xref: /openbmc/linux/net/sunrpc/svc.c (revision e6b58555558a1ea653e415fc45308964087f9053)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/svc.c
4  *
5  * High-level RPC service routines
6  *
7  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
8  *
9  * Multiple threads pools and NUMAisation
10  * Copyright (c) 2006 Silicon Graphics, Inc.
11  * by Greg Banks <gnb@melbourne.sgi.com>
12  */
13 
14 #include <linux/linkage.h>
15 #include <linux/sched/signal.h>
16 #include <linux/errno.h>
17 #include <linux/net.h>
18 #include <linux/in.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/module.h>
22 #include <linux/kthread.h>
23 #include <linux/slab.h>
24 
25 #include <linux/sunrpc/types.h>
26 #include <linux/sunrpc/xdr.h>
27 #include <linux/sunrpc/stats.h>
28 #include <linux/sunrpc/svcsock.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/sunrpc/bc_xprt.h>
31 
32 #include <trace/events/sunrpc.h>
33 
34 #include "fail.h"
35 
36 #define RPCDBG_FACILITY	RPCDBG_SVCDSP
37 
38 static void svc_unregister(const struct svc_serv *serv, struct net *net);
39 
40 #define SVC_POOL_DEFAULT	SVC_POOL_GLOBAL
41 
42 /*
43  * Mode for mapping cpus to pools.
44  */
45 enum {
46 	SVC_POOL_AUTO = -1,	/* choose one of the others */
47 	SVC_POOL_GLOBAL,	/* no mapping, just a single global pool
48 				 * (legacy & UP mode) */
49 	SVC_POOL_PERCPU,	/* one pool per cpu */
50 	SVC_POOL_PERNODE	/* one pool per numa node */
51 };
52 
53 /*
54  * Structure for mapping cpus to pools and vice versa.
55  * Setup once during sunrpc initialisation.
56  */
57 
58 struct svc_pool_map {
59 	int count;			/* How many svc_servs use us */
60 	int mode;			/* Note: int not enum to avoid
61 					 * warnings about "enumeration value
62 					 * not handled in switch" */
63 	unsigned int npools;
64 	unsigned int *pool_to;		/* maps pool id to cpu or node */
65 	unsigned int *to_pool;		/* maps cpu or node to pool id */
66 };
67 
68 static struct svc_pool_map svc_pool_map = {
69 	.mode = SVC_POOL_DEFAULT
70 };
71 
72 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */
73 
74 static int
75 param_set_pool_mode(const char *val, const struct kernel_param *kp)
76 {
77 	int *ip = (int *)kp->arg;
78 	struct svc_pool_map *m = &svc_pool_map;
79 	int err;
80 
81 	mutex_lock(&svc_pool_map_mutex);
82 
83 	err = -EBUSY;
84 	if (m->count)
85 		goto out;
86 
87 	err = 0;
88 	if (!strncmp(val, "auto", 4))
89 		*ip = SVC_POOL_AUTO;
90 	else if (!strncmp(val, "global", 6))
91 		*ip = SVC_POOL_GLOBAL;
92 	else if (!strncmp(val, "percpu", 6))
93 		*ip = SVC_POOL_PERCPU;
94 	else if (!strncmp(val, "pernode", 7))
95 		*ip = SVC_POOL_PERNODE;
96 	else
97 		err = -EINVAL;
98 
99 out:
100 	mutex_unlock(&svc_pool_map_mutex);
101 	return err;
102 }
103 
104 static int
105 param_get_pool_mode(char *buf, const struct kernel_param *kp)
106 {
107 	int *ip = (int *)kp->arg;
108 
109 	switch (*ip)
110 	{
111 	case SVC_POOL_AUTO:
112 		return strlcpy(buf, "auto\n", 20);
113 	case SVC_POOL_GLOBAL:
114 		return strlcpy(buf, "global\n", 20);
115 	case SVC_POOL_PERCPU:
116 		return strlcpy(buf, "percpu\n", 20);
117 	case SVC_POOL_PERNODE:
118 		return strlcpy(buf, "pernode\n", 20);
119 	default:
120 		return sprintf(buf, "%d\n", *ip);
121 	}
122 }
123 
124 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode,
125 		 &svc_pool_map.mode, 0644);
126 
127 /*
128  * Detect best pool mapping mode heuristically,
129  * according to the machine's topology.
130  */
131 static int
132 svc_pool_map_choose_mode(void)
133 {
134 	unsigned int node;
135 
136 	if (nr_online_nodes > 1) {
137 		/*
138 		 * Actually have multiple NUMA nodes,
139 		 * so split pools on NUMA node boundaries
140 		 */
141 		return SVC_POOL_PERNODE;
142 	}
143 
144 	node = first_online_node;
145 	if (nr_cpus_node(node) > 2) {
146 		/*
147 		 * Non-trivial SMP, or CONFIG_NUMA on
148 		 * non-NUMA hardware, e.g. with a generic
149 		 * x86_64 kernel on Xeons.  In this case we
150 		 * want to divide the pools on cpu boundaries.
151 		 */
152 		return SVC_POOL_PERCPU;
153 	}
154 
155 	/* default: one global pool */
156 	return SVC_POOL_GLOBAL;
157 }
158 
159 /*
160  * Allocate the to_pool[] and pool_to[] arrays.
161  * Returns 0 on success or an errno.
162  */
163 static int
164 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools)
165 {
166 	m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
167 	if (!m->to_pool)
168 		goto fail;
169 	m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
170 	if (!m->pool_to)
171 		goto fail_free;
172 
173 	return 0;
174 
175 fail_free:
176 	kfree(m->to_pool);
177 	m->to_pool = NULL;
178 fail:
179 	return -ENOMEM;
180 }
181 
182 /*
183  * Initialise the pool map for SVC_POOL_PERCPU mode.
184  * Returns number of pools or <0 on error.
185  */
186 static int
187 svc_pool_map_init_percpu(struct svc_pool_map *m)
188 {
189 	unsigned int maxpools = nr_cpu_ids;
190 	unsigned int pidx = 0;
191 	unsigned int cpu;
192 	int err;
193 
194 	err = svc_pool_map_alloc_arrays(m, maxpools);
195 	if (err)
196 		return err;
197 
198 	for_each_online_cpu(cpu) {
199 		BUG_ON(pidx >= maxpools);
200 		m->to_pool[cpu] = pidx;
201 		m->pool_to[pidx] = cpu;
202 		pidx++;
203 	}
204 	/* cpus brought online later all get mapped to pool0, sorry */
205 
206 	return pidx;
207 };
208 
209 
210 /*
211  * Initialise the pool map for SVC_POOL_PERNODE mode.
212  * Returns number of pools or <0 on error.
213  */
214 static int
215 svc_pool_map_init_pernode(struct svc_pool_map *m)
216 {
217 	unsigned int maxpools = nr_node_ids;
218 	unsigned int pidx = 0;
219 	unsigned int node;
220 	int err;
221 
222 	err = svc_pool_map_alloc_arrays(m, maxpools);
223 	if (err)
224 		return err;
225 
226 	for_each_node_with_cpus(node) {
227 		/* some architectures (e.g. SN2) have cpuless nodes */
228 		BUG_ON(pidx > maxpools);
229 		m->to_pool[node] = pidx;
230 		m->pool_to[pidx] = node;
231 		pidx++;
232 	}
233 	/* nodes brought online later all get mapped to pool0, sorry */
234 
235 	return pidx;
236 }
237 
238 
239 /*
240  * Add a reference to the global map of cpus to pools (and
241  * vice versa) if pools are in use.
242  * Initialise the map if we're the first user.
243  * Returns the number of pools. If this is '1', no reference
244  * was taken.
245  */
246 static unsigned int
247 svc_pool_map_get(void)
248 {
249 	struct svc_pool_map *m = &svc_pool_map;
250 	int npools = -1;
251 
252 	mutex_lock(&svc_pool_map_mutex);
253 
254 	if (m->count++) {
255 		mutex_unlock(&svc_pool_map_mutex);
256 		WARN_ON_ONCE(m->npools <= 1);
257 		return m->npools;
258 	}
259 
260 	if (m->mode == SVC_POOL_AUTO)
261 		m->mode = svc_pool_map_choose_mode();
262 
263 	switch (m->mode) {
264 	case SVC_POOL_PERCPU:
265 		npools = svc_pool_map_init_percpu(m);
266 		break;
267 	case SVC_POOL_PERNODE:
268 		npools = svc_pool_map_init_pernode(m);
269 		break;
270 	}
271 
272 	if (npools <= 0) {
273 		/* default, or memory allocation failure */
274 		npools = 1;
275 		m->mode = SVC_POOL_GLOBAL;
276 	}
277 	m->npools = npools;
278 
279 	if (npools == 1)
280 		/* service is unpooled, so doesn't hold a reference */
281 		m->count--;
282 
283 	mutex_unlock(&svc_pool_map_mutex);
284 	return npools;
285 }
286 
287 /*
288  * Drop a reference to the global map of cpus to pools, if
289  * pools were in use, i.e. if npools > 1.
290  * When the last reference is dropped, the map data is
291  * freed; this allows the sysadmin to change the pool
292  * mode using the pool_mode module option without
293  * rebooting or re-loading sunrpc.ko.
294  */
295 static void
296 svc_pool_map_put(int npools)
297 {
298 	struct svc_pool_map *m = &svc_pool_map;
299 
300 	if (npools <= 1)
301 		return;
302 	mutex_lock(&svc_pool_map_mutex);
303 
304 	if (!--m->count) {
305 		kfree(m->to_pool);
306 		m->to_pool = NULL;
307 		kfree(m->pool_to);
308 		m->pool_to = NULL;
309 		m->npools = 0;
310 	}
311 
312 	mutex_unlock(&svc_pool_map_mutex);
313 }
314 
315 static int svc_pool_map_get_node(unsigned int pidx)
316 {
317 	const struct svc_pool_map *m = &svc_pool_map;
318 
319 	if (m->count) {
320 		if (m->mode == SVC_POOL_PERCPU)
321 			return cpu_to_node(m->pool_to[pidx]);
322 		if (m->mode == SVC_POOL_PERNODE)
323 			return m->pool_to[pidx];
324 	}
325 	return NUMA_NO_NODE;
326 }
327 /*
328  * Set the given thread's cpus_allowed mask so that it
329  * will only run on cpus in the given pool.
330  */
331 static inline void
332 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx)
333 {
334 	struct svc_pool_map *m = &svc_pool_map;
335 	unsigned int node = m->pool_to[pidx];
336 
337 	/*
338 	 * The caller checks for sv_nrpools > 1, which
339 	 * implies that we've been initialized.
340 	 */
341 	WARN_ON_ONCE(m->count == 0);
342 	if (m->count == 0)
343 		return;
344 
345 	switch (m->mode) {
346 	case SVC_POOL_PERCPU:
347 	{
348 		set_cpus_allowed_ptr(task, cpumask_of(node));
349 		break;
350 	}
351 	case SVC_POOL_PERNODE:
352 	{
353 		set_cpus_allowed_ptr(task, cpumask_of_node(node));
354 		break;
355 	}
356 	}
357 }
358 
359 /*
360  * Use the mapping mode to choose a pool for a given CPU.
361  * Used when enqueueing an incoming RPC.  Always returns
362  * a non-NULL pool pointer.
363  */
364 struct svc_pool *
365 svc_pool_for_cpu(struct svc_serv *serv, int cpu)
366 {
367 	struct svc_pool_map *m = &svc_pool_map;
368 	unsigned int pidx = 0;
369 
370 	if (serv->sv_nrpools <= 1)
371 		return serv->sv_pools;
372 
373 	switch (m->mode) {
374 	case SVC_POOL_PERCPU:
375 		pidx = m->to_pool[cpu];
376 		break;
377 	case SVC_POOL_PERNODE:
378 		pidx = m->to_pool[cpu_to_node(cpu)];
379 		break;
380 	}
381 
382 	return &serv->sv_pools[pidx % serv->sv_nrpools];
383 }
384 
385 int svc_rpcb_setup(struct svc_serv *serv, struct net *net)
386 {
387 	int err;
388 
389 	err = rpcb_create_local(net);
390 	if (err)
391 		return err;
392 
393 	/* Remove any stale portmap registrations */
394 	svc_unregister(serv, net);
395 	return 0;
396 }
397 EXPORT_SYMBOL_GPL(svc_rpcb_setup);
398 
399 void svc_rpcb_cleanup(struct svc_serv *serv, struct net *net)
400 {
401 	svc_unregister(serv, net);
402 	rpcb_put_local(net);
403 }
404 EXPORT_SYMBOL_GPL(svc_rpcb_cleanup);
405 
406 static int svc_uses_rpcbind(struct svc_serv *serv)
407 {
408 	struct svc_program	*progp;
409 	unsigned int		i;
410 
411 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
412 		for (i = 0; i < progp->pg_nvers; i++) {
413 			if (progp->pg_vers[i] == NULL)
414 				continue;
415 			if (!progp->pg_vers[i]->vs_hidden)
416 				return 1;
417 		}
418 	}
419 
420 	return 0;
421 }
422 
423 int svc_bind(struct svc_serv *serv, struct net *net)
424 {
425 	if (!svc_uses_rpcbind(serv))
426 		return 0;
427 	return svc_rpcb_setup(serv, net);
428 }
429 EXPORT_SYMBOL_GPL(svc_bind);
430 
431 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
432 static void
433 __svc_init_bc(struct svc_serv *serv)
434 {
435 	INIT_LIST_HEAD(&serv->sv_cb_list);
436 	spin_lock_init(&serv->sv_cb_lock);
437 	init_waitqueue_head(&serv->sv_cb_waitq);
438 }
439 #else
440 static void
441 __svc_init_bc(struct svc_serv *serv)
442 {
443 }
444 #endif
445 
446 /*
447  * Create an RPC service
448  */
449 static struct svc_serv *
450 __svc_create(struct svc_program *prog, unsigned int bufsize, int npools,
451 	     const struct svc_serv_ops *ops)
452 {
453 	struct svc_serv	*serv;
454 	unsigned int vers;
455 	unsigned int xdrsize;
456 	unsigned int i;
457 
458 	if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL)))
459 		return NULL;
460 	serv->sv_name      = prog->pg_name;
461 	serv->sv_program   = prog;
462 	kref_init(&serv->sv_refcnt);
463 	serv->sv_stats     = prog->pg_stats;
464 	if (bufsize > RPCSVC_MAXPAYLOAD)
465 		bufsize = RPCSVC_MAXPAYLOAD;
466 	serv->sv_max_payload = bufsize? bufsize : 4096;
467 	serv->sv_max_mesg  = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE);
468 	serv->sv_ops = ops;
469 	xdrsize = 0;
470 	while (prog) {
471 		prog->pg_lovers = prog->pg_nvers-1;
472 		for (vers=0; vers<prog->pg_nvers ; vers++)
473 			if (prog->pg_vers[vers]) {
474 				prog->pg_hivers = vers;
475 				if (prog->pg_lovers > vers)
476 					prog->pg_lovers = vers;
477 				if (prog->pg_vers[vers]->vs_xdrsize > xdrsize)
478 					xdrsize = prog->pg_vers[vers]->vs_xdrsize;
479 			}
480 		prog = prog->pg_next;
481 	}
482 	serv->sv_xdrsize   = xdrsize;
483 	INIT_LIST_HEAD(&serv->sv_tempsocks);
484 	INIT_LIST_HEAD(&serv->sv_permsocks);
485 	timer_setup(&serv->sv_temptimer, NULL, 0);
486 	spin_lock_init(&serv->sv_lock);
487 
488 	__svc_init_bc(serv);
489 
490 	serv->sv_nrpools = npools;
491 	serv->sv_pools =
492 		kcalloc(serv->sv_nrpools, sizeof(struct svc_pool),
493 			GFP_KERNEL);
494 	if (!serv->sv_pools) {
495 		kfree(serv);
496 		return NULL;
497 	}
498 
499 	for (i = 0; i < serv->sv_nrpools; i++) {
500 		struct svc_pool *pool = &serv->sv_pools[i];
501 
502 		dprintk("svc: initialising pool %u for %s\n",
503 				i, serv->sv_name);
504 
505 		pool->sp_id = i;
506 		INIT_LIST_HEAD(&pool->sp_sockets);
507 		INIT_LIST_HEAD(&pool->sp_all_threads);
508 		spin_lock_init(&pool->sp_lock);
509 	}
510 
511 	return serv;
512 }
513 
514 struct svc_serv *
515 svc_create(struct svc_program *prog, unsigned int bufsize,
516 	   const struct svc_serv_ops *ops)
517 {
518 	return __svc_create(prog, bufsize, /*npools*/1, ops);
519 }
520 EXPORT_SYMBOL_GPL(svc_create);
521 
522 struct svc_serv *
523 svc_create_pooled(struct svc_program *prog, unsigned int bufsize,
524 		  const struct svc_serv_ops *ops)
525 {
526 	struct svc_serv *serv;
527 	unsigned int npools = svc_pool_map_get();
528 
529 	serv = __svc_create(prog, bufsize, npools, ops);
530 	if (!serv)
531 		goto out_err;
532 	return serv;
533 out_err:
534 	svc_pool_map_put(npools);
535 	return NULL;
536 }
537 EXPORT_SYMBOL_GPL(svc_create_pooled);
538 
539 void svc_shutdown_net(struct svc_serv *serv, struct net *net)
540 {
541 	svc_close_net(serv, net);
542 
543 	if (serv->sv_ops->svo_shutdown)
544 		serv->sv_ops->svo_shutdown(serv, net);
545 }
546 EXPORT_SYMBOL_GPL(svc_shutdown_net);
547 
548 /*
549  * Destroy an RPC service. Should be called with appropriate locking to
550  * protect sv_permsocks and sv_tempsocks.
551  */
552 void
553 svc_destroy(struct kref *ref)
554 {
555 	struct svc_serv *serv = container_of(ref, struct svc_serv, sv_refcnt);
556 
557 	dprintk("svc: svc_destroy(%s)\n", serv->sv_program->pg_name);
558 	del_timer_sync(&serv->sv_temptimer);
559 
560 	/*
561 	 * The last user is gone and thus all sockets have to be destroyed to
562 	 * the point. Check this.
563 	 */
564 	BUG_ON(!list_empty(&serv->sv_permsocks));
565 	BUG_ON(!list_empty(&serv->sv_tempsocks));
566 
567 	cache_clean_deferred(serv);
568 
569 	svc_pool_map_put(serv->sv_nrpools);
570 
571 	kfree(serv->sv_pools);
572 	kfree(serv);
573 }
574 EXPORT_SYMBOL_GPL(svc_destroy);
575 
576 /*
577  * Allocate an RPC server's buffer space.
578  * We allocate pages and place them in rq_pages.
579  */
580 static int
581 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size, int node)
582 {
583 	unsigned int pages, arghi;
584 
585 	/* bc_xprt uses fore channel allocated buffers */
586 	if (svc_is_backchannel(rqstp))
587 		return 1;
588 
589 	pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply.
590 				       * We assume one is at most one page
591 				       */
592 	arghi = 0;
593 	WARN_ON_ONCE(pages > RPCSVC_MAXPAGES);
594 	if (pages > RPCSVC_MAXPAGES)
595 		pages = RPCSVC_MAXPAGES;
596 	while (pages) {
597 		struct page *p = alloc_pages_node(node, GFP_KERNEL, 0);
598 		if (!p)
599 			break;
600 		rqstp->rq_pages[arghi++] = p;
601 		pages--;
602 	}
603 	return pages == 0;
604 }
605 
606 /*
607  * Release an RPC server buffer
608  */
609 static void
610 svc_release_buffer(struct svc_rqst *rqstp)
611 {
612 	unsigned int i;
613 
614 	for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++)
615 		if (rqstp->rq_pages[i])
616 			put_page(rqstp->rq_pages[i]);
617 }
618 
619 struct svc_rqst *
620 svc_rqst_alloc(struct svc_serv *serv, struct svc_pool *pool, int node)
621 {
622 	struct svc_rqst	*rqstp;
623 
624 	rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node);
625 	if (!rqstp)
626 		return rqstp;
627 
628 	__set_bit(RQ_BUSY, &rqstp->rq_flags);
629 	spin_lock_init(&rqstp->rq_lock);
630 	rqstp->rq_server = serv;
631 	rqstp->rq_pool = pool;
632 
633 	rqstp->rq_scratch_page = alloc_pages_node(node, GFP_KERNEL, 0);
634 	if (!rqstp->rq_scratch_page)
635 		goto out_enomem;
636 
637 	rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
638 	if (!rqstp->rq_argp)
639 		goto out_enomem;
640 
641 	rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
642 	if (!rqstp->rq_resp)
643 		goto out_enomem;
644 
645 	if (!svc_init_buffer(rqstp, serv->sv_max_mesg, node))
646 		goto out_enomem;
647 
648 	return rqstp;
649 out_enomem:
650 	svc_rqst_free(rqstp);
651 	return NULL;
652 }
653 EXPORT_SYMBOL_GPL(svc_rqst_alloc);
654 
655 static struct svc_rqst *
656 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node)
657 {
658 	struct svc_rqst	*rqstp;
659 
660 	rqstp = svc_rqst_alloc(serv, pool, node);
661 	if (!rqstp)
662 		return ERR_PTR(-ENOMEM);
663 
664 	svc_get(serv);
665 	spin_lock_bh(&serv->sv_lock);
666 	serv->sv_nrthreads += 1;
667 	spin_unlock_bh(&serv->sv_lock);
668 
669 	spin_lock_bh(&pool->sp_lock);
670 	pool->sp_nrthreads++;
671 	list_add_rcu(&rqstp->rq_all, &pool->sp_all_threads);
672 	spin_unlock_bh(&pool->sp_lock);
673 	return rqstp;
674 }
675 
676 /*
677  * Choose a pool in which to create a new thread, for svc_set_num_threads
678  */
679 static inline struct svc_pool *
680 choose_pool(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
681 {
682 	if (pool != NULL)
683 		return pool;
684 
685 	return &serv->sv_pools[(*state)++ % serv->sv_nrpools];
686 }
687 
688 /*
689  * Choose a thread to kill, for svc_set_num_threads
690  */
691 static inline struct task_struct *
692 choose_victim(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
693 {
694 	unsigned int i;
695 	struct task_struct *task = NULL;
696 
697 	if (pool != NULL) {
698 		spin_lock_bh(&pool->sp_lock);
699 	} else {
700 		/* choose a pool in round-robin fashion */
701 		for (i = 0; i < serv->sv_nrpools; i++) {
702 			pool = &serv->sv_pools[--(*state) % serv->sv_nrpools];
703 			spin_lock_bh(&pool->sp_lock);
704 			if (!list_empty(&pool->sp_all_threads))
705 				goto found_pool;
706 			spin_unlock_bh(&pool->sp_lock);
707 		}
708 		return NULL;
709 	}
710 
711 found_pool:
712 	if (!list_empty(&pool->sp_all_threads)) {
713 		struct svc_rqst *rqstp;
714 
715 		/*
716 		 * Remove from the pool->sp_all_threads list
717 		 * so we don't try to kill it again.
718 		 */
719 		rqstp = list_entry(pool->sp_all_threads.next, struct svc_rqst, rq_all);
720 		set_bit(RQ_VICTIM, &rqstp->rq_flags);
721 		list_del_rcu(&rqstp->rq_all);
722 		task = rqstp->rq_task;
723 	}
724 	spin_unlock_bh(&pool->sp_lock);
725 
726 	return task;
727 }
728 
729 /* create new threads */
730 static int
731 svc_start_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
732 {
733 	struct svc_rqst	*rqstp;
734 	struct task_struct *task;
735 	struct svc_pool *chosen_pool;
736 	unsigned int state = serv->sv_nrthreads-1;
737 	int node;
738 
739 	do {
740 		nrservs--;
741 		chosen_pool = choose_pool(serv, pool, &state);
742 
743 		node = svc_pool_map_get_node(chosen_pool->sp_id);
744 		rqstp = svc_prepare_thread(serv, chosen_pool, node);
745 		if (IS_ERR(rqstp))
746 			return PTR_ERR(rqstp);
747 
748 		__module_get(serv->sv_ops->svo_module);
749 		task = kthread_create_on_node(serv->sv_ops->svo_function, rqstp,
750 					      node, "%s", serv->sv_name);
751 		if (IS_ERR(task)) {
752 			module_put(serv->sv_ops->svo_module);
753 			svc_exit_thread(rqstp);
754 			return PTR_ERR(task);
755 		}
756 
757 		rqstp->rq_task = task;
758 		if (serv->sv_nrpools > 1)
759 			svc_pool_map_set_cpumask(task, chosen_pool->sp_id);
760 
761 		svc_sock_update_bufs(serv);
762 		wake_up_process(task);
763 	} while (nrservs > 0);
764 
765 	return 0;
766 }
767 
768 /*
769  * Create or destroy enough new threads to make the number
770  * of threads the given number.  If `pool' is non-NULL, applies
771  * only to threads in that pool, otherwise round-robins between
772  * all pools.  Caller must ensure that mutual exclusion between this and
773  * server startup or shutdown.
774  */
775 
776 /* destroy old threads */
777 static int
778 svc_stop_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
779 {
780 	struct task_struct *task;
781 	unsigned int state = serv->sv_nrthreads-1;
782 
783 	/* destroy old threads */
784 	do {
785 		task = choose_victim(serv, pool, &state);
786 		if (task == NULL)
787 			break;
788 		kthread_stop(task);
789 		nrservs++;
790 	} while (nrservs < 0);
791 	return 0;
792 }
793 
794 int
795 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
796 {
797 	if (pool == NULL) {
798 		nrservs -= serv->sv_nrthreads;
799 	} else {
800 		spin_lock_bh(&pool->sp_lock);
801 		nrservs -= pool->sp_nrthreads;
802 		spin_unlock_bh(&pool->sp_lock);
803 	}
804 
805 	if (nrservs > 0)
806 		return svc_start_kthreads(serv, pool, nrservs);
807 	if (nrservs < 0)
808 		return svc_stop_kthreads(serv, pool, nrservs);
809 	return 0;
810 }
811 EXPORT_SYMBOL_GPL(svc_set_num_threads);
812 
813 /**
814  * svc_rqst_replace_page - Replace one page in rq_pages[]
815  * @rqstp: svc_rqst with pages to replace
816  * @page: replacement page
817  *
818  * When replacing a page in rq_pages, batch the release of the
819  * replaced pages to avoid hammering the page allocator.
820  */
821 void svc_rqst_replace_page(struct svc_rqst *rqstp, struct page *page)
822 {
823 	if (*rqstp->rq_next_page) {
824 		if (!pagevec_space(&rqstp->rq_pvec))
825 			__pagevec_release(&rqstp->rq_pvec);
826 		pagevec_add(&rqstp->rq_pvec, *rqstp->rq_next_page);
827 	}
828 
829 	get_page(page);
830 	*(rqstp->rq_next_page++) = page;
831 }
832 EXPORT_SYMBOL_GPL(svc_rqst_replace_page);
833 
834 /*
835  * Called from a server thread as it's exiting. Caller must hold the "service
836  * mutex" for the service.
837  */
838 void
839 svc_rqst_free(struct svc_rqst *rqstp)
840 {
841 	svc_release_buffer(rqstp);
842 	if (rqstp->rq_scratch_page)
843 		put_page(rqstp->rq_scratch_page);
844 	kfree(rqstp->rq_resp);
845 	kfree(rqstp->rq_argp);
846 	kfree(rqstp->rq_auth_data);
847 	kfree_rcu(rqstp, rq_rcu_head);
848 }
849 EXPORT_SYMBOL_GPL(svc_rqst_free);
850 
851 void
852 svc_exit_thread(struct svc_rqst *rqstp)
853 {
854 	struct svc_serv	*serv = rqstp->rq_server;
855 	struct svc_pool	*pool = rqstp->rq_pool;
856 
857 	spin_lock_bh(&pool->sp_lock);
858 	pool->sp_nrthreads--;
859 	if (!test_and_set_bit(RQ_VICTIM, &rqstp->rq_flags))
860 		list_del_rcu(&rqstp->rq_all);
861 	spin_unlock_bh(&pool->sp_lock);
862 
863 	spin_lock_bh(&serv->sv_lock);
864 	serv->sv_nrthreads -= 1;
865 	spin_unlock_bh(&serv->sv_lock);
866 	svc_sock_update_bufs(serv);
867 
868 	svc_rqst_free(rqstp);
869 
870 	svc_put(serv);
871 }
872 EXPORT_SYMBOL_GPL(svc_exit_thread);
873 
874 /*
875  * Register an "inet" protocol family netid with the local
876  * rpcbind daemon via an rpcbind v4 SET request.
877  *
878  * No netconfig infrastructure is available in the kernel, so
879  * we map IP_ protocol numbers to netids by hand.
880  *
881  * Returns zero on success; a negative errno value is returned
882  * if any error occurs.
883  */
884 static int __svc_rpcb_register4(struct net *net, const u32 program,
885 				const u32 version,
886 				const unsigned short protocol,
887 				const unsigned short port)
888 {
889 	const struct sockaddr_in sin = {
890 		.sin_family		= AF_INET,
891 		.sin_addr.s_addr	= htonl(INADDR_ANY),
892 		.sin_port		= htons(port),
893 	};
894 	const char *netid;
895 	int error;
896 
897 	switch (protocol) {
898 	case IPPROTO_UDP:
899 		netid = RPCBIND_NETID_UDP;
900 		break;
901 	case IPPROTO_TCP:
902 		netid = RPCBIND_NETID_TCP;
903 		break;
904 	default:
905 		return -ENOPROTOOPT;
906 	}
907 
908 	error = rpcb_v4_register(net, program, version,
909 					(const struct sockaddr *)&sin, netid);
910 
911 	/*
912 	 * User space didn't support rpcbind v4, so retry this
913 	 * registration request with the legacy rpcbind v2 protocol.
914 	 */
915 	if (error == -EPROTONOSUPPORT)
916 		error = rpcb_register(net, program, version, protocol, port);
917 
918 	return error;
919 }
920 
921 #if IS_ENABLED(CONFIG_IPV6)
922 /*
923  * Register an "inet6" protocol family netid with the local
924  * rpcbind daemon via an rpcbind v4 SET request.
925  *
926  * No netconfig infrastructure is available in the kernel, so
927  * we map IP_ protocol numbers to netids by hand.
928  *
929  * Returns zero on success; a negative errno value is returned
930  * if any error occurs.
931  */
932 static int __svc_rpcb_register6(struct net *net, const u32 program,
933 				const u32 version,
934 				const unsigned short protocol,
935 				const unsigned short port)
936 {
937 	const struct sockaddr_in6 sin6 = {
938 		.sin6_family		= AF_INET6,
939 		.sin6_addr		= IN6ADDR_ANY_INIT,
940 		.sin6_port		= htons(port),
941 	};
942 	const char *netid;
943 	int error;
944 
945 	switch (protocol) {
946 	case IPPROTO_UDP:
947 		netid = RPCBIND_NETID_UDP6;
948 		break;
949 	case IPPROTO_TCP:
950 		netid = RPCBIND_NETID_TCP6;
951 		break;
952 	default:
953 		return -ENOPROTOOPT;
954 	}
955 
956 	error = rpcb_v4_register(net, program, version,
957 					(const struct sockaddr *)&sin6, netid);
958 
959 	/*
960 	 * User space didn't support rpcbind version 4, so we won't
961 	 * use a PF_INET6 listener.
962 	 */
963 	if (error == -EPROTONOSUPPORT)
964 		error = -EAFNOSUPPORT;
965 
966 	return error;
967 }
968 #endif	/* IS_ENABLED(CONFIG_IPV6) */
969 
970 /*
971  * Register a kernel RPC service via rpcbind version 4.
972  *
973  * Returns zero on success; a negative errno value is returned
974  * if any error occurs.
975  */
976 static int __svc_register(struct net *net, const char *progname,
977 			  const u32 program, const u32 version,
978 			  const int family,
979 			  const unsigned short protocol,
980 			  const unsigned short port)
981 {
982 	int error = -EAFNOSUPPORT;
983 
984 	switch (family) {
985 	case PF_INET:
986 		error = __svc_rpcb_register4(net, program, version,
987 						protocol, port);
988 		break;
989 #if IS_ENABLED(CONFIG_IPV6)
990 	case PF_INET6:
991 		error = __svc_rpcb_register6(net, program, version,
992 						protocol, port);
993 #endif
994 	}
995 
996 	trace_svc_register(progname, version, protocol, port, family, error);
997 	return error;
998 }
999 
1000 int svc_rpcbind_set_version(struct net *net,
1001 			    const struct svc_program *progp,
1002 			    u32 version, int family,
1003 			    unsigned short proto,
1004 			    unsigned short port)
1005 {
1006 	return __svc_register(net, progp->pg_name, progp->pg_prog,
1007 				version, family, proto, port);
1008 
1009 }
1010 EXPORT_SYMBOL_GPL(svc_rpcbind_set_version);
1011 
1012 int svc_generic_rpcbind_set(struct net *net,
1013 			    const struct svc_program *progp,
1014 			    u32 version, int family,
1015 			    unsigned short proto,
1016 			    unsigned short port)
1017 {
1018 	const struct svc_version *vers = progp->pg_vers[version];
1019 	int error;
1020 
1021 	if (vers == NULL)
1022 		return 0;
1023 
1024 	if (vers->vs_hidden) {
1025 		trace_svc_noregister(progp->pg_name, version, proto,
1026 				     port, family, 0);
1027 		return 0;
1028 	}
1029 
1030 	/*
1031 	 * Don't register a UDP port if we need congestion
1032 	 * control.
1033 	 */
1034 	if (vers->vs_need_cong_ctrl && proto == IPPROTO_UDP)
1035 		return 0;
1036 
1037 	error = svc_rpcbind_set_version(net, progp, version,
1038 					family, proto, port);
1039 
1040 	return (vers->vs_rpcb_optnl) ? 0 : error;
1041 }
1042 EXPORT_SYMBOL_GPL(svc_generic_rpcbind_set);
1043 
1044 /**
1045  * svc_register - register an RPC service with the local portmapper
1046  * @serv: svc_serv struct for the service to register
1047  * @net: net namespace for the service to register
1048  * @family: protocol family of service's listener socket
1049  * @proto: transport protocol number to advertise
1050  * @port: port to advertise
1051  *
1052  * Service is registered for any address in the passed-in protocol family
1053  */
1054 int svc_register(const struct svc_serv *serv, struct net *net,
1055 		 const int family, const unsigned short proto,
1056 		 const unsigned short port)
1057 {
1058 	struct svc_program	*progp;
1059 	unsigned int		i;
1060 	int			error = 0;
1061 
1062 	WARN_ON_ONCE(proto == 0 && port == 0);
1063 	if (proto == 0 && port == 0)
1064 		return -EINVAL;
1065 
1066 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
1067 		for (i = 0; i < progp->pg_nvers; i++) {
1068 
1069 			error = progp->pg_rpcbind_set(net, progp, i,
1070 					family, proto, port);
1071 			if (error < 0) {
1072 				printk(KERN_WARNING "svc: failed to register "
1073 					"%sv%u RPC service (errno %d).\n",
1074 					progp->pg_name, i, -error);
1075 				break;
1076 			}
1077 		}
1078 	}
1079 
1080 	return error;
1081 }
1082 
1083 /*
1084  * If user space is running rpcbind, it should take the v4 UNSET
1085  * and clear everything for this [program, version].  If user space
1086  * is running portmap, it will reject the v4 UNSET, but won't have
1087  * any "inet6" entries anyway.  So a PMAP_UNSET should be sufficient
1088  * in this case to clear all existing entries for [program, version].
1089  */
1090 static void __svc_unregister(struct net *net, const u32 program, const u32 version,
1091 			     const char *progname)
1092 {
1093 	int error;
1094 
1095 	error = rpcb_v4_register(net, program, version, NULL, "");
1096 
1097 	/*
1098 	 * User space didn't support rpcbind v4, so retry this
1099 	 * request with the legacy rpcbind v2 protocol.
1100 	 */
1101 	if (error == -EPROTONOSUPPORT)
1102 		error = rpcb_register(net, program, version, 0, 0);
1103 
1104 	trace_svc_unregister(progname, version, error);
1105 }
1106 
1107 /*
1108  * All netids, bind addresses and ports registered for [program, version]
1109  * are removed from the local rpcbind database (if the service is not
1110  * hidden) to make way for a new instance of the service.
1111  *
1112  * The result of unregistration is reported via dprintk for those who want
1113  * verification of the result, but is otherwise not important.
1114  */
1115 static void svc_unregister(const struct svc_serv *serv, struct net *net)
1116 {
1117 	struct svc_program *progp;
1118 	unsigned long flags;
1119 	unsigned int i;
1120 
1121 	clear_thread_flag(TIF_SIGPENDING);
1122 
1123 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
1124 		for (i = 0; i < progp->pg_nvers; i++) {
1125 			if (progp->pg_vers[i] == NULL)
1126 				continue;
1127 			if (progp->pg_vers[i]->vs_hidden)
1128 				continue;
1129 			__svc_unregister(net, progp->pg_prog, i, progp->pg_name);
1130 		}
1131 	}
1132 
1133 	spin_lock_irqsave(&current->sighand->siglock, flags);
1134 	recalc_sigpending();
1135 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
1136 }
1137 
1138 /*
1139  * dprintk the given error with the address of the client that caused it.
1140  */
1141 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
1142 static __printf(2, 3)
1143 void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...)
1144 {
1145 	struct va_format vaf;
1146 	va_list args;
1147 	char 	buf[RPC_MAX_ADDRBUFLEN];
1148 
1149 	va_start(args, fmt);
1150 
1151 	vaf.fmt = fmt;
1152 	vaf.va = &args;
1153 
1154 	dprintk("svc: %s: %pV", svc_print_addr(rqstp, buf, sizeof(buf)), &vaf);
1155 
1156 	va_end(args);
1157 }
1158 #else
1159 static __printf(2,3) void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) {}
1160 #endif
1161 
1162 __be32
1163 svc_generic_init_request(struct svc_rqst *rqstp,
1164 		const struct svc_program *progp,
1165 		struct svc_process_info *ret)
1166 {
1167 	const struct svc_version *versp = NULL;	/* compiler food */
1168 	const struct svc_procedure *procp = NULL;
1169 
1170 	if (rqstp->rq_vers >= progp->pg_nvers )
1171 		goto err_bad_vers;
1172 	versp = progp->pg_vers[rqstp->rq_vers];
1173 	if (!versp)
1174 		goto err_bad_vers;
1175 
1176 	/*
1177 	 * Some protocol versions (namely NFSv4) require some form of
1178 	 * congestion control.  (See RFC 7530 section 3.1 paragraph 2)
1179 	 * In other words, UDP is not allowed. We mark those when setting
1180 	 * up the svc_xprt, and verify that here.
1181 	 *
1182 	 * The spec is not very clear about what error should be returned
1183 	 * when someone tries to access a server that is listening on UDP
1184 	 * for lower versions. RPC_PROG_MISMATCH seems to be the closest
1185 	 * fit.
1186 	 */
1187 	if (versp->vs_need_cong_ctrl && rqstp->rq_xprt &&
1188 	    !test_bit(XPT_CONG_CTRL, &rqstp->rq_xprt->xpt_flags))
1189 		goto err_bad_vers;
1190 
1191 	if (rqstp->rq_proc >= versp->vs_nproc)
1192 		goto err_bad_proc;
1193 	rqstp->rq_procinfo = procp = &versp->vs_proc[rqstp->rq_proc];
1194 	if (!procp)
1195 		goto err_bad_proc;
1196 
1197 	/* Initialize storage for argp and resp */
1198 	memset(rqstp->rq_argp, 0, procp->pc_argsize);
1199 	memset(rqstp->rq_resp, 0, procp->pc_ressize);
1200 
1201 	/* Bump per-procedure stats counter */
1202 	versp->vs_count[rqstp->rq_proc]++;
1203 
1204 	ret->dispatch = versp->vs_dispatch;
1205 	return rpc_success;
1206 err_bad_vers:
1207 	ret->mismatch.lovers = progp->pg_lovers;
1208 	ret->mismatch.hivers = progp->pg_hivers;
1209 	return rpc_prog_mismatch;
1210 err_bad_proc:
1211 	return rpc_proc_unavail;
1212 }
1213 EXPORT_SYMBOL_GPL(svc_generic_init_request);
1214 
1215 /*
1216  * Common routine for processing the RPC request.
1217  */
1218 static int
1219 svc_process_common(struct svc_rqst *rqstp, struct kvec *argv, struct kvec *resv)
1220 {
1221 	struct svc_program	*progp;
1222 	const struct svc_procedure *procp = NULL;
1223 	struct svc_serv		*serv = rqstp->rq_server;
1224 	struct svc_process_info process;
1225 	__be32			*statp;
1226 	u32			prog, vers;
1227 	__be32			rpc_stat;
1228 	int			auth_res, rc;
1229 	__be32			*reply_statp;
1230 
1231 	rpc_stat = rpc_success;
1232 
1233 	if (argv->iov_len < 6*4)
1234 		goto err_short_len;
1235 
1236 	/* Will be turned off by GSS integrity and privacy services */
1237 	set_bit(RQ_SPLICE_OK, &rqstp->rq_flags);
1238 	/* Will be turned off only when NFSv4 Sessions are used */
1239 	set_bit(RQ_USEDEFERRAL, &rqstp->rq_flags);
1240 	clear_bit(RQ_DROPME, &rqstp->rq_flags);
1241 
1242 	svc_putu32(resv, rqstp->rq_xid);
1243 
1244 	vers = svc_getnl(argv);
1245 
1246 	/* First words of reply: */
1247 	svc_putnl(resv, 1);		/* REPLY */
1248 
1249 	if (vers != 2)		/* RPC version number */
1250 		goto err_bad_rpc;
1251 
1252 	/* Save position in case we later decide to reject: */
1253 	reply_statp = resv->iov_base + resv->iov_len;
1254 
1255 	svc_putnl(resv, 0);		/* ACCEPT */
1256 
1257 	rqstp->rq_prog = prog = svc_getnl(argv);	/* program number */
1258 	rqstp->rq_vers = svc_getnl(argv);	/* version number */
1259 	rqstp->rq_proc = svc_getnl(argv);	/* procedure number */
1260 
1261 	for (progp = serv->sv_program; progp; progp = progp->pg_next)
1262 		if (prog == progp->pg_prog)
1263 			break;
1264 
1265 	/*
1266 	 * Decode auth data, and add verifier to reply buffer.
1267 	 * We do this before anything else in order to get a decent
1268 	 * auth verifier.
1269 	 */
1270 	auth_res = svc_authenticate(rqstp);
1271 	/* Also give the program a chance to reject this call: */
1272 	if (auth_res == SVC_OK && progp)
1273 		auth_res = progp->pg_authenticate(rqstp);
1274 	if (auth_res != SVC_OK)
1275 		trace_svc_authenticate(rqstp, auth_res);
1276 	switch (auth_res) {
1277 	case SVC_OK:
1278 		break;
1279 	case SVC_GARBAGE:
1280 		goto err_garbage;
1281 	case SVC_SYSERR:
1282 		rpc_stat = rpc_system_err;
1283 		goto err_bad;
1284 	case SVC_DENIED:
1285 		goto err_bad_auth;
1286 	case SVC_CLOSE:
1287 		goto close;
1288 	case SVC_DROP:
1289 		goto dropit;
1290 	case SVC_COMPLETE:
1291 		goto sendit;
1292 	}
1293 
1294 	if (progp == NULL)
1295 		goto err_bad_prog;
1296 
1297 	rpc_stat = progp->pg_init_request(rqstp, progp, &process);
1298 	switch (rpc_stat) {
1299 	case rpc_success:
1300 		break;
1301 	case rpc_prog_unavail:
1302 		goto err_bad_prog;
1303 	case rpc_prog_mismatch:
1304 		goto err_bad_vers;
1305 	case rpc_proc_unavail:
1306 		goto err_bad_proc;
1307 	}
1308 
1309 	procp = rqstp->rq_procinfo;
1310 	/* Should this check go into the dispatcher? */
1311 	if (!procp || !procp->pc_func)
1312 		goto err_bad_proc;
1313 
1314 	/* Syntactic check complete */
1315 	serv->sv_stats->rpccnt++;
1316 	trace_svc_process(rqstp, progp->pg_name);
1317 
1318 	/* Build the reply header. */
1319 	statp = resv->iov_base +resv->iov_len;
1320 	svc_putnl(resv, RPC_SUCCESS);
1321 
1322 	/* un-reserve some of the out-queue now that we have a
1323 	 * better idea of reply size
1324 	 */
1325 	if (procp->pc_xdrressize)
1326 		svc_reserve_auth(rqstp, procp->pc_xdrressize<<2);
1327 
1328 	/* Call the function that processes the request. */
1329 	rc = process.dispatch(rqstp, statp);
1330 	if (procp->pc_release)
1331 		procp->pc_release(rqstp);
1332 	if (!rc)
1333 		goto dropit;
1334 	if (rqstp->rq_auth_stat != rpc_auth_ok)
1335 		goto err_bad_auth;
1336 
1337 	/* Check RPC status result */
1338 	if (*statp != rpc_success)
1339 		resv->iov_len = ((void*)statp)  - resv->iov_base + 4;
1340 
1341 	if (procp->pc_encode == NULL)
1342 		goto dropit;
1343 
1344  sendit:
1345 	if (svc_authorise(rqstp))
1346 		goto close_xprt;
1347 	return 1;		/* Caller can now send it */
1348 
1349  dropit:
1350 	svc_authorise(rqstp);	/* doesn't hurt to call this twice */
1351 	dprintk("svc: svc_process dropit\n");
1352 	return 0;
1353 
1354  close:
1355 	svc_authorise(rqstp);
1356 close_xprt:
1357 	if (rqstp->rq_xprt && test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags))
1358 		svc_close_xprt(rqstp->rq_xprt);
1359 	dprintk("svc: svc_process close\n");
1360 	return 0;
1361 
1362 err_short_len:
1363 	svc_printk(rqstp, "short len %zd, dropping request\n",
1364 			argv->iov_len);
1365 	goto close_xprt;
1366 
1367 err_bad_rpc:
1368 	serv->sv_stats->rpcbadfmt++;
1369 	svc_putnl(resv, 1);	/* REJECT */
1370 	svc_putnl(resv, 0);	/* RPC_MISMATCH */
1371 	svc_putnl(resv, 2);	/* Only RPCv2 supported */
1372 	svc_putnl(resv, 2);
1373 	goto sendit;
1374 
1375 err_bad_auth:
1376 	dprintk("svc: authentication failed (%d)\n",
1377 		be32_to_cpu(rqstp->rq_auth_stat));
1378 	serv->sv_stats->rpcbadauth++;
1379 	/* Restore write pointer to location of accept status: */
1380 	xdr_ressize_check(rqstp, reply_statp);
1381 	svc_putnl(resv, 1);	/* REJECT */
1382 	svc_putnl(resv, 1);	/* AUTH_ERROR */
1383 	svc_putu32(resv, rqstp->rq_auth_stat);	/* status */
1384 	goto sendit;
1385 
1386 err_bad_prog:
1387 	dprintk("svc: unknown program %d\n", prog);
1388 	serv->sv_stats->rpcbadfmt++;
1389 	svc_putnl(resv, RPC_PROG_UNAVAIL);
1390 	goto sendit;
1391 
1392 err_bad_vers:
1393 	svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n",
1394 		       rqstp->rq_vers, rqstp->rq_prog, progp->pg_name);
1395 
1396 	serv->sv_stats->rpcbadfmt++;
1397 	svc_putnl(resv, RPC_PROG_MISMATCH);
1398 	svc_putnl(resv, process.mismatch.lovers);
1399 	svc_putnl(resv, process.mismatch.hivers);
1400 	goto sendit;
1401 
1402 err_bad_proc:
1403 	svc_printk(rqstp, "unknown procedure (%d)\n", rqstp->rq_proc);
1404 
1405 	serv->sv_stats->rpcbadfmt++;
1406 	svc_putnl(resv, RPC_PROC_UNAVAIL);
1407 	goto sendit;
1408 
1409 err_garbage:
1410 	svc_printk(rqstp, "failed to decode args\n");
1411 
1412 	rpc_stat = rpc_garbage_args;
1413 err_bad:
1414 	serv->sv_stats->rpcbadfmt++;
1415 	svc_putnl(resv, ntohl(rpc_stat));
1416 	goto sendit;
1417 }
1418 
1419 /*
1420  * Process the RPC request.
1421  */
1422 int
1423 svc_process(struct svc_rqst *rqstp)
1424 {
1425 	struct kvec		*argv = &rqstp->rq_arg.head[0];
1426 	struct kvec		*resv = &rqstp->rq_res.head[0];
1427 	struct svc_serv		*serv = rqstp->rq_server;
1428 	u32			dir;
1429 
1430 #if IS_ENABLED(CONFIG_FAIL_SUNRPC)
1431 	if (!fail_sunrpc.ignore_server_disconnect &&
1432 	    should_fail(&fail_sunrpc.attr, 1))
1433 		svc_xprt_deferred_close(rqstp->rq_xprt);
1434 #endif
1435 
1436 	/*
1437 	 * Setup response xdr_buf.
1438 	 * Initially it has just one page
1439 	 */
1440 	rqstp->rq_next_page = &rqstp->rq_respages[1];
1441 	resv->iov_base = page_address(rqstp->rq_respages[0]);
1442 	resv->iov_len = 0;
1443 	rqstp->rq_res.pages = rqstp->rq_respages + 1;
1444 	rqstp->rq_res.len = 0;
1445 	rqstp->rq_res.page_base = 0;
1446 	rqstp->rq_res.page_len = 0;
1447 	rqstp->rq_res.buflen = PAGE_SIZE;
1448 	rqstp->rq_res.tail[0].iov_base = NULL;
1449 	rqstp->rq_res.tail[0].iov_len = 0;
1450 
1451 	dir  = svc_getnl(argv);
1452 	if (dir != 0) {
1453 		/* direction != CALL */
1454 		svc_printk(rqstp, "bad direction %d, dropping request\n", dir);
1455 		serv->sv_stats->rpcbadfmt++;
1456 		goto out_drop;
1457 	}
1458 
1459 	/* Returns 1 for send, 0 for drop */
1460 	if (likely(svc_process_common(rqstp, argv, resv)))
1461 		return svc_send(rqstp);
1462 
1463 out_drop:
1464 	svc_drop(rqstp);
1465 	return 0;
1466 }
1467 EXPORT_SYMBOL_GPL(svc_process);
1468 
1469 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1470 /*
1471  * Process a backchannel RPC request that arrived over an existing
1472  * outbound connection
1473  */
1474 int
1475 bc_svc_process(struct svc_serv *serv, struct rpc_rqst *req,
1476 	       struct svc_rqst *rqstp)
1477 {
1478 	struct kvec	*argv = &rqstp->rq_arg.head[0];
1479 	struct kvec	*resv = &rqstp->rq_res.head[0];
1480 	struct rpc_task *task;
1481 	int proc_error;
1482 	int error;
1483 
1484 	dprintk("svc: %s(%p)\n", __func__, req);
1485 
1486 	/* Build the svc_rqst used by the common processing routine */
1487 	rqstp->rq_xid = req->rq_xid;
1488 	rqstp->rq_prot = req->rq_xprt->prot;
1489 	rqstp->rq_server = serv;
1490 	rqstp->rq_bc_net = req->rq_xprt->xprt_net;
1491 
1492 	rqstp->rq_addrlen = sizeof(req->rq_xprt->addr);
1493 	memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen);
1494 	memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg));
1495 	memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res));
1496 
1497 	/* Adjust the argument buffer length */
1498 	rqstp->rq_arg.len = req->rq_private_buf.len;
1499 	if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) {
1500 		rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len;
1501 		rqstp->rq_arg.page_len = 0;
1502 	} else if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len +
1503 			rqstp->rq_arg.page_len)
1504 		rqstp->rq_arg.page_len = rqstp->rq_arg.len -
1505 			rqstp->rq_arg.head[0].iov_len;
1506 	else
1507 		rqstp->rq_arg.len = rqstp->rq_arg.head[0].iov_len +
1508 			rqstp->rq_arg.page_len;
1509 
1510 	/* reset result send buffer "put" position */
1511 	resv->iov_len = 0;
1512 
1513 	/*
1514 	 * Skip the next two words because they've already been
1515 	 * processed in the transport
1516 	 */
1517 	svc_getu32(argv);	/* XID */
1518 	svc_getnl(argv);	/* CALLDIR */
1519 
1520 	/* Parse and execute the bc call */
1521 	proc_error = svc_process_common(rqstp, argv, resv);
1522 
1523 	atomic_dec(&req->rq_xprt->bc_slot_count);
1524 	if (!proc_error) {
1525 		/* Processing error: drop the request */
1526 		xprt_free_bc_request(req);
1527 		error = -EINVAL;
1528 		goto out;
1529 	}
1530 	/* Finally, send the reply synchronously */
1531 	memcpy(&req->rq_snd_buf, &rqstp->rq_res, sizeof(req->rq_snd_buf));
1532 	task = rpc_run_bc_task(req);
1533 	if (IS_ERR(task)) {
1534 		error = PTR_ERR(task);
1535 		goto out;
1536 	}
1537 
1538 	WARN_ON_ONCE(atomic_read(&task->tk_count) != 1);
1539 	error = task->tk_status;
1540 	rpc_put_task(task);
1541 
1542 out:
1543 	dprintk("svc: %s(), error=%d\n", __func__, error);
1544 	return error;
1545 }
1546 EXPORT_SYMBOL_GPL(bc_svc_process);
1547 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
1548 
1549 /*
1550  * Return (transport-specific) limit on the rpc payload.
1551  */
1552 u32 svc_max_payload(const struct svc_rqst *rqstp)
1553 {
1554 	u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload;
1555 
1556 	if (rqstp->rq_server->sv_max_payload < max)
1557 		max = rqstp->rq_server->sv_max_payload;
1558 	return max;
1559 }
1560 EXPORT_SYMBOL_GPL(svc_max_payload);
1561 
1562 /**
1563  * svc_proc_name - Return RPC procedure name in string form
1564  * @rqstp: svc_rqst to operate on
1565  *
1566  * Return value:
1567  *   Pointer to a NUL-terminated string
1568  */
1569 const char *svc_proc_name(const struct svc_rqst *rqstp)
1570 {
1571 	if (rqstp && rqstp->rq_procinfo)
1572 		return rqstp->rq_procinfo->pc_name;
1573 	return "unknown";
1574 }
1575 
1576 
1577 /**
1578  * svc_encode_result_payload - mark a range of bytes as a result payload
1579  * @rqstp: svc_rqst to operate on
1580  * @offset: payload's byte offset in rqstp->rq_res
1581  * @length: size of payload, in bytes
1582  *
1583  * Returns zero on success, or a negative errno if a permanent
1584  * error occurred.
1585  */
1586 int svc_encode_result_payload(struct svc_rqst *rqstp, unsigned int offset,
1587 			      unsigned int length)
1588 {
1589 	return rqstp->rq_xprt->xpt_ops->xpo_result_payload(rqstp, offset,
1590 							   length);
1591 }
1592 EXPORT_SYMBOL_GPL(svc_encode_result_payload);
1593 
1594 /**
1595  * svc_fill_write_vector - Construct data argument for VFS write call
1596  * @rqstp: svc_rqst to operate on
1597  * @payload: xdr_buf containing only the write data payload
1598  *
1599  * Fills in rqstp::rq_vec, and returns the number of elements.
1600  */
1601 unsigned int svc_fill_write_vector(struct svc_rqst *rqstp,
1602 				   struct xdr_buf *payload)
1603 {
1604 	struct page **pages = payload->pages;
1605 	struct kvec *first = payload->head;
1606 	struct kvec *vec = rqstp->rq_vec;
1607 	size_t total = payload->len;
1608 	unsigned int i;
1609 
1610 	/* Some types of transport can present the write payload
1611 	 * entirely in rq_arg.pages. In this case, @first is empty.
1612 	 */
1613 	i = 0;
1614 	if (first->iov_len) {
1615 		vec[i].iov_base = first->iov_base;
1616 		vec[i].iov_len = min_t(size_t, total, first->iov_len);
1617 		total -= vec[i].iov_len;
1618 		++i;
1619 	}
1620 
1621 	while (total) {
1622 		vec[i].iov_base = page_address(*pages);
1623 		vec[i].iov_len = min_t(size_t, total, PAGE_SIZE);
1624 		total -= vec[i].iov_len;
1625 		++i;
1626 		++pages;
1627 	}
1628 
1629 	WARN_ON_ONCE(i > ARRAY_SIZE(rqstp->rq_vec));
1630 	return i;
1631 }
1632 EXPORT_SYMBOL_GPL(svc_fill_write_vector);
1633 
1634 /**
1635  * svc_fill_symlink_pathname - Construct pathname argument for VFS symlink call
1636  * @rqstp: svc_rqst to operate on
1637  * @first: buffer containing first section of pathname
1638  * @p: buffer containing remaining section of pathname
1639  * @total: total length of the pathname argument
1640  *
1641  * The VFS symlink API demands a NUL-terminated pathname in mapped memory.
1642  * Returns pointer to a NUL-terminated string, or an ERR_PTR. Caller must free
1643  * the returned string.
1644  */
1645 char *svc_fill_symlink_pathname(struct svc_rqst *rqstp, struct kvec *first,
1646 				void *p, size_t total)
1647 {
1648 	size_t len, remaining;
1649 	char *result, *dst;
1650 
1651 	result = kmalloc(total + 1, GFP_KERNEL);
1652 	if (!result)
1653 		return ERR_PTR(-ESERVERFAULT);
1654 
1655 	dst = result;
1656 	remaining = total;
1657 
1658 	len = min_t(size_t, total, first->iov_len);
1659 	if (len) {
1660 		memcpy(dst, first->iov_base, len);
1661 		dst += len;
1662 		remaining -= len;
1663 	}
1664 
1665 	if (remaining) {
1666 		len = min_t(size_t, remaining, PAGE_SIZE);
1667 		memcpy(dst, p, len);
1668 		dst += len;
1669 	}
1670 
1671 	*dst = '\0';
1672 
1673 	/* Sanity check: Linux doesn't allow the pathname argument to
1674 	 * contain a NUL byte.
1675 	 */
1676 	if (strlen(result) != total) {
1677 		kfree(result);
1678 		return ERR_PTR(-EINVAL);
1679 	}
1680 	return result;
1681 }
1682 EXPORT_SYMBOL_GPL(svc_fill_symlink_pathname);
1683