1 /* 2 * linux/net/sunrpc/svc_xprt.c 3 * 4 * Author: Tom Tucker <tom@opengridcomputing.com> 5 */ 6 7 #include <linux/sched.h> 8 #include <linux/errno.h> 9 #include <linux/freezer.h> 10 #include <linux/kthread.h> 11 #include <linux/slab.h> 12 #include <net/sock.h> 13 #include <linux/sunrpc/addr.h> 14 #include <linux/sunrpc/stats.h> 15 #include <linux/sunrpc/svc_xprt.h> 16 #include <linux/sunrpc/svcsock.h> 17 #include <linux/sunrpc/xprt.h> 18 #include <linux/module.h> 19 #include <linux/netdevice.h> 20 #include <trace/events/sunrpc.h> 21 22 #define RPCDBG_FACILITY RPCDBG_SVCXPRT 23 24 static unsigned int svc_rpc_per_connection_limit __read_mostly; 25 module_param(svc_rpc_per_connection_limit, uint, 0644); 26 27 28 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt); 29 static int svc_deferred_recv(struct svc_rqst *rqstp); 30 static struct cache_deferred_req *svc_defer(struct cache_req *req); 31 static void svc_age_temp_xprts(struct timer_list *t); 32 static void svc_delete_xprt(struct svc_xprt *xprt); 33 34 /* apparently the "standard" is that clients close 35 * idle connections after 5 minutes, servers after 36 * 6 minutes 37 * http://www.connectathon.org/talks96/nfstcp.pdf 38 */ 39 static int svc_conn_age_period = 6*60; 40 41 /* List of registered transport classes */ 42 static DEFINE_SPINLOCK(svc_xprt_class_lock); 43 static LIST_HEAD(svc_xprt_class_list); 44 45 /* SMP locking strategy: 46 * 47 * svc_pool->sp_lock protects most of the fields of that pool. 48 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt. 49 * when both need to be taken (rare), svc_serv->sv_lock is first. 50 * The "service mutex" protects svc_serv->sv_nrthread. 51 * svc_sock->sk_lock protects the svc_sock->sk_deferred list 52 * and the ->sk_info_authunix cache. 53 * 54 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being 55 * enqueued multiply. During normal transport processing this bit 56 * is set by svc_xprt_enqueue and cleared by svc_xprt_received. 57 * Providers should not manipulate this bit directly. 58 * 59 * Some flags can be set to certain values at any time 60 * providing that certain rules are followed: 61 * 62 * XPT_CONN, XPT_DATA: 63 * - Can be set or cleared at any time. 64 * - After a set, svc_xprt_enqueue must be called to enqueue 65 * the transport for processing. 66 * - After a clear, the transport must be read/accepted. 67 * If this succeeds, it must be set again. 68 * XPT_CLOSE: 69 * - Can set at any time. It is never cleared. 70 * XPT_DEAD: 71 * - Can only be set while XPT_BUSY is held which ensures 72 * that no other thread will be using the transport or will 73 * try to set XPT_DEAD. 74 */ 75 int svc_reg_xprt_class(struct svc_xprt_class *xcl) 76 { 77 struct svc_xprt_class *cl; 78 int res = -EEXIST; 79 80 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name); 81 82 INIT_LIST_HEAD(&xcl->xcl_list); 83 spin_lock(&svc_xprt_class_lock); 84 /* Make sure there isn't already a class with the same name */ 85 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) { 86 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0) 87 goto out; 88 } 89 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list); 90 res = 0; 91 out: 92 spin_unlock(&svc_xprt_class_lock); 93 return res; 94 } 95 EXPORT_SYMBOL_GPL(svc_reg_xprt_class); 96 97 void svc_unreg_xprt_class(struct svc_xprt_class *xcl) 98 { 99 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name); 100 spin_lock(&svc_xprt_class_lock); 101 list_del_init(&xcl->xcl_list); 102 spin_unlock(&svc_xprt_class_lock); 103 } 104 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class); 105 106 /* 107 * Format the transport list for printing 108 */ 109 int svc_print_xprts(char *buf, int maxlen) 110 { 111 struct svc_xprt_class *xcl; 112 char tmpstr[80]; 113 int len = 0; 114 buf[0] = '\0'; 115 116 spin_lock(&svc_xprt_class_lock); 117 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { 118 int slen; 119 120 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload); 121 slen = strlen(tmpstr); 122 if (len + slen > maxlen) 123 break; 124 len += slen; 125 strcat(buf, tmpstr); 126 } 127 spin_unlock(&svc_xprt_class_lock); 128 129 return len; 130 } 131 132 static void svc_xprt_free(struct kref *kref) 133 { 134 struct svc_xprt *xprt = 135 container_of(kref, struct svc_xprt, xpt_ref); 136 struct module *owner = xprt->xpt_class->xcl_owner; 137 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags)) 138 svcauth_unix_info_release(xprt); 139 put_cred(xprt->xpt_cred); 140 put_net(xprt->xpt_net); 141 /* See comment on corresponding get in xs_setup_bc_tcp(): */ 142 if (xprt->xpt_bc_xprt) 143 xprt_put(xprt->xpt_bc_xprt); 144 if (xprt->xpt_bc_xps) 145 xprt_switch_put(xprt->xpt_bc_xps); 146 xprt->xpt_ops->xpo_free(xprt); 147 module_put(owner); 148 } 149 150 void svc_xprt_put(struct svc_xprt *xprt) 151 { 152 kref_put(&xprt->xpt_ref, svc_xprt_free); 153 } 154 EXPORT_SYMBOL_GPL(svc_xprt_put); 155 156 /* 157 * Called by transport drivers to initialize the transport independent 158 * portion of the transport instance. 159 */ 160 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl, 161 struct svc_xprt *xprt, struct svc_serv *serv) 162 { 163 memset(xprt, 0, sizeof(*xprt)); 164 xprt->xpt_class = xcl; 165 xprt->xpt_ops = xcl->xcl_ops; 166 kref_init(&xprt->xpt_ref); 167 xprt->xpt_server = serv; 168 INIT_LIST_HEAD(&xprt->xpt_list); 169 INIT_LIST_HEAD(&xprt->xpt_ready); 170 INIT_LIST_HEAD(&xprt->xpt_deferred); 171 INIT_LIST_HEAD(&xprt->xpt_users); 172 mutex_init(&xprt->xpt_mutex); 173 spin_lock_init(&xprt->xpt_lock); 174 set_bit(XPT_BUSY, &xprt->xpt_flags); 175 xprt->xpt_net = get_net(net); 176 strcpy(xprt->xpt_remotebuf, "uninitialized"); 177 } 178 EXPORT_SYMBOL_GPL(svc_xprt_init); 179 180 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl, 181 struct svc_serv *serv, 182 struct net *net, 183 const int family, 184 const unsigned short port, 185 int flags) 186 { 187 struct sockaddr_in sin = { 188 .sin_family = AF_INET, 189 .sin_addr.s_addr = htonl(INADDR_ANY), 190 .sin_port = htons(port), 191 }; 192 #if IS_ENABLED(CONFIG_IPV6) 193 struct sockaddr_in6 sin6 = { 194 .sin6_family = AF_INET6, 195 .sin6_addr = IN6ADDR_ANY_INIT, 196 .sin6_port = htons(port), 197 }; 198 #endif 199 struct sockaddr *sap; 200 size_t len; 201 202 switch (family) { 203 case PF_INET: 204 sap = (struct sockaddr *)&sin; 205 len = sizeof(sin); 206 break; 207 #if IS_ENABLED(CONFIG_IPV6) 208 case PF_INET6: 209 sap = (struct sockaddr *)&sin6; 210 len = sizeof(sin6); 211 break; 212 #endif 213 default: 214 return ERR_PTR(-EAFNOSUPPORT); 215 } 216 217 return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags); 218 } 219 220 /* 221 * svc_xprt_received conditionally queues the transport for processing 222 * by another thread. The caller must hold the XPT_BUSY bit and must 223 * not thereafter touch transport data. 224 * 225 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or 226 * insufficient) data. 227 */ 228 static void svc_xprt_received(struct svc_xprt *xprt) 229 { 230 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) { 231 WARN_ONCE(1, "xprt=0x%p already busy!", xprt); 232 return; 233 } 234 235 /* As soon as we clear busy, the xprt could be closed and 236 * 'put', so we need a reference to call svc_enqueue_xprt with: 237 */ 238 svc_xprt_get(xprt); 239 smp_mb__before_atomic(); 240 clear_bit(XPT_BUSY, &xprt->xpt_flags); 241 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt); 242 svc_xprt_put(xprt); 243 } 244 245 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new) 246 { 247 clear_bit(XPT_TEMP, &new->xpt_flags); 248 spin_lock_bh(&serv->sv_lock); 249 list_add(&new->xpt_list, &serv->sv_permsocks); 250 spin_unlock_bh(&serv->sv_lock); 251 svc_xprt_received(new); 252 } 253 254 static int _svc_create_xprt(struct svc_serv *serv, const char *xprt_name, 255 struct net *net, const int family, 256 const unsigned short port, int flags, 257 const struct cred *cred) 258 { 259 struct svc_xprt_class *xcl; 260 261 spin_lock(&svc_xprt_class_lock); 262 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { 263 struct svc_xprt *newxprt; 264 unsigned short newport; 265 266 if (strcmp(xprt_name, xcl->xcl_name)) 267 continue; 268 269 if (!try_module_get(xcl->xcl_owner)) 270 goto err; 271 272 spin_unlock(&svc_xprt_class_lock); 273 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags); 274 if (IS_ERR(newxprt)) { 275 module_put(xcl->xcl_owner); 276 return PTR_ERR(newxprt); 277 } 278 newxprt->xpt_cred = get_cred(cred); 279 svc_add_new_perm_xprt(serv, newxprt); 280 newport = svc_xprt_local_port(newxprt); 281 return newport; 282 } 283 err: 284 spin_unlock(&svc_xprt_class_lock); 285 /* This errno is exposed to user space. Provide a reasonable 286 * perror msg for a bad transport. */ 287 return -EPROTONOSUPPORT; 288 } 289 290 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name, 291 struct net *net, const int family, 292 const unsigned short port, int flags, 293 const struct cred *cred) 294 { 295 int err; 296 297 dprintk("svc: creating transport %s[%d]\n", xprt_name, port); 298 err = _svc_create_xprt(serv, xprt_name, net, family, port, flags, cred); 299 if (err == -EPROTONOSUPPORT) { 300 request_module("svc%s", xprt_name); 301 err = _svc_create_xprt(serv, xprt_name, net, family, port, flags, cred); 302 } 303 if (err < 0) 304 dprintk("svc: transport %s not found, err %d\n", 305 xprt_name, -err); 306 return err; 307 } 308 EXPORT_SYMBOL_GPL(svc_create_xprt); 309 310 /* 311 * Copy the local and remote xprt addresses to the rqstp structure 312 */ 313 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt) 314 { 315 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen); 316 rqstp->rq_addrlen = xprt->xpt_remotelen; 317 318 /* 319 * Destination address in request is needed for binding the 320 * source address in RPC replies/callbacks later. 321 */ 322 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen); 323 rqstp->rq_daddrlen = xprt->xpt_locallen; 324 } 325 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs); 326 327 /** 328 * svc_print_addr - Format rq_addr field for printing 329 * @rqstp: svc_rqst struct containing address to print 330 * @buf: target buffer for formatted address 331 * @len: length of target buffer 332 * 333 */ 334 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len) 335 { 336 return __svc_print_addr(svc_addr(rqstp), buf, len); 337 } 338 EXPORT_SYMBOL_GPL(svc_print_addr); 339 340 static bool svc_xprt_slots_in_range(struct svc_xprt *xprt) 341 { 342 unsigned int limit = svc_rpc_per_connection_limit; 343 int nrqsts = atomic_read(&xprt->xpt_nr_rqsts); 344 345 return limit == 0 || (nrqsts >= 0 && nrqsts < limit); 346 } 347 348 static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt) 349 { 350 if (!test_bit(RQ_DATA, &rqstp->rq_flags)) { 351 if (!svc_xprt_slots_in_range(xprt)) 352 return false; 353 atomic_inc(&xprt->xpt_nr_rqsts); 354 set_bit(RQ_DATA, &rqstp->rq_flags); 355 } 356 return true; 357 } 358 359 static void svc_xprt_release_slot(struct svc_rqst *rqstp) 360 { 361 struct svc_xprt *xprt = rqstp->rq_xprt; 362 if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) { 363 atomic_dec(&xprt->xpt_nr_rqsts); 364 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */ 365 svc_xprt_enqueue(xprt); 366 } 367 } 368 369 static bool svc_xprt_ready(struct svc_xprt *xprt) 370 { 371 unsigned long xpt_flags; 372 373 /* 374 * If another cpu has recently updated xpt_flags, 375 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to 376 * know about it; otherwise it's possible that both that cpu and 377 * this one could call svc_xprt_enqueue() without either 378 * svc_xprt_enqueue() recognizing that the conditions below 379 * are satisfied, and we could stall indefinitely: 380 */ 381 smp_rmb(); 382 xpt_flags = READ_ONCE(xprt->xpt_flags); 383 384 if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE))) 385 return true; 386 if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) { 387 if (xprt->xpt_ops->xpo_has_wspace(xprt) && 388 svc_xprt_slots_in_range(xprt)) 389 return true; 390 trace_svc_xprt_no_write_space(xprt); 391 return false; 392 } 393 return false; 394 } 395 396 void svc_xprt_do_enqueue(struct svc_xprt *xprt) 397 { 398 struct svc_pool *pool; 399 struct svc_rqst *rqstp = NULL; 400 int cpu; 401 402 if (!svc_xprt_ready(xprt)) 403 return; 404 405 /* Mark transport as busy. It will remain in this state until 406 * the provider calls svc_xprt_received. We update XPT_BUSY 407 * atomically because it also guards against trying to enqueue 408 * the transport twice. 409 */ 410 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) 411 return; 412 413 cpu = get_cpu(); 414 pool = svc_pool_for_cpu(xprt->xpt_server, cpu); 415 416 atomic_long_inc(&pool->sp_stats.packets); 417 418 spin_lock_bh(&pool->sp_lock); 419 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets); 420 pool->sp_stats.sockets_queued++; 421 spin_unlock_bh(&pool->sp_lock); 422 423 /* find a thread for this xprt */ 424 rcu_read_lock(); 425 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) { 426 if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags)) 427 continue; 428 atomic_long_inc(&pool->sp_stats.threads_woken); 429 rqstp->rq_qtime = ktime_get(); 430 wake_up_process(rqstp->rq_task); 431 goto out_unlock; 432 } 433 set_bit(SP_CONGESTED, &pool->sp_flags); 434 rqstp = NULL; 435 out_unlock: 436 rcu_read_unlock(); 437 put_cpu(); 438 trace_svc_xprt_do_enqueue(xprt, rqstp); 439 } 440 EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue); 441 442 /* 443 * Queue up a transport with data pending. If there are idle nfsd 444 * processes, wake 'em up. 445 * 446 */ 447 void svc_xprt_enqueue(struct svc_xprt *xprt) 448 { 449 if (test_bit(XPT_BUSY, &xprt->xpt_flags)) 450 return; 451 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt); 452 } 453 EXPORT_SYMBOL_GPL(svc_xprt_enqueue); 454 455 /* 456 * Dequeue the first transport, if there is one. 457 */ 458 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool) 459 { 460 struct svc_xprt *xprt = NULL; 461 462 if (list_empty(&pool->sp_sockets)) 463 goto out; 464 465 spin_lock_bh(&pool->sp_lock); 466 if (likely(!list_empty(&pool->sp_sockets))) { 467 xprt = list_first_entry(&pool->sp_sockets, 468 struct svc_xprt, xpt_ready); 469 list_del_init(&xprt->xpt_ready); 470 svc_xprt_get(xprt); 471 } 472 spin_unlock_bh(&pool->sp_lock); 473 out: 474 return xprt; 475 } 476 477 /** 478 * svc_reserve - change the space reserved for the reply to a request. 479 * @rqstp: The request in question 480 * @space: new max space to reserve 481 * 482 * Each request reserves some space on the output queue of the transport 483 * to make sure the reply fits. This function reduces that reserved 484 * space to be the amount of space used already, plus @space. 485 * 486 */ 487 void svc_reserve(struct svc_rqst *rqstp, int space) 488 { 489 struct svc_xprt *xprt = rqstp->rq_xprt; 490 491 space += rqstp->rq_res.head[0].iov_len; 492 493 if (xprt && space < rqstp->rq_reserved) { 494 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved); 495 rqstp->rq_reserved = space; 496 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */ 497 svc_xprt_enqueue(xprt); 498 } 499 } 500 EXPORT_SYMBOL_GPL(svc_reserve); 501 502 static void svc_xprt_release(struct svc_rqst *rqstp) 503 { 504 struct svc_xprt *xprt = rqstp->rq_xprt; 505 506 xprt->xpt_ops->xpo_release_rqst(rqstp); 507 508 kfree(rqstp->rq_deferred); 509 rqstp->rq_deferred = NULL; 510 511 svc_free_res_pages(rqstp); 512 rqstp->rq_res.page_len = 0; 513 rqstp->rq_res.page_base = 0; 514 515 /* Reset response buffer and release 516 * the reservation. 517 * But first, check that enough space was reserved 518 * for the reply, otherwise we have a bug! 519 */ 520 if ((rqstp->rq_res.len) > rqstp->rq_reserved) 521 printk(KERN_ERR "RPC request reserved %d but used %d\n", 522 rqstp->rq_reserved, 523 rqstp->rq_res.len); 524 525 rqstp->rq_res.head[0].iov_len = 0; 526 svc_reserve(rqstp, 0); 527 svc_xprt_release_slot(rqstp); 528 rqstp->rq_xprt = NULL; 529 svc_xprt_put(xprt); 530 } 531 532 /* 533 * Some svc_serv's will have occasional work to do, even when a xprt is not 534 * waiting to be serviced. This function is there to "kick" a task in one of 535 * those services so that it can wake up and do that work. Note that we only 536 * bother with pool 0 as we don't need to wake up more than one thread for 537 * this purpose. 538 */ 539 void svc_wake_up(struct svc_serv *serv) 540 { 541 struct svc_rqst *rqstp; 542 struct svc_pool *pool; 543 544 pool = &serv->sv_pools[0]; 545 546 rcu_read_lock(); 547 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) { 548 /* skip any that aren't queued */ 549 if (test_bit(RQ_BUSY, &rqstp->rq_flags)) 550 continue; 551 rcu_read_unlock(); 552 wake_up_process(rqstp->rq_task); 553 trace_svc_wake_up(rqstp->rq_task->pid); 554 return; 555 } 556 rcu_read_unlock(); 557 558 /* No free entries available */ 559 set_bit(SP_TASK_PENDING, &pool->sp_flags); 560 smp_wmb(); 561 trace_svc_wake_up(0); 562 } 563 EXPORT_SYMBOL_GPL(svc_wake_up); 564 565 int svc_port_is_privileged(struct sockaddr *sin) 566 { 567 switch (sin->sa_family) { 568 case AF_INET: 569 return ntohs(((struct sockaddr_in *)sin)->sin_port) 570 < PROT_SOCK; 571 case AF_INET6: 572 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port) 573 < PROT_SOCK; 574 default: 575 return 0; 576 } 577 } 578 579 /* 580 * Make sure that we don't have too many active connections. If we have, 581 * something must be dropped. It's not clear what will happen if we allow 582 * "too many" connections, but when dealing with network-facing software, 583 * we have to code defensively. Here we do that by imposing hard limits. 584 * 585 * There's no point in trying to do random drop here for DoS 586 * prevention. The NFS clients does 1 reconnect in 15 seconds. An 587 * attacker can easily beat that. 588 * 589 * The only somewhat efficient mechanism would be if drop old 590 * connections from the same IP first. But right now we don't even 591 * record the client IP in svc_sock. 592 * 593 * single-threaded services that expect a lot of clients will probably 594 * need to set sv_maxconn to override the default value which is based 595 * on the number of threads 596 */ 597 static void svc_check_conn_limits(struct svc_serv *serv) 598 { 599 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn : 600 (serv->sv_nrthreads+3) * 20; 601 602 if (serv->sv_tmpcnt > limit) { 603 struct svc_xprt *xprt = NULL; 604 spin_lock_bh(&serv->sv_lock); 605 if (!list_empty(&serv->sv_tempsocks)) { 606 /* Try to help the admin */ 607 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n", 608 serv->sv_name, serv->sv_maxconn ? 609 "max number of connections" : 610 "number of threads"); 611 /* 612 * Always select the oldest connection. It's not fair, 613 * but so is life 614 */ 615 xprt = list_entry(serv->sv_tempsocks.prev, 616 struct svc_xprt, 617 xpt_list); 618 set_bit(XPT_CLOSE, &xprt->xpt_flags); 619 svc_xprt_get(xprt); 620 } 621 spin_unlock_bh(&serv->sv_lock); 622 623 if (xprt) { 624 svc_xprt_enqueue(xprt); 625 svc_xprt_put(xprt); 626 } 627 } 628 } 629 630 static int svc_alloc_arg(struct svc_rqst *rqstp) 631 { 632 struct svc_serv *serv = rqstp->rq_server; 633 struct xdr_buf *arg; 634 int pages; 635 int i; 636 637 /* now allocate needed pages. If we get a failure, sleep briefly */ 638 pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT; 639 if (pages > RPCSVC_MAXPAGES) { 640 pr_warn_once("svc: warning: pages=%u > RPCSVC_MAXPAGES=%lu\n", 641 pages, RPCSVC_MAXPAGES); 642 /* use as many pages as possible */ 643 pages = RPCSVC_MAXPAGES; 644 } 645 for (i = 0; i < pages ; i++) 646 while (rqstp->rq_pages[i] == NULL) { 647 struct page *p = alloc_page(GFP_KERNEL); 648 if (!p) { 649 set_current_state(TASK_INTERRUPTIBLE); 650 if (signalled() || kthread_should_stop()) { 651 set_current_state(TASK_RUNNING); 652 return -EINTR; 653 } 654 schedule_timeout(msecs_to_jiffies(500)); 655 } 656 rqstp->rq_pages[i] = p; 657 } 658 rqstp->rq_page_end = &rqstp->rq_pages[i]; 659 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */ 660 661 /* Make arg->head point to first page and arg->pages point to rest */ 662 arg = &rqstp->rq_arg; 663 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]); 664 arg->head[0].iov_len = PAGE_SIZE; 665 arg->pages = rqstp->rq_pages + 1; 666 arg->page_base = 0; 667 /* save at least one page for response */ 668 arg->page_len = (pages-2)*PAGE_SIZE; 669 arg->len = (pages-1)*PAGE_SIZE; 670 arg->tail[0].iov_len = 0; 671 return 0; 672 } 673 674 static bool 675 rqst_should_sleep(struct svc_rqst *rqstp) 676 { 677 struct svc_pool *pool = rqstp->rq_pool; 678 679 /* did someone call svc_wake_up? */ 680 if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags)) 681 return false; 682 683 /* was a socket queued? */ 684 if (!list_empty(&pool->sp_sockets)) 685 return false; 686 687 /* are we shutting down? */ 688 if (signalled() || kthread_should_stop()) 689 return false; 690 691 /* are we freezing? */ 692 if (freezing(current)) 693 return false; 694 695 return true; 696 } 697 698 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout) 699 { 700 struct svc_pool *pool = rqstp->rq_pool; 701 long time_left = 0; 702 703 /* rq_xprt should be clear on entry */ 704 WARN_ON_ONCE(rqstp->rq_xprt); 705 706 rqstp->rq_xprt = svc_xprt_dequeue(pool); 707 if (rqstp->rq_xprt) 708 goto out_found; 709 710 /* 711 * We have to be able to interrupt this wait 712 * to bring down the daemons ... 713 */ 714 set_current_state(TASK_INTERRUPTIBLE); 715 smp_mb__before_atomic(); 716 clear_bit(SP_CONGESTED, &pool->sp_flags); 717 clear_bit(RQ_BUSY, &rqstp->rq_flags); 718 smp_mb__after_atomic(); 719 720 if (likely(rqst_should_sleep(rqstp))) 721 time_left = schedule_timeout(timeout); 722 else 723 __set_current_state(TASK_RUNNING); 724 725 try_to_freeze(); 726 727 set_bit(RQ_BUSY, &rqstp->rq_flags); 728 smp_mb__after_atomic(); 729 rqstp->rq_xprt = svc_xprt_dequeue(pool); 730 if (rqstp->rq_xprt) 731 goto out_found; 732 733 if (!time_left) 734 atomic_long_inc(&pool->sp_stats.threads_timedout); 735 736 if (signalled() || kthread_should_stop()) 737 return ERR_PTR(-EINTR); 738 return ERR_PTR(-EAGAIN); 739 out_found: 740 /* Normally we will wait up to 5 seconds for any required 741 * cache information to be provided. 742 */ 743 if (!test_bit(SP_CONGESTED, &pool->sp_flags)) 744 rqstp->rq_chandle.thread_wait = 5*HZ; 745 else 746 rqstp->rq_chandle.thread_wait = 1*HZ; 747 trace_svc_xprt_dequeue(rqstp); 748 return rqstp->rq_xprt; 749 } 750 751 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt) 752 { 753 spin_lock_bh(&serv->sv_lock); 754 set_bit(XPT_TEMP, &newxpt->xpt_flags); 755 list_add(&newxpt->xpt_list, &serv->sv_tempsocks); 756 serv->sv_tmpcnt++; 757 if (serv->sv_temptimer.function == NULL) { 758 /* setup timer to age temp transports */ 759 serv->sv_temptimer.function = svc_age_temp_xprts; 760 mod_timer(&serv->sv_temptimer, 761 jiffies + svc_conn_age_period * HZ); 762 } 763 spin_unlock_bh(&serv->sv_lock); 764 svc_xprt_received(newxpt); 765 } 766 767 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt) 768 { 769 struct svc_serv *serv = rqstp->rq_server; 770 int len = 0; 771 772 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) { 773 dprintk("svc_recv: found XPT_CLOSE\n"); 774 if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags)) 775 xprt->xpt_ops->xpo_kill_temp_xprt(xprt); 776 svc_delete_xprt(xprt); 777 /* Leave XPT_BUSY set on the dead xprt: */ 778 goto out; 779 } 780 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) { 781 struct svc_xprt *newxpt; 782 /* 783 * We know this module_get will succeed because the 784 * listener holds a reference too 785 */ 786 __module_get(xprt->xpt_class->xcl_owner); 787 svc_check_conn_limits(xprt->xpt_server); 788 newxpt = xprt->xpt_ops->xpo_accept(xprt); 789 if (newxpt) { 790 newxpt->xpt_cred = get_cred(xprt->xpt_cred); 791 svc_add_new_temp_xprt(serv, newxpt); 792 } else 793 module_put(xprt->xpt_class->xcl_owner); 794 } else if (svc_xprt_reserve_slot(rqstp, xprt)) { 795 /* XPT_DATA|XPT_DEFERRED case: */ 796 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n", 797 rqstp, rqstp->rq_pool->sp_id, xprt, 798 kref_read(&xprt->xpt_ref)); 799 rqstp->rq_deferred = svc_deferred_dequeue(xprt); 800 if (rqstp->rq_deferred) 801 len = svc_deferred_recv(rqstp); 802 else 803 len = xprt->xpt_ops->xpo_recvfrom(rqstp); 804 rqstp->rq_stime = ktime_get(); 805 rqstp->rq_reserved = serv->sv_max_mesg; 806 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved); 807 } 808 /* clear XPT_BUSY: */ 809 svc_xprt_received(xprt); 810 out: 811 trace_svc_handle_xprt(xprt, len); 812 return len; 813 } 814 815 /* 816 * Receive the next request on any transport. This code is carefully 817 * organised not to touch any cachelines in the shared svc_serv 818 * structure, only cachelines in the local svc_pool. 819 */ 820 int svc_recv(struct svc_rqst *rqstp, long timeout) 821 { 822 struct svc_xprt *xprt = NULL; 823 struct svc_serv *serv = rqstp->rq_server; 824 int len, err; 825 826 dprintk("svc: server %p waiting for data (to = %ld)\n", 827 rqstp, timeout); 828 829 if (rqstp->rq_xprt) 830 printk(KERN_ERR 831 "svc_recv: service %p, transport not NULL!\n", 832 rqstp); 833 834 err = svc_alloc_arg(rqstp); 835 if (err) 836 goto out; 837 838 try_to_freeze(); 839 cond_resched(); 840 err = -EINTR; 841 if (signalled() || kthread_should_stop()) 842 goto out; 843 844 xprt = svc_get_next_xprt(rqstp, timeout); 845 if (IS_ERR(xprt)) { 846 err = PTR_ERR(xprt); 847 goto out; 848 } 849 850 len = svc_handle_xprt(rqstp, xprt); 851 852 /* No data, incomplete (TCP) read, or accept() */ 853 err = -EAGAIN; 854 if (len <= 0) 855 goto out_release; 856 857 clear_bit(XPT_OLD, &xprt->xpt_flags); 858 859 xprt->xpt_ops->xpo_secure_port(rqstp); 860 rqstp->rq_chandle.defer = svc_defer; 861 rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]); 862 863 if (serv->sv_stats) 864 serv->sv_stats->netcnt++; 865 trace_svc_recv(rqstp, len); 866 return len; 867 out_release: 868 rqstp->rq_res.len = 0; 869 svc_xprt_release(rqstp); 870 out: 871 return err; 872 } 873 EXPORT_SYMBOL_GPL(svc_recv); 874 875 /* 876 * Drop request 877 */ 878 void svc_drop(struct svc_rqst *rqstp) 879 { 880 trace_svc_drop(rqstp); 881 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt); 882 svc_xprt_release(rqstp); 883 } 884 EXPORT_SYMBOL_GPL(svc_drop); 885 886 /* 887 * Return reply to client. 888 */ 889 int svc_send(struct svc_rqst *rqstp) 890 { 891 struct svc_xprt *xprt; 892 int len = -EFAULT; 893 struct xdr_buf *xb; 894 895 xprt = rqstp->rq_xprt; 896 if (!xprt) 897 goto out; 898 899 /* release the receive skb before sending the reply */ 900 xprt->xpt_ops->xpo_release_rqst(rqstp); 901 902 /* calculate over-all length */ 903 xb = &rqstp->rq_res; 904 xb->len = xb->head[0].iov_len + 905 xb->page_len + 906 xb->tail[0].iov_len; 907 908 /* Grab mutex to serialize outgoing data. */ 909 mutex_lock(&xprt->xpt_mutex); 910 trace_svc_stats_latency(rqstp); 911 if (test_bit(XPT_DEAD, &xprt->xpt_flags) 912 || test_bit(XPT_CLOSE, &xprt->xpt_flags)) 913 len = -ENOTCONN; 914 else 915 len = xprt->xpt_ops->xpo_sendto(rqstp); 916 mutex_unlock(&xprt->xpt_mutex); 917 trace_svc_send(rqstp, len); 918 svc_xprt_release(rqstp); 919 920 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN) 921 len = 0; 922 out: 923 return len; 924 } 925 926 /* 927 * Timer function to close old temporary transports, using 928 * a mark-and-sweep algorithm. 929 */ 930 static void svc_age_temp_xprts(struct timer_list *t) 931 { 932 struct svc_serv *serv = from_timer(serv, t, sv_temptimer); 933 struct svc_xprt *xprt; 934 struct list_head *le, *next; 935 936 dprintk("svc_age_temp_xprts\n"); 937 938 if (!spin_trylock_bh(&serv->sv_lock)) { 939 /* busy, try again 1 sec later */ 940 dprintk("svc_age_temp_xprts: busy\n"); 941 mod_timer(&serv->sv_temptimer, jiffies + HZ); 942 return; 943 } 944 945 list_for_each_safe(le, next, &serv->sv_tempsocks) { 946 xprt = list_entry(le, struct svc_xprt, xpt_list); 947 948 /* First time through, just mark it OLD. Second time 949 * through, close it. */ 950 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags)) 951 continue; 952 if (kref_read(&xprt->xpt_ref) > 1 || 953 test_bit(XPT_BUSY, &xprt->xpt_flags)) 954 continue; 955 list_del_init(le); 956 set_bit(XPT_CLOSE, &xprt->xpt_flags); 957 dprintk("queuing xprt %p for closing\n", xprt); 958 959 /* a thread will dequeue and close it soon */ 960 svc_xprt_enqueue(xprt); 961 } 962 spin_unlock_bh(&serv->sv_lock); 963 964 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ); 965 } 966 967 /* Close temporary transports whose xpt_local matches server_addr immediately 968 * instead of waiting for them to be picked up by the timer. 969 * 970 * This is meant to be called from a notifier_block that runs when an ip 971 * address is deleted. 972 */ 973 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr) 974 { 975 struct svc_xprt *xprt; 976 struct list_head *le, *next; 977 LIST_HEAD(to_be_closed); 978 979 spin_lock_bh(&serv->sv_lock); 980 list_for_each_safe(le, next, &serv->sv_tempsocks) { 981 xprt = list_entry(le, struct svc_xprt, xpt_list); 982 if (rpc_cmp_addr(server_addr, (struct sockaddr *) 983 &xprt->xpt_local)) { 984 dprintk("svc_age_temp_xprts_now: found %p\n", xprt); 985 list_move(le, &to_be_closed); 986 } 987 } 988 spin_unlock_bh(&serv->sv_lock); 989 990 while (!list_empty(&to_be_closed)) { 991 le = to_be_closed.next; 992 list_del_init(le); 993 xprt = list_entry(le, struct svc_xprt, xpt_list); 994 set_bit(XPT_CLOSE, &xprt->xpt_flags); 995 set_bit(XPT_KILL_TEMP, &xprt->xpt_flags); 996 dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n", 997 xprt); 998 svc_xprt_enqueue(xprt); 999 } 1000 } 1001 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now); 1002 1003 static void call_xpt_users(struct svc_xprt *xprt) 1004 { 1005 struct svc_xpt_user *u; 1006 1007 spin_lock(&xprt->xpt_lock); 1008 while (!list_empty(&xprt->xpt_users)) { 1009 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list); 1010 list_del_init(&u->list); 1011 u->callback(u); 1012 } 1013 spin_unlock(&xprt->xpt_lock); 1014 } 1015 1016 /* 1017 * Remove a dead transport 1018 */ 1019 static void svc_delete_xprt(struct svc_xprt *xprt) 1020 { 1021 struct svc_serv *serv = xprt->xpt_server; 1022 struct svc_deferred_req *dr; 1023 1024 /* Only do this once */ 1025 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags)) 1026 BUG(); 1027 1028 dprintk("svc: svc_delete_xprt(%p)\n", xprt); 1029 xprt->xpt_ops->xpo_detach(xprt); 1030 1031 spin_lock_bh(&serv->sv_lock); 1032 list_del_init(&xprt->xpt_list); 1033 WARN_ON_ONCE(!list_empty(&xprt->xpt_ready)); 1034 if (test_bit(XPT_TEMP, &xprt->xpt_flags)) 1035 serv->sv_tmpcnt--; 1036 spin_unlock_bh(&serv->sv_lock); 1037 1038 while ((dr = svc_deferred_dequeue(xprt)) != NULL) 1039 kfree(dr); 1040 1041 call_xpt_users(xprt); 1042 svc_xprt_put(xprt); 1043 } 1044 1045 void svc_close_xprt(struct svc_xprt *xprt) 1046 { 1047 set_bit(XPT_CLOSE, &xprt->xpt_flags); 1048 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) 1049 /* someone else will have to effect the close */ 1050 return; 1051 /* 1052 * We expect svc_close_xprt() to work even when no threads are 1053 * running (e.g., while configuring the server before starting 1054 * any threads), so if the transport isn't busy, we delete 1055 * it ourself: 1056 */ 1057 svc_delete_xprt(xprt); 1058 } 1059 EXPORT_SYMBOL_GPL(svc_close_xprt); 1060 1061 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net) 1062 { 1063 struct svc_xprt *xprt; 1064 int ret = 0; 1065 1066 spin_lock(&serv->sv_lock); 1067 list_for_each_entry(xprt, xprt_list, xpt_list) { 1068 if (xprt->xpt_net != net) 1069 continue; 1070 ret++; 1071 set_bit(XPT_CLOSE, &xprt->xpt_flags); 1072 svc_xprt_enqueue(xprt); 1073 } 1074 spin_unlock(&serv->sv_lock); 1075 return ret; 1076 } 1077 1078 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net) 1079 { 1080 struct svc_pool *pool; 1081 struct svc_xprt *xprt; 1082 struct svc_xprt *tmp; 1083 int i; 1084 1085 for (i = 0; i < serv->sv_nrpools; i++) { 1086 pool = &serv->sv_pools[i]; 1087 1088 spin_lock_bh(&pool->sp_lock); 1089 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) { 1090 if (xprt->xpt_net != net) 1091 continue; 1092 list_del_init(&xprt->xpt_ready); 1093 spin_unlock_bh(&pool->sp_lock); 1094 return xprt; 1095 } 1096 spin_unlock_bh(&pool->sp_lock); 1097 } 1098 return NULL; 1099 } 1100 1101 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net) 1102 { 1103 struct svc_xprt *xprt; 1104 1105 while ((xprt = svc_dequeue_net(serv, net))) { 1106 set_bit(XPT_CLOSE, &xprt->xpt_flags); 1107 svc_delete_xprt(xprt); 1108 } 1109 } 1110 1111 /* 1112 * Server threads may still be running (especially in the case where the 1113 * service is still running in other network namespaces). 1114 * 1115 * So we shut down sockets the same way we would on a running server, by 1116 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do 1117 * the close. In the case there are no such other threads, 1118 * threads running, svc_clean_up_xprts() does a simple version of a 1119 * server's main event loop, and in the case where there are other 1120 * threads, we may need to wait a little while and then check again to 1121 * see if they're done. 1122 */ 1123 void svc_close_net(struct svc_serv *serv, struct net *net) 1124 { 1125 int delay = 0; 1126 1127 while (svc_close_list(serv, &serv->sv_permsocks, net) + 1128 svc_close_list(serv, &serv->sv_tempsocks, net)) { 1129 1130 svc_clean_up_xprts(serv, net); 1131 msleep(delay++); 1132 } 1133 } 1134 1135 /* 1136 * Handle defer and revisit of requests 1137 */ 1138 1139 static void svc_revisit(struct cache_deferred_req *dreq, int too_many) 1140 { 1141 struct svc_deferred_req *dr = 1142 container_of(dreq, struct svc_deferred_req, handle); 1143 struct svc_xprt *xprt = dr->xprt; 1144 1145 spin_lock(&xprt->xpt_lock); 1146 set_bit(XPT_DEFERRED, &xprt->xpt_flags); 1147 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) { 1148 spin_unlock(&xprt->xpt_lock); 1149 dprintk("revisit canceled\n"); 1150 svc_xprt_put(xprt); 1151 trace_svc_drop_deferred(dr); 1152 kfree(dr); 1153 return; 1154 } 1155 dprintk("revisit queued\n"); 1156 dr->xprt = NULL; 1157 list_add(&dr->handle.recent, &xprt->xpt_deferred); 1158 spin_unlock(&xprt->xpt_lock); 1159 svc_xprt_enqueue(xprt); 1160 svc_xprt_put(xprt); 1161 } 1162 1163 /* 1164 * Save the request off for later processing. The request buffer looks 1165 * like this: 1166 * 1167 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail> 1168 * 1169 * This code can only handle requests that consist of an xprt-header 1170 * and rpc-header. 1171 */ 1172 static struct cache_deferred_req *svc_defer(struct cache_req *req) 1173 { 1174 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle); 1175 struct svc_deferred_req *dr; 1176 1177 if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags)) 1178 return NULL; /* if more than a page, give up FIXME */ 1179 if (rqstp->rq_deferred) { 1180 dr = rqstp->rq_deferred; 1181 rqstp->rq_deferred = NULL; 1182 } else { 1183 size_t skip; 1184 size_t size; 1185 /* FIXME maybe discard if size too large */ 1186 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len; 1187 dr = kmalloc(size, GFP_KERNEL); 1188 if (dr == NULL) 1189 return NULL; 1190 1191 dr->handle.owner = rqstp->rq_server; 1192 dr->prot = rqstp->rq_prot; 1193 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen); 1194 dr->addrlen = rqstp->rq_addrlen; 1195 dr->daddr = rqstp->rq_daddr; 1196 dr->argslen = rqstp->rq_arg.len >> 2; 1197 dr->xprt_hlen = rqstp->rq_xprt_hlen; 1198 1199 /* back up head to the start of the buffer and copy */ 1200 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len; 1201 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip, 1202 dr->argslen << 2); 1203 } 1204 svc_xprt_get(rqstp->rq_xprt); 1205 dr->xprt = rqstp->rq_xprt; 1206 set_bit(RQ_DROPME, &rqstp->rq_flags); 1207 1208 dr->handle.revisit = svc_revisit; 1209 trace_svc_defer(rqstp); 1210 return &dr->handle; 1211 } 1212 1213 /* 1214 * recv data from a deferred request into an active one 1215 */ 1216 static int svc_deferred_recv(struct svc_rqst *rqstp) 1217 { 1218 struct svc_deferred_req *dr = rqstp->rq_deferred; 1219 1220 /* setup iov_base past transport header */ 1221 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2); 1222 /* The iov_len does not include the transport header bytes */ 1223 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen; 1224 rqstp->rq_arg.page_len = 0; 1225 /* The rq_arg.len includes the transport header bytes */ 1226 rqstp->rq_arg.len = dr->argslen<<2; 1227 rqstp->rq_prot = dr->prot; 1228 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen); 1229 rqstp->rq_addrlen = dr->addrlen; 1230 /* Save off transport header len in case we get deferred again */ 1231 rqstp->rq_xprt_hlen = dr->xprt_hlen; 1232 rqstp->rq_daddr = dr->daddr; 1233 rqstp->rq_respages = rqstp->rq_pages; 1234 return (dr->argslen<<2) - dr->xprt_hlen; 1235 } 1236 1237 1238 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt) 1239 { 1240 struct svc_deferred_req *dr = NULL; 1241 1242 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags)) 1243 return NULL; 1244 spin_lock(&xprt->xpt_lock); 1245 if (!list_empty(&xprt->xpt_deferred)) { 1246 dr = list_entry(xprt->xpt_deferred.next, 1247 struct svc_deferred_req, 1248 handle.recent); 1249 list_del_init(&dr->handle.recent); 1250 trace_svc_revisit_deferred(dr); 1251 } else 1252 clear_bit(XPT_DEFERRED, &xprt->xpt_flags); 1253 spin_unlock(&xprt->xpt_lock); 1254 return dr; 1255 } 1256 1257 /** 1258 * svc_find_xprt - find an RPC transport instance 1259 * @serv: pointer to svc_serv to search 1260 * @xcl_name: C string containing transport's class name 1261 * @net: owner net pointer 1262 * @af: Address family of transport's local address 1263 * @port: transport's IP port number 1264 * 1265 * Return the transport instance pointer for the endpoint accepting 1266 * connections/peer traffic from the specified transport class, 1267 * address family and port. 1268 * 1269 * Specifying 0 for the address family or port is effectively a 1270 * wild-card, and will result in matching the first transport in the 1271 * service's list that has a matching class name. 1272 */ 1273 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name, 1274 struct net *net, const sa_family_t af, 1275 const unsigned short port) 1276 { 1277 struct svc_xprt *xprt; 1278 struct svc_xprt *found = NULL; 1279 1280 /* Sanity check the args */ 1281 if (serv == NULL || xcl_name == NULL) 1282 return found; 1283 1284 spin_lock_bh(&serv->sv_lock); 1285 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { 1286 if (xprt->xpt_net != net) 1287 continue; 1288 if (strcmp(xprt->xpt_class->xcl_name, xcl_name)) 1289 continue; 1290 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family) 1291 continue; 1292 if (port != 0 && port != svc_xprt_local_port(xprt)) 1293 continue; 1294 found = xprt; 1295 svc_xprt_get(xprt); 1296 break; 1297 } 1298 spin_unlock_bh(&serv->sv_lock); 1299 return found; 1300 } 1301 EXPORT_SYMBOL_GPL(svc_find_xprt); 1302 1303 static int svc_one_xprt_name(const struct svc_xprt *xprt, 1304 char *pos, int remaining) 1305 { 1306 int len; 1307 1308 len = snprintf(pos, remaining, "%s %u\n", 1309 xprt->xpt_class->xcl_name, 1310 svc_xprt_local_port(xprt)); 1311 if (len >= remaining) 1312 return -ENAMETOOLONG; 1313 return len; 1314 } 1315 1316 /** 1317 * svc_xprt_names - format a buffer with a list of transport names 1318 * @serv: pointer to an RPC service 1319 * @buf: pointer to a buffer to be filled in 1320 * @buflen: length of buffer to be filled in 1321 * 1322 * Fills in @buf with a string containing a list of transport names, 1323 * each name terminated with '\n'. 1324 * 1325 * Returns positive length of the filled-in string on success; otherwise 1326 * a negative errno value is returned if an error occurs. 1327 */ 1328 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen) 1329 { 1330 struct svc_xprt *xprt; 1331 int len, totlen; 1332 char *pos; 1333 1334 /* Sanity check args */ 1335 if (!serv) 1336 return 0; 1337 1338 spin_lock_bh(&serv->sv_lock); 1339 1340 pos = buf; 1341 totlen = 0; 1342 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { 1343 len = svc_one_xprt_name(xprt, pos, buflen - totlen); 1344 if (len < 0) { 1345 *buf = '\0'; 1346 totlen = len; 1347 } 1348 if (len <= 0) 1349 break; 1350 1351 pos += len; 1352 totlen += len; 1353 } 1354 1355 spin_unlock_bh(&serv->sv_lock); 1356 return totlen; 1357 } 1358 EXPORT_SYMBOL_GPL(svc_xprt_names); 1359 1360 1361 /*----------------------------------------------------------------------------*/ 1362 1363 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos) 1364 { 1365 unsigned int pidx = (unsigned int)*pos; 1366 struct svc_serv *serv = m->private; 1367 1368 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx); 1369 1370 if (!pidx) 1371 return SEQ_START_TOKEN; 1372 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]); 1373 } 1374 1375 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos) 1376 { 1377 struct svc_pool *pool = p; 1378 struct svc_serv *serv = m->private; 1379 1380 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos); 1381 1382 if (p == SEQ_START_TOKEN) { 1383 pool = &serv->sv_pools[0]; 1384 } else { 1385 unsigned int pidx = (pool - &serv->sv_pools[0]); 1386 if (pidx < serv->sv_nrpools-1) 1387 pool = &serv->sv_pools[pidx+1]; 1388 else 1389 pool = NULL; 1390 } 1391 ++*pos; 1392 return pool; 1393 } 1394 1395 static void svc_pool_stats_stop(struct seq_file *m, void *p) 1396 { 1397 } 1398 1399 static int svc_pool_stats_show(struct seq_file *m, void *p) 1400 { 1401 struct svc_pool *pool = p; 1402 1403 if (p == SEQ_START_TOKEN) { 1404 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n"); 1405 return 0; 1406 } 1407 1408 seq_printf(m, "%u %lu %lu %lu %lu\n", 1409 pool->sp_id, 1410 (unsigned long)atomic_long_read(&pool->sp_stats.packets), 1411 pool->sp_stats.sockets_queued, 1412 (unsigned long)atomic_long_read(&pool->sp_stats.threads_woken), 1413 (unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout)); 1414 1415 return 0; 1416 } 1417 1418 static const struct seq_operations svc_pool_stats_seq_ops = { 1419 .start = svc_pool_stats_start, 1420 .next = svc_pool_stats_next, 1421 .stop = svc_pool_stats_stop, 1422 .show = svc_pool_stats_show, 1423 }; 1424 1425 int svc_pool_stats_open(struct svc_serv *serv, struct file *file) 1426 { 1427 int err; 1428 1429 err = seq_open(file, &svc_pool_stats_seq_ops); 1430 if (!err) 1431 ((struct seq_file *) file->private_data)->private = serv; 1432 return err; 1433 } 1434 EXPORT_SYMBOL(svc_pool_stats_open); 1435 1436 /*----------------------------------------------------------------------------*/ 1437