *m, void *p) 1293 { 1294 } 1295 1296 static int svc_pool_stats_show(struct seq_file *m, void *p) 1297 { 1298 struct svc_pool *pool = p; 1299 1300 if (p == SEQ_START_TOKEN) { 1301 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n"); 1302 return 0; 1303 } 1304 1305 seq_printf(m, "%u %lu %lu %lu %lu\n", 1306 pool->sp_id, 1307 pool->sp_stats.packets, 1308 pool->sp_stats.sockets_queued, 1309 pool->sp_stats.threads_woken, 1310 pool->sp_stats.threads_timedout); 1311 1312 return 0; 1313 } 1314 1315 static const struct seq_operations svc_pool_stats_seq_ops = { 1316 .start = svc_pool_stats_start, 1317 .next = svc_pool_stats_next, 1318 .stop = svc_pool_stats_stop, 1319 .show = svc_pool_stats_show, 1320 }; 1321 1322 int svc_pool_stats_open(struct svc_serv *serv, struct file *file) 1323 { 1324 int err; 1325 1326 err = seq_open(file, &svc_pool_stats_seq_ops); 1327 if (!err) 1328 ((struct seq_file *) file->private_data)->private = serv; 1329 return err; 1330 } 1331 EXPORT_SYMBOL(svc_pool_stats_open); 1332 1333 /*----------------------------------------------------------------------------*/ 1334