xref: /openbmc/linux/net/sunrpc/svc_xprt.c (revision 23c2b932)
1 /*
2  * linux/net/sunrpc/svc_xprt.c
3  *
4  * Author: Tom Tucker <tom@opengridcomputing.com>
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/addr.h>
14 #include <linux/sunrpc/stats.h>
15 #include <linux/sunrpc/svc_xprt.h>
16 #include <linux/sunrpc/svcsock.h>
17 #include <linux/sunrpc/xprt.h>
18 #include <linux/module.h>
19 #include <linux/netdevice.h>
20 #include <trace/events/sunrpc.h>
21 
22 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
23 
24 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
25 static int svc_deferred_recv(struct svc_rqst *rqstp);
26 static struct cache_deferred_req *svc_defer(struct cache_req *req);
27 static void svc_age_temp_xprts(unsigned long closure);
28 static void svc_delete_xprt(struct svc_xprt *xprt);
29 
30 /* apparently the "standard" is that clients close
31  * idle connections after 5 minutes, servers after
32  * 6 minutes
33  *   http://www.connectathon.org/talks96/nfstcp.pdf
34  */
35 static int svc_conn_age_period = 6*60;
36 
37 /* List of registered transport classes */
38 static DEFINE_SPINLOCK(svc_xprt_class_lock);
39 static LIST_HEAD(svc_xprt_class_list);
40 
41 /* SMP locking strategy:
42  *
43  *	svc_pool->sp_lock protects most of the fields of that pool.
44  *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
45  *	when both need to be taken (rare), svc_serv->sv_lock is first.
46  *	The "service mutex" protects svc_serv->sv_nrthread.
47  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
48  *             and the ->sk_info_authunix cache.
49  *
50  *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
51  *	enqueued multiply. During normal transport processing this bit
52  *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
53  *	Providers should not manipulate this bit directly.
54  *
55  *	Some flags can be set to certain values at any time
56  *	providing that certain rules are followed:
57  *
58  *	XPT_CONN, XPT_DATA:
59  *		- Can be set or cleared at any time.
60  *		- After a set, svc_xprt_enqueue must be called to enqueue
61  *		  the transport for processing.
62  *		- After a clear, the transport must be read/accepted.
63  *		  If this succeeds, it must be set again.
64  *	XPT_CLOSE:
65  *		- Can set at any time. It is never cleared.
66  *      XPT_DEAD:
67  *		- Can only be set while XPT_BUSY is held which ensures
68  *		  that no other thread will be using the transport or will
69  *		  try to set XPT_DEAD.
70  */
71 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
72 {
73 	struct svc_xprt_class *cl;
74 	int res = -EEXIST;
75 
76 	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
77 
78 	INIT_LIST_HEAD(&xcl->xcl_list);
79 	spin_lock(&svc_xprt_class_lock);
80 	/* Make sure there isn't already a class with the same name */
81 	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
82 		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
83 			goto out;
84 	}
85 	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
86 	res = 0;
87 out:
88 	spin_unlock(&svc_xprt_class_lock);
89 	return res;
90 }
91 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
92 
93 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
94 {
95 	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
96 	spin_lock(&svc_xprt_class_lock);
97 	list_del_init(&xcl->xcl_list);
98 	spin_unlock(&svc_xprt_class_lock);
99 }
100 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
101 
102 /*
103  * Format the transport list for printing
104  */
105 int svc_print_xprts(char *buf, int maxlen)
106 {
107 	struct svc_xprt_class *xcl;
108 	char tmpstr[80];
109 	int len = 0;
110 	buf[0] = '\0';
111 
112 	spin_lock(&svc_xprt_class_lock);
113 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
114 		int slen;
115 
116 		sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
117 		slen = strlen(tmpstr);
118 		if (len + slen > maxlen)
119 			break;
120 		len += slen;
121 		strcat(buf, tmpstr);
122 	}
123 	spin_unlock(&svc_xprt_class_lock);
124 
125 	return len;
126 }
127 
128 static void svc_xprt_free(struct kref *kref)
129 {
130 	struct svc_xprt *xprt =
131 		container_of(kref, struct svc_xprt, xpt_ref);
132 	struct module *owner = xprt->xpt_class->xcl_owner;
133 	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
134 		svcauth_unix_info_release(xprt);
135 	put_net(xprt->xpt_net);
136 	/* See comment on corresponding get in xs_setup_bc_tcp(): */
137 	if (xprt->xpt_bc_xprt)
138 		xprt_put(xprt->xpt_bc_xprt);
139 	if (xprt->xpt_bc_xps)
140 		xprt_switch_put(xprt->xpt_bc_xps);
141 	xprt->xpt_ops->xpo_free(xprt);
142 	module_put(owner);
143 }
144 
145 void svc_xprt_put(struct svc_xprt *xprt)
146 {
147 	kref_put(&xprt->xpt_ref, svc_xprt_free);
148 }
149 EXPORT_SYMBOL_GPL(svc_xprt_put);
150 
151 /*
152  * Called by transport drivers to initialize the transport independent
153  * portion of the transport instance.
154  */
155 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
156 		   struct svc_xprt *xprt, struct svc_serv *serv)
157 {
158 	memset(xprt, 0, sizeof(*xprt));
159 	xprt->xpt_class = xcl;
160 	xprt->xpt_ops = xcl->xcl_ops;
161 	kref_init(&xprt->xpt_ref);
162 	xprt->xpt_server = serv;
163 	INIT_LIST_HEAD(&xprt->xpt_list);
164 	INIT_LIST_HEAD(&xprt->xpt_ready);
165 	INIT_LIST_HEAD(&xprt->xpt_deferred);
166 	INIT_LIST_HEAD(&xprt->xpt_users);
167 	mutex_init(&xprt->xpt_mutex);
168 	spin_lock_init(&xprt->xpt_lock);
169 	set_bit(XPT_BUSY, &xprt->xpt_flags);
170 	rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
171 	xprt->xpt_net = get_net(net);
172 }
173 EXPORT_SYMBOL_GPL(svc_xprt_init);
174 
175 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
176 					 struct svc_serv *serv,
177 					 struct net *net,
178 					 const int family,
179 					 const unsigned short port,
180 					 int flags)
181 {
182 	struct sockaddr_in sin = {
183 		.sin_family		= AF_INET,
184 		.sin_addr.s_addr	= htonl(INADDR_ANY),
185 		.sin_port		= htons(port),
186 	};
187 #if IS_ENABLED(CONFIG_IPV6)
188 	struct sockaddr_in6 sin6 = {
189 		.sin6_family		= AF_INET6,
190 		.sin6_addr		= IN6ADDR_ANY_INIT,
191 		.sin6_port		= htons(port),
192 	};
193 #endif
194 	struct sockaddr *sap;
195 	size_t len;
196 
197 	switch (family) {
198 	case PF_INET:
199 		sap = (struct sockaddr *)&sin;
200 		len = sizeof(sin);
201 		break;
202 #if IS_ENABLED(CONFIG_IPV6)
203 	case PF_INET6:
204 		sap = (struct sockaddr *)&sin6;
205 		len = sizeof(sin6);
206 		break;
207 #endif
208 	default:
209 		return ERR_PTR(-EAFNOSUPPORT);
210 	}
211 
212 	return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
213 }
214 
215 /*
216  * svc_xprt_received conditionally queues the transport for processing
217  * by another thread. The caller must hold the XPT_BUSY bit and must
218  * not thereafter touch transport data.
219  *
220  * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
221  * insufficient) data.
222  */
223 static void svc_xprt_received(struct svc_xprt *xprt)
224 {
225 	if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
226 		WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
227 		return;
228 	}
229 
230 	/* As soon as we clear busy, the xprt could be closed and
231 	 * 'put', so we need a reference to call svc_enqueue_xprt with:
232 	 */
233 	svc_xprt_get(xprt);
234 	smp_mb__before_atomic();
235 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
236 	xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
237 	svc_xprt_put(xprt);
238 }
239 
240 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
241 {
242 	clear_bit(XPT_TEMP, &new->xpt_flags);
243 	spin_lock_bh(&serv->sv_lock);
244 	list_add(&new->xpt_list, &serv->sv_permsocks);
245 	spin_unlock_bh(&serv->sv_lock);
246 	svc_xprt_received(new);
247 }
248 
249 int _svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
250 		    struct net *net, const int family,
251 		    const unsigned short port, int flags)
252 {
253 	struct svc_xprt_class *xcl;
254 
255 	spin_lock(&svc_xprt_class_lock);
256 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
257 		struct svc_xprt *newxprt;
258 		unsigned short newport;
259 
260 		if (strcmp(xprt_name, xcl->xcl_name))
261 			continue;
262 
263 		if (!try_module_get(xcl->xcl_owner))
264 			goto err;
265 
266 		spin_unlock(&svc_xprt_class_lock);
267 		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
268 		if (IS_ERR(newxprt)) {
269 			module_put(xcl->xcl_owner);
270 			return PTR_ERR(newxprt);
271 		}
272 		svc_add_new_perm_xprt(serv, newxprt);
273 		newport = svc_xprt_local_port(newxprt);
274 		return newport;
275 	}
276  err:
277 	spin_unlock(&svc_xprt_class_lock);
278 	/* This errno is exposed to user space.  Provide a reasonable
279 	 * perror msg for a bad transport. */
280 	return -EPROTONOSUPPORT;
281 }
282 
283 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
284 		    struct net *net, const int family,
285 		    const unsigned short port, int flags)
286 {
287 	int err;
288 
289 	dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
290 	err = _svc_create_xprt(serv, xprt_name, net, family, port, flags);
291 	if (err == -EPROTONOSUPPORT) {
292 		request_module("svc%s", xprt_name);
293 		err = _svc_create_xprt(serv, xprt_name, net, family, port, flags);
294 	}
295 	if (err)
296 		dprintk("svc: transport %s not found, err %d\n",
297 			xprt_name, err);
298 	return err;
299 }
300 EXPORT_SYMBOL_GPL(svc_create_xprt);
301 
302 /*
303  * Copy the local and remote xprt addresses to the rqstp structure
304  */
305 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
306 {
307 	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
308 	rqstp->rq_addrlen = xprt->xpt_remotelen;
309 
310 	/*
311 	 * Destination address in request is needed for binding the
312 	 * source address in RPC replies/callbacks later.
313 	 */
314 	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
315 	rqstp->rq_daddrlen = xprt->xpt_locallen;
316 }
317 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
318 
319 /**
320  * svc_print_addr - Format rq_addr field for printing
321  * @rqstp: svc_rqst struct containing address to print
322  * @buf: target buffer for formatted address
323  * @len: length of target buffer
324  *
325  */
326 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
327 {
328 	return __svc_print_addr(svc_addr(rqstp), buf, len);
329 }
330 EXPORT_SYMBOL_GPL(svc_print_addr);
331 
332 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
333 {
334 	if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
335 		return true;
336 	if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED)))
337 		return xprt->xpt_ops->xpo_has_wspace(xprt);
338 	return false;
339 }
340 
341 void svc_xprt_do_enqueue(struct svc_xprt *xprt)
342 {
343 	struct svc_pool *pool;
344 	struct svc_rqst	*rqstp = NULL;
345 	int cpu;
346 	bool queued = false;
347 
348 	if (!svc_xprt_has_something_to_do(xprt))
349 		goto out;
350 
351 	/* Mark transport as busy. It will remain in this state until
352 	 * the provider calls svc_xprt_received. We update XPT_BUSY
353 	 * atomically because it also guards against trying to enqueue
354 	 * the transport twice.
355 	 */
356 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
357 		/* Don't enqueue transport while already enqueued */
358 		dprintk("svc: transport %p busy, not enqueued\n", xprt);
359 		goto out;
360 	}
361 
362 	cpu = get_cpu();
363 	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
364 
365 	atomic_long_inc(&pool->sp_stats.packets);
366 
367 redo_search:
368 	/* find a thread for this xprt */
369 	rcu_read_lock();
370 	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
371 		/* Do a lockless check first */
372 		if (test_bit(RQ_BUSY, &rqstp->rq_flags))
373 			continue;
374 
375 		/*
376 		 * Once the xprt has been queued, it can only be dequeued by
377 		 * the task that intends to service it. All we can do at that
378 		 * point is to try to wake this thread back up so that it can
379 		 * do so.
380 		 */
381 		if (!queued) {
382 			spin_lock_bh(&rqstp->rq_lock);
383 			if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags)) {
384 				/* already busy, move on... */
385 				spin_unlock_bh(&rqstp->rq_lock);
386 				continue;
387 			}
388 
389 			/* this one will do */
390 			rqstp->rq_xprt = xprt;
391 			svc_xprt_get(xprt);
392 			spin_unlock_bh(&rqstp->rq_lock);
393 		}
394 		rcu_read_unlock();
395 
396 		atomic_long_inc(&pool->sp_stats.threads_woken);
397 		wake_up_process(rqstp->rq_task);
398 		put_cpu();
399 		goto out;
400 	}
401 	rcu_read_unlock();
402 
403 	/*
404 	 * We didn't find an idle thread to use, so we need to queue the xprt.
405 	 * Do so and then search again. If we find one, we can't hook this one
406 	 * up to it directly but we can wake the thread up in the hopes that it
407 	 * will pick it up once it searches for a xprt to service.
408 	 */
409 	if (!queued) {
410 		queued = true;
411 		dprintk("svc: transport %p put into queue\n", xprt);
412 		spin_lock_bh(&pool->sp_lock);
413 		list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
414 		pool->sp_stats.sockets_queued++;
415 		spin_unlock_bh(&pool->sp_lock);
416 		goto redo_search;
417 	}
418 	rqstp = NULL;
419 	put_cpu();
420 out:
421 	trace_svc_xprt_do_enqueue(xprt, rqstp);
422 }
423 EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue);
424 
425 /*
426  * Queue up a transport with data pending. If there are idle nfsd
427  * processes, wake 'em up.
428  *
429  */
430 void svc_xprt_enqueue(struct svc_xprt *xprt)
431 {
432 	if (test_bit(XPT_BUSY, &xprt->xpt_flags))
433 		return;
434 	xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
435 }
436 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
437 
438 /*
439  * Dequeue the first transport, if there is one.
440  */
441 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
442 {
443 	struct svc_xprt	*xprt = NULL;
444 
445 	if (list_empty(&pool->sp_sockets))
446 		goto out;
447 
448 	spin_lock_bh(&pool->sp_lock);
449 	if (likely(!list_empty(&pool->sp_sockets))) {
450 		xprt = list_first_entry(&pool->sp_sockets,
451 					struct svc_xprt, xpt_ready);
452 		list_del_init(&xprt->xpt_ready);
453 		svc_xprt_get(xprt);
454 
455 		dprintk("svc: transport %p dequeued, inuse=%d\n",
456 			xprt, atomic_read(&xprt->xpt_ref.refcount));
457 	}
458 	spin_unlock_bh(&pool->sp_lock);
459 out:
460 	trace_svc_xprt_dequeue(xprt);
461 	return xprt;
462 }
463 
464 /**
465  * svc_reserve - change the space reserved for the reply to a request.
466  * @rqstp:  The request in question
467  * @space: new max space to reserve
468  *
469  * Each request reserves some space on the output queue of the transport
470  * to make sure the reply fits.  This function reduces that reserved
471  * space to be the amount of space used already, plus @space.
472  *
473  */
474 void svc_reserve(struct svc_rqst *rqstp, int space)
475 {
476 	space += rqstp->rq_res.head[0].iov_len;
477 
478 	if (space < rqstp->rq_reserved) {
479 		struct svc_xprt *xprt = rqstp->rq_xprt;
480 		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
481 		rqstp->rq_reserved = space;
482 
483 		if (xprt->xpt_ops->xpo_adjust_wspace)
484 			xprt->xpt_ops->xpo_adjust_wspace(xprt);
485 		svc_xprt_enqueue(xprt);
486 	}
487 }
488 EXPORT_SYMBOL_GPL(svc_reserve);
489 
490 static void svc_xprt_release(struct svc_rqst *rqstp)
491 {
492 	struct svc_xprt	*xprt = rqstp->rq_xprt;
493 
494 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
495 
496 	kfree(rqstp->rq_deferred);
497 	rqstp->rq_deferred = NULL;
498 
499 	svc_free_res_pages(rqstp);
500 	rqstp->rq_res.page_len = 0;
501 	rqstp->rq_res.page_base = 0;
502 
503 	/* Reset response buffer and release
504 	 * the reservation.
505 	 * But first, check that enough space was reserved
506 	 * for the reply, otherwise we have a bug!
507 	 */
508 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
509 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
510 		       rqstp->rq_reserved,
511 		       rqstp->rq_res.len);
512 
513 	rqstp->rq_res.head[0].iov_len = 0;
514 	svc_reserve(rqstp, 0);
515 	rqstp->rq_xprt = NULL;
516 
517 	svc_xprt_put(xprt);
518 }
519 
520 /*
521  * Some svc_serv's will have occasional work to do, even when a xprt is not
522  * waiting to be serviced. This function is there to "kick" a task in one of
523  * those services so that it can wake up and do that work. Note that we only
524  * bother with pool 0 as we don't need to wake up more than one thread for
525  * this purpose.
526  */
527 void svc_wake_up(struct svc_serv *serv)
528 {
529 	struct svc_rqst	*rqstp;
530 	struct svc_pool *pool;
531 
532 	pool = &serv->sv_pools[0];
533 
534 	rcu_read_lock();
535 	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
536 		/* skip any that aren't queued */
537 		if (test_bit(RQ_BUSY, &rqstp->rq_flags))
538 			continue;
539 		rcu_read_unlock();
540 		dprintk("svc: daemon %p woken up.\n", rqstp);
541 		wake_up_process(rqstp->rq_task);
542 		trace_svc_wake_up(rqstp->rq_task->pid);
543 		return;
544 	}
545 	rcu_read_unlock();
546 
547 	/* No free entries available */
548 	set_bit(SP_TASK_PENDING, &pool->sp_flags);
549 	smp_wmb();
550 	trace_svc_wake_up(0);
551 }
552 EXPORT_SYMBOL_GPL(svc_wake_up);
553 
554 int svc_port_is_privileged(struct sockaddr *sin)
555 {
556 	switch (sin->sa_family) {
557 	case AF_INET:
558 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
559 			< PROT_SOCK;
560 	case AF_INET6:
561 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
562 			< PROT_SOCK;
563 	default:
564 		return 0;
565 	}
566 }
567 
568 /*
569  * Make sure that we don't have too many active connections. If we have,
570  * something must be dropped. It's not clear what will happen if we allow
571  * "too many" connections, but when dealing with network-facing software,
572  * we have to code defensively. Here we do that by imposing hard limits.
573  *
574  * There's no point in trying to do random drop here for DoS
575  * prevention. The NFS clients does 1 reconnect in 15 seconds. An
576  * attacker can easily beat that.
577  *
578  * The only somewhat efficient mechanism would be if drop old
579  * connections from the same IP first. But right now we don't even
580  * record the client IP in svc_sock.
581  *
582  * single-threaded services that expect a lot of clients will probably
583  * need to set sv_maxconn to override the default value which is based
584  * on the number of threads
585  */
586 static void svc_check_conn_limits(struct svc_serv *serv)
587 {
588 	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
589 				(serv->sv_nrthreads+3) * 20;
590 
591 	if (serv->sv_tmpcnt > limit) {
592 		struct svc_xprt *xprt = NULL;
593 		spin_lock_bh(&serv->sv_lock);
594 		if (!list_empty(&serv->sv_tempsocks)) {
595 			/* Try to help the admin */
596 			net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
597 					       serv->sv_name, serv->sv_maxconn ?
598 					       "max number of connections" :
599 					       "number of threads");
600 			/*
601 			 * Always select the oldest connection. It's not fair,
602 			 * but so is life
603 			 */
604 			xprt = list_entry(serv->sv_tempsocks.prev,
605 					  struct svc_xprt,
606 					  xpt_list);
607 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
608 			svc_xprt_get(xprt);
609 		}
610 		spin_unlock_bh(&serv->sv_lock);
611 
612 		if (xprt) {
613 			svc_xprt_enqueue(xprt);
614 			svc_xprt_put(xprt);
615 		}
616 	}
617 }
618 
619 static int svc_alloc_arg(struct svc_rqst *rqstp)
620 {
621 	struct svc_serv *serv = rqstp->rq_server;
622 	struct xdr_buf *arg;
623 	int pages;
624 	int i;
625 
626 	/* now allocate needed pages.  If we get a failure, sleep briefly */
627 	pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
628 	WARN_ON_ONCE(pages >= RPCSVC_MAXPAGES);
629 	if (pages >= RPCSVC_MAXPAGES)
630 		/* use as many pages as possible */
631 		pages = RPCSVC_MAXPAGES - 1;
632 	for (i = 0; i < pages ; i++)
633 		while (rqstp->rq_pages[i] == NULL) {
634 			struct page *p = alloc_page(GFP_KERNEL);
635 			if (!p) {
636 				set_current_state(TASK_INTERRUPTIBLE);
637 				if (signalled() || kthread_should_stop()) {
638 					set_current_state(TASK_RUNNING);
639 					return -EINTR;
640 				}
641 				schedule_timeout(msecs_to_jiffies(500));
642 			}
643 			rqstp->rq_pages[i] = p;
644 		}
645 	rqstp->rq_page_end = &rqstp->rq_pages[i];
646 	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
647 
648 	/* Make arg->head point to first page and arg->pages point to rest */
649 	arg = &rqstp->rq_arg;
650 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
651 	arg->head[0].iov_len = PAGE_SIZE;
652 	arg->pages = rqstp->rq_pages + 1;
653 	arg->page_base = 0;
654 	/* save at least one page for response */
655 	arg->page_len = (pages-2)*PAGE_SIZE;
656 	arg->len = (pages-1)*PAGE_SIZE;
657 	arg->tail[0].iov_len = 0;
658 	return 0;
659 }
660 
661 static bool
662 rqst_should_sleep(struct svc_rqst *rqstp)
663 {
664 	struct svc_pool		*pool = rqstp->rq_pool;
665 
666 	/* did someone call svc_wake_up? */
667 	if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
668 		return false;
669 
670 	/* was a socket queued? */
671 	if (!list_empty(&pool->sp_sockets))
672 		return false;
673 
674 	/* are we shutting down? */
675 	if (signalled() || kthread_should_stop())
676 		return false;
677 
678 	/* are we freezing? */
679 	if (freezing(current))
680 		return false;
681 
682 	return true;
683 }
684 
685 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
686 {
687 	struct svc_xprt *xprt;
688 	struct svc_pool		*pool = rqstp->rq_pool;
689 	long			time_left = 0;
690 
691 	/* rq_xprt should be clear on entry */
692 	WARN_ON_ONCE(rqstp->rq_xprt);
693 
694 	/* Normally we will wait up to 5 seconds for any required
695 	 * cache information to be provided.
696 	 */
697 	rqstp->rq_chandle.thread_wait = 5*HZ;
698 
699 	xprt = svc_xprt_dequeue(pool);
700 	if (xprt) {
701 		rqstp->rq_xprt = xprt;
702 
703 		/* As there is a shortage of threads and this request
704 		 * had to be queued, don't allow the thread to wait so
705 		 * long for cache updates.
706 		 */
707 		rqstp->rq_chandle.thread_wait = 1*HZ;
708 		clear_bit(SP_TASK_PENDING, &pool->sp_flags);
709 		return xprt;
710 	}
711 
712 	/*
713 	 * We have to be able to interrupt this wait
714 	 * to bring down the daemons ...
715 	 */
716 	set_current_state(TASK_INTERRUPTIBLE);
717 	clear_bit(RQ_BUSY, &rqstp->rq_flags);
718 	smp_mb();
719 
720 	if (likely(rqst_should_sleep(rqstp)))
721 		time_left = schedule_timeout(timeout);
722 	else
723 		__set_current_state(TASK_RUNNING);
724 
725 	try_to_freeze();
726 
727 	spin_lock_bh(&rqstp->rq_lock);
728 	set_bit(RQ_BUSY, &rqstp->rq_flags);
729 	spin_unlock_bh(&rqstp->rq_lock);
730 
731 	xprt = rqstp->rq_xprt;
732 	if (xprt != NULL)
733 		return xprt;
734 
735 	if (!time_left)
736 		atomic_long_inc(&pool->sp_stats.threads_timedout);
737 
738 	if (signalled() || kthread_should_stop())
739 		return ERR_PTR(-EINTR);
740 	return ERR_PTR(-EAGAIN);
741 }
742 
743 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
744 {
745 	spin_lock_bh(&serv->sv_lock);
746 	set_bit(XPT_TEMP, &newxpt->xpt_flags);
747 	list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
748 	serv->sv_tmpcnt++;
749 	if (serv->sv_temptimer.function == NULL) {
750 		/* setup timer to age temp transports */
751 		setup_timer(&serv->sv_temptimer, svc_age_temp_xprts,
752 			    (unsigned long)serv);
753 		mod_timer(&serv->sv_temptimer,
754 			  jiffies + svc_conn_age_period * HZ);
755 	}
756 	spin_unlock_bh(&serv->sv_lock);
757 	svc_xprt_received(newxpt);
758 }
759 
760 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
761 {
762 	struct svc_serv *serv = rqstp->rq_server;
763 	int len = 0;
764 
765 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
766 		dprintk("svc_recv: found XPT_CLOSE\n");
767 		svc_delete_xprt(xprt);
768 		/* Leave XPT_BUSY set on the dead xprt: */
769 		goto out;
770 	}
771 	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
772 		struct svc_xprt *newxpt;
773 		/*
774 		 * We know this module_get will succeed because the
775 		 * listener holds a reference too
776 		 */
777 		__module_get(xprt->xpt_class->xcl_owner);
778 		svc_check_conn_limits(xprt->xpt_server);
779 		newxpt = xprt->xpt_ops->xpo_accept(xprt);
780 		if (newxpt)
781 			svc_add_new_temp_xprt(serv, newxpt);
782 		else
783 			module_put(xprt->xpt_class->xcl_owner);
784 	} else {
785 		/* XPT_DATA|XPT_DEFERRED case: */
786 		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
787 			rqstp, rqstp->rq_pool->sp_id, xprt,
788 			atomic_read(&xprt->xpt_ref.refcount));
789 		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
790 		if (rqstp->rq_deferred)
791 			len = svc_deferred_recv(rqstp);
792 		else
793 			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
794 		dprintk("svc: got len=%d\n", len);
795 		rqstp->rq_reserved = serv->sv_max_mesg;
796 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
797 	}
798 	/* clear XPT_BUSY: */
799 	svc_xprt_received(xprt);
800 out:
801 	trace_svc_handle_xprt(xprt, len);
802 	return len;
803 }
804 
805 /*
806  * Receive the next request on any transport.  This code is carefully
807  * organised not to touch any cachelines in the shared svc_serv
808  * structure, only cachelines in the local svc_pool.
809  */
810 int svc_recv(struct svc_rqst *rqstp, long timeout)
811 {
812 	struct svc_xprt		*xprt = NULL;
813 	struct svc_serv		*serv = rqstp->rq_server;
814 	int			len, err;
815 
816 	dprintk("svc: server %p waiting for data (to = %ld)\n",
817 		rqstp, timeout);
818 
819 	if (rqstp->rq_xprt)
820 		printk(KERN_ERR
821 			"svc_recv: service %p, transport not NULL!\n",
822 			 rqstp);
823 
824 	err = svc_alloc_arg(rqstp);
825 	if (err)
826 		goto out;
827 
828 	try_to_freeze();
829 	cond_resched();
830 	err = -EINTR;
831 	if (signalled() || kthread_should_stop())
832 		goto out;
833 
834 	xprt = svc_get_next_xprt(rqstp, timeout);
835 	if (IS_ERR(xprt)) {
836 		err = PTR_ERR(xprt);
837 		goto out;
838 	}
839 
840 	len = svc_handle_xprt(rqstp, xprt);
841 
842 	/* No data, incomplete (TCP) read, or accept() */
843 	err = -EAGAIN;
844 	if (len <= 0)
845 		goto out_release;
846 
847 	clear_bit(XPT_OLD, &xprt->xpt_flags);
848 
849 	if (xprt->xpt_ops->xpo_secure_port(rqstp))
850 		set_bit(RQ_SECURE, &rqstp->rq_flags);
851 	else
852 		clear_bit(RQ_SECURE, &rqstp->rq_flags);
853 	rqstp->rq_chandle.defer = svc_defer;
854 	rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
855 
856 	if (serv->sv_stats)
857 		serv->sv_stats->netcnt++;
858 	trace_svc_recv(rqstp, len);
859 	return len;
860 out_release:
861 	rqstp->rq_res.len = 0;
862 	svc_xprt_release(rqstp);
863 out:
864 	trace_svc_recv(rqstp, err);
865 	return err;
866 }
867 EXPORT_SYMBOL_GPL(svc_recv);
868 
869 /*
870  * Drop request
871  */
872 void svc_drop(struct svc_rqst *rqstp)
873 {
874 	dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
875 	svc_xprt_release(rqstp);
876 }
877 EXPORT_SYMBOL_GPL(svc_drop);
878 
879 /*
880  * Return reply to client.
881  */
882 int svc_send(struct svc_rqst *rqstp)
883 {
884 	struct svc_xprt	*xprt;
885 	int		len = -EFAULT;
886 	struct xdr_buf	*xb;
887 
888 	xprt = rqstp->rq_xprt;
889 	if (!xprt)
890 		goto out;
891 
892 	/* release the receive skb before sending the reply */
893 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
894 
895 	/* calculate over-all length */
896 	xb = &rqstp->rq_res;
897 	xb->len = xb->head[0].iov_len +
898 		xb->page_len +
899 		xb->tail[0].iov_len;
900 
901 	/* Grab mutex to serialize outgoing data. */
902 	mutex_lock(&xprt->xpt_mutex);
903 	if (test_bit(XPT_DEAD, &xprt->xpt_flags)
904 			|| test_bit(XPT_CLOSE, &xprt->xpt_flags))
905 		len = -ENOTCONN;
906 	else
907 		len = xprt->xpt_ops->xpo_sendto(rqstp);
908 	mutex_unlock(&xprt->xpt_mutex);
909 	rpc_wake_up(&xprt->xpt_bc_pending);
910 	svc_xprt_release(rqstp);
911 
912 	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
913 		len = 0;
914 out:
915 	trace_svc_send(rqstp, len);
916 	return len;
917 }
918 
919 /*
920  * Timer function to close old temporary transports, using
921  * a mark-and-sweep algorithm.
922  */
923 static void svc_age_temp_xprts(unsigned long closure)
924 {
925 	struct svc_serv *serv = (struct svc_serv *)closure;
926 	struct svc_xprt *xprt;
927 	struct list_head *le, *next;
928 
929 	dprintk("svc_age_temp_xprts\n");
930 
931 	if (!spin_trylock_bh(&serv->sv_lock)) {
932 		/* busy, try again 1 sec later */
933 		dprintk("svc_age_temp_xprts: busy\n");
934 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
935 		return;
936 	}
937 
938 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
939 		xprt = list_entry(le, struct svc_xprt, xpt_list);
940 
941 		/* First time through, just mark it OLD. Second time
942 		 * through, close it. */
943 		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
944 			continue;
945 		if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
946 		    test_bit(XPT_BUSY, &xprt->xpt_flags))
947 			continue;
948 		list_del_init(le);
949 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
950 		dprintk("queuing xprt %p for closing\n", xprt);
951 
952 		/* a thread will dequeue and close it soon */
953 		svc_xprt_enqueue(xprt);
954 	}
955 	spin_unlock_bh(&serv->sv_lock);
956 
957 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
958 }
959 
960 /* Close temporary transports whose xpt_local matches server_addr immediately
961  * instead of waiting for them to be picked up by the timer.
962  *
963  * This is meant to be called from a notifier_block that runs when an ip
964  * address is deleted.
965  */
966 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
967 {
968 	struct svc_xprt *xprt;
969 	struct svc_sock *svsk;
970 	struct socket *sock;
971 	struct list_head *le, *next;
972 	LIST_HEAD(to_be_closed);
973 	struct linger no_linger = {
974 		.l_onoff = 1,
975 		.l_linger = 0,
976 	};
977 
978 	spin_lock_bh(&serv->sv_lock);
979 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
980 		xprt = list_entry(le, struct svc_xprt, xpt_list);
981 		if (rpc_cmp_addr(server_addr, (struct sockaddr *)
982 				&xprt->xpt_local)) {
983 			dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
984 			list_move(le, &to_be_closed);
985 		}
986 	}
987 	spin_unlock_bh(&serv->sv_lock);
988 
989 	while (!list_empty(&to_be_closed)) {
990 		le = to_be_closed.next;
991 		list_del_init(le);
992 		xprt = list_entry(le, struct svc_xprt, xpt_list);
993 		dprintk("svc_age_temp_xprts_now: closing %p\n", xprt);
994 		svsk = container_of(xprt, struct svc_sock, sk_xprt);
995 		sock = svsk->sk_sock;
996 		kernel_setsockopt(sock, SOL_SOCKET, SO_LINGER,
997 				  (char *)&no_linger, sizeof(no_linger));
998 		svc_close_xprt(xprt);
999 	}
1000 }
1001 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
1002 
1003 static void call_xpt_users(struct svc_xprt *xprt)
1004 {
1005 	struct svc_xpt_user *u;
1006 
1007 	spin_lock(&xprt->xpt_lock);
1008 	while (!list_empty(&xprt->xpt_users)) {
1009 		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1010 		list_del(&u->list);
1011 		u->callback(u);
1012 	}
1013 	spin_unlock(&xprt->xpt_lock);
1014 }
1015 
1016 /*
1017  * Remove a dead transport
1018  */
1019 static void svc_delete_xprt(struct svc_xprt *xprt)
1020 {
1021 	struct svc_serv	*serv = xprt->xpt_server;
1022 	struct svc_deferred_req *dr;
1023 
1024 	/* Only do this once */
1025 	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1026 		BUG();
1027 
1028 	dprintk("svc: svc_delete_xprt(%p)\n", xprt);
1029 	xprt->xpt_ops->xpo_detach(xprt);
1030 
1031 	spin_lock_bh(&serv->sv_lock);
1032 	list_del_init(&xprt->xpt_list);
1033 	WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1034 	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1035 		serv->sv_tmpcnt--;
1036 	spin_unlock_bh(&serv->sv_lock);
1037 
1038 	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1039 		kfree(dr);
1040 
1041 	call_xpt_users(xprt);
1042 	svc_xprt_put(xprt);
1043 }
1044 
1045 void svc_close_xprt(struct svc_xprt *xprt)
1046 {
1047 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
1048 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1049 		/* someone else will have to effect the close */
1050 		return;
1051 	/*
1052 	 * We expect svc_close_xprt() to work even when no threads are
1053 	 * running (e.g., while configuring the server before starting
1054 	 * any threads), so if the transport isn't busy, we delete
1055 	 * it ourself:
1056 	 */
1057 	svc_delete_xprt(xprt);
1058 }
1059 EXPORT_SYMBOL_GPL(svc_close_xprt);
1060 
1061 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1062 {
1063 	struct svc_xprt *xprt;
1064 	int ret = 0;
1065 
1066 	spin_lock(&serv->sv_lock);
1067 	list_for_each_entry(xprt, xprt_list, xpt_list) {
1068 		if (xprt->xpt_net != net)
1069 			continue;
1070 		ret++;
1071 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1072 		svc_xprt_enqueue(xprt);
1073 	}
1074 	spin_unlock(&serv->sv_lock);
1075 	return ret;
1076 }
1077 
1078 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1079 {
1080 	struct svc_pool *pool;
1081 	struct svc_xprt *xprt;
1082 	struct svc_xprt *tmp;
1083 	int i;
1084 
1085 	for (i = 0; i < serv->sv_nrpools; i++) {
1086 		pool = &serv->sv_pools[i];
1087 
1088 		spin_lock_bh(&pool->sp_lock);
1089 		list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1090 			if (xprt->xpt_net != net)
1091 				continue;
1092 			list_del_init(&xprt->xpt_ready);
1093 			spin_unlock_bh(&pool->sp_lock);
1094 			return xprt;
1095 		}
1096 		spin_unlock_bh(&pool->sp_lock);
1097 	}
1098 	return NULL;
1099 }
1100 
1101 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1102 {
1103 	struct svc_xprt *xprt;
1104 
1105 	while ((xprt = svc_dequeue_net(serv, net))) {
1106 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1107 		svc_delete_xprt(xprt);
1108 	}
1109 }
1110 
1111 /*
1112  * Server threads may still be running (especially in the case where the
1113  * service is still running in other network namespaces).
1114  *
1115  * So we shut down sockets the same way we would on a running server, by
1116  * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1117  * the close.  In the case there are no such other threads,
1118  * threads running, svc_clean_up_xprts() does a simple version of a
1119  * server's main event loop, and in the case where there are other
1120  * threads, we may need to wait a little while and then check again to
1121  * see if they're done.
1122  */
1123 void svc_close_net(struct svc_serv *serv, struct net *net)
1124 {
1125 	int delay = 0;
1126 
1127 	while (svc_close_list(serv, &serv->sv_permsocks, net) +
1128 	       svc_close_list(serv, &serv->sv_tempsocks, net)) {
1129 
1130 		svc_clean_up_xprts(serv, net);
1131 		msleep(delay++);
1132 	}
1133 }
1134 
1135 /*
1136  * Handle defer and revisit of requests
1137  */
1138 
1139 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1140 {
1141 	struct svc_deferred_req *dr =
1142 		container_of(dreq, struct svc_deferred_req, handle);
1143 	struct svc_xprt *xprt = dr->xprt;
1144 
1145 	spin_lock(&xprt->xpt_lock);
1146 	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1147 	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1148 		spin_unlock(&xprt->xpt_lock);
1149 		dprintk("revisit canceled\n");
1150 		svc_xprt_put(xprt);
1151 		kfree(dr);
1152 		return;
1153 	}
1154 	dprintk("revisit queued\n");
1155 	dr->xprt = NULL;
1156 	list_add(&dr->handle.recent, &xprt->xpt_deferred);
1157 	spin_unlock(&xprt->xpt_lock);
1158 	svc_xprt_enqueue(xprt);
1159 	svc_xprt_put(xprt);
1160 }
1161 
1162 /*
1163  * Save the request off for later processing. The request buffer looks
1164  * like this:
1165  *
1166  * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1167  *
1168  * This code can only handle requests that consist of an xprt-header
1169  * and rpc-header.
1170  */
1171 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1172 {
1173 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1174 	struct svc_deferred_req *dr;
1175 
1176 	if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1177 		return NULL; /* if more than a page, give up FIXME */
1178 	if (rqstp->rq_deferred) {
1179 		dr = rqstp->rq_deferred;
1180 		rqstp->rq_deferred = NULL;
1181 	} else {
1182 		size_t skip;
1183 		size_t size;
1184 		/* FIXME maybe discard if size too large */
1185 		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1186 		dr = kmalloc(size, GFP_KERNEL);
1187 		if (dr == NULL)
1188 			return NULL;
1189 
1190 		dr->handle.owner = rqstp->rq_server;
1191 		dr->prot = rqstp->rq_prot;
1192 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1193 		dr->addrlen = rqstp->rq_addrlen;
1194 		dr->daddr = rqstp->rq_daddr;
1195 		dr->argslen = rqstp->rq_arg.len >> 2;
1196 		dr->xprt_hlen = rqstp->rq_xprt_hlen;
1197 
1198 		/* back up head to the start of the buffer and copy */
1199 		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1200 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1201 		       dr->argslen << 2);
1202 	}
1203 	svc_xprt_get(rqstp->rq_xprt);
1204 	dr->xprt = rqstp->rq_xprt;
1205 	set_bit(RQ_DROPME, &rqstp->rq_flags);
1206 
1207 	dr->handle.revisit = svc_revisit;
1208 	return &dr->handle;
1209 }
1210 
1211 /*
1212  * recv data from a deferred request into an active one
1213  */
1214 static int svc_deferred_recv(struct svc_rqst *rqstp)
1215 {
1216 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1217 
1218 	/* setup iov_base past transport header */
1219 	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1220 	/* The iov_len does not include the transport header bytes */
1221 	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1222 	rqstp->rq_arg.page_len = 0;
1223 	/* The rq_arg.len includes the transport header bytes */
1224 	rqstp->rq_arg.len     = dr->argslen<<2;
1225 	rqstp->rq_prot        = dr->prot;
1226 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1227 	rqstp->rq_addrlen     = dr->addrlen;
1228 	/* Save off transport header len in case we get deferred again */
1229 	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1230 	rqstp->rq_daddr       = dr->daddr;
1231 	rqstp->rq_respages    = rqstp->rq_pages;
1232 	return (dr->argslen<<2) - dr->xprt_hlen;
1233 }
1234 
1235 
1236 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1237 {
1238 	struct svc_deferred_req *dr = NULL;
1239 
1240 	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1241 		return NULL;
1242 	spin_lock(&xprt->xpt_lock);
1243 	if (!list_empty(&xprt->xpt_deferred)) {
1244 		dr = list_entry(xprt->xpt_deferred.next,
1245 				struct svc_deferred_req,
1246 				handle.recent);
1247 		list_del_init(&dr->handle.recent);
1248 	} else
1249 		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1250 	spin_unlock(&xprt->xpt_lock);
1251 	return dr;
1252 }
1253 
1254 /**
1255  * svc_find_xprt - find an RPC transport instance
1256  * @serv: pointer to svc_serv to search
1257  * @xcl_name: C string containing transport's class name
1258  * @net: owner net pointer
1259  * @af: Address family of transport's local address
1260  * @port: transport's IP port number
1261  *
1262  * Return the transport instance pointer for the endpoint accepting
1263  * connections/peer traffic from the specified transport class,
1264  * address family and port.
1265  *
1266  * Specifying 0 for the address family or port is effectively a
1267  * wild-card, and will result in matching the first transport in the
1268  * service's list that has a matching class name.
1269  */
1270 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1271 			       struct net *net, const sa_family_t af,
1272 			       const unsigned short port)
1273 {
1274 	struct svc_xprt *xprt;
1275 	struct svc_xprt *found = NULL;
1276 
1277 	/* Sanity check the args */
1278 	if (serv == NULL || xcl_name == NULL)
1279 		return found;
1280 
1281 	spin_lock_bh(&serv->sv_lock);
1282 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1283 		if (xprt->xpt_net != net)
1284 			continue;
1285 		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1286 			continue;
1287 		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1288 			continue;
1289 		if (port != 0 && port != svc_xprt_local_port(xprt))
1290 			continue;
1291 		found = xprt;
1292 		svc_xprt_get(xprt);
1293 		break;
1294 	}
1295 	spin_unlock_bh(&serv->sv_lock);
1296 	return found;
1297 }
1298 EXPORT_SYMBOL_GPL(svc_find_xprt);
1299 
1300 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1301 			     char *pos, int remaining)
1302 {
1303 	int len;
1304 
1305 	len = snprintf(pos, remaining, "%s %u\n",
1306 			xprt->xpt_class->xcl_name,
1307 			svc_xprt_local_port(xprt));
1308 	if (len >= remaining)
1309 		return -ENAMETOOLONG;
1310 	return len;
1311 }
1312 
1313 /**
1314  * svc_xprt_names - format a buffer with a list of transport names
1315  * @serv: pointer to an RPC service
1316  * @buf: pointer to a buffer to be filled in
1317  * @buflen: length of buffer to be filled in
1318  *
1319  * Fills in @buf with a string containing a list of transport names,
1320  * each name terminated with '\n'.
1321  *
1322  * Returns positive length of the filled-in string on success; otherwise
1323  * a negative errno value is returned if an error occurs.
1324  */
1325 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1326 {
1327 	struct svc_xprt *xprt;
1328 	int len, totlen;
1329 	char *pos;
1330 
1331 	/* Sanity check args */
1332 	if (!serv)
1333 		return 0;
1334 
1335 	spin_lock_bh(&serv->sv_lock);
1336 
1337 	pos = buf;
1338 	totlen = 0;
1339 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1340 		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1341 		if (len < 0) {
1342 			*buf = '\0';
1343 			totlen = len;
1344 		}
1345 		if (len <= 0)
1346 			break;
1347 
1348 		pos += len;
1349 		totlen += len;
1350 	}
1351 
1352 	spin_unlock_bh(&serv->sv_lock);
1353 	return totlen;
1354 }
1355 EXPORT_SYMBOL_GPL(svc_xprt_names);
1356 
1357 
1358 /*----------------------------------------------------------------------------*/
1359 
1360 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1361 {
1362 	unsigned int pidx = (unsigned int)*pos;
1363 	struct svc_serv *serv = m->private;
1364 
1365 	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1366 
1367 	if (!pidx)
1368 		return SEQ_START_TOKEN;
1369 	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1370 }
1371 
1372 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1373 {
1374 	struct svc_pool *pool = p;
1375 	struct svc_serv *serv = m->private;
1376 
1377 	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1378 
1379 	if (p == SEQ_START_TOKEN) {
1380 		pool = &serv->sv_pools[0];
1381 	} else {
1382 		unsigned int pidx = (pool - &serv->sv_pools[0]);
1383 		if (pidx < serv->sv_nrpools-1)
1384 			pool = &serv->sv_pools[pidx+1];
1385 		else
1386 			pool = NULL;
1387 	}
1388 	++*pos;
1389 	return pool;
1390 }
1391 
1392 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1393 {
1394 }
1395 
1396 static int svc_pool_stats_show(struct seq_file *m, void *p)
1397 {
1398 	struct svc_pool *pool = p;
1399 
1400 	if (p == SEQ_START_TOKEN) {
1401 		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1402 		return 0;
1403 	}
1404 
1405 	seq_printf(m, "%u %lu %lu %lu %lu\n",
1406 		pool->sp_id,
1407 		(unsigned long)atomic_long_read(&pool->sp_stats.packets),
1408 		pool->sp_stats.sockets_queued,
1409 		(unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1410 		(unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1411 
1412 	return 0;
1413 }
1414 
1415 static const struct seq_operations svc_pool_stats_seq_ops = {
1416 	.start	= svc_pool_stats_start,
1417 	.next	= svc_pool_stats_next,
1418 	.stop	= svc_pool_stats_stop,
1419 	.show	= svc_pool_stats_show,
1420 };
1421 
1422 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1423 {
1424 	int err;
1425 
1426 	err = seq_open(file, &svc_pool_stats_seq_ops);
1427 	if (!err)
1428 		((struct seq_file *) file->private_data)->private = serv;
1429 	return err;
1430 }
1431 EXPORT_SYMBOL(svc_pool_stats_open);
1432 
1433 /*----------------------------------------------------------------------------*/
1434