xref: /openbmc/linux/net/sunrpc/svc_xprt.c (revision 1fa0a7dc)
1 /*
2  * linux/net/sunrpc/svc_xprt.c
3  *
4  * Author: Tom Tucker <tom@opengridcomputing.com>
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/addr.h>
14 #include <linux/sunrpc/stats.h>
15 #include <linux/sunrpc/svc_xprt.h>
16 #include <linux/sunrpc/svcsock.h>
17 #include <linux/sunrpc/xprt.h>
18 #include <linux/module.h>
19 #include <linux/netdevice.h>
20 #include <trace/events/sunrpc.h>
21 
22 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
23 
24 static unsigned int svc_rpc_per_connection_limit __read_mostly;
25 module_param(svc_rpc_per_connection_limit, uint, 0644);
26 
27 
28 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
29 static int svc_deferred_recv(struct svc_rqst *rqstp);
30 static struct cache_deferred_req *svc_defer(struct cache_req *req);
31 static void svc_age_temp_xprts(struct timer_list *t);
32 static void svc_delete_xprt(struct svc_xprt *xprt);
33 
34 /* apparently the "standard" is that clients close
35  * idle connections after 5 minutes, servers after
36  * 6 minutes
37  *   http://www.connectathon.org/talks96/nfstcp.pdf
38  */
39 static int svc_conn_age_period = 6*60;
40 
41 /* List of registered transport classes */
42 static DEFINE_SPINLOCK(svc_xprt_class_lock);
43 static LIST_HEAD(svc_xprt_class_list);
44 
45 /* SMP locking strategy:
46  *
47  *	svc_pool->sp_lock protects most of the fields of that pool.
48  *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
49  *	when both need to be taken (rare), svc_serv->sv_lock is first.
50  *	The "service mutex" protects svc_serv->sv_nrthread.
51  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
52  *             and the ->sk_info_authunix cache.
53  *
54  *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
55  *	enqueued multiply. During normal transport processing this bit
56  *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
57  *	Providers should not manipulate this bit directly.
58  *
59  *	Some flags can be set to certain values at any time
60  *	providing that certain rules are followed:
61  *
62  *	XPT_CONN, XPT_DATA:
63  *		- Can be set or cleared at any time.
64  *		- After a set, svc_xprt_enqueue must be called to enqueue
65  *		  the transport for processing.
66  *		- After a clear, the transport must be read/accepted.
67  *		  If this succeeds, it must be set again.
68  *	XPT_CLOSE:
69  *		- Can set at any time. It is never cleared.
70  *      XPT_DEAD:
71  *		- Can only be set while XPT_BUSY is held which ensures
72  *		  that no other thread will be using the transport or will
73  *		  try to set XPT_DEAD.
74  */
75 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
76 {
77 	struct svc_xprt_class *cl;
78 	int res = -EEXIST;
79 
80 	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
81 
82 	INIT_LIST_HEAD(&xcl->xcl_list);
83 	spin_lock(&svc_xprt_class_lock);
84 	/* Make sure there isn't already a class with the same name */
85 	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
86 		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
87 			goto out;
88 	}
89 	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
90 	res = 0;
91 out:
92 	spin_unlock(&svc_xprt_class_lock);
93 	return res;
94 }
95 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
96 
97 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
98 {
99 	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
100 	spin_lock(&svc_xprt_class_lock);
101 	list_del_init(&xcl->xcl_list);
102 	spin_unlock(&svc_xprt_class_lock);
103 }
104 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
105 
106 /*
107  * Format the transport list for printing
108  */
109 int svc_print_xprts(char *buf, int maxlen)
110 {
111 	struct svc_xprt_class *xcl;
112 	char tmpstr[80];
113 	int len = 0;
114 	buf[0] = '\0';
115 
116 	spin_lock(&svc_xprt_class_lock);
117 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
118 		int slen;
119 
120 		sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
121 		slen = strlen(tmpstr);
122 		if (len + slen > maxlen)
123 			break;
124 		len += slen;
125 		strcat(buf, tmpstr);
126 	}
127 	spin_unlock(&svc_xprt_class_lock);
128 
129 	return len;
130 }
131 
132 static void svc_xprt_free(struct kref *kref)
133 {
134 	struct svc_xprt *xprt =
135 		container_of(kref, struct svc_xprt, xpt_ref);
136 	struct module *owner = xprt->xpt_class->xcl_owner;
137 	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
138 		svcauth_unix_info_release(xprt);
139 	put_cred(xprt->xpt_cred);
140 	put_net(xprt->xpt_net);
141 	/* See comment on corresponding get in xs_setup_bc_tcp(): */
142 	if (xprt->xpt_bc_xprt)
143 		xprt_put(xprt->xpt_bc_xprt);
144 	if (xprt->xpt_bc_xps)
145 		xprt_switch_put(xprt->xpt_bc_xps);
146 	xprt->xpt_ops->xpo_free(xprt);
147 	module_put(owner);
148 }
149 
150 void svc_xprt_put(struct svc_xprt *xprt)
151 {
152 	kref_put(&xprt->xpt_ref, svc_xprt_free);
153 }
154 EXPORT_SYMBOL_GPL(svc_xprt_put);
155 
156 /*
157  * Called by transport drivers to initialize the transport independent
158  * portion of the transport instance.
159  */
160 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
161 		   struct svc_xprt *xprt, struct svc_serv *serv)
162 {
163 	memset(xprt, 0, sizeof(*xprt));
164 	xprt->xpt_class = xcl;
165 	xprt->xpt_ops = xcl->xcl_ops;
166 	kref_init(&xprt->xpt_ref);
167 	xprt->xpt_server = serv;
168 	INIT_LIST_HEAD(&xprt->xpt_list);
169 	INIT_LIST_HEAD(&xprt->xpt_ready);
170 	INIT_LIST_HEAD(&xprt->xpt_deferred);
171 	INIT_LIST_HEAD(&xprt->xpt_users);
172 	mutex_init(&xprt->xpt_mutex);
173 	spin_lock_init(&xprt->xpt_lock);
174 	set_bit(XPT_BUSY, &xprt->xpt_flags);
175 	xprt->xpt_net = get_net(net);
176 	strcpy(xprt->xpt_remotebuf, "uninitialized");
177 }
178 EXPORT_SYMBOL_GPL(svc_xprt_init);
179 
180 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
181 					 struct svc_serv *serv,
182 					 struct net *net,
183 					 const int family,
184 					 const unsigned short port,
185 					 int flags)
186 {
187 	struct sockaddr_in sin = {
188 		.sin_family		= AF_INET,
189 		.sin_addr.s_addr	= htonl(INADDR_ANY),
190 		.sin_port		= htons(port),
191 	};
192 #if IS_ENABLED(CONFIG_IPV6)
193 	struct sockaddr_in6 sin6 = {
194 		.sin6_family		= AF_INET6,
195 		.sin6_addr		= IN6ADDR_ANY_INIT,
196 		.sin6_port		= htons(port),
197 	};
198 #endif
199 	struct sockaddr *sap;
200 	size_t len;
201 
202 	switch (family) {
203 	case PF_INET:
204 		sap = (struct sockaddr *)&sin;
205 		len = sizeof(sin);
206 		break;
207 #if IS_ENABLED(CONFIG_IPV6)
208 	case PF_INET6:
209 		sap = (struct sockaddr *)&sin6;
210 		len = sizeof(sin6);
211 		break;
212 #endif
213 	default:
214 		return ERR_PTR(-EAFNOSUPPORT);
215 	}
216 
217 	return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
218 }
219 
220 /*
221  * svc_xprt_received conditionally queues the transport for processing
222  * by another thread. The caller must hold the XPT_BUSY bit and must
223  * not thereafter touch transport data.
224  *
225  * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
226  * insufficient) data.
227  */
228 static void svc_xprt_received(struct svc_xprt *xprt)
229 {
230 	if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
231 		WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
232 		return;
233 	}
234 
235 	/* As soon as we clear busy, the xprt could be closed and
236 	 * 'put', so we need a reference to call svc_enqueue_xprt with:
237 	 */
238 	svc_xprt_get(xprt);
239 	smp_mb__before_atomic();
240 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
241 	xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
242 	svc_xprt_put(xprt);
243 }
244 
245 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
246 {
247 	clear_bit(XPT_TEMP, &new->xpt_flags);
248 	spin_lock_bh(&serv->sv_lock);
249 	list_add(&new->xpt_list, &serv->sv_permsocks);
250 	spin_unlock_bh(&serv->sv_lock);
251 	svc_xprt_received(new);
252 }
253 
254 static int _svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
255 			    struct net *net, const int family,
256 			    const unsigned short port, int flags,
257 			    const struct cred *cred)
258 {
259 	struct svc_xprt_class *xcl;
260 
261 	spin_lock(&svc_xprt_class_lock);
262 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
263 		struct svc_xprt *newxprt;
264 		unsigned short newport;
265 
266 		if (strcmp(xprt_name, xcl->xcl_name))
267 			continue;
268 
269 		if (!try_module_get(xcl->xcl_owner))
270 			goto err;
271 
272 		spin_unlock(&svc_xprt_class_lock);
273 		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
274 		if (IS_ERR(newxprt)) {
275 			module_put(xcl->xcl_owner);
276 			return PTR_ERR(newxprt);
277 		}
278 		newxprt->xpt_cred = get_cred(cred);
279 		svc_add_new_perm_xprt(serv, newxprt);
280 		newport = svc_xprt_local_port(newxprt);
281 		return newport;
282 	}
283  err:
284 	spin_unlock(&svc_xprt_class_lock);
285 	/* This errno is exposed to user space.  Provide a reasonable
286 	 * perror msg for a bad transport. */
287 	return -EPROTONOSUPPORT;
288 }
289 
290 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
291 		    struct net *net, const int family,
292 		    const unsigned short port, int flags,
293 		    const struct cred *cred)
294 {
295 	int err;
296 
297 	dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
298 	err = _svc_create_xprt(serv, xprt_name, net, family, port, flags, cred);
299 	if (err == -EPROTONOSUPPORT) {
300 		request_module("svc%s", xprt_name);
301 		err = _svc_create_xprt(serv, xprt_name, net, family, port, flags, cred);
302 	}
303 	if (err < 0)
304 		dprintk("svc: transport %s not found, err %d\n",
305 			xprt_name, -err);
306 	return err;
307 }
308 EXPORT_SYMBOL_GPL(svc_create_xprt);
309 
310 /*
311  * Copy the local and remote xprt addresses to the rqstp structure
312  */
313 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
314 {
315 	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
316 	rqstp->rq_addrlen = xprt->xpt_remotelen;
317 
318 	/*
319 	 * Destination address in request is needed for binding the
320 	 * source address in RPC replies/callbacks later.
321 	 */
322 	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
323 	rqstp->rq_daddrlen = xprt->xpt_locallen;
324 }
325 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
326 
327 /**
328  * svc_print_addr - Format rq_addr field for printing
329  * @rqstp: svc_rqst struct containing address to print
330  * @buf: target buffer for formatted address
331  * @len: length of target buffer
332  *
333  */
334 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
335 {
336 	return __svc_print_addr(svc_addr(rqstp), buf, len);
337 }
338 EXPORT_SYMBOL_GPL(svc_print_addr);
339 
340 static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
341 {
342 	unsigned int limit = svc_rpc_per_connection_limit;
343 	int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
344 
345 	return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
346 }
347 
348 static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
349 {
350 	if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
351 		if (!svc_xprt_slots_in_range(xprt))
352 			return false;
353 		atomic_inc(&xprt->xpt_nr_rqsts);
354 		set_bit(RQ_DATA, &rqstp->rq_flags);
355 	}
356 	return true;
357 }
358 
359 static void svc_xprt_release_slot(struct svc_rqst *rqstp)
360 {
361 	struct svc_xprt	*xprt = rqstp->rq_xprt;
362 	if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
363 		atomic_dec(&xprt->xpt_nr_rqsts);
364 		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
365 		svc_xprt_enqueue(xprt);
366 	}
367 }
368 
369 static bool svc_xprt_ready(struct svc_xprt *xprt)
370 {
371 	unsigned long xpt_flags;
372 
373 	/*
374 	 * If another cpu has recently updated xpt_flags,
375 	 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to
376 	 * know about it; otherwise it's possible that both that cpu and
377 	 * this one could call svc_xprt_enqueue() without either
378 	 * svc_xprt_enqueue() recognizing that the conditions below
379 	 * are satisfied, and we could stall indefinitely:
380 	 */
381 	smp_rmb();
382 	xpt_flags = READ_ONCE(xprt->xpt_flags);
383 
384 	if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE)))
385 		return true;
386 	if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) {
387 		if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
388 		    svc_xprt_slots_in_range(xprt))
389 			return true;
390 		trace_svc_xprt_no_write_space(xprt);
391 		return false;
392 	}
393 	return false;
394 }
395 
396 void svc_xprt_do_enqueue(struct svc_xprt *xprt)
397 {
398 	struct svc_pool *pool;
399 	struct svc_rqst	*rqstp = NULL;
400 	int cpu;
401 
402 	if (!svc_xprt_ready(xprt))
403 		return;
404 
405 	/* Mark transport as busy. It will remain in this state until
406 	 * the provider calls svc_xprt_received. We update XPT_BUSY
407 	 * atomically because it also guards against trying to enqueue
408 	 * the transport twice.
409 	 */
410 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
411 		return;
412 
413 	cpu = get_cpu();
414 	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
415 
416 	atomic_long_inc(&pool->sp_stats.packets);
417 
418 	spin_lock_bh(&pool->sp_lock);
419 	list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
420 	pool->sp_stats.sockets_queued++;
421 	spin_unlock_bh(&pool->sp_lock);
422 
423 	/* find a thread for this xprt */
424 	rcu_read_lock();
425 	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
426 		if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags))
427 			continue;
428 		atomic_long_inc(&pool->sp_stats.threads_woken);
429 		rqstp->rq_qtime = ktime_get();
430 		wake_up_process(rqstp->rq_task);
431 		goto out_unlock;
432 	}
433 	set_bit(SP_CONGESTED, &pool->sp_flags);
434 	rqstp = NULL;
435 out_unlock:
436 	rcu_read_unlock();
437 	put_cpu();
438 	trace_svc_xprt_do_enqueue(xprt, rqstp);
439 }
440 EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue);
441 
442 /*
443  * Queue up a transport with data pending. If there are idle nfsd
444  * processes, wake 'em up.
445  *
446  */
447 void svc_xprt_enqueue(struct svc_xprt *xprt)
448 {
449 	if (test_bit(XPT_BUSY, &xprt->xpt_flags))
450 		return;
451 	xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
452 }
453 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
454 
455 /*
456  * Dequeue the first transport, if there is one.
457  */
458 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
459 {
460 	struct svc_xprt	*xprt = NULL;
461 
462 	if (list_empty(&pool->sp_sockets))
463 		goto out;
464 
465 	spin_lock_bh(&pool->sp_lock);
466 	if (likely(!list_empty(&pool->sp_sockets))) {
467 		xprt = list_first_entry(&pool->sp_sockets,
468 					struct svc_xprt, xpt_ready);
469 		list_del_init(&xprt->xpt_ready);
470 		svc_xprt_get(xprt);
471 	}
472 	spin_unlock_bh(&pool->sp_lock);
473 out:
474 	return xprt;
475 }
476 
477 /**
478  * svc_reserve - change the space reserved for the reply to a request.
479  * @rqstp:  The request in question
480  * @space: new max space to reserve
481  *
482  * Each request reserves some space on the output queue of the transport
483  * to make sure the reply fits.  This function reduces that reserved
484  * space to be the amount of space used already, plus @space.
485  *
486  */
487 void svc_reserve(struct svc_rqst *rqstp, int space)
488 {
489 	struct svc_xprt *xprt = rqstp->rq_xprt;
490 
491 	space += rqstp->rq_res.head[0].iov_len;
492 
493 	if (xprt && space < rqstp->rq_reserved) {
494 		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
495 		rqstp->rq_reserved = space;
496 		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
497 		svc_xprt_enqueue(xprt);
498 	}
499 }
500 EXPORT_SYMBOL_GPL(svc_reserve);
501 
502 static void svc_xprt_release(struct svc_rqst *rqstp)
503 {
504 	struct svc_xprt	*xprt = rqstp->rq_xprt;
505 
506 	xprt->xpt_ops->xpo_release_rqst(rqstp);
507 
508 	kfree(rqstp->rq_deferred);
509 	rqstp->rq_deferred = NULL;
510 
511 	svc_free_res_pages(rqstp);
512 	rqstp->rq_res.page_len = 0;
513 	rqstp->rq_res.page_base = 0;
514 
515 	/* Reset response buffer and release
516 	 * the reservation.
517 	 * But first, check that enough space was reserved
518 	 * for the reply, otherwise we have a bug!
519 	 */
520 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
521 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
522 		       rqstp->rq_reserved,
523 		       rqstp->rq_res.len);
524 
525 	rqstp->rq_res.head[0].iov_len = 0;
526 	svc_reserve(rqstp, 0);
527 	svc_xprt_release_slot(rqstp);
528 	rqstp->rq_xprt = NULL;
529 	svc_xprt_put(xprt);
530 }
531 
532 /*
533  * Some svc_serv's will have occasional work to do, even when a xprt is not
534  * waiting to be serviced. This function is there to "kick" a task in one of
535  * those services so that it can wake up and do that work. Note that we only
536  * bother with pool 0 as we don't need to wake up more than one thread for
537  * this purpose.
538  */
539 void svc_wake_up(struct svc_serv *serv)
540 {
541 	struct svc_rqst	*rqstp;
542 	struct svc_pool *pool;
543 
544 	pool = &serv->sv_pools[0];
545 
546 	rcu_read_lock();
547 	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
548 		/* skip any that aren't queued */
549 		if (test_bit(RQ_BUSY, &rqstp->rq_flags))
550 			continue;
551 		rcu_read_unlock();
552 		wake_up_process(rqstp->rq_task);
553 		trace_svc_wake_up(rqstp->rq_task->pid);
554 		return;
555 	}
556 	rcu_read_unlock();
557 
558 	/* No free entries available */
559 	set_bit(SP_TASK_PENDING, &pool->sp_flags);
560 	smp_wmb();
561 	trace_svc_wake_up(0);
562 }
563 EXPORT_SYMBOL_GPL(svc_wake_up);
564 
565 int svc_port_is_privileged(struct sockaddr *sin)
566 {
567 	switch (sin->sa_family) {
568 	case AF_INET:
569 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
570 			< PROT_SOCK;
571 	case AF_INET6:
572 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
573 			< PROT_SOCK;
574 	default:
575 		return 0;
576 	}
577 }
578 
579 /*
580  * Make sure that we don't have too many active connections. If we have,
581  * something must be dropped. It's not clear what will happen if we allow
582  * "too many" connections, but when dealing with network-facing software,
583  * we have to code defensively. Here we do that by imposing hard limits.
584  *
585  * There's no point in trying to do random drop here for DoS
586  * prevention. The NFS clients does 1 reconnect in 15 seconds. An
587  * attacker can easily beat that.
588  *
589  * The only somewhat efficient mechanism would be if drop old
590  * connections from the same IP first. But right now we don't even
591  * record the client IP in svc_sock.
592  *
593  * single-threaded services that expect a lot of clients will probably
594  * need to set sv_maxconn to override the default value which is based
595  * on the number of threads
596  */
597 static void svc_check_conn_limits(struct svc_serv *serv)
598 {
599 	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
600 				(serv->sv_nrthreads+3) * 20;
601 
602 	if (serv->sv_tmpcnt > limit) {
603 		struct svc_xprt *xprt = NULL;
604 		spin_lock_bh(&serv->sv_lock);
605 		if (!list_empty(&serv->sv_tempsocks)) {
606 			/* Try to help the admin */
607 			net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
608 					       serv->sv_name, serv->sv_maxconn ?
609 					       "max number of connections" :
610 					       "number of threads");
611 			/*
612 			 * Always select the oldest connection. It's not fair,
613 			 * but so is life
614 			 */
615 			xprt = list_entry(serv->sv_tempsocks.prev,
616 					  struct svc_xprt,
617 					  xpt_list);
618 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
619 			svc_xprt_get(xprt);
620 		}
621 		spin_unlock_bh(&serv->sv_lock);
622 
623 		if (xprt) {
624 			svc_xprt_enqueue(xprt);
625 			svc_xprt_put(xprt);
626 		}
627 	}
628 }
629 
630 static int svc_alloc_arg(struct svc_rqst *rqstp)
631 {
632 	struct svc_serv *serv = rqstp->rq_server;
633 	struct xdr_buf *arg;
634 	int pages;
635 	int i;
636 
637 	/* now allocate needed pages.  If we get a failure, sleep briefly */
638 	pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
639 	if (pages > RPCSVC_MAXPAGES) {
640 		pr_warn_once("svc: warning: pages=%u > RPCSVC_MAXPAGES=%lu\n",
641 			     pages, RPCSVC_MAXPAGES);
642 		/* use as many pages as possible */
643 		pages = RPCSVC_MAXPAGES;
644 	}
645 	for (i = 0; i < pages ; i++)
646 		while (rqstp->rq_pages[i] == NULL) {
647 			struct page *p = alloc_page(GFP_KERNEL);
648 			if (!p) {
649 				set_current_state(TASK_INTERRUPTIBLE);
650 				if (signalled() || kthread_should_stop()) {
651 					set_current_state(TASK_RUNNING);
652 					return -EINTR;
653 				}
654 				schedule_timeout(msecs_to_jiffies(500));
655 			}
656 			rqstp->rq_pages[i] = p;
657 		}
658 	rqstp->rq_page_end = &rqstp->rq_pages[i];
659 	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
660 
661 	/* Make arg->head point to first page and arg->pages point to rest */
662 	arg = &rqstp->rq_arg;
663 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
664 	arg->head[0].iov_len = PAGE_SIZE;
665 	arg->pages = rqstp->rq_pages + 1;
666 	arg->page_base = 0;
667 	/* save at least one page for response */
668 	arg->page_len = (pages-2)*PAGE_SIZE;
669 	arg->len = (pages-1)*PAGE_SIZE;
670 	arg->tail[0].iov_len = 0;
671 	return 0;
672 }
673 
674 static bool
675 rqst_should_sleep(struct svc_rqst *rqstp)
676 {
677 	struct svc_pool		*pool = rqstp->rq_pool;
678 
679 	/* did someone call svc_wake_up? */
680 	if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
681 		return false;
682 
683 	/* was a socket queued? */
684 	if (!list_empty(&pool->sp_sockets))
685 		return false;
686 
687 	/* are we shutting down? */
688 	if (signalled() || kthread_should_stop())
689 		return false;
690 
691 	/* are we freezing? */
692 	if (freezing(current))
693 		return false;
694 
695 	return true;
696 }
697 
698 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
699 {
700 	struct svc_pool		*pool = rqstp->rq_pool;
701 	long			time_left = 0;
702 
703 	/* rq_xprt should be clear on entry */
704 	WARN_ON_ONCE(rqstp->rq_xprt);
705 
706 	rqstp->rq_xprt = svc_xprt_dequeue(pool);
707 	if (rqstp->rq_xprt)
708 		goto out_found;
709 
710 	/*
711 	 * We have to be able to interrupt this wait
712 	 * to bring down the daemons ...
713 	 */
714 	set_current_state(TASK_INTERRUPTIBLE);
715 	smp_mb__before_atomic();
716 	clear_bit(SP_CONGESTED, &pool->sp_flags);
717 	clear_bit(RQ_BUSY, &rqstp->rq_flags);
718 	smp_mb__after_atomic();
719 
720 	if (likely(rqst_should_sleep(rqstp)))
721 		time_left = schedule_timeout(timeout);
722 	else
723 		__set_current_state(TASK_RUNNING);
724 
725 	try_to_freeze();
726 
727 	set_bit(RQ_BUSY, &rqstp->rq_flags);
728 	smp_mb__after_atomic();
729 	rqstp->rq_xprt = svc_xprt_dequeue(pool);
730 	if (rqstp->rq_xprt)
731 		goto out_found;
732 
733 	if (!time_left)
734 		atomic_long_inc(&pool->sp_stats.threads_timedout);
735 
736 	if (signalled() || kthread_should_stop())
737 		return ERR_PTR(-EINTR);
738 	return ERR_PTR(-EAGAIN);
739 out_found:
740 	/* Normally we will wait up to 5 seconds for any required
741 	 * cache information to be provided.
742 	 */
743 	if (!test_bit(SP_CONGESTED, &pool->sp_flags))
744 		rqstp->rq_chandle.thread_wait = 5*HZ;
745 	else
746 		rqstp->rq_chandle.thread_wait = 1*HZ;
747 	trace_svc_xprt_dequeue(rqstp);
748 	return rqstp->rq_xprt;
749 }
750 
751 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
752 {
753 	spin_lock_bh(&serv->sv_lock);
754 	set_bit(XPT_TEMP, &newxpt->xpt_flags);
755 	list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
756 	serv->sv_tmpcnt++;
757 	if (serv->sv_temptimer.function == NULL) {
758 		/* setup timer to age temp transports */
759 		serv->sv_temptimer.function = svc_age_temp_xprts;
760 		mod_timer(&serv->sv_temptimer,
761 			  jiffies + svc_conn_age_period * HZ);
762 	}
763 	spin_unlock_bh(&serv->sv_lock);
764 	svc_xprt_received(newxpt);
765 }
766 
767 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
768 {
769 	struct svc_serv *serv = rqstp->rq_server;
770 	int len = 0;
771 
772 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
773 		dprintk("svc_recv: found XPT_CLOSE\n");
774 		if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
775 			xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
776 		svc_delete_xprt(xprt);
777 		/* Leave XPT_BUSY set on the dead xprt: */
778 		goto out;
779 	}
780 	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
781 		struct svc_xprt *newxpt;
782 		/*
783 		 * We know this module_get will succeed because the
784 		 * listener holds a reference too
785 		 */
786 		__module_get(xprt->xpt_class->xcl_owner);
787 		svc_check_conn_limits(xprt->xpt_server);
788 		newxpt = xprt->xpt_ops->xpo_accept(xprt);
789 		if (newxpt) {
790 			newxpt->xpt_cred = get_cred(xprt->xpt_cred);
791 			svc_add_new_temp_xprt(serv, newxpt);
792 		} else
793 			module_put(xprt->xpt_class->xcl_owner);
794 	} else if (svc_xprt_reserve_slot(rqstp, xprt)) {
795 		/* XPT_DATA|XPT_DEFERRED case: */
796 		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
797 			rqstp, rqstp->rq_pool->sp_id, xprt,
798 			kref_read(&xprt->xpt_ref));
799 		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
800 		if (rqstp->rq_deferred)
801 			len = svc_deferred_recv(rqstp);
802 		else
803 			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
804 		rqstp->rq_stime = ktime_get();
805 		rqstp->rq_reserved = serv->sv_max_mesg;
806 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
807 	}
808 	/* clear XPT_BUSY: */
809 	svc_xprt_received(xprt);
810 out:
811 	trace_svc_handle_xprt(xprt, len);
812 	return len;
813 }
814 
815 /*
816  * Receive the next request on any transport.  This code is carefully
817  * organised not to touch any cachelines in the shared svc_serv
818  * structure, only cachelines in the local svc_pool.
819  */
820 int svc_recv(struct svc_rqst *rqstp, long timeout)
821 {
822 	struct svc_xprt		*xprt = NULL;
823 	struct svc_serv		*serv = rqstp->rq_server;
824 	int			len, err;
825 
826 	dprintk("svc: server %p waiting for data (to = %ld)\n",
827 		rqstp, timeout);
828 
829 	if (rqstp->rq_xprt)
830 		printk(KERN_ERR
831 			"svc_recv: service %p, transport not NULL!\n",
832 			 rqstp);
833 
834 	err = svc_alloc_arg(rqstp);
835 	if (err)
836 		goto out;
837 
838 	try_to_freeze();
839 	cond_resched();
840 	err = -EINTR;
841 	if (signalled() || kthread_should_stop())
842 		goto out;
843 
844 	xprt = svc_get_next_xprt(rqstp, timeout);
845 	if (IS_ERR(xprt)) {
846 		err = PTR_ERR(xprt);
847 		goto out;
848 	}
849 
850 	len = svc_handle_xprt(rqstp, xprt);
851 
852 	/* No data, incomplete (TCP) read, or accept() */
853 	err = -EAGAIN;
854 	if (len <= 0)
855 		goto out_release;
856 
857 	clear_bit(XPT_OLD, &xprt->xpt_flags);
858 
859 	xprt->xpt_ops->xpo_secure_port(rqstp);
860 	rqstp->rq_chandle.defer = svc_defer;
861 	rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
862 
863 	if (serv->sv_stats)
864 		serv->sv_stats->netcnt++;
865 	trace_svc_recv(rqstp, len);
866 	return len;
867 out_release:
868 	rqstp->rq_res.len = 0;
869 	svc_xprt_release(rqstp);
870 out:
871 	return err;
872 }
873 EXPORT_SYMBOL_GPL(svc_recv);
874 
875 /*
876  * Drop request
877  */
878 void svc_drop(struct svc_rqst *rqstp)
879 {
880 	trace_svc_drop(rqstp);
881 	dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
882 	svc_xprt_release(rqstp);
883 }
884 EXPORT_SYMBOL_GPL(svc_drop);
885 
886 /*
887  * Return reply to client.
888  */
889 int svc_send(struct svc_rqst *rqstp)
890 {
891 	struct svc_xprt	*xprt;
892 	int		len = -EFAULT;
893 	struct xdr_buf	*xb;
894 
895 	xprt = rqstp->rq_xprt;
896 	if (!xprt)
897 		goto out;
898 
899 	/* release the receive skb before sending the reply */
900 	xprt->xpt_ops->xpo_release_rqst(rqstp);
901 
902 	/* calculate over-all length */
903 	xb = &rqstp->rq_res;
904 	xb->len = xb->head[0].iov_len +
905 		xb->page_len +
906 		xb->tail[0].iov_len;
907 
908 	/* Grab mutex to serialize outgoing data. */
909 	mutex_lock(&xprt->xpt_mutex);
910 	trace_svc_stats_latency(rqstp);
911 	if (test_bit(XPT_DEAD, &xprt->xpt_flags)
912 			|| test_bit(XPT_CLOSE, &xprt->xpt_flags))
913 		len = -ENOTCONN;
914 	else
915 		len = xprt->xpt_ops->xpo_sendto(rqstp);
916 	mutex_unlock(&xprt->xpt_mutex);
917 	trace_svc_send(rqstp, len);
918 	svc_xprt_release(rqstp);
919 
920 	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
921 		len = 0;
922 out:
923 	return len;
924 }
925 
926 /*
927  * Timer function to close old temporary transports, using
928  * a mark-and-sweep algorithm.
929  */
930 static void svc_age_temp_xprts(struct timer_list *t)
931 {
932 	struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
933 	struct svc_xprt *xprt;
934 	struct list_head *le, *next;
935 
936 	dprintk("svc_age_temp_xprts\n");
937 
938 	if (!spin_trylock_bh(&serv->sv_lock)) {
939 		/* busy, try again 1 sec later */
940 		dprintk("svc_age_temp_xprts: busy\n");
941 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
942 		return;
943 	}
944 
945 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
946 		xprt = list_entry(le, struct svc_xprt, xpt_list);
947 
948 		/* First time through, just mark it OLD. Second time
949 		 * through, close it. */
950 		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
951 			continue;
952 		if (kref_read(&xprt->xpt_ref) > 1 ||
953 		    test_bit(XPT_BUSY, &xprt->xpt_flags))
954 			continue;
955 		list_del_init(le);
956 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
957 		dprintk("queuing xprt %p for closing\n", xprt);
958 
959 		/* a thread will dequeue and close it soon */
960 		svc_xprt_enqueue(xprt);
961 	}
962 	spin_unlock_bh(&serv->sv_lock);
963 
964 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
965 }
966 
967 /* Close temporary transports whose xpt_local matches server_addr immediately
968  * instead of waiting for them to be picked up by the timer.
969  *
970  * This is meant to be called from a notifier_block that runs when an ip
971  * address is deleted.
972  */
973 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
974 {
975 	struct svc_xprt *xprt;
976 	struct list_head *le, *next;
977 	LIST_HEAD(to_be_closed);
978 
979 	spin_lock_bh(&serv->sv_lock);
980 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
981 		xprt = list_entry(le, struct svc_xprt, xpt_list);
982 		if (rpc_cmp_addr(server_addr, (struct sockaddr *)
983 				&xprt->xpt_local)) {
984 			dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
985 			list_move(le, &to_be_closed);
986 		}
987 	}
988 	spin_unlock_bh(&serv->sv_lock);
989 
990 	while (!list_empty(&to_be_closed)) {
991 		le = to_be_closed.next;
992 		list_del_init(le);
993 		xprt = list_entry(le, struct svc_xprt, xpt_list);
994 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
995 		set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
996 		dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
997 				xprt);
998 		svc_xprt_enqueue(xprt);
999 	}
1000 }
1001 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
1002 
1003 static void call_xpt_users(struct svc_xprt *xprt)
1004 {
1005 	struct svc_xpt_user *u;
1006 
1007 	spin_lock(&xprt->xpt_lock);
1008 	while (!list_empty(&xprt->xpt_users)) {
1009 		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1010 		list_del_init(&u->list);
1011 		u->callback(u);
1012 	}
1013 	spin_unlock(&xprt->xpt_lock);
1014 }
1015 
1016 /*
1017  * Remove a dead transport
1018  */
1019 static void svc_delete_xprt(struct svc_xprt *xprt)
1020 {
1021 	struct svc_serv	*serv = xprt->xpt_server;
1022 	struct svc_deferred_req *dr;
1023 
1024 	/* Only do this once */
1025 	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1026 		BUG();
1027 
1028 	dprintk("svc: svc_delete_xprt(%p)\n", xprt);
1029 	xprt->xpt_ops->xpo_detach(xprt);
1030 
1031 	spin_lock_bh(&serv->sv_lock);
1032 	list_del_init(&xprt->xpt_list);
1033 	WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1034 	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1035 		serv->sv_tmpcnt--;
1036 	spin_unlock_bh(&serv->sv_lock);
1037 
1038 	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1039 		kfree(dr);
1040 
1041 	call_xpt_users(xprt);
1042 	svc_xprt_put(xprt);
1043 }
1044 
1045 void svc_close_xprt(struct svc_xprt *xprt)
1046 {
1047 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
1048 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1049 		/* someone else will have to effect the close */
1050 		return;
1051 	/*
1052 	 * We expect svc_close_xprt() to work even when no threads are
1053 	 * running (e.g., while configuring the server before starting
1054 	 * any threads), so if the transport isn't busy, we delete
1055 	 * it ourself:
1056 	 */
1057 	svc_delete_xprt(xprt);
1058 }
1059 EXPORT_SYMBOL_GPL(svc_close_xprt);
1060 
1061 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1062 {
1063 	struct svc_xprt *xprt;
1064 	int ret = 0;
1065 
1066 	spin_lock(&serv->sv_lock);
1067 	list_for_each_entry(xprt, xprt_list, xpt_list) {
1068 		if (xprt->xpt_net != net)
1069 			continue;
1070 		ret++;
1071 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1072 		svc_xprt_enqueue(xprt);
1073 	}
1074 	spin_unlock(&serv->sv_lock);
1075 	return ret;
1076 }
1077 
1078 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1079 {
1080 	struct svc_pool *pool;
1081 	struct svc_xprt *xprt;
1082 	struct svc_xprt *tmp;
1083 	int i;
1084 
1085 	for (i = 0; i < serv->sv_nrpools; i++) {
1086 		pool = &serv->sv_pools[i];
1087 
1088 		spin_lock_bh(&pool->sp_lock);
1089 		list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1090 			if (xprt->xpt_net != net)
1091 				continue;
1092 			list_del_init(&xprt->xpt_ready);
1093 			spin_unlock_bh(&pool->sp_lock);
1094 			return xprt;
1095 		}
1096 		spin_unlock_bh(&pool->sp_lock);
1097 	}
1098 	return NULL;
1099 }
1100 
1101 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1102 {
1103 	struct svc_xprt *xprt;
1104 
1105 	while ((xprt = svc_dequeue_net(serv, net))) {
1106 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1107 		svc_delete_xprt(xprt);
1108 	}
1109 }
1110 
1111 /*
1112  * Server threads may still be running (especially in the case where the
1113  * service is still running in other network namespaces).
1114  *
1115  * So we shut down sockets the same way we would on a running server, by
1116  * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1117  * the close.  In the case there are no such other threads,
1118  * threads running, svc_clean_up_xprts() does a simple version of a
1119  * server's main event loop, and in the case where there are other
1120  * threads, we may need to wait a little while and then check again to
1121  * see if they're done.
1122  */
1123 void svc_close_net(struct svc_serv *serv, struct net *net)
1124 {
1125 	int delay = 0;
1126 
1127 	while (svc_close_list(serv, &serv->sv_permsocks, net) +
1128 	       svc_close_list(serv, &serv->sv_tempsocks, net)) {
1129 
1130 		svc_clean_up_xprts(serv, net);
1131 		msleep(delay++);
1132 	}
1133 }
1134 
1135 /*
1136  * Handle defer and revisit of requests
1137  */
1138 
1139 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1140 {
1141 	struct svc_deferred_req *dr =
1142 		container_of(dreq, struct svc_deferred_req, handle);
1143 	struct svc_xprt *xprt = dr->xprt;
1144 
1145 	spin_lock(&xprt->xpt_lock);
1146 	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1147 	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1148 		spin_unlock(&xprt->xpt_lock);
1149 		dprintk("revisit canceled\n");
1150 		svc_xprt_put(xprt);
1151 		trace_svc_drop_deferred(dr);
1152 		kfree(dr);
1153 		return;
1154 	}
1155 	dprintk("revisit queued\n");
1156 	dr->xprt = NULL;
1157 	list_add(&dr->handle.recent, &xprt->xpt_deferred);
1158 	spin_unlock(&xprt->xpt_lock);
1159 	svc_xprt_enqueue(xprt);
1160 	svc_xprt_put(xprt);
1161 }
1162 
1163 /*
1164  * Save the request off for later processing. The request buffer looks
1165  * like this:
1166  *
1167  * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1168  *
1169  * This code can only handle requests that consist of an xprt-header
1170  * and rpc-header.
1171  */
1172 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1173 {
1174 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1175 	struct svc_deferred_req *dr;
1176 
1177 	if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1178 		return NULL; /* if more than a page, give up FIXME */
1179 	if (rqstp->rq_deferred) {
1180 		dr = rqstp->rq_deferred;
1181 		rqstp->rq_deferred = NULL;
1182 	} else {
1183 		size_t skip;
1184 		size_t size;
1185 		/* FIXME maybe discard if size too large */
1186 		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1187 		dr = kmalloc(size, GFP_KERNEL);
1188 		if (dr == NULL)
1189 			return NULL;
1190 
1191 		dr->handle.owner = rqstp->rq_server;
1192 		dr->prot = rqstp->rq_prot;
1193 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1194 		dr->addrlen = rqstp->rq_addrlen;
1195 		dr->daddr = rqstp->rq_daddr;
1196 		dr->argslen = rqstp->rq_arg.len >> 2;
1197 		dr->xprt_hlen = rqstp->rq_xprt_hlen;
1198 
1199 		/* back up head to the start of the buffer and copy */
1200 		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1201 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1202 		       dr->argslen << 2);
1203 	}
1204 	svc_xprt_get(rqstp->rq_xprt);
1205 	dr->xprt = rqstp->rq_xprt;
1206 	set_bit(RQ_DROPME, &rqstp->rq_flags);
1207 
1208 	dr->handle.revisit = svc_revisit;
1209 	trace_svc_defer(rqstp);
1210 	return &dr->handle;
1211 }
1212 
1213 /*
1214  * recv data from a deferred request into an active one
1215  */
1216 static int svc_deferred_recv(struct svc_rqst *rqstp)
1217 {
1218 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1219 
1220 	/* setup iov_base past transport header */
1221 	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1222 	/* The iov_len does not include the transport header bytes */
1223 	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1224 	rqstp->rq_arg.page_len = 0;
1225 	/* The rq_arg.len includes the transport header bytes */
1226 	rqstp->rq_arg.len     = dr->argslen<<2;
1227 	rqstp->rq_prot        = dr->prot;
1228 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1229 	rqstp->rq_addrlen     = dr->addrlen;
1230 	/* Save off transport header len in case we get deferred again */
1231 	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1232 	rqstp->rq_daddr       = dr->daddr;
1233 	rqstp->rq_respages    = rqstp->rq_pages;
1234 	return (dr->argslen<<2) - dr->xprt_hlen;
1235 }
1236 
1237 
1238 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1239 {
1240 	struct svc_deferred_req *dr = NULL;
1241 
1242 	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1243 		return NULL;
1244 	spin_lock(&xprt->xpt_lock);
1245 	if (!list_empty(&xprt->xpt_deferred)) {
1246 		dr = list_entry(xprt->xpt_deferred.next,
1247 				struct svc_deferred_req,
1248 				handle.recent);
1249 		list_del_init(&dr->handle.recent);
1250 		trace_svc_revisit_deferred(dr);
1251 	} else
1252 		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1253 	spin_unlock(&xprt->xpt_lock);
1254 	return dr;
1255 }
1256 
1257 /**
1258  * svc_find_xprt - find an RPC transport instance
1259  * @serv: pointer to svc_serv to search
1260  * @xcl_name: C string containing transport's class name
1261  * @net: owner net pointer
1262  * @af: Address family of transport's local address
1263  * @port: transport's IP port number
1264  *
1265  * Return the transport instance pointer for the endpoint accepting
1266  * connections/peer traffic from the specified transport class,
1267  * address family and port.
1268  *
1269  * Specifying 0 for the address family or port is effectively a
1270  * wild-card, and will result in matching the first transport in the
1271  * service's list that has a matching class name.
1272  */
1273 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1274 			       struct net *net, const sa_family_t af,
1275 			       const unsigned short port)
1276 {
1277 	struct svc_xprt *xprt;
1278 	struct svc_xprt *found = NULL;
1279 
1280 	/* Sanity check the args */
1281 	if (serv == NULL || xcl_name == NULL)
1282 		return found;
1283 
1284 	spin_lock_bh(&serv->sv_lock);
1285 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1286 		if (xprt->xpt_net != net)
1287 			continue;
1288 		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1289 			continue;
1290 		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1291 			continue;
1292 		if (port != 0 && port != svc_xprt_local_port(xprt))
1293 			continue;
1294 		found = xprt;
1295 		svc_xprt_get(xprt);
1296 		break;
1297 	}
1298 	spin_unlock_bh(&serv->sv_lock);
1299 	return found;
1300 }
1301 EXPORT_SYMBOL_GPL(svc_find_xprt);
1302 
1303 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1304 			     char *pos, int remaining)
1305 {
1306 	int len;
1307 
1308 	len = snprintf(pos, remaining, "%s %u\n",
1309 			xprt->xpt_class->xcl_name,
1310 			svc_xprt_local_port(xprt));
1311 	if (len >= remaining)
1312 		return -ENAMETOOLONG;
1313 	return len;
1314 }
1315 
1316 /**
1317  * svc_xprt_names - format a buffer with a list of transport names
1318  * @serv: pointer to an RPC service
1319  * @buf: pointer to a buffer to be filled in
1320  * @buflen: length of buffer to be filled in
1321  *
1322  * Fills in @buf with a string containing a list of transport names,
1323  * each name terminated with '\n'.
1324  *
1325  * Returns positive length of the filled-in string on success; otherwise
1326  * a negative errno value is returned if an error occurs.
1327  */
1328 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1329 {
1330 	struct svc_xprt *xprt;
1331 	int len, totlen;
1332 	char *pos;
1333 
1334 	/* Sanity check args */
1335 	if (!serv)
1336 		return 0;
1337 
1338 	spin_lock_bh(&serv->sv_lock);
1339 
1340 	pos = buf;
1341 	totlen = 0;
1342 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1343 		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1344 		if (len < 0) {
1345 			*buf = '\0';
1346 			totlen = len;
1347 		}
1348 		if (len <= 0)
1349 			break;
1350 
1351 		pos += len;
1352 		totlen += len;
1353 	}
1354 
1355 	spin_unlock_bh(&serv->sv_lock);
1356 	return totlen;
1357 }
1358 EXPORT_SYMBOL_GPL(svc_xprt_names);
1359 
1360 
1361 /*----------------------------------------------------------------------------*/
1362 
1363 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1364 {
1365 	unsigned int pidx = (unsigned int)*pos;
1366 	struct svc_serv *serv = m->private;
1367 
1368 	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1369 
1370 	if (!pidx)
1371 		return SEQ_START_TOKEN;
1372 	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1373 }
1374 
1375 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1376 {
1377 	struct svc_pool *pool = p;
1378 	struct svc_serv *serv = m->private;
1379 
1380 	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1381 
1382 	if (p == SEQ_START_TOKEN) {
1383 		pool = &serv->sv_pools[0];
1384 	} else {
1385 		unsigned int pidx = (pool - &serv->sv_pools[0]);
1386 		if (pidx < serv->sv_nrpools-1)
1387 			pool = &serv->sv_pools[pidx+1];
1388 		else
1389 			pool = NULL;
1390 	}
1391 	++*pos;
1392 	return pool;
1393 }
1394 
1395 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1396 {
1397 }
1398 
1399 static int svc_pool_stats_show(struct seq_file *m, void *p)
1400 {
1401 	struct svc_pool *pool = p;
1402 
1403 	if (p == SEQ_START_TOKEN) {
1404 		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1405 		return 0;
1406 	}
1407 
1408 	seq_printf(m, "%u %lu %lu %lu %lu\n",
1409 		pool->sp_id,
1410 		(unsigned long)atomic_long_read(&pool->sp_stats.packets),
1411 		pool->sp_stats.sockets_queued,
1412 		(unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1413 		(unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1414 
1415 	return 0;
1416 }
1417 
1418 static const struct seq_operations svc_pool_stats_seq_ops = {
1419 	.start	= svc_pool_stats_start,
1420 	.next	= svc_pool_stats_next,
1421 	.stop	= svc_pool_stats_stop,
1422 	.show	= svc_pool_stats_show,
1423 };
1424 
1425 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1426 {
1427 	int err;
1428 
1429 	err = seq_open(file, &svc_pool_stats_seq_ops);
1430 	if (!err)
1431 		((struct seq_file *) file->private_data)->private = serv;
1432 	return err;
1433 }
1434 EXPORT_SYMBOL(svc_pool_stats_open);
1435 
1436 /*----------------------------------------------------------------------------*/
1437