xref: /openbmc/linux/net/sunrpc/svc.c (revision e65e175b07bef5974045cc42238de99057669ca7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/svc.c
4  *
5  * High-level RPC service routines
6  *
7  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
8  *
9  * Multiple threads pools and NUMAisation
10  * Copyright (c) 2006 Silicon Graphics, Inc.
11  * by Greg Banks <gnb@melbourne.sgi.com>
12  */
13 
14 #include <linux/linkage.h>
15 #include <linux/sched/signal.h>
16 #include <linux/errno.h>
17 #include <linux/net.h>
18 #include <linux/in.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/module.h>
22 #include <linux/kthread.h>
23 #include <linux/slab.h>
24 
25 #include <linux/sunrpc/types.h>
26 #include <linux/sunrpc/xdr.h>
27 #include <linux/sunrpc/stats.h>
28 #include <linux/sunrpc/svcsock.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/sunrpc/bc_xprt.h>
31 
32 #include <trace/events/sunrpc.h>
33 
34 #include "fail.h"
35 
36 #define RPCDBG_FACILITY	RPCDBG_SVCDSP
37 
38 static void svc_unregister(const struct svc_serv *serv, struct net *net);
39 
40 #define SVC_POOL_DEFAULT	SVC_POOL_GLOBAL
41 
42 /*
43  * Mode for mapping cpus to pools.
44  */
45 enum {
46 	SVC_POOL_AUTO = -1,	/* choose one of the others */
47 	SVC_POOL_GLOBAL,	/* no mapping, just a single global pool
48 				 * (legacy & UP mode) */
49 	SVC_POOL_PERCPU,	/* one pool per cpu */
50 	SVC_POOL_PERNODE	/* one pool per numa node */
51 };
52 
53 /*
54  * Structure for mapping cpus to pools and vice versa.
55  * Setup once during sunrpc initialisation.
56  */
57 
58 struct svc_pool_map {
59 	int count;			/* How many svc_servs use us */
60 	int mode;			/* Note: int not enum to avoid
61 					 * warnings about "enumeration value
62 					 * not handled in switch" */
63 	unsigned int npools;
64 	unsigned int *pool_to;		/* maps pool id to cpu or node */
65 	unsigned int *to_pool;		/* maps cpu or node to pool id */
66 };
67 
68 static struct svc_pool_map svc_pool_map = {
69 	.mode = SVC_POOL_DEFAULT
70 };
71 
72 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */
73 
74 static int
75 param_set_pool_mode(const char *val, const struct kernel_param *kp)
76 {
77 	int *ip = (int *)kp->arg;
78 	struct svc_pool_map *m = &svc_pool_map;
79 	int err;
80 
81 	mutex_lock(&svc_pool_map_mutex);
82 
83 	err = -EBUSY;
84 	if (m->count)
85 		goto out;
86 
87 	err = 0;
88 	if (!strncmp(val, "auto", 4))
89 		*ip = SVC_POOL_AUTO;
90 	else if (!strncmp(val, "global", 6))
91 		*ip = SVC_POOL_GLOBAL;
92 	else if (!strncmp(val, "percpu", 6))
93 		*ip = SVC_POOL_PERCPU;
94 	else if (!strncmp(val, "pernode", 7))
95 		*ip = SVC_POOL_PERNODE;
96 	else
97 		err = -EINVAL;
98 
99 out:
100 	mutex_unlock(&svc_pool_map_mutex);
101 	return err;
102 }
103 
104 static int
105 param_get_pool_mode(char *buf, const struct kernel_param *kp)
106 {
107 	int *ip = (int *)kp->arg;
108 
109 	switch (*ip)
110 	{
111 	case SVC_POOL_AUTO:
112 		return strlcpy(buf, "auto\n", 20);
113 	case SVC_POOL_GLOBAL:
114 		return strlcpy(buf, "global\n", 20);
115 	case SVC_POOL_PERCPU:
116 		return strlcpy(buf, "percpu\n", 20);
117 	case SVC_POOL_PERNODE:
118 		return strlcpy(buf, "pernode\n", 20);
119 	default:
120 		return sprintf(buf, "%d\n", *ip);
121 	}
122 }
123 
124 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode,
125 		 &svc_pool_map.mode, 0644);
126 
127 /*
128  * Detect best pool mapping mode heuristically,
129  * according to the machine's topology.
130  */
131 static int
132 svc_pool_map_choose_mode(void)
133 {
134 	unsigned int node;
135 
136 	if (nr_online_nodes > 1) {
137 		/*
138 		 * Actually have multiple NUMA nodes,
139 		 * so split pools on NUMA node boundaries
140 		 */
141 		return SVC_POOL_PERNODE;
142 	}
143 
144 	node = first_online_node;
145 	if (nr_cpus_node(node) > 2) {
146 		/*
147 		 * Non-trivial SMP, or CONFIG_NUMA on
148 		 * non-NUMA hardware, e.g. with a generic
149 		 * x86_64 kernel on Xeons.  In this case we
150 		 * want to divide the pools on cpu boundaries.
151 		 */
152 		return SVC_POOL_PERCPU;
153 	}
154 
155 	/* default: one global pool */
156 	return SVC_POOL_GLOBAL;
157 }
158 
159 /*
160  * Allocate the to_pool[] and pool_to[] arrays.
161  * Returns 0 on success or an errno.
162  */
163 static int
164 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools)
165 {
166 	m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
167 	if (!m->to_pool)
168 		goto fail;
169 	m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
170 	if (!m->pool_to)
171 		goto fail_free;
172 
173 	return 0;
174 
175 fail_free:
176 	kfree(m->to_pool);
177 	m->to_pool = NULL;
178 fail:
179 	return -ENOMEM;
180 }
181 
182 /*
183  * Initialise the pool map for SVC_POOL_PERCPU mode.
184  * Returns number of pools or <0 on error.
185  */
186 static int
187 svc_pool_map_init_percpu(struct svc_pool_map *m)
188 {
189 	unsigned int maxpools = nr_cpu_ids;
190 	unsigned int pidx = 0;
191 	unsigned int cpu;
192 	int err;
193 
194 	err = svc_pool_map_alloc_arrays(m, maxpools);
195 	if (err)
196 		return err;
197 
198 	for_each_online_cpu(cpu) {
199 		BUG_ON(pidx >= maxpools);
200 		m->to_pool[cpu] = pidx;
201 		m->pool_to[pidx] = cpu;
202 		pidx++;
203 	}
204 	/* cpus brought online later all get mapped to pool0, sorry */
205 
206 	return pidx;
207 };
208 
209 
210 /*
211  * Initialise the pool map for SVC_POOL_PERNODE mode.
212  * Returns number of pools or <0 on error.
213  */
214 static int
215 svc_pool_map_init_pernode(struct svc_pool_map *m)
216 {
217 	unsigned int maxpools = nr_node_ids;
218 	unsigned int pidx = 0;
219 	unsigned int node;
220 	int err;
221 
222 	err = svc_pool_map_alloc_arrays(m, maxpools);
223 	if (err)
224 		return err;
225 
226 	for_each_node_with_cpus(node) {
227 		/* some architectures (e.g. SN2) have cpuless nodes */
228 		BUG_ON(pidx > maxpools);
229 		m->to_pool[node] = pidx;
230 		m->pool_to[pidx] = node;
231 		pidx++;
232 	}
233 	/* nodes brought online later all get mapped to pool0, sorry */
234 
235 	return pidx;
236 }
237 
238 
239 /*
240  * Add a reference to the global map of cpus to pools (and
241  * vice versa) if pools are in use.
242  * Initialise the map if we're the first user.
243  * Returns the number of pools. If this is '1', no reference
244  * was taken.
245  */
246 static unsigned int
247 svc_pool_map_get(void)
248 {
249 	struct svc_pool_map *m = &svc_pool_map;
250 	int npools = -1;
251 
252 	mutex_lock(&svc_pool_map_mutex);
253 
254 	if (m->count++) {
255 		mutex_unlock(&svc_pool_map_mutex);
256 		WARN_ON_ONCE(m->npools <= 1);
257 		return m->npools;
258 	}
259 
260 	if (m->mode == SVC_POOL_AUTO)
261 		m->mode = svc_pool_map_choose_mode();
262 
263 	switch (m->mode) {
264 	case SVC_POOL_PERCPU:
265 		npools = svc_pool_map_init_percpu(m);
266 		break;
267 	case SVC_POOL_PERNODE:
268 		npools = svc_pool_map_init_pernode(m);
269 		break;
270 	}
271 
272 	if (npools <= 0) {
273 		/* default, or memory allocation failure */
274 		npools = 1;
275 		m->mode = SVC_POOL_GLOBAL;
276 	}
277 	m->npools = npools;
278 
279 	if (npools == 1)
280 		/* service is unpooled, so doesn't hold a reference */
281 		m->count--;
282 
283 	mutex_unlock(&svc_pool_map_mutex);
284 	return npools;
285 }
286 
287 /*
288  * Drop a reference to the global map of cpus to pools, if
289  * pools were in use, i.e. if npools > 1.
290  * When the last reference is dropped, the map data is
291  * freed; this allows the sysadmin to change the pool
292  * mode using the pool_mode module option without
293  * rebooting or re-loading sunrpc.ko.
294  */
295 static void
296 svc_pool_map_put(int npools)
297 {
298 	struct svc_pool_map *m = &svc_pool_map;
299 
300 	if (npools <= 1)
301 		return;
302 	mutex_lock(&svc_pool_map_mutex);
303 
304 	if (!--m->count) {
305 		kfree(m->to_pool);
306 		m->to_pool = NULL;
307 		kfree(m->pool_to);
308 		m->pool_to = NULL;
309 		m->npools = 0;
310 	}
311 
312 	mutex_unlock(&svc_pool_map_mutex);
313 }
314 
315 static int svc_pool_map_get_node(unsigned int pidx)
316 {
317 	const struct svc_pool_map *m = &svc_pool_map;
318 
319 	if (m->count) {
320 		if (m->mode == SVC_POOL_PERCPU)
321 			return cpu_to_node(m->pool_to[pidx]);
322 		if (m->mode == SVC_POOL_PERNODE)
323 			return m->pool_to[pidx];
324 	}
325 	return NUMA_NO_NODE;
326 }
327 /*
328  * Set the given thread's cpus_allowed mask so that it
329  * will only run on cpus in the given pool.
330  */
331 static inline void
332 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx)
333 {
334 	struct svc_pool_map *m = &svc_pool_map;
335 	unsigned int node = m->pool_to[pidx];
336 
337 	/*
338 	 * The caller checks for sv_nrpools > 1, which
339 	 * implies that we've been initialized.
340 	 */
341 	WARN_ON_ONCE(m->count == 0);
342 	if (m->count == 0)
343 		return;
344 
345 	switch (m->mode) {
346 	case SVC_POOL_PERCPU:
347 	{
348 		set_cpus_allowed_ptr(task, cpumask_of(node));
349 		break;
350 	}
351 	case SVC_POOL_PERNODE:
352 	{
353 		set_cpus_allowed_ptr(task, cpumask_of_node(node));
354 		break;
355 	}
356 	}
357 }
358 
359 /**
360  * svc_pool_for_cpu - Select pool to run a thread on this cpu
361  * @serv: An RPC service
362  *
363  * Use the active CPU and the svc_pool_map's mode setting to
364  * select the svc thread pool to use. Once initialized, the
365  * svc_pool_map does not change.
366  *
367  * Return value:
368  *   A pointer to an svc_pool
369  */
370 struct svc_pool *svc_pool_for_cpu(struct svc_serv *serv)
371 {
372 	struct svc_pool_map *m = &svc_pool_map;
373 	int cpu = raw_smp_processor_id();
374 	unsigned int pidx = 0;
375 
376 	if (serv->sv_nrpools <= 1)
377 		return serv->sv_pools;
378 
379 	switch (m->mode) {
380 	case SVC_POOL_PERCPU:
381 		pidx = m->to_pool[cpu];
382 		break;
383 	case SVC_POOL_PERNODE:
384 		pidx = m->to_pool[cpu_to_node(cpu)];
385 		break;
386 	}
387 
388 	return &serv->sv_pools[pidx % serv->sv_nrpools];
389 }
390 
391 int svc_rpcb_setup(struct svc_serv *serv, struct net *net)
392 {
393 	int err;
394 
395 	err = rpcb_create_local(net);
396 	if (err)
397 		return err;
398 
399 	/* Remove any stale portmap registrations */
400 	svc_unregister(serv, net);
401 	return 0;
402 }
403 EXPORT_SYMBOL_GPL(svc_rpcb_setup);
404 
405 void svc_rpcb_cleanup(struct svc_serv *serv, struct net *net)
406 {
407 	svc_unregister(serv, net);
408 	rpcb_put_local(net);
409 }
410 EXPORT_SYMBOL_GPL(svc_rpcb_cleanup);
411 
412 static int svc_uses_rpcbind(struct svc_serv *serv)
413 {
414 	struct svc_program	*progp;
415 	unsigned int		i;
416 
417 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
418 		for (i = 0; i < progp->pg_nvers; i++) {
419 			if (progp->pg_vers[i] == NULL)
420 				continue;
421 			if (!progp->pg_vers[i]->vs_hidden)
422 				return 1;
423 		}
424 	}
425 
426 	return 0;
427 }
428 
429 int svc_bind(struct svc_serv *serv, struct net *net)
430 {
431 	if (!svc_uses_rpcbind(serv))
432 		return 0;
433 	return svc_rpcb_setup(serv, net);
434 }
435 EXPORT_SYMBOL_GPL(svc_bind);
436 
437 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
438 static void
439 __svc_init_bc(struct svc_serv *serv)
440 {
441 	INIT_LIST_HEAD(&serv->sv_cb_list);
442 	spin_lock_init(&serv->sv_cb_lock);
443 	init_waitqueue_head(&serv->sv_cb_waitq);
444 }
445 #else
446 static void
447 __svc_init_bc(struct svc_serv *serv)
448 {
449 }
450 #endif
451 
452 /*
453  * Create an RPC service
454  */
455 static struct svc_serv *
456 __svc_create(struct svc_program *prog, unsigned int bufsize, int npools,
457 	     int (*threadfn)(void *data))
458 {
459 	struct svc_serv	*serv;
460 	unsigned int vers;
461 	unsigned int xdrsize;
462 	unsigned int i;
463 
464 	if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL)))
465 		return NULL;
466 	serv->sv_name      = prog->pg_name;
467 	serv->sv_program   = prog;
468 	kref_init(&serv->sv_refcnt);
469 	serv->sv_stats     = prog->pg_stats;
470 	if (bufsize > RPCSVC_MAXPAYLOAD)
471 		bufsize = RPCSVC_MAXPAYLOAD;
472 	serv->sv_max_payload = bufsize? bufsize : 4096;
473 	serv->sv_max_mesg  = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE);
474 	serv->sv_threadfn = threadfn;
475 	xdrsize = 0;
476 	while (prog) {
477 		prog->pg_lovers = prog->pg_nvers-1;
478 		for (vers=0; vers<prog->pg_nvers ; vers++)
479 			if (prog->pg_vers[vers]) {
480 				prog->pg_hivers = vers;
481 				if (prog->pg_lovers > vers)
482 					prog->pg_lovers = vers;
483 				if (prog->pg_vers[vers]->vs_xdrsize > xdrsize)
484 					xdrsize = prog->pg_vers[vers]->vs_xdrsize;
485 			}
486 		prog = prog->pg_next;
487 	}
488 	serv->sv_xdrsize   = xdrsize;
489 	INIT_LIST_HEAD(&serv->sv_tempsocks);
490 	INIT_LIST_HEAD(&serv->sv_permsocks);
491 	timer_setup(&serv->sv_temptimer, NULL, 0);
492 	spin_lock_init(&serv->sv_lock);
493 
494 	__svc_init_bc(serv);
495 
496 	serv->sv_nrpools = npools;
497 	serv->sv_pools =
498 		kcalloc(serv->sv_nrpools, sizeof(struct svc_pool),
499 			GFP_KERNEL);
500 	if (!serv->sv_pools) {
501 		kfree(serv);
502 		return NULL;
503 	}
504 
505 	for (i = 0; i < serv->sv_nrpools; i++) {
506 		struct svc_pool *pool = &serv->sv_pools[i];
507 
508 		dprintk("svc: initialising pool %u for %s\n",
509 				i, serv->sv_name);
510 
511 		pool->sp_id = i;
512 		INIT_LIST_HEAD(&pool->sp_sockets);
513 		INIT_LIST_HEAD(&pool->sp_all_threads);
514 		spin_lock_init(&pool->sp_lock);
515 	}
516 
517 	return serv;
518 }
519 
520 /**
521  * svc_create - Create an RPC service
522  * @prog: the RPC program the new service will handle
523  * @bufsize: maximum message size for @prog
524  * @threadfn: a function to service RPC requests for @prog
525  *
526  * Returns an instantiated struct svc_serv object or NULL.
527  */
528 struct svc_serv *svc_create(struct svc_program *prog, unsigned int bufsize,
529 			    int (*threadfn)(void *data))
530 {
531 	return __svc_create(prog, bufsize, 1, threadfn);
532 }
533 EXPORT_SYMBOL_GPL(svc_create);
534 
535 /**
536  * svc_create_pooled - Create an RPC service with pooled threads
537  * @prog: the RPC program the new service will handle
538  * @bufsize: maximum message size for @prog
539  * @threadfn: a function to service RPC requests for @prog
540  *
541  * Returns an instantiated struct svc_serv object or NULL.
542  */
543 struct svc_serv *svc_create_pooled(struct svc_program *prog,
544 				   unsigned int bufsize,
545 				   int (*threadfn)(void *data))
546 {
547 	struct svc_serv *serv;
548 	unsigned int npools = svc_pool_map_get();
549 
550 	serv = __svc_create(prog, bufsize, npools, threadfn);
551 	if (!serv)
552 		goto out_err;
553 	return serv;
554 out_err:
555 	svc_pool_map_put(npools);
556 	return NULL;
557 }
558 EXPORT_SYMBOL_GPL(svc_create_pooled);
559 
560 /*
561  * Destroy an RPC service. Should be called with appropriate locking to
562  * protect sv_permsocks and sv_tempsocks.
563  */
564 void
565 svc_destroy(struct kref *ref)
566 {
567 	struct svc_serv *serv = container_of(ref, struct svc_serv, sv_refcnt);
568 
569 	dprintk("svc: svc_destroy(%s)\n", serv->sv_program->pg_name);
570 	timer_shutdown_sync(&serv->sv_temptimer);
571 
572 	/*
573 	 * The last user is gone and thus all sockets have to be destroyed to
574 	 * the point. Check this.
575 	 */
576 	BUG_ON(!list_empty(&serv->sv_permsocks));
577 	BUG_ON(!list_empty(&serv->sv_tempsocks));
578 
579 	cache_clean_deferred(serv);
580 
581 	svc_pool_map_put(serv->sv_nrpools);
582 
583 	kfree(serv->sv_pools);
584 	kfree(serv);
585 }
586 EXPORT_SYMBOL_GPL(svc_destroy);
587 
588 /*
589  * Allocate an RPC server's buffer space.
590  * We allocate pages and place them in rq_pages.
591  */
592 static int
593 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size, int node)
594 {
595 	unsigned int pages, arghi;
596 
597 	/* bc_xprt uses fore channel allocated buffers */
598 	if (svc_is_backchannel(rqstp))
599 		return 1;
600 
601 	pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply.
602 				       * We assume one is at most one page
603 				       */
604 	arghi = 0;
605 	WARN_ON_ONCE(pages > RPCSVC_MAXPAGES);
606 	if (pages > RPCSVC_MAXPAGES)
607 		pages = RPCSVC_MAXPAGES;
608 	while (pages) {
609 		struct page *p = alloc_pages_node(node, GFP_KERNEL, 0);
610 		if (!p)
611 			break;
612 		rqstp->rq_pages[arghi++] = p;
613 		pages--;
614 	}
615 	return pages == 0;
616 }
617 
618 /*
619  * Release an RPC server buffer
620  */
621 static void
622 svc_release_buffer(struct svc_rqst *rqstp)
623 {
624 	unsigned int i;
625 
626 	for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++)
627 		if (rqstp->rq_pages[i])
628 			put_page(rqstp->rq_pages[i]);
629 }
630 
631 struct svc_rqst *
632 svc_rqst_alloc(struct svc_serv *serv, struct svc_pool *pool, int node)
633 {
634 	struct svc_rqst	*rqstp;
635 
636 	rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node);
637 	if (!rqstp)
638 		return rqstp;
639 
640 	__set_bit(RQ_BUSY, &rqstp->rq_flags);
641 	rqstp->rq_server = serv;
642 	rqstp->rq_pool = pool;
643 
644 	rqstp->rq_scratch_page = alloc_pages_node(node, GFP_KERNEL, 0);
645 	if (!rqstp->rq_scratch_page)
646 		goto out_enomem;
647 
648 	rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
649 	if (!rqstp->rq_argp)
650 		goto out_enomem;
651 
652 	rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
653 	if (!rqstp->rq_resp)
654 		goto out_enomem;
655 
656 	if (!svc_init_buffer(rqstp, serv->sv_max_mesg, node))
657 		goto out_enomem;
658 
659 	return rqstp;
660 out_enomem:
661 	svc_rqst_free(rqstp);
662 	return NULL;
663 }
664 EXPORT_SYMBOL_GPL(svc_rqst_alloc);
665 
666 static struct svc_rqst *
667 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node)
668 {
669 	struct svc_rqst	*rqstp;
670 
671 	rqstp = svc_rqst_alloc(serv, pool, node);
672 	if (!rqstp)
673 		return ERR_PTR(-ENOMEM);
674 
675 	svc_get(serv);
676 	spin_lock_bh(&serv->sv_lock);
677 	serv->sv_nrthreads += 1;
678 	spin_unlock_bh(&serv->sv_lock);
679 
680 	spin_lock_bh(&pool->sp_lock);
681 	pool->sp_nrthreads++;
682 	list_add_rcu(&rqstp->rq_all, &pool->sp_all_threads);
683 	spin_unlock_bh(&pool->sp_lock);
684 	return rqstp;
685 }
686 
687 /*
688  * Choose a pool in which to create a new thread, for svc_set_num_threads
689  */
690 static inline struct svc_pool *
691 choose_pool(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
692 {
693 	if (pool != NULL)
694 		return pool;
695 
696 	return &serv->sv_pools[(*state)++ % serv->sv_nrpools];
697 }
698 
699 /*
700  * Choose a thread to kill, for svc_set_num_threads
701  */
702 static inline struct task_struct *
703 choose_victim(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
704 {
705 	unsigned int i;
706 	struct task_struct *task = NULL;
707 
708 	if (pool != NULL) {
709 		spin_lock_bh(&pool->sp_lock);
710 	} else {
711 		/* choose a pool in round-robin fashion */
712 		for (i = 0; i < serv->sv_nrpools; i++) {
713 			pool = &serv->sv_pools[--(*state) % serv->sv_nrpools];
714 			spin_lock_bh(&pool->sp_lock);
715 			if (!list_empty(&pool->sp_all_threads))
716 				goto found_pool;
717 			spin_unlock_bh(&pool->sp_lock);
718 		}
719 		return NULL;
720 	}
721 
722 found_pool:
723 	if (!list_empty(&pool->sp_all_threads)) {
724 		struct svc_rqst *rqstp;
725 
726 		/*
727 		 * Remove from the pool->sp_all_threads list
728 		 * so we don't try to kill it again.
729 		 */
730 		rqstp = list_entry(pool->sp_all_threads.next, struct svc_rqst, rq_all);
731 		set_bit(RQ_VICTIM, &rqstp->rq_flags);
732 		list_del_rcu(&rqstp->rq_all);
733 		task = rqstp->rq_task;
734 	}
735 	spin_unlock_bh(&pool->sp_lock);
736 
737 	return task;
738 }
739 
740 /* create new threads */
741 static int
742 svc_start_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
743 {
744 	struct svc_rqst	*rqstp;
745 	struct task_struct *task;
746 	struct svc_pool *chosen_pool;
747 	unsigned int state = serv->sv_nrthreads-1;
748 	int node;
749 
750 	do {
751 		nrservs--;
752 		chosen_pool = choose_pool(serv, pool, &state);
753 
754 		node = svc_pool_map_get_node(chosen_pool->sp_id);
755 		rqstp = svc_prepare_thread(serv, chosen_pool, node);
756 		if (IS_ERR(rqstp))
757 			return PTR_ERR(rqstp);
758 
759 		task = kthread_create_on_node(serv->sv_threadfn, rqstp,
760 					      node, "%s", serv->sv_name);
761 		if (IS_ERR(task)) {
762 			svc_exit_thread(rqstp);
763 			return PTR_ERR(task);
764 		}
765 
766 		rqstp->rq_task = task;
767 		if (serv->sv_nrpools > 1)
768 			svc_pool_map_set_cpumask(task, chosen_pool->sp_id);
769 
770 		svc_sock_update_bufs(serv);
771 		wake_up_process(task);
772 	} while (nrservs > 0);
773 
774 	return 0;
775 }
776 
777 /*
778  * Create or destroy enough new threads to make the number
779  * of threads the given number.  If `pool' is non-NULL, applies
780  * only to threads in that pool, otherwise round-robins between
781  * all pools.  Caller must ensure that mutual exclusion between this and
782  * server startup or shutdown.
783  */
784 
785 /* destroy old threads */
786 static int
787 svc_stop_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
788 {
789 	struct task_struct *task;
790 	unsigned int state = serv->sv_nrthreads-1;
791 
792 	/* destroy old threads */
793 	do {
794 		task = choose_victim(serv, pool, &state);
795 		if (task == NULL)
796 			break;
797 		kthread_stop(task);
798 		nrservs++;
799 	} while (nrservs < 0);
800 	return 0;
801 }
802 
803 int
804 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
805 {
806 	if (pool == NULL) {
807 		nrservs -= serv->sv_nrthreads;
808 	} else {
809 		spin_lock_bh(&pool->sp_lock);
810 		nrservs -= pool->sp_nrthreads;
811 		spin_unlock_bh(&pool->sp_lock);
812 	}
813 
814 	if (nrservs > 0)
815 		return svc_start_kthreads(serv, pool, nrservs);
816 	if (nrservs < 0)
817 		return svc_stop_kthreads(serv, pool, nrservs);
818 	return 0;
819 }
820 EXPORT_SYMBOL_GPL(svc_set_num_threads);
821 
822 /**
823  * svc_rqst_replace_page - Replace one page in rq_pages[]
824  * @rqstp: svc_rqst with pages to replace
825  * @page: replacement page
826  *
827  * When replacing a page in rq_pages, batch the release of the
828  * replaced pages to avoid hammering the page allocator.
829  */
830 void svc_rqst_replace_page(struct svc_rqst *rqstp, struct page *page)
831 {
832 	if (*rqstp->rq_next_page) {
833 		if (!pagevec_space(&rqstp->rq_pvec))
834 			__pagevec_release(&rqstp->rq_pvec);
835 		pagevec_add(&rqstp->rq_pvec, *rqstp->rq_next_page);
836 	}
837 
838 	get_page(page);
839 	*(rqstp->rq_next_page++) = page;
840 }
841 EXPORT_SYMBOL_GPL(svc_rqst_replace_page);
842 
843 /*
844  * Called from a server thread as it's exiting. Caller must hold the "service
845  * mutex" for the service.
846  */
847 void
848 svc_rqst_free(struct svc_rqst *rqstp)
849 {
850 	svc_release_buffer(rqstp);
851 	if (rqstp->rq_scratch_page)
852 		put_page(rqstp->rq_scratch_page);
853 	kfree(rqstp->rq_resp);
854 	kfree(rqstp->rq_argp);
855 	kfree(rqstp->rq_auth_data);
856 	kfree_rcu(rqstp, rq_rcu_head);
857 }
858 EXPORT_SYMBOL_GPL(svc_rqst_free);
859 
860 void
861 svc_exit_thread(struct svc_rqst *rqstp)
862 {
863 	struct svc_serv	*serv = rqstp->rq_server;
864 	struct svc_pool	*pool = rqstp->rq_pool;
865 
866 	spin_lock_bh(&pool->sp_lock);
867 	pool->sp_nrthreads--;
868 	if (!test_and_set_bit(RQ_VICTIM, &rqstp->rq_flags))
869 		list_del_rcu(&rqstp->rq_all);
870 	spin_unlock_bh(&pool->sp_lock);
871 
872 	spin_lock_bh(&serv->sv_lock);
873 	serv->sv_nrthreads -= 1;
874 	spin_unlock_bh(&serv->sv_lock);
875 	svc_sock_update_bufs(serv);
876 
877 	svc_rqst_free(rqstp);
878 
879 	svc_put(serv);
880 }
881 EXPORT_SYMBOL_GPL(svc_exit_thread);
882 
883 /*
884  * Register an "inet" protocol family netid with the local
885  * rpcbind daemon via an rpcbind v4 SET request.
886  *
887  * No netconfig infrastructure is available in the kernel, so
888  * we map IP_ protocol numbers to netids by hand.
889  *
890  * Returns zero on success; a negative errno value is returned
891  * if any error occurs.
892  */
893 static int __svc_rpcb_register4(struct net *net, const u32 program,
894 				const u32 version,
895 				const unsigned short protocol,
896 				const unsigned short port)
897 {
898 	const struct sockaddr_in sin = {
899 		.sin_family		= AF_INET,
900 		.sin_addr.s_addr	= htonl(INADDR_ANY),
901 		.sin_port		= htons(port),
902 	};
903 	const char *netid;
904 	int error;
905 
906 	switch (protocol) {
907 	case IPPROTO_UDP:
908 		netid = RPCBIND_NETID_UDP;
909 		break;
910 	case IPPROTO_TCP:
911 		netid = RPCBIND_NETID_TCP;
912 		break;
913 	default:
914 		return -ENOPROTOOPT;
915 	}
916 
917 	error = rpcb_v4_register(net, program, version,
918 					(const struct sockaddr *)&sin, netid);
919 
920 	/*
921 	 * User space didn't support rpcbind v4, so retry this
922 	 * registration request with the legacy rpcbind v2 protocol.
923 	 */
924 	if (error == -EPROTONOSUPPORT)
925 		error = rpcb_register(net, program, version, protocol, port);
926 
927 	return error;
928 }
929 
930 #if IS_ENABLED(CONFIG_IPV6)
931 /*
932  * Register an "inet6" protocol family netid with the local
933  * rpcbind daemon via an rpcbind v4 SET request.
934  *
935  * No netconfig infrastructure is available in the kernel, so
936  * we map IP_ protocol numbers to netids by hand.
937  *
938  * Returns zero on success; a negative errno value is returned
939  * if any error occurs.
940  */
941 static int __svc_rpcb_register6(struct net *net, const u32 program,
942 				const u32 version,
943 				const unsigned short protocol,
944 				const unsigned short port)
945 {
946 	const struct sockaddr_in6 sin6 = {
947 		.sin6_family		= AF_INET6,
948 		.sin6_addr		= IN6ADDR_ANY_INIT,
949 		.sin6_port		= htons(port),
950 	};
951 	const char *netid;
952 	int error;
953 
954 	switch (protocol) {
955 	case IPPROTO_UDP:
956 		netid = RPCBIND_NETID_UDP6;
957 		break;
958 	case IPPROTO_TCP:
959 		netid = RPCBIND_NETID_TCP6;
960 		break;
961 	default:
962 		return -ENOPROTOOPT;
963 	}
964 
965 	error = rpcb_v4_register(net, program, version,
966 					(const struct sockaddr *)&sin6, netid);
967 
968 	/*
969 	 * User space didn't support rpcbind version 4, so we won't
970 	 * use a PF_INET6 listener.
971 	 */
972 	if (error == -EPROTONOSUPPORT)
973 		error = -EAFNOSUPPORT;
974 
975 	return error;
976 }
977 #endif	/* IS_ENABLED(CONFIG_IPV6) */
978 
979 /*
980  * Register a kernel RPC service via rpcbind version 4.
981  *
982  * Returns zero on success; a negative errno value is returned
983  * if any error occurs.
984  */
985 static int __svc_register(struct net *net, const char *progname,
986 			  const u32 program, const u32 version,
987 			  const int family,
988 			  const unsigned short protocol,
989 			  const unsigned short port)
990 {
991 	int error = -EAFNOSUPPORT;
992 
993 	switch (family) {
994 	case PF_INET:
995 		error = __svc_rpcb_register4(net, program, version,
996 						protocol, port);
997 		break;
998 #if IS_ENABLED(CONFIG_IPV6)
999 	case PF_INET6:
1000 		error = __svc_rpcb_register6(net, program, version,
1001 						protocol, port);
1002 #endif
1003 	}
1004 
1005 	trace_svc_register(progname, version, protocol, port, family, error);
1006 	return error;
1007 }
1008 
1009 int svc_rpcbind_set_version(struct net *net,
1010 			    const struct svc_program *progp,
1011 			    u32 version, int family,
1012 			    unsigned short proto,
1013 			    unsigned short port)
1014 {
1015 	return __svc_register(net, progp->pg_name, progp->pg_prog,
1016 				version, family, proto, port);
1017 
1018 }
1019 EXPORT_SYMBOL_GPL(svc_rpcbind_set_version);
1020 
1021 int svc_generic_rpcbind_set(struct net *net,
1022 			    const struct svc_program *progp,
1023 			    u32 version, int family,
1024 			    unsigned short proto,
1025 			    unsigned short port)
1026 {
1027 	const struct svc_version *vers = progp->pg_vers[version];
1028 	int error;
1029 
1030 	if (vers == NULL)
1031 		return 0;
1032 
1033 	if (vers->vs_hidden) {
1034 		trace_svc_noregister(progp->pg_name, version, proto,
1035 				     port, family, 0);
1036 		return 0;
1037 	}
1038 
1039 	/*
1040 	 * Don't register a UDP port if we need congestion
1041 	 * control.
1042 	 */
1043 	if (vers->vs_need_cong_ctrl && proto == IPPROTO_UDP)
1044 		return 0;
1045 
1046 	error = svc_rpcbind_set_version(net, progp, version,
1047 					family, proto, port);
1048 
1049 	return (vers->vs_rpcb_optnl) ? 0 : error;
1050 }
1051 EXPORT_SYMBOL_GPL(svc_generic_rpcbind_set);
1052 
1053 /**
1054  * svc_register - register an RPC service with the local portmapper
1055  * @serv: svc_serv struct for the service to register
1056  * @net: net namespace for the service to register
1057  * @family: protocol family of service's listener socket
1058  * @proto: transport protocol number to advertise
1059  * @port: port to advertise
1060  *
1061  * Service is registered for any address in the passed-in protocol family
1062  */
1063 int svc_register(const struct svc_serv *serv, struct net *net,
1064 		 const int family, const unsigned short proto,
1065 		 const unsigned short port)
1066 {
1067 	struct svc_program	*progp;
1068 	unsigned int		i;
1069 	int			error = 0;
1070 
1071 	WARN_ON_ONCE(proto == 0 && port == 0);
1072 	if (proto == 0 && port == 0)
1073 		return -EINVAL;
1074 
1075 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
1076 		for (i = 0; i < progp->pg_nvers; i++) {
1077 
1078 			error = progp->pg_rpcbind_set(net, progp, i,
1079 					family, proto, port);
1080 			if (error < 0) {
1081 				printk(KERN_WARNING "svc: failed to register "
1082 					"%sv%u RPC service (errno %d).\n",
1083 					progp->pg_name, i, -error);
1084 				break;
1085 			}
1086 		}
1087 	}
1088 
1089 	return error;
1090 }
1091 
1092 /*
1093  * If user space is running rpcbind, it should take the v4 UNSET
1094  * and clear everything for this [program, version].  If user space
1095  * is running portmap, it will reject the v4 UNSET, but won't have
1096  * any "inet6" entries anyway.  So a PMAP_UNSET should be sufficient
1097  * in this case to clear all existing entries for [program, version].
1098  */
1099 static void __svc_unregister(struct net *net, const u32 program, const u32 version,
1100 			     const char *progname)
1101 {
1102 	int error;
1103 
1104 	error = rpcb_v4_register(net, program, version, NULL, "");
1105 
1106 	/*
1107 	 * User space didn't support rpcbind v4, so retry this
1108 	 * request with the legacy rpcbind v2 protocol.
1109 	 */
1110 	if (error == -EPROTONOSUPPORT)
1111 		error = rpcb_register(net, program, version, 0, 0);
1112 
1113 	trace_svc_unregister(progname, version, error);
1114 }
1115 
1116 /*
1117  * All netids, bind addresses and ports registered for [program, version]
1118  * are removed from the local rpcbind database (if the service is not
1119  * hidden) to make way for a new instance of the service.
1120  *
1121  * The result of unregistration is reported via dprintk for those who want
1122  * verification of the result, but is otherwise not important.
1123  */
1124 static void svc_unregister(const struct svc_serv *serv, struct net *net)
1125 {
1126 	struct svc_program *progp;
1127 	unsigned long flags;
1128 	unsigned int i;
1129 
1130 	clear_thread_flag(TIF_SIGPENDING);
1131 
1132 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
1133 		for (i = 0; i < progp->pg_nvers; i++) {
1134 			if (progp->pg_vers[i] == NULL)
1135 				continue;
1136 			if (progp->pg_vers[i]->vs_hidden)
1137 				continue;
1138 			__svc_unregister(net, progp->pg_prog, i, progp->pg_name);
1139 		}
1140 	}
1141 
1142 	spin_lock_irqsave(&current->sighand->siglock, flags);
1143 	recalc_sigpending();
1144 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
1145 }
1146 
1147 /*
1148  * dprintk the given error with the address of the client that caused it.
1149  */
1150 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
1151 static __printf(2, 3)
1152 void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...)
1153 {
1154 	struct va_format vaf;
1155 	va_list args;
1156 	char 	buf[RPC_MAX_ADDRBUFLEN];
1157 
1158 	va_start(args, fmt);
1159 
1160 	vaf.fmt = fmt;
1161 	vaf.va = &args;
1162 
1163 	dprintk("svc: %s: %pV", svc_print_addr(rqstp, buf, sizeof(buf)), &vaf);
1164 
1165 	va_end(args);
1166 }
1167 #else
1168 static __printf(2,3) void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) {}
1169 #endif
1170 
1171 __be32
1172 svc_generic_init_request(struct svc_rqst *rqstp,
1173 		const struct svc_program *progp,
1174 		struct svc_process_info *ret)
1175 {
1176 	const struct svc_version *versp = NULL;	/* compiler food */
1177 	const struct svc_procedure *procp = NULL;
1178 
1179 	if (rqstp->rq_vers >= progp->pg_nvers )
1180 		goto err_bad_vers;
1181 	versp = progp->pg_vers[rqstp->rq_vers];
1182 	if (!versp)
1183 		goto err_bad_vers;
1184 
1185 	/*
1186 	 * Some protocol versions (namely NFSv4) require some form of
1187 	 * congestion control.  (See RFC 7530 section 3.1 paragraph 2)
1188 	 * In other words, UDP is not allowed. We mark those when setting
1189 	 * up the svc_xprt, and verify that here.
1190 	 *
1191 	 * The spec is not very clear about what error should be returned
1192 	 * when someone tries to access a server that is listening on UDP
1193 	 * for lower versions. RPC_PROG_MISMATCH seems to be the closest
1194 	 * fit.
1195 	 */
1196 	if (versp->vs_need_cong_ctrl && rqstp->rq_xprt &&
1197 	    !test_bit(XPT_CONG_CTRL, &rqstp->rq_xprt->xpt_flags))
1198 		goto err_bad_vers;
1199 
1200 	if (rqstp->rq_proc >= versp->vs_nproc)
1201 		goto err_bad_proc;
1202 	rqstp->rq_procinfo = procp = &versp->vs_proc[rqstp->rq_proc];
1203 	if (!procp)
1204 		goto err_bad_proc;
1205 
1206 	/* Initialize storage for argp and resp */
1207 	memset(rqstp->rq_argp, 0, procp->pc_argzero);
1208 	memset(rqstp->rq_resp, 0, procp->pc_ressize);
1209 
1210 	/* Bump per-procedure stats counter */
1211 	versp->vs_count[rqstp->rq_proc]++;
1212 
1213 	ret->dispatch = versp->vs_dispatch;
1214 	return rpc_success;
1215 err_bad_vers:
1216 	ret->mismatch.lovers = progp->pg_lovers;
1217 	ret->mismatch.hivers = progp->pg_hivers;
1218 	return rpc_prog_mismatch;
1219 err_bad_proc:
1220 	return rpc_proc_unavail;
1221 }
1222 EXPORT_SYMBOL_GPL(svc_generic_init_request);
1223 
1224 /*
1225  * Common routine for processing the RPC request.
1226  */
1227 static int
1228 svc_process_common(struct svc_rqst *rqstp, struct kvec *argv, struct kvec *resv)
1229 {
1230 	struct svc_program	*progp;
1231 	const struct svc_procedure *procp = NULL;
1232 	struct svc_serv		*serv = rqstp->rq_server;
1233 	struct svc_process_info process;
1234 	__be32			*statp;
1235 	u32			prog, vers;
1236 	__be32			rpc_stat;
1237 	int			auth_res, rc;
1238 	__be32			*reply_statp;
1239 
1240 	rpc_stat = rpc_success;
1241 
1242 	if (argv->iov_len < 6*4)
1243 		goto err_short_len;
1244 
1245 	/* Will be turned off by GSS integrity and privacy services */
1246 	__set_bit(RQ_SPLICE_OK, &rqstp->rq_flags);
1247 	/* Will be turned off only when NFSv4 Sessions are used */
1248 	__set_bit(RQ_USEDEFERRAL, &rqstp->rq_flags);
1249 	__clear_bit(RQ_DROPME, &rqstp->rq_flags);
1250 
1251 	svc_putu32(resv, rqstp->rq_xid);
1252 
1253 	vers = svc_getnl(argv);
1254 
1255 	/* First words of reply: */
1256 	svc_putnl(resv, 1);		/* REPLY */
1257 
1258 	if (vers != 2)		/* RPC version number */
1259 		goto err_bad_rpc;
1260 
1261 	/* Save position in case we later decide to reject: */
1262 	reply_statp = resv->iov_base + resv->iov_len;
1263 
1264 	svc_putnl(resv, 0);		/* ACCEPT */
1265 
1266 	rqstp->rq_prog = prog = svc_getnl(argv);	/* program number */
1267 	rqstp->rq_vers = svc_getnl(argv);	/* version number */
1268 	rqstp->rq_proc = svc_getnl(argv);	/* procedure number */
1269 
1270 	for (progp = serv->sv_program; progp; progp = progp->pg_next)
1271 		if (prog == progp->pg_prog)
1272 			break;
1273 
1274 	/*
1275 	 * Decode auth data, and add verifier to reply buffer.
1276 	 * We do this before anything else in order to get a decent
1277 	 * auth verifier.
1278 	 */
1279 	auth_res = svc_authenticate(rqstp);
1280 	/* Also give the program a chance to reject this call: */
1281 	if (auth_res == SVC_OK && progp)
1282 		auth_res = progp->pg_authenticate(rqstp);
1283 	trace_svc_authenticate(rqstp, auth_res);
1284 	switch (auth_res) {
1285 	case SVC_OK:
1286 		break;
1287 	case SVC_GARBAGE:
1288 		goto err_garbage;
1289 	case SVC_SYSERR:
1290 		rpc_stat = rpc_system_err;
1291 		goto err_bad;
1292 	case SVC_DENIED:
1293 		goto err_bad_auth;
1294 	case SVC_CLOSE:
1295 		goto close;
1296 	case SVC_DROP:
1297 		goto dropit;
1298 	case SVC_COMPLETE:
1299 		goto sendit;
1300 	}
1301 
1302 	if (progp == NULL)
1303 		goto err_bad_prog;
1304 
1305 	rpc_stat = progp->pg_init_request(rqstp, progp, &process);
1306 	switch (rpc_stat) {
1307 	case rpc_success:
1308 		break;
1309 	case rpc_prog_unavail:
1310 		goto err_bad_prog;
1311 	case rpc_prog_mismatch:
1312 		goto err_bad_vers;
1313 	case rpc_proc_unavail:
1314 		goto err_bad_proc;
1315 	}
1316 
1317 	procp = rqstp->rq_procinfo;
1318 	/* Should this check go into the dispatcher? */
1319 	if (!procp || !procp->pc_func)
1320 		goto err_bad_proc;
1321 
1322 	/* Syntactic check complete */
1323 	serv->sv_stats->rpccnt++;
1324 	trace_svc_process(rqstp, progp->pg_name);
1325 
1326 	/* Build the reply header. */
1327 	statp = resv->iov_base +resv->iov_len;
1328 	svc_putnl(resv, RPC_SUCCESS);
1329 
1330 	/* un-reserve some of the out-queue now that we have a
1331 	 * better idea of reply size
1332 	 */
1333 	if (procp->pc_xdrressize)
1334 		svc_reserve_auth(rqstp, procp->pc_xdrressize<<2);
1335 
1336 	/* Call the function that processes the request. */
1337 	rc = process.dispatch(rqstp, statp);
1338 	if (procp->pc_release)
1339 		procp->pc_release(rqstp);
1340 	if (!rc)
1341 		goto dropit;
1342 	if (rqstp->rq_auth_stat != rpc_auth_ok)
1343 		goto err_bad_auth;
1344 
1345 	/* Check RPC status result */
1346 	if (*statp != rpc_success)
1347 		resv->iov_len = ((void*)statp)  - resv->iov_base + 4;
1348 
1349 	if (procp->pc_encode == NULL)
1350 		goto dropit;
1351 
1352  sendit:
1353 	if (svc_authorise(rqstp))
1354 		goto close_xprt;
1355 	return 1;		/* Caller can now send it */
1356 
1357  dropit:
1358 	svc_authorise(rqstp);	/* doesn't hurt to call this twice */
1359 	dprintk("svc: svc_process dropit\n");
1360 	return 0;
1361 
1362  close:
1363 	svc_authorise(rqstp);
1364 close_xprt:
1365 	if (rqstp->rq_xprt && test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags))
1366 		svc_xprt_close(rqstp->rq_xprt);
1367 	dprintk("svc: svc_process close\n");
1368 	return 0;
1369 
1370 err_short_len:
1371 	svc_printk(rqstp, "short len %zd, dropping request\n",
1372 			argv->iov_len);
1373 	goto close_xprt;
1374 
1375 err_bad_rpc:
1376 	serv->sv_stats->rpcbadfmt++;
1377 	svc_putnl(resv, 1);	/* REJECT */
1378 	svc_putnl(resv, 0);	/* RPC_MISMATCH */
1379 	svc_putnl(resv, 2);	/* Only RPCv2 supported */
1380 	svc_putnl(resv, 2);
1381 	goto sendit;
1382 
1383 err_bad_auth:
1384 	dprintk("svc: authentication failed (%d)\n",
1385 		be32_to_cpu(rqstp->rq_auth_stat));
1386 	serv->sv_stats->rpcbadauth++;
1387 	/* Restore write pointer to location of accept status: */
1388 	xdr_ressize_check(rqstp, reply_statp);
1389 	svc_putnl(resv, 1);	/* REJECT */
1390 	svc_putnl(resv, 1);	/* AUTH_ERROR */
1391 	svc_putu32(resv, rqstp->rq_auth_stat);	/* status */
1392 	goto sendit;
1393 
1394 err_bad_prog:
1395 	dprintk("svc: unknown program %d\n", prog);
1396 	serv->sv_stats->rpcbadfmt++;
1397 	svc_putnl(resv, RPC_PROG_UNAVAIL);
1398 	goto sendit;
1399 
1400 err_bad_vers:
1401 	svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n",
1402 		       rqstp->rq_vers, rqstp->rq_prog, progp->pg_name);
1403 
1404 	serv->sv_stats->rpcbadfmt++;
1405 	svc_putnl(resv, RPC_PROG_MISMATCH);
1406 	svc_putnl(resv, process.mismatch.lovers);
1407 	svc_putnl(resv, process.mismatch.hivers);
1408 	goto sendit;
1409 
1410 err_bad_proc:
1411 	svc_printk(rqstp, "unknown procedure (%d)\n", rqstp->rq_proc);
1412 
1413 	serv->sv_stats->rpcbadfmt++;
1414 	svc_putnl(resv, RPC_PROC_UNAVAIL);
1415 	goto sendit;
1416 
1417 err_garbage:
1418 	svc_printk(rqstp, "failed to decode args\n");
1419 
1420 	rpc_stat = rpc_garbage_args;
1421 err_bad:
1422 	serv->sv_stats->rpcbadfmt++;
1423 	svc_putnl(resv, ntohl(rpc_stat));
1424 	goto sendit;
1425 }
1426 
1427 /*
1428  * Process the RPC request.
1429  */
1430 int
1431 svc_process(struct svc_rqst *rqstp)
1432 {
1433 	struct kvec		*argv = &rqstp->rq_arg.head[0];
1434 	struct kvec		*resv = &rqstp->rq_res.head[0];
1435 	__be32			dir;
1436 
1437 #if IS_ENABLED(CONFIG_FAIL_SUNRPC)
1438 	if (!fail_sunrpc.ignore_server_disconnect &&
1439 	    should_fail(&fail_sunrpc.attr, 1))
1440 		svc_xprt_deferred_close(rqstp->rq_xprt);
1441 #endif
1442 
1443 	/*
1444 	 * Setup response xdr_buf.
1445 	 * Initially it has just one page
1446 	 */
1447 	rqstp->rq_next_page = &rqstp->rq_respages[1];
1448 	resv->iov_base = page_address(rqstp->rq_respages[0]);
1449 	resv->iov_len = 0;
1450 	rqstp->rq_res.pages = rqstp->rq_next_page;
1451 	rqstp->rq_res.len = 0;
1452 	rqstp->rq_res.page_base = 0;
1453 	rqstp->rq_res.page_len = 0;
1454 	rqstp->rq_res.buflen = PAGE_SIZE;
1455 	rqstp->rq_res.tail[0].iov_base = NULL;
1456 	rqstp->rq_res.tail[0].iov_len = 0;
1457 
1458 	dir = svc_getu32(argv);
1459 	if (dir != rpc_call)
1460 		goto out_baddir;
1461 	if (!svc_process_common(rqstp, argv, resv))
1462 		goto out_drop;
1463 	return svc_send(rqstp);
1464 
1465 out_baddir:
1466 	svc_printk(rqstp, "bad direction 0x%08x, dropping request\n",
1467 		   be32_to_cpu(dir));
1468 	rqstp->rq_server->sv_stats->rpcbadfmt++;
1469 out_drop:
1470 	svc_drop(rqstp);
1471 	return 0;
1472 }
1473 EXPORT_SYMBOL_GPL(svc_process);
1474 
1475 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1476 /*
1477  * Process a backchannel RPC request that arrived over an existing
1478  * outbound connection
1479  */
1480 int
1481 bc_svc_process(struct svc_serv *serv, struct rpc_rqst *req,
1482 	       struct svc_rqst *rqstp)
1483 {
1484 	struct kvec	*argv = &rqstp->rq_arg.head[0];
1485 	struct kvec	*resv = &rqstp->rq_res.head[0];
1486 	struct rpc_task *task;
1487 	int proc_error;
1488 	int error;
1489 
1490 	dprintk("svc: %s(%p)\n", __func__, req);
1491 
1492 	/* Build the svc_rqst used by the common processing routine */
1493 	rqstp->rq_xid = req->rq_xid;
1494 	rqstp->rq_prot = req->rq_xprt->prot;
1495 	rqstp->rq_server = serv;
1496 	rqstp->rq_bc_net = req->rq_xprt->xprt_net;
1497 
1498 	rqstp->rq_addrlen = sizeof(req->rq_xprt->addr);
1499 	memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen);
1500 	memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg));
1501 	memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res));
1502 
1503 	/* Adjust the argument buffer length */
1504 	rqstp->rq_arg.len = req->rq_private_buf.len;
1505 	if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) {
1506 		rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len;
1507 		rqstp->rq_arg.page_len = 0;
1508 	} else if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len +
1509 			rqstp->rq_arg.page_len)
1510 		rqstp->rq_arg.page_len = rqstp->rq_arg.len -
1511 			rqstp->rq_arg.head[0].iov_len;
1512 	else
1513 		rqstp->rq_arg.len = rqstp->rq_arg.head[0].iov_len +
1514 			rqstp->rq_arg.page_len;
1515 
1516 	/* reset result send buffer "put" position */
1517 	resv->iov_len = 0;
1518 
1519 	/*
1520 	 * Skip the next two words because they've already been
1521 	 * processed in the transport
1522 	 */
1523 	svc_getu32(argv);	/* XID */
1524 	svc_getnl(argv);	/* CALLDIR */
1525 
1526 	/* Parse and execute the bc call */
1527 	proc_error = svc_process_common(rqstp, argv, resv);
1528 
1529 	atomic_dec(&req->rq_xprt->bc_slot_count);
1530 	if (!proc_error) {
1531 		/* Processing error: drop the request */
1532 		xprt_free_bc_request(req);
1533 		error = -EINVAL;
1534 		goto out;
1535 	}
1536 	/* Finally, send the reply synchronously */
1537 	memcpy(&req->rq_snd_buf, &rqstp->rq_res, sizeof(req->rq_snd_buf));
1538 	task = rpc_run_bc_task(req);
1539 	if (IS_ERR(task)) {
1540 		error = PTR_ERR(task);
1541 		goto out;
1542 	}
1543 
1544 	WARN_ON_ONCE(atomic_read(&task->tk_count) != 1);
1545 	error = task->tk_status;
1546 	rpc_put_task(task);
1547 
1548 out:
1549 	dprintk("svc: %s(), error=%d\n", __func__, error);
1550 	return error;
1551 }
1552 EXPORT_SYMBOL_GPL(bc_svc_process);
1553 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
1554 
1555 /**
1556  * svc_max_payload - Return transport-specific limit on the RPC payload
1557  * @rqstp: RPC transaction context
1558  *
1559  * Returns the maximum number of payload bytes the current transport
1560  * allows.
1561  */
1562 u32 svc_max_payload(const struct svc_rqst *rqstp)
1563 {
1564 	u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload;
1565 
1566 	if (rqstp->rq_server->sv_max_payload < max)
1567 		max = rqstp->rq_server->sv_max_payload;
1568 	return max;
1569 }
1570 EXPORT_SYMBOL_GPL(svc_max_payload);
1571 
1572 /**
1573  * svc_proc_name - Return RPC procedure name in string form
1574  * @rqstp: svc_rqst to operate on
1575  *
1576  * Return value:
1577  *   Pointer to a NUL-terminated string
1578  */
1579 const char *svc_proc_name(const struct svc_rqst *rqstp)
1580 {
1581 	if (rqstp && rqstp->rq_procinfo)
1582 		return rqstp->rq_procinfo->pc_name;
1583 	return "unknown";
1584 }
1585 
1586 
1587 /**
1588  * svc_encode_result_payload - mark a range of bytes as a result payload
1589  * @rqstp: svc_rqst to operate on
1590  * @offset: payload's byte offset in rqstp->rq_res
1591  * @length: size of payload, in bytes
1592  *
1593  * Returns zero on success, or a negative errno if a permanent
1594  * error occurred.
1595  */
1596 int svc_encode_result_payload(struct svc_rqst *rqstp, unsigned int offset,
1597 			      unsigned int length)
1598 {
1599 	return rqstp->rq_xprt->xpt_ops->xpo_result_payload(rqstp, offset,
1600 							   length);
1601 }
1602 EXPORT_SYMBOL_GPL(svc_encode_result_payload);
1603 
1604 /**
1605  * svc_fill_write_vector - Construct data argument for VFS write call
1606  * @rqstp: svc_rqst to operate on
1607  * @payload: xdr_buf containing only the write data payload
1608  *
1609  * Fills in rqstp::rq_vec, and returns the number of elements.
1610  */
1611 unsigned int svc_fill_write_vector(struct svc_rqst *rqstp,
1612 				   struct xdr_buf *payload)
1613 {
1614 	struct page **pages = payload->pages;
1615 	struct kvec *first = payload->head;
1616 	struct kvec *vec = rqstp->rq_vec;
1617 	size_t total = payload->len;
1618 	unsigned int i;
1619 
1620 	/* Some types of transport can present the write payload
1621 	 * entirely in rq_arg.pages. In this case, @first is empty.
1622 	 */
1623 	i = 0;
1624 	if (first->iov_len) {
1625 		vec[i].iov_base = first->iov_base;
1626 		vec[i].iov_len = min_t(size_t, total, first->iov_len);
1627 		total -= vec[i].iov_len;
1628 		++i;
1629 	}
1630 
1631 	while (total) {
1632 		vec[i].iov_base = page_address(*pages);
1633 		vec[i].iov_len = min_t(size_t, total, PAGE_SIZE);
1634 		total -= vec[i].iov_len;
1635 		++i;
1636 		++pages;
1637 	}
1638 
1639 	WARN_ON_ONCE(i > ARRAY_SIZE(rqstp->rq_vec));
1640 	return i;
1641 }
1642 EXPORT_SYMBOL_GPL(svc_fill_write_vector);
1643 
1644 /**
1645  * svc_fill_symlink_pathname - Construct pathname argument for VFS symlink call
1646  * @rqstp: svc_rqst to operate on
1647  * @first: buffer containing first section of pathname
1648  * @p: buffer containing remaining section of pathname
1649  * @total: total length of the pathname argument
1650  *
1651  * The VFS symlink API demands a NUL-terminated pathname in mapped memory.
1652  * Returns pointer to a NUL-terminated string, or an ERR_PTR. Caller must free
1653  * the returned string.
1654  */
1655 char *svc_fill_symlink_pathname(struct svc_rqst *rqstp, struct kvec *first,
1656 				void *p, size_t total)
1657 {
1658 	size_t len, remaining;
1659 	char *result, *dst;
1660 
1661 	result = kmalloc(total + 1, GFP_KERNEL);
1662 	if (!result)
1663 		return ERR_PTR(-ESERVERFAULT);
1664 
1665 	dst = result;
1666 	remaining = total;
1667 
1668 	len = min_t(size_t, total, first->iov_len);
1669 	if (len) {
1670 		memcpy(dst, first->iov_base, len);
1671 		dst += len;
1672 		remaining -= len;
1673 	}
1674 
1675 	if (remaining) {
1676 		len = min_t(size_t, remaining, PAGE_SIZE);
1677 		memcpy(dst, p, len);
1678 		dst += len;
1679 	}
1680 
1681 	*dst = '\0';
1682 
1683 	/* Sanity check: Linux doesn't allow the pathname argument to
1684 	 * contain a NUL byte.
1685 	 */
1686 	if (strlen(result) != total) {
1687 		kfree(result);
1688 		return ERR_PTR(-EINVAL);
1689 	}
1690 	return result;
1691 }
1692 EXPORT_SYMBOL_GPL(svc_fill_symlink_pathname);
1693