1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/net/sunrpc/svc_xprt.c 4 * 5 * Author: Tom Tucker <tom@opengridcomputing.com> 6 */ 7 8 #include <linux/sched.h> 9 #include <linux/sched/mm.h> 10 #include <linux/errno.h> 11 #include <linux/freezer.h> 12 #include <linux/kthread.h> 13 #include <linux/slab.h> 14 #include <net/sock.h> 15 #include <linux/sunrpc/addr.h> 16 #include <linux/sunrpc/stats.h> 17 #include <linux/sunrpc/svc_xprt.h> 18 #include <linux/sunrpc/svcsock.h> 19 #include <linux/sunrpc/xprt.h> 20 #include <linux/module.h> 21 #include <linux/netdevice.h> 22 #include <trace/events/sunrpc.h> 23 24 #define RPCDBG_FACILITY RPCDBG_SVCXPRT 25 26 static unsigned int svc_rpc_per_connection_limit __read_mostly; 27 module_param(svc_rpc_per_connection_limit, uint, 0644); 28 29 30 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt); 31 static int svc_deferred_recv(struct svc_rqst *rqstp); 32 static struct cache_deferred_req *svc_defer(struct cache_req *req); 33 static void svc_age_temp_xprts(struct timer_list *t); 34 static void svc_delete_xprt(struct svc_xprt *xprt); 35 36 /* apparently the "standard" is that clients close 37 * idle connections after 5 minutes, servers after 38 * 6 minutes 39 * http://nfsv4bat.org/Documents/ConnectAThon/1996/nfstcp.pdf 40 */ 41 static int svc_conn_age_period = 6*60; 42 43 /* List of registered transport classes */ 44 static DEFINE_SPINLOCK(svc_xprt_class_lock); 45 static LIST_HEAD(svc_xprt_class_list); 46 47 /* SMP locking strategy: 48 * 49 * svc_pool->sp_lock protects most of the fields of that pool. 50 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt. 51 * when both need to be taken (rare), svc_serv->sv_lock is first. 52 * The "service mutex" protects svc_serv->sv_nrthread. 53 * svc_sock->sk_lock protects the svc_sock->sk_deferred list 54 * and the ->sk_info_authunix cache. 55 * 56 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being 57 * enqueued multiply. During normal transport processing this bit 58 * is set by svc_xprt_enqueue and cleared by svc_xprt_received. 59 * Providers should not manipulate this bit directly. 60 * 61 * Some flags can be set to certain values at any time 62 * providing that certain rules are followed: 63 * 64 * XPT_CONN, XPT_DATA: 65 * - Can be set or cleared at any time. 66 * - After a set, svc_xprt_enqueue must be called to enqueue 67 * the transport for processing. 68 * - After a clear, the transport must be read/accepted. 69 * If this succeeds, it must be set again. 70 * XPT_CLOSE: 71 * - Can set at any time. It is never cleared. 72 * XPT_DEAD: 73 * - Can only be set while XPT_BUSY is held which ensures 74 * that no other thread will be using the transport or will 75 * try to set XPT_DEAD. 76 */ 77 78 /** 79 * svc_reg_xprt_class - Register a server-side RPC transport class 80 * @xcl: New transport class to be registered 81 * 82 * Returns zero on success; otherwise a negative errno is returned. 83 */ 84 int svc_reg_xprt_class(struct svc_xprt_class *xcl) 85 { 86 struct svc_xprt_class *cl; 87 int res = -EEXIST; 88 89 INIT_LIST_HEAD(&xcl->xcl_list); 90 spin_lock(&svc_xprt_class_lock); 91 /* Make sure there isn't already a class with the same name */ 92 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) { 93 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0) 94 goto out; 95 } 96 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list); 97 res = 0; 98 out: 99 spin_unlock(&svc_xprt_class_lock); 100 return res; 101 } 102 EXPORT_SYMBOL_GPL(svc_reg_xprt_class); 103 104 /** 105 * svc_unreg_xprt_class - Unregister a server-side RPC transport class 106 * @xcl: Transport class to be unregistered 107 * 108 */ 109 void svc_unreg_xprt_class(struct svc_xprt_class *xcl) 110 { 111 spin_lock(&svc_xprt_class_lock); 112 list_del_init(&xcl->xcl_list); 113 spin_unlock(&svc_xprt_class_lock); 114 } 115 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class); 116 117 /** 118 * svc_print_xprts - Format the transport list for printing 119 * @buf: target buffer for formatted address 120 * @maxlen: length of target buffer 121 * 122 * Fills in @buf with a string containing a list of transport names, each name 123 * terminated with '\n'. If the buffer is too small, some entries may be 124 * missing, but it is guaranteed that all lines in the output buffer are 125 * complete. 126 * 127 * Returns positive length of the filled-in string. 128 */ 129 int svc_print_xprts(char *buf, int maxlen) 130 { 131 struct svc_xprt_class *xcl; 132 char tmpstr[80]; 133 int len = 0; 134 buf[0] = '\0'; 135 136 spin_lock(&svc_xprt_class_lock); 137 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { 138 int slen; 139 140 slen = snprintf(tmpstr, sizeof(tmpstr), "%s %d\n", 141 xcl->xcl_name, xcl->xcl_max_payload); 142 if (slen >= sizeof(tmpstr) || len + slen >= maxlen) 143 break; 144 len += slen; 145 strcat(buf, tmpstr); 146 } 147 spin_unlock(&svc_xprt_class_lock); 148 149 return len; 150 } 151 152 /** 153 * svc_xprt_deferred_close - Close a transport 154 * @xprt: transport instance 155 * 156 * Used in contexts that need to defer the work of shutting down 157 * the transport to an nfsd thread. 158 */ 159 void svc_xprt_deferred_close(struct svc_xprt *xprt) 160 { 161 if (!test_and_set_bit(XPT_CLOSE, &xprt->xpt_flags)) 162 svc_xprt_enqueue(xprt); 163 } 164 EXPORT_SYMBOL_GPL(svc_xprt_deferred_close); 165 166 static void svc_xprt_free(struct kref *kref) 167 { 168 struct svc_xprt *xprt = 169 container_of(kref, struct svc_xprt, xpt_ref); 170 struct module *owner = xprt->xpt_class->xcl_owner; 171 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags)) 172 svcauth_unix_info_release(xprt); 173 put_cred(xprt->xpt_cred); 174 put_net_track(xprt->xpt_net, &xprt->ns_tracker); 175 /* See comment on corresponding get in xs_setup_bc_tcp(): */ 176 if (xprt->xpt_bc_xprt) 177 xprt_put(xprt->xpt_bc_xprt); 178 if (xprt->xpt_bc_xps) 179 xprt_switch_put(xprt->xpt_bc_xps); 180 trace_svc_xprt_free(xprt); 181 xprt->xpt_ops->xpo_free(xprt); 182 module_put(owner); 183 } 184 185 void svc_xprt_put(struct svc_xprt *xprt) 186 { 187 kref_put(&xprt->xpt_ref, svc_xprt_free); 188 } 189 EXPORT_SYMBOL_GPL(svc_xprt_put); 190 191 /* 192 * Called by transport drivers to initialize the transport independent 193 * portion of the transport instance. 194 */ 195 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl, 196 struct svc_xprt *xprt, struct svc_serv *serv) 197 { 198 memset(xprt, 0, sizeof(*xprt)); 199 xprt->xpt_class = xcl; 200 xprt->xpt_ops = xcl->xcl_ops; 201 kref_init(&xprt->xpt_ref); 202 xprt->xpt_server = serv; 203 INIT_LIST_HEAD(&xprt->xpt_list); 204 INIT_LIST_HEAD(&xprt->xpt_ready); 205 INIT_LIST_HEAD(&xprt->xpt_deferred); 206 INIT_LIST_HEAD(&xprt->xpt_users); 207 mutex_init(&xprt->xpt_mutex); 208 spin_lock_init(&xprt->xpt_lock); 209 set_bit(XPT_BUSY, &xprt->xpt_flags); 210 xprt->xpt_net = get_net_track(net, &xprt->ns_tracker, GFP_ATOMIC); 211 strcpy(xprt->xpt_remotebuf, "uninitialized"); 212 } 213 EXPORT_SYMBOL_GPL(svc_xprt_init); 214 215 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl, 216 struct svc_serv *serv, 217 struct net *net, 218 const int family, 219 const unsigned short port, 220 int flags) 221 { 222 struct sockaddr_in sin = { 223 .sin_family = AF_INET, 224 .sin_addr.s_addr = htonl(INADDR_ANY), 225 .sin_port = htons(port), 226 }; 227 #if IS_ENABLED(CONFIG_IPV6) 228 struct sockaddr_in6 sin6 = { 229 .sin6_family = AF_INET6, 230 .sin6_addr = IN6ADDR_ANY_INIT, 231 .sin6_port = htons(port), 232 }; 233 #endif 234 struct svc_xprt *xprt; 235 struct sockaddr *sap; 236 size_t len; 237 238 switch (family) { 239 case PF_INET: 240 sap = (struct sockaddr *)&sin; 241 len = sizeof(sin); 242 break; 243 #if IS_ENABLED(CONFIG_IPV6) 244 case PF_INET6: 245 sap = (struct sockaddr *)&sin6; 246 len = sizeof(sin6); 247 break; 248 #endif 249 default: 250 return ERR_PTR(-EAFNOSUPPORT); 251 } 252 253 xprt = xcl->xcl_ops->xpo_create(serv, net, sap, len, flags); 254 if (IS_ERR(xprt)) 255 trace_svc_xprt_create_err(serv->sv_program->pg_name, 256 xcl->xcl_name, sap, len, xprt); 257 return xprt; 258 } 259 260 /** 261 * svc_xprt_received - start next receiver thread 262 * @xprt: controlling transport 263 * 264 * The caller must hold the XPT_BUSY bit and must 265 * not thereafter touch transport data. 266 * 267 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or 268 * insufficient) data. 269 */ 270 void svc_xprt_received(struct svc_xprt *xprt) 271 { 272 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) { 273 WARN_ONCE(1, "xprt=0x%p already busy!", xprt); 274 return; 275 } 276 277 /* As soon as we clear busy, the xprt could be closed and 278 * 'put', so we need a reference to call svc_xprt_enqueue with: 279 */ 280 svc_xprt_get(xprt); 281 smp_mb__before_atomic(); 282 clear_bit(XPT_BUSY, &xprt->xpt_flags); 283 svc_xprt_enqueue(xprt); 284 svc_xprt_put(xprt); 285 } 286 EXPORT_SYMBOL_GPL(svc_xprt_received); 287 288 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new) 289 { 290 clear_bit(XPT_TEMP, &new->xpt_flags); 291 spin_lock_bh(&serv->sv_lock); 292 list_add(&new->xpt_list, &serv->sv_permsocks); 293 spin_unlock_bh(&serv->sv_lock); 294 svc_xprt_received(new); 295 } 296 297 static int _svc_xprt_create(struct svc_serv *serv, const char *xprt_name, 298 struct net *net, const int family, 299 const unsigned short port, int flags, 300 const struct cred *cred) 301 { 302 struct svc_xprt_class *xcl; 303 304 spin_lock(&svc_xprt_class_lock); 305 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { 306 struct svc_xprt *newxprt; 307 unsigned short newport; 308 309 if (strcmp(xprt_name, xcl->xcl_name)) 310 continue; 311 312 if (!try_module_get(xcl->xcl_owner)) 313 goto err; 314 315 spin_unlock(&svc_xprt_class_lock); 316 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags); 317 if (IS_ERR(newxprt)) { 318 module_put(xcl->xcl_owner); 319 return PTR_ERR(newxprt); 320 } 321 newxprt->xpt_cred = get_cred(cred); 322 svc_add_new_perm_xprt(serv, newxprt); 323 newport = svc_xprt_local_port(newxprt); 324 return newport; 325 } 326 err: 327 spin_unlock(&svc_xprt_class_lock); 328 /* This errno is exposed to user space. Provide a reasonable 329 * perror msg for a bad transport. */ 330 return -EPROTONOSUPPORT; 331 } 332 333 /** 334 * svc_xprt_create - Add a new listener to @serv 335 * @serv: target RPC service 336 * @xprt_name: transport class name 337 * @net: network namespace 338 * @family: network address family 339 * @port: listener port 340 * @flags: SVC_SOCK flags 341 * @cred: credential to bind to this transport 342 * 343 * Return values: 344 * %0: New listener added successfully 345 * %-EPROTONOSUPPORT: Requested transport type not supported 346 */ 347 int svc_xprt_create(struct svc_serv *serv, const char *xprt_name, 348 struct net *net, const int family, 349 const unsigned short port, int flags, 350 const struct cred *cred) 351 { 352 int err; 353 354 err = _svc_xprt_create(serv, xprt_name, net, family, port, flags, cred); 355 if (err == -EPROTONOSUPPORT) { 356 request_module("svc%s", xprt_name); 357 err = _svc_xprt_create(serv, xprt_name, net, family, port, flags, cred); 358 } 359 return err; 360 } 361 EXPORT_SYMBOL_GPL(svc_xprt_create); 362 363 /* 364 * Copy the local and remote xprt addresses to the rqstp structure 365 */ 366 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt) 367 { 368 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen); 369 rqstp->rq_addrlen = xprt->xpt_remotelen; 370 371 /* 372 * Destination address in request is needed for binding the 373 * source address in RPC replies/callbacks later. 374 */ 375 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen); 376 rqstp->rq_daddrlen = xprt->xpt_locallen; 377 } 378 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs); 379 380 /** 381 * svc_print_addr - Format rq_addr field for printing 382 * @rqstp: svc_rqst struct containing address to print 383 * @buf: target buffer for formatted address 384 * @len: length of target buffer 385 * 386 */ 387 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len) 388 { 389 return __svc_print_addr(svc_addr(rqstp), buf, len); 390 } 391 EXPORT_SYMBOL_GPL(svc_print_addr); 392 393 static bool svc_xprt_slots_in_range(struct svc_xprt *xprt) 394 { 395 unsigned int limit = svc_rpc_per_connection_limit; 396 int nrqsts = atomic_read(&xprt->xpt_nr_rqsts); 397 398 return limit == 0 || (nrqsts >= 0 && nrqsts < limit); 399 } 400 401 static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt) 402 { 403 if (!test_bit(RQ_DATA, &rqstp->rq_flags)) { 404 if (!svc_xprt_slots_in_range(xprt)) 405 return false; 406 atomic_inc(&xprt->xpt_nr_rqsts); 407 set_bit(RQ_DATA, &rqstp->rq_flags); 408 } 409 return true; 410 } 411 412 static void svc_xprt_release_slot(struct svc_rqst *rqstp) 413 { 414 struct svc_xprt *xprt = rqstp->rq_xprt; 415 if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) { 416 atomic_dec(&xprt->xpt_nr_rqsts); 417 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */ 418 svc_xprt_enqueue(xprt); 419 } 420 } 421 422 static bool svc_xprt_ready(struct svc_xprt *xprt) 423 { 424 unsigned long xpt_flags; 425 426 /* 427 * If another cpu has recently updated xpt_flags, 428 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to 429 * know about it; otherwise it's possible that both that cpu and 430 * this one could call svc_xprt_enqueue() without either 431 * svc_xprt_enqueue() recognizing that the conditions below 432 * are satisfied, and we could stall indefinitely: 433 */ 434 smp_rmb(); 435 xpt_flags = READ_ONCE(xprt->xpt_flags); 436 437 if (xpt_flags & BIT(XPT_BUSY)) 438 return false; 439 if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE) | BIT(XPT_HANDSHAKE))) 440 return true; 441 if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) { 442 if (xprt->xpt_ops->xpo_has_wspace(xprt) && 443 svc_xprt_slots_in_range(xprt)) 444 return true; 445 trace_svc_xprt_no_write_space(xprt); 446 return false; 447 } 448 return false; 449 } 450 451 /** 452 * svc_xprt_enqueue - Queue a transport on an idle nfsd thread 453 * @xprt: transport with data pending 454 * 455 */ 456 void svc_xprt_enqueue(struct svc_xprt *xprt) 457 { 458 struct svc_pool *pool; 459 struct svc_rqst *rqstp = NULL; 460 461 if (!svc_xprt_ready(xprt)) 462 return; 463 464 /* Mark transport as busy. It will remain in this state until 465 * the provider calls svc_xprt_received. We update XPT_BUSY 466 * atomically because it also guards against trying to enqueue 467 * the transport twice. 468 */ 469 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) 470 return; 471 472 pool = svc_pool_for_cpu(xprt->xpt_server); 473 474 percpu_counter_inc(&pool->sp_sockets_queued); 475 spin_lock_bh(&pool->sp_lock); 476 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets); 477 spin_unlock_bh(&pool->sp_lock); 478 479 /* find a thread for this xprt */ 480 rcu_read_lock(); 481 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) { 482 if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags)) 483 continue; 484 percpu_counter_inc(&pool->sp_threads_woken); 485 rqstp->rq_qtime = ktime_get(); 486 wake_up_process(rqstp->rq_task); 487 goto out_unlock; 488 } 489 set_bit(SP_CONGESTED, &pool->sp_flags); 490 rqstp = NULL; 491 out_unlock: 492 rcu_read_unlock(); 493 trace_svc_xprt_enqueue(xprt, rqstp); 494 } 495 EXPORT_SYMBOL_GPL(svc_xprt_enqueue); 496 497 /* 498 * Dequeue the first transport, if there is one. 499 */ 500 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool) 501 { 502 struct svc_xprt *xprt = NULL; 503 504 if (list_empty(&pool->sp_sockets)) 505 goto out; 506 507 spin_lock_bh(&pool->sp_lock); 508 if (likely(!list_empty(&pool->sp_sockets))) { 509 xprt = list_first_entry(&pool->sp_sockets, 510 struct svc_xprt, xpt_ready); 511 list_del_init(&xprt->xpt_ready); 512 svc_xprt_get(xprt); 513 } 514 spin_unlock_bh(&pool->sp_lock); 515 out: 516 return xprt; 517 } 518 519 /** 520 * svc_reserve - change the space reserved for the reply to a request. 521 * @rqstp: The request in question 522 * @space: new max space to reserve 523 * 524 * Each request reserves some space on the output queue of the transport 525 * to make sure the reply fits. This function reduces that reserved 526 * space to be the amount of space used already, plus @space. 527 * 528 */ 529 void svc_reserve(struct svc_rqst *rqstp, int space) 530 { 531 struct svc_xprt *xprt = rqstp->rq_xprt; 532 533 space += rqstp->rq_res.head[0].iov_len; 534 535 if (xprt && space < rqstp->rq_reserved) { 536 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved); 537 rqstp->rq_reserved = space; 538 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */ 539 svc_xprt_enqueue(xprt); 540 } 541 } 542 EXPORT_SYMBOL_GPL(svc_reserve); 543 544 static void free_deferred(struct svc_xprt *xprt, struct svc_deferred_req *dr) 545 { 546 if (!dr) 547 return; 548 549 xprt->xpt_ops->xpo_release_ctxt(xprt, dr->xprt_ctxt); 550 kfree(dr); 551 } 552 553 static void svc_xprt_release(struct svc_rqst *rqstp) 554 { 555 struct svc_xprt *xprt = rqstp->rq_xprt; 556 557 xprt->xpt_ops->xpo_release_ctxt(xprt, rqstp->rq_xprt_ctxt); 558 rqstp->rq_xprt_ctxt = NULL; 559 560 free_deferred(xprt, rqstp->rq_deferred); 561 rqstp->rq_deferred = NULL; 562 563 svc_rqst_release_pages(rqstp); 564 rqstp->rq_res.page_len = 0; 565 rqstp->rq_res.page_base = 0; 566 567 /* Reset response buffer and release 568 * the reservation. 569 * But first, check that enough space was reserved 570 * for the reply, otherwise we have a bug! 571 */ 572 if ((rqstp->rq_res.len) > rqstp->rq_reserved) 573 printk(KERN_ERR "RPC request reserved %d but used %d\n", 574 rqstp->rq_reserved, 575 rqstp->rq_res.len); 576 577 rqstp->rq_res.head[0].iov_len = 0; 578 svc_reserve(rqstp, 0); 579 svc_xprt_release_slot(rqstp); 580 rqstp->rq_xprt = NULL; 581 svc_xprt_put(xprt); 582 } 583 584 /* 585 * Some svc_serv's will have occasional work to do, even when a xprt is not 586 * waiting to be serviced. This function is there to "kick" a task in one of 587 * those services so that it can wake up and do that work. Note that we only 588 * bother with pool 0 as we don't need to wake up more than one thread for 589 * this purpose. 590 */ 591 void svc_wake_up(struct svc_serv *serv) 592 { 593 struct svc_rqst *rqstp; 594 struct svc_pool *pool; 595 596 pool = &serv->sv_pools[0]; 597 598 rcu_read_lock(); 599 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) { 600 /* skip any that aren't queued */ 601 if (test_bit(RQ_BUSY, &rqstp->rq_flags)) 602 continue; 603 rcu_read_unlock(); 604 wake_up_process(rqstp->rq_task); 605 trace_svc_wake_up(rqstp->rq_task->pid); 606 return; 607 } 608 rcu_read_unlock(); 609 610 /* No free entries available */ 611 set_bit(SP_TASK_PENDING, &pool->sp_flags); 612 smp_wmb(); 613 trace_svc_wake_up(0); 614 } 615 EXPORT_SYMBOL_GPL(svc_wake_up); 616 617 int svc_port_is_privileged(struct sockaddr *sin) 618 { 619 switch (sin->sa_family) { 620 case AF_INET: 621 return ntohs(((struct sockaddr_in *)sin)->sin_port) 622 < PROT_SOCK; 623 case AF_INET6: 624 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port) 625 < PROT_SOCK; 626 default: 627 return 0; 628 } 629 } 630 631 /* 632 * Make sure that we don't have too many active connections. If we have, 633 * something must be dropped. It's not clear what will happen if we allow 634 * "too many" connections, but when dealing with network-facing software, 635 * we have to code defensively. Here we do that by imposing hard limits. 636 * 637 * There's no point in trying to do random drop here for DoS 638 * prevention. The NFS clients does 1 reconnect in 15 seconds. An 639 * attacker can easily beat that. 640 * 641 * The only somewhat efficient mechanism would be if drop old 642 * connections from the same IP first. But right now we don't even 643 * record the client IP in svc_sock. 644 * 645 * single-threaded services that expect a lot of clients will probably 646 * need to set sv_maxconn to override the default value which is based 647 * on the number of threads 648 */ 649 static void svc_check_conn_limits(struct svc_serv *serv) 650 { 651 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn : 652 (serv->sv_nrthreads+3) * 20; 653 654 if (serv->sv_tmpcnt > limit) { 655 struct svc_xprt *xprt = NULL; 656 spin_lock_bh(&serv->sv_lock); 657 if (!list_empty(&serv->sv_tempsocks)) { 658 /* Try to help the admin */ 659 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n", 660 serv->sv_name, serv->sv_maxconn ? 661 "max number of connections" : 662 "number of threads"); 663 /* 664 * Always select the oldest connection. It's not fair, 665 * but so is life 666 */ 667 xprt = list_entry(serv->sv_tempsocks.prev, 668 struct svc_xprt, 669 xpt_list); 670 set_bit(XPT_CLOSE, &xprt->xpt_flags); 671 svc_xprt_get(xprt); 672 } 673 spin_unlock_bh(&serv->sv_lock); 674 675 if (xprt) { 676 svc_xprt_enqueue(xprt); 677 svc_xprt_put(xprt); 678 } 679 } 680 } 681 682 static int svc_alloc_arg(struct svc_rqst *rqstp) 683 { 684 struct svc_serv *serv = rqstp->rq_server; 685 struct xdr_buf *arg = &rqstp->rq_arg; 686 unsigned long pages, filled, ret; 687 688 pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT; 689 if (pages > RPCSVC_MAXPAGES) { 690 pr_warn_once("svc: warning: pages=%lu > RPCSVC_MAXPAGES=%lu\n", 691 pages, RPCSVC_MAXPAGES); 692 /* use as many pages as possible */ 693 pages = RPCSVC_MAXPAGES; 694 } 695 696 for (filled = 0; filled < pages; filled = ret) { 697 ret = alloc_pages_bulk_array_node(GFP_KERNEL, 698 rqstp->rq_pool->sp_id, 699 pages, rqstp->rq_pages); 700 if (ret > filled) 701 /* Made progress, don't sleep yet */ 702 continue; 703 704 set_current_state(TASK_INTERRUPTIBLE); 705 if (signalled() || kthread_should_stop()) { 706 set_current_state(TASK_RUNNING); 707 return -EINTR; 708 } 709 trace_svc_alloc_arg_err(pages, ret); 710 memalloc_retry_wait(GFP_KERNEL); 711 } 712 rqstp->rq_page_end = &rqstp->rq_pages[pages]; 713 rqstp->rq_pages[pages] = NULL; /* this might be seen in nfsd_splice_actor() */ 714 715 /* Make arg->head point to first page and arg->pages point to rest */ 716 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]); 717 arg->head[0].iov_len = PAGE_SIZE; 718 arg->pages = rqstp->rq_pages + 1; 719 arg->page_base = 0; 720 /* save at least one page for response */ 721 arg->page_len = (pages-2)*PAGE_SIZE; 722 arg->len = (pages-1)*PAGE_SIZE; 723 arg->tail[0].iov_len = 0; 724 725 rqstp->rq_xid = xdr_zero; 726 return 0; 727 } 728 729 static bool 730 rqst_should_sleep(struct svc_rqst *rqstp) 731 { 732 struct svc_pool *pool = rqstp->rq_pool; 733 734 /* did someone call svc_wake_up? */ 735 if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags)) 736 return false; 737 738 /* was a socket queued? */ 739 if (!list_empty(&pool->sp_sockets)) 740 return false; 741 742 /* are we shutting down? */ 743 if (signalled() || kthread_should_stop()) 744 return false; 745 746 /* are we freezing? */ 747 if (freezing(current)) 748 return false; 749 750 return true; 751 } 752 753 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout) 754 { 755 struct svc_pool *pool = rqstp->rq_pool; 756 long time_left = 0; 757 758 /* rq_xprt should be clear on entry */ 759 WARN_ON_ONCE(rqstp->rq_xprt); 760 761 rqstp->rq_xprt = svc_xprt_dequeue(pool); 762 if (rqstp->rq_xprt) 763 goto out_found; 764 765 /* 766 * We have to be able to interrupt this wait 767 * to bring down the daemons ... 768 */ 769 set_current_state(TASK_INTERRUPTIBLE); 770 smp_mb__before_atomic(); 771 clear_bit(SP_CONGESTED, &pool->sp_flags); 772 clear_bit(RQ_BUSY, &rqstp->rq_flags); 773 smp_mb__after_atomic(); 774 775 if (likely(rqst_should_sleep(rqstp))) 776 time_left = schedule_timeout(timeout); 777 else 778 __set_current_state(TASK_RUNNING); 779 780 try_to_freeze(); 781 782 set_bit(RQ_BUSY, &rqstp->rq_flags); 783 smp_mb__after_atomic(); 784 rqstp->rq_xprt = svc_xprt_dequeue(pool); 785 if (rqstp->rq_xprt) 786 goto out_found; 787 788 if (!time_left) 789 percpu_counter_inc(&pool->sp_threads_timedout); 790 791 if (signalled() || kthread_should_stop()) 792 return ERR_PTR(-EINTR); 793 return ERR_PTR(-EAGAIN); 794 out_found: 795 /* Normally we will wait up to 5 seconds for any required 796 * cache information to be provided. 797 */ 798 if (!test_bit(SP_CONGESTED, &pool->sp_flags)) 799 rqstp->rq_chandle.thread_wait = 5*HZ; 800 else 801 rqstp->rq_chandle.thread_wait = 1*HZ; 802 trace_svc_xprt_dequeue(rqstp); 803 return rqstp->rq_xprt; 804 } 805 806 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt) 807 { 808 spin_lock_bh(&serv->sv_lock); 809 set_bit(XPT_TEMP, &newxpt->xpt_flags); 810 list_add(&newxpt->xpt_list, &serv->sv_tempsocks); 811 serv->sv_tmpcnt++; 812 if (serv->sv_temptimer.function == NULL) { 813 /* setup timer to age temp transports */ 814 serv->sv_temptimer.function = svc_age_temp_xprts; 815 mod_timer(&serv->sv_temptimer, 816 jiffies + svc_conn_age_period * HZ); 817 } 818 spin_unlock_bh(&serv->sv_lock); 819 svc_xprt_received(newxpt); 820 } 821 822 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt) 823 { 824 struct svc_serv *serv = rqstp->rq_server; 825 int len = 0; 826 827 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) { 828 if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags)) 829 xprt->xpt_ops->xpo_kill_temp_xprt(xprt); 830 svc_delete_xprt(xprt); 831 /* Leave XPT_BUSY set on the dead xprt: */ 832 goto out; 833 } 834 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) { 835 struct svc_xprt *newxpt; 836 /* 837 * We know this module_get will succeed because the 838 * listener holds a reference too 839 */ 840 __module_get(xprt->xpt_class->xcl_owner); 841 svc_check_conn_limits(xprt->xpt_server); 842 newxpt = xprt->xpt_ops->xpo_accept(xprt); 843 if (newxpt) { 844 newxpt->xpt_cred = get_cred(xprt->xpt_cred); 845 svc_add_new_temp_xprt(serv, newxpt); 846 trace_svc_xprt_accept(newxpt, serv->sv_name); 847 } else { 848 module_put(xprt->xpt_class->xcl_owner); 849 } 850 svc_xprt_received(xprt); 851 } else if (test_bit(XPT_HANDSHAKE, &xprt->xpt_flags)) { 852 xprt->xpt_ops->xpo_handshake(xprt); 853 svc_xprt_received(xprt); 854 } else if (svc_xprt_reserve_slot(rqstp, xprt)) { 855 /* XPT_DATA|XPT_DEFERRED case: */ 856 rqstp->rq_deferred = svc_deferred_dequeue(xprt); 857 if (rqstp->rq_deferred) 858 len = svc_deferred_recv(rqstp); 859 else 860 len = xprt->xpt_ops->xpo_recvfrom(rqstp); 861 rqstp->rq_reserved = serv->sv_max_mesg; 862 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved); 863 } else 864 svc_xprt_received(xprt); 865 866 out: 867 return len; 868 } 869 870 /* 871 * Receive the next request on any transport. This code is carefully 872 * organised not to touch any cachelines in the shared svc_serv 873 * structure, only cachelines in the local svc_pool. 874 */ 875 int svc_recv(struct svc_rqst *rqstp, long timeout) 876 { 877 struct svc_xprt *xprt = NULL; 878 struct svc_serv *serv = rqstp->rq_server; 879 int len, err; 880 881 err = svc_alloc_arg(rqstp); 882 if (err) 883 goto out; 884 885 try_to_freeze(); 886 cond_resched(); 887 err = -EINTR; 888 if (signalled() || kthread_should_stop()) 889 goto out; 890 891 xprt = svc_get_next_xprt(rqstp, timeout); 892 if (IS_ERR(xprt)) { 893 err = PTR_ERR(xprt); 894 goto out; 895 } 896 897 len = svc_handle_xprt(rqstp, xprt); 898 899 /* No data, incomplete (TCP) read, or accept() */ 900 err = -EAGAIN; 901 if (len <= 0) 902 goto out_release; 903 904 trace_svc_xdr_recvfrom(&rqstp->rq_arg); 905 906 clear_bit(XPT_OLD, &xprt->xpt_flags); 907 908 rqstp->rq_chandle.defer = svc_defer; 909 910 if (serv->sv_stats) 911 serv->sv_stats->netcnt++; 912 rqstp->rq_stime = ktime_get(); 913 return len; 914 out_release: 915 rqstp->rq_res.len = 0; 916 svc_xprt_release(rqstp); 917 out: 918 return err; 919 } 920 EXPORT_SYMBOL_GPL(svc_recv); 921 922 /* 923 * Drop request 924 */ 925 void svc_drop(struct svc_rqst *rqstp) 926 { 927 trace_svc_drop(rqstp); 928 svc_xprt_release(rqstp); 929 } 930 EXPORT_SYMBOL_GPL(svc_drop); 931 932 /** 933 * svc_send - Return reply to client 934 * @rqstp: RPC transaction context 935 * 936 */ 937 void svc_send(struct svc_rqst *rqstp) 938 { 939 struct svc_xprt *xprt; 940 struct xdr_buf *xb; 941 int status; 942 943 xprt = rqstp->rq_xprt; 944 if (!xprt) 945 return; 946 947 /* calculate over-all length */ 948 xb = &rqstp->rq_res; 949 xb->len = xb->head[0].iov_len + 950 xb->page_len + 951 xb->tail[0].iov_len; 952 trace_svc_xdr_sendto(rqstp->rq_xid, xb); 953 trace_svc_stats_latency(rqstp); 954 955 status = xprt->xpt_ops->xpo_sendto(rqstp); 956 957 trace_svc_send(rqstp, status); 958 svc_xprt_release(rqstp); 959 } 960 961 /* 962 * Timer function to close old temporary transports, using 963 * a mark-and-sweep algorithm. 964 */ 965 static void svc_age_temp_xprts(struct timer_list *t) 966 { 967 struct svc_serv *serv = from_timer(serv, t, sv_temptimer); 968 struct svc_xprt *xprt; 969 struct list_head *le, *next; 970 971 dprintk("svc_age_temp_xprts\n"); 972 973 if (!spin_trylock_bh(&serv->sv_lock)) { 974 /* busy, try again 1 sec later */ 975 dprintk("svc_age_temp_xprts: busy\n"); 976 mod_timer(&serv->sv_temptimer, jiffies + HZ); 977 return; 978 } 979 980 list_for_each_safe(le, next, &serv->sv_tempsocks) { 981 xprt = list_entry(le, struct svc_xprt, xpt_list); 982 983 /* First time through, just mark it OLD. Second time 984 * through, close it. */ 985 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags)) 986 continue; 987 if (kref_read(&xprt->xpt_ref) > 1 || 988 test_bit(XPT_BUSY, &xprt->xpt_flags)) 989 continue; 990 list_del_init(le); 991 set_bit(XPT_CLOSE, &xprt->xpt_flags); 992 dprintk("queuing xprt %p for closing\n", xprt); 993 994 /* a thread will dequeue and close it soon */ 995 svc_xprt_enqueue(xprt); 996 } 997 spin_unlock_bh(&serv->sv_lock); 998 999 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ); 1000 } 1001 1002 /* Close temporary transports whose xpt_local matches server_addr immediately 1003 * instead of waiting for them to be picked up by the timer. 1004 * 1005 * This is meant to be called from a notifier_block that runs when an ip 1006 * address is deleted. 1007 */ 1008 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr) 1009 { 1010 struct svc_xprt *xprt; 1011 struct list_head *le, *next; 1012 LIST_HEAD(to_be_closed); 1013 1014 spin_lock_bh(&serv->sv_lock); 1015 list_for_each_safe(le, next, &serv->sv_tempsocks) { 1016 xprt = list_entry(le, struct svc_xprt, xpt_list); 1017 if (rpc_cmp_addr(server_addr, (struct sockaddr *) 1018 &xprt->xpt_local)) { 1019 dprintk("svc_age_temp_xprts_now: found %p\n", xprt); 1020 list_move(le, &to_be_closed); 1021 } 1022 } 1023 spin_unlock_bh(&serv->sv_lock); 1024 1025 while (!list_empty(&to_be_closed)) { 1026 le = to_be_closed.next; 1027 list_del_init(le); 1028 xprt = list_entry(le, struct svc_xprt, xpt_list); 1029 set_bit(XPT_CLOSE, &xprt->xpt_flags); 1030 set_bit(XPT_KILL_TEMP, &xprt->xpt_flags); 1031 dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n", 1032 xprt); 1033 svc_xprt_enqueue(xprt); 1034 } 1035 } 1036 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now); 1037 1038 static void call_xpt_users(struct svc_xprt *xprt) 1039 { 1040 struct svc_xpt_user *u; 1041 1042 spin_lock(&xprt->xpt_lock); 1043 while (!list_empty(&xprt->xpt_users)) { 1044 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list); 1045 list_del_init(&u->list); 1046 u->callback(u); 1047 } 1048 spin_unlock(&xprt->xpt_lock); 1049 } 1050 1051 /* 1052 * Remove a dead transport 1053 */ 1054 static void svc_delete_xprt(struct svc_xprt *xprt) 1055 { 1056 struct svc_serv *serv = xprt->xpt_server; 1057 struct svc_deferred_req *dr; 1058 1059 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags)) 1060 return; 1061 1062 trace_svc_xprt_detach(xprt); 1063 xprt->xpt_ops->xpo_detach(xprt); 1064 if (xprt->xpt_bc_xprt) 1065 xprt->xpt_bc_xprt->ops->close(xprt->xpt_bc_xprt); 1066 1067 spin_lock_bh(&serv->sv_lock); 1068 list_del_init(&xprt->xpt_list); 1069 WARN_ON_ONCE(!list_empty(&xprt->xpt_ready)); 1070 if (test_bit(XPT_TEMP, &xprt->xpt_flags)) 1071 serv->sv_tmpcnt--; 1072 spin_unlock_bh(&serv->sv_lock); 1073 1074 while ((dr = svc_deferred_dequeue(xprt)) != NULL) 1075 free_deferred(xprt, dr); 1076 1077 call_xpt_users(xprt); 1078 svc_xprt_put(xprt); 1079 } 1080 1081 /** 1082 * svc_xprt_close - Close a client connection 1083 * @xprt: transport to disconnect 1084 * 1085 */ 1086 void svc_xprt_close(struct svc_xprt *xprt) 1087 { 1088 trace_svc_xprt_close(xprt); 1089 set_bit(XPT_CLOSE, &xprt->xpt_flags); 1090 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) 1091 /* someone else will have to effect the close */ 1092 return; 1093 /* 1094 * We expect svc_close_xprt() to work even when no threads are 1095 * running (e.g., while configuring the server before starting 1096 * any threads), so if the transport isn't busy, we delete 1097 * it ourself: 1098 */ 1099 svc_delete_xprt(xprt); 1100 } 1101 EXPORT_SYMBOL_GPL(svc_xprt_close); 1102 1103 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net) 1104 { 1105 struct svc_xprt *xprt; 1106 int ret = 0; 1107 1108 spin_lock_bh(&serv->sv_lock); 1109 list_for_each_entry(xprt, xprt_list, xpt_list) { 1110 if (xprt->xpt_net != net) 1111 continue; 1112 ret++; 1113 set_bit(XPT_CLOSE, &xprt->xpt_flags); 1114 svc_xprt_enqueue(xprt); 1115 } 1116 spin_unlock_bh(&serv->sv_lock); 1117 return ret; 1118 } 1119 1120 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net) 1121 { 1122 struct svc_pool *pool; 1123 struct svc_xprt *xprt; 1124 struct svc_xprt *tmp; 1125 int i; 1126 1127 for (i = 0; i < serv->sv_nrpools; i++) { 1128 pool = &serv->sv_pools[i]; 1129 1130 spin_lock_bh(&pool->sp_lock); 1131 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) { 1132 if (xprt->xpt_net != net) 1133 continue; 1134 list_del_init(&xprt->xpt_ready); 1135 spin_unlock_bh(&pool->sp_lock); 1136 return xprt; 1137 } 1138 spin_unlock_bh(&pool->sp_lock); 1139 } 1140 return NULL; 1141 } 1142 1143 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net) 1144 { 1145 struct svc_xprt *xprt; 1146 1147 while ((xprt = svc_dequeue_net(serv, net))) { 1148 set_bit(XPT_CLOSE, &xprt->xpt_flags); 1149 svc_delete_xprt(xprt); 1150 } 1151 } 1152 1153 /** 1154 * svc_xprt_destroy_all - Destroy transports associated with @serv 1155 * @serv: RPC service to be shut down 1156 * @net: target network namespace 1157 * 1158 * Server threads may still be running (especially in the case where the 1159 * service is still running in other network namespaces). 1160 * 1161 * So we shut down sockets the same way we would on a running server, by 1162 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do 1163 * the close. In the case there are no such other threads, 1164 * threads running, svc_clean_up_xprts() does a simple version of a 1165 * server's main event loop, and in the case where there are other 1166 * threads, we may need to wait a little while and then check again to 1167 * see if they're done. 1168 */ 1169 void svc_xprt_destroy_all(struct svc_serv *serv, struct net *net) 1170 { 1171 int delay = 0; 1172 1173 while (svc_close_list(serv, &serv->sv_permsocks, net) + 1174 svc_close_list(serv, &serv->sv_tempsocks, net)) { 1175 1176 svc_clean_up_xprts(serv, net); 1177 msleep(delay++); 1178 } 1179 } 1180 EXPORT_SYMBOL_GPL(svc_xprt_destroy_all); 1181 1182 /* 1183 * Handle defer and revisit of requests 1184 */ 1185 1186 static void svc_revisit(struct cache_deferred_req *dreq, int too_many) 1187 { 1188 struct svc_deferred_req *dr = 1189 container_of(dreq, struct svc_deferred_req, handle); 1190 struct svc_xprt *xprt = dr->xprt; 1191 1192 spin_lock(&xprt->xpt_lock); 1193 set_bit(XPT_DEFERRED, &xprt->xpt_flags); 1194 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) { 1195 spin_unlock(&xprt->xpt_lock); 1196 trace_svc_defer_drop(dr); 1197 free_deferred(xprt, dr); 1198 svc_xprt_put(xprt); 1199 return; 1200 } 1201 dr->xprt = NULL; 1202 list_add(&dr->handle.recent, &xprt->xpt_deferred); 1203 spin_unlock(&xprt->xpt_lock); 1204 trace_svc_defer_queue(dr); 1205 svc_xprt_enqueue(xprt); 1206 svc_xprt_put(xprt); 1207 } 1208 1209 /* 1210 * Save the request off for later processing. The request buffer looks 1211 * like this: 1212 * 1213 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail> 1214 * 1215 * This code can only handle requests that consist of an xprt-header 1216 * and rpc-header. 1217 */ 1218 static struct cache_deferred_req *svc_defer(struct cache_req *req) 1219 { 1220 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle); 1221 struct svc_deferred_req *dr; 1222 1223 if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags)) 1224 return NULL; /* if more than a page, give up FIXME */ 1225 if (rqstp->rq_deferred) { 1226 dr = rqstp->rq_deferred; 1227 rqstp->rq_deferred = NULL; 1228 } else { 1229 size_t skip; 1230 size_t size; 1231 /* FIXME maybe discard if size too large */ 1232 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len; 1233 dr = kmalloc(size, GFP_KERNEL); 1234 if (dr == NULL) 1235 return NULL; 1236 1237 dr->handle.owner = rqstp->rq_server; 1238 dr->prot = rqstp->rq_prot; 1239 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen); 1240 dr->addrlen = rqstp->rq_addrlen; 1241 dr->daddr = rqstp->rq_daddr; 1242 dr->argslen = rqstp->rq_arg.len >> 2; 1243 1244 /* back up head to the start of the buffer and copy */ 1245 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len; 1246 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip, 1247 dr->argslen << 2); 1248 } 1249 dr->xprt_ctxt = rqstp->rq_xprt_ctxt; 1250 rqstp->rq_xprt_ctxt = NULL; 1251 trace_svc_defer(rqstp); 1252 svc_xprt_get(rqstp->rq_xprt); 1253 dr->xprt = rqstp->rq_xprt; 1254 set_bit(RQ_DROPME, &rqstp->rq_flags); 1255 1256 dr->handle.revisit = svc_revisit; 1257 return &dr->handle; 1258 } 1259 1260 /* 1261 * recv data from a deferred request into an active one 1262 */ 1263 static noinline int svc_deferred_recv(struct svc_rqst *rqstp) 1264 { 1265 struct svc_deferred_req *dr = rqstp->rq_deferred; 1266 1267 trace_svc_defer_recv(dr); 1268 1269 /* setup iov_base past transport header */ 1270 rqstp->rq_arg.head[0].iov_base = dr->args; 1271 /* The iov_len does not include the transport header bytes */ 1272 rqstp->rq_arg.head[0].iov_len = dr->argslen << 2; 1273 rqstp->rq_arg.page_len = 0; 1274 /* The rq_arg.len includes the transport header bytes */ 1275 rqstp->rq_arg.len = dr->argslen << 2; 1276 rqstp->rq_prot = dr->prot; 1277 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen); 1278 rqstp->rq_addrlen = dr->addrlen; 1279 /* Save off transport header len in case we get deferred again */ 1280 rqstp->rq_daddr = dr->daddr; 1281 rqstp->rq_respages = rqstp->rq_pages; 1282 rqstp->rq_xprt_ctxt = dr->xprt_ctxt; 1283 1284 dr->xprt_ctxt = NULL; 1285 svc_xprt_received(rqstp->rq_xprt); 1286 return dr->argslen << 2; 1287 } 1288 1289 1290 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt) 1291 { 1292 struct svc_deferred_req *dr = NULL; 1293 1294 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags)) 1295 return NULL; 1296 spin_lock(&xprt->xpt_lock); 1297 if (!list_empty(&xprt->xpt_deferred)) { 1298 dr = list_entry(xprt->xpt_deferred.next, 1299 struct svc_deferred_req, 1300 handle.recent); 1301 list_del_init(&dr->handle.recent); 1302 } else 1303 clear_bit(XPT_DEFERRED, &xprt->xpt_flags); 1304 spin_unlock(&xprt->xpt_lock); 1305 return dr; 1306 } 1307 1308 /** 1309 * svc_find_xprt - find an RPC transport instance 1310 * @serv: pointer to svc_serv to search 1311 * @xcl_name: C string containing transport's class name 1312 * @net: owner net pointer 1313 * @af: Address family of transport's local address 1314 * @port: transport's IP port number 1315 * 1316 * Return the transport instance pointer for the endpoint accepting 1317 * connections/peer traffic from the specified transport class, 1318 * address family and port. 1319 * 1320 * Specifying 0 for the address family or port is effectively a 1321 * wild-card, and will result in matching the first transport in the 1322 * service's list that has a matching class name. 1323 */ 1324 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name, 1325 struct net *net, const sa_family_t af, 1326 const unsigned short port) 1327 { 1328 struct svc_xprt *xprt; 1329 struct svc_xprt *found = NULL; 1330 1331 /* Sanity check the args */ 1332 if (serv == NULL || xcl_name == NULL) 1333 return found; 1334 1335 spin_lock_bh(&serv->sv_lock); 1336 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { 1337 if (xprt->xpt_net != net) 1338 continue; 1339 if (strcmp(xprt->xpt_class->xcl_name, xcl_name)) 1340 continue; 1341 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family) 1342 continue; 1343 if (port != 0 && port != svc_xprt_local_port(xprt)) 1344 continue; 1345 found = xprt; 1346 svc_xprt_get(xprt); 1347 break; 1348 } 1349 spin_unlock_bh(&serv->sv_lock); 1350 return found; 1351 } 1352 EXPORT_SYMBOL_GPL(svc_find_xprt); 1353 1354 static int svc_one_xprt_name(const struct svc_xprt *xprt, 1355 char *pos, int remaining) 1356 { 1357 int len; 1358 1359 len = snprintf(pos, remaining, "%s %u\n", 1360 xprt->xpt_class->xcl_name, 1361 svc_xprt_local_port(xprt)); 1362 if (len >= remaining) 1363 return -ENAMETOOLONG; 1364 return len; 1365 } 1366 1367 /** 1368 * svc_xprt_names - format a buffer with a list of transport names 1369 * @serv: pointer to an RPC service 1370 * @buf: pointer to a buffer to be filled in 1371 * @buflen: length of buffer to be filled in 1372 * 1373 * Fills in @buf with a string containing a list of transport names, 1374 * each name terminated with '\n'. 1375 * 1376 * Returns positive length of the filled-in string on success; otherwise 1377 * a negative errno value is returned if an error occurs. 1378 */ 1379 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen) 1380 { 1381 struct svc_xprt *xprt; 1382 int len, totlen; 1383 char *pos; 1384 1385 /* Sanity check args */ 1386 if (!serv) 1387 return 0; 1388 1389 spin_lock_bh(&serv->sv_lock); 1390 1391 pos = buf; 1392 totlen = 0; 1393 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { 1394 len = svc_one_xprt_name(xprt, pos, buflen - totlen); 1395 if (len < 0) { 1396 *buf = '\0'; 1397 totlen = len; 1398 } 1399 if (len <= 0) 1400 break; 1401 1402 pos += len; 1403 totlen += len; 1404 } 1405 1406 spin_unlock_bh(&serv->sv_lock); 1407 return totlen; 1408 } 1409 EXPORT_SYMBOL_GPL(svc_xprt_names); 1410 1411 1412 /*----------------------------------------------------------------------------*/ 1413 1414 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos) 1415 { 1416 unsigned int pidx = (unsigned int)*pos; 1417 struct svc_serv *serv = m->private; 1418 1419 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx); 1420 1421 if (!pidx) 1422 return SEQ_START_TOKEN; 1423 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]); 1424 } 1425 1426 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos) 1427 { 1428 struct svc_pool *pool = p; 1429 struct svc_serv *serv = m->private; 1430 1431 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos); 1432 1433 if (p == SEQ_START_TOKEN) { 1434 pool = &serv->sv_pools[0]; 1435 } else { 1436 unsigned int pidx = (pool - &serv->sv_pools[0]); 1437 if (pidx < serv->sv_nrpools-1) 1438 pool = &serv->sv_pools[pidx+1]; 1439 else 1440 pool = NULL; 1441 } 1442 ++*pos; 1443 return pool; 1444 } 1445 1446 static void svc_pool_stats_stop(struct seq_file *m, void *p) 1447 { 1448 } 1449 1450 static int svc_pool_stats_show(struct seq_file *m, void *p) 1451 { 1452 struct svc_pool *pool = p; 1453 1454 if (p == SEQ_START_TOKEN) { 1455 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n"); 1456 return 0; 1457 } 1458 1459 seq_printf(m, "%u %llu %llu %llu %llu\n", 1460 pool->sp_id, 1461 percpu_counter_sum_positive(&pool->sp_sockets_queued), 1462 percpu_counter_sum_positive(&pool->sp_sockets_queued), 1463 percpu_counter_sum_positive(&pool->sp_threads_woken), 1464 percpu_counter_sum_positive(&pool->sp_threads_timedout)); 1465 1466 return 0; 1467 } 1468 1469 static const struct seq_operations svc_pool_stats_seq_ops = { 1470 .start = svc_pool_stats_start, 1471 .next = svc_pool_stats_next, 1472 .stop = svc_pool_stats_stop, 1473 .show = svc_pool_stats_show, 1474 }; 1475 1476 int svc_pool_stats_open(struct svc_serv *serv, struct file *file) 1477 { 1478 int err; 1479 1480 err = seq_open(file, &svc_pool_stats_seq_ops); 1481 if (!err) 1482 ((struct seq_file *) file->private_data)->private = serv; 1483 return err; 1484 } 1485 EXPORT_SYMBOL(svc_pool_stats_open); 1486 1487 /*----------------------------------------------------------------------------*/ 1488