1 /* 2 * linux/net/sunrpc/svc.c 3 * 4 * High-level RPC service routines 5 * 6 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 7 * 8 * Multiple threads pools and NUMAisation 9 * Copyright (c) 2006 Silicon Graphics, Inc. 10 * by Greg Banks <gnb@melbourne.sgi.com> 11 */ 12 13 #include <linux/linkage.h> 14 #include <linux/sched.h> 15 #include <linux/errno.h> 16 #include <linux/net.h> 17 #include <linux/in.h> 18 #include <linux/mm.h> 19 #include <linux/interrupt.h> 20 #include <linux/module.h> 21 #include <linux/kthread.h> 22 #include <linux/slab.h> 23 24 #include <linux/sunrpc/types.h> 25 #include <linux/sunrpc/xdr.h> 26 #include <linux/sunrpc/stats.h> 27 #include <linux/sunrpc/svcsock.h> 28 #include <linux/sunrpc/clnt.h> 29 #include <linux/sunrpc/bc_xprt.h> 30 31 #define RPCDBG_FACILITY RPCDBG_SVCDSP 32 33 static void svc_unregister(const struct svc_serv *serv); 34 35 #define svc_serv_is_pooled(serv) ((serv)->sv_function) 36 37 /* 38 * Mode for mapping cpus to pools. 39 */ 40 enum { 41 SVC_POOL_AUTO = -1, /* choose one of the others */ 42 SVC_POOL_GLOBAL, /* no mapping, just a single global pool 43 * (legacy & UP mode) */ 44 SVC_POOL_PERCPU, /* one pool per cpu */ 45 SVC_POOL_PERNODE /* one pool per numa node */ 46 }; 47 #define SVC_POOL_DEFAULT SVC_POOL_GLOBAL 48 49 /* 50 * Structure for mapping cpus to pools and vice versa. 51 * Setup once during sunrpc initialisation. 52 */ 53 static struct svc_pool_map { 54 int count; /* How many svc_servs use us */ 55 int mode; /* Note: int not enum to avoid 56 * warnings about "enumeration value 57 * not handled in switch" */ 58 unsigned int npools; 59 unsigned int *pool_to; /* maps pool id to cpu or node */ 60 unsigned int *to_pool; /* maps cpu or node to pool id */ 61 } svc_pool_map = { 62 .count = 0, 63 .mode = SVC_POOL_DEFAULT 64 }; 65 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */ 66 67 static int 68 param_set_pool_mode(const char *val, struct kernel_param *kp) 69 { 70 int *ip = (int *)kp->arg; 71 struct svc_pool_map *m = &svc_pool_map; 72 int err; 73 74 mutex_lock(&svc_pool_map_mutex); 75 76 err = -EBUSY; 77 if (m->count) 78 goto out; 79 80 err = 0; 81 if (!strncmp(val, "auto", 4)) 82 *ip = SVC_POOL_AUTO; 83 else if (!strncmp(val, "global", 6)) 84 *ip = SVC_POOL_GLOBAL; 85 else if (!strncmp(val, "percpu", 6)) 86 *ip = SVC_POOL_PERCPU; 87 else if (!strncmp(val, "pernode", 7)) 88 *ip = SVC_POOL_PERNODE; 89 else 90 err = -EINVAL; 91 92 out: 93 mutex_unlock(&svc_pool_map_mutex); 94 return err; 95 } 96 97 static int 98 param_get_pool_mode(char *buf, struct kernel_param *kp) 99 { 100 int *ip = (int *)kp->arg; 101 102 switch (*ip) 103 { 104 case SVC_POOL_AUTO: 105 return strlcpy(buf, "auto", 20); 106 case SVC_POOL_GLOBAL: 107 return strlcpy(buf, "global", 20); 108 case SVC_POOL_PERCPU: 109 return strlcpy(buf, "percpu", 20); 110 case SVC_POOL_PERNODE: 111 return strlcpy(buf, "pernode", 20); 112 default: 113 return sprintf(buf, "%d", *ip); 114 } 115 } 116 117 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode, 118 &svc_pool_map.mode, 0644); 119 120 /* 121 * Detect best pool mapping mode heuristically, 122 * according to the machine's topology. 123 */ 124 static int 125 svc_pool_map_choose_mode(void) 126 { 127 unsigned int node; 128 129 if (nr_online_nodes > 1) { 130 /* 131 * Actually have multiple NUMA nodes, 132 * so split pools on NUMA node boundaries 133 */ 134 return SVC_POOL_PERNODE; 135 } 136 137 node = first_online_node; 138 if (nr_cpus_node(node) > 2) { 139 /* 140 * Non-trivial SMP, or CONFIG_NUMA on 141 * non-NUMA hardware, e.g. with a generic 142 * x86_64 kernel on Xeons. In this case we 143 * want to divide the pools on cpu boundaries. 144 */ 145 return SVC_POOL_PERCPU; 146 } 147 148 /* default: one global pool */ 149 return SVC_POOL_GLOBAL; 150 } 151 152 /* 153 * Allocate the to_pool[] and pool_to[] arrays. 154 * Returns 0 on success or an errno. 155 */ 156 static int 157 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools) 158 { 159 m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL); 160 if (!m->to_pool) 161 goto fail; 162 m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL); 163 if (!m->pool_to) 164 goto fail_free; 165 166 return 0; 167 168 fail_free: 169 kfree(m->to_pool); 170 fail: 171 return -ENOMEM; 172 } 173 174 /* 175 * Initialise the pool map for SVC_POOL_PERCPU mode. 176 * Returns number of pools or <0 on error. 177 */ 178 static int 179 svc_pool_map_init_percpu(struct svc_pool_map *m) 180 { 181 unsigned int maxpools = nr_cpu_ids; 182 unsigned int pidx = 0; 183 unsigned int cpu; 184 int err; 185 186 err = svc_pool_map_alloc_arrays(m, maxpools); 187 if (err) 188 return err; 189 190 for_each_online_cpu(cpu) { 191 BUG_ON(pidx > maxpools); 192 m->to_pool[cpu] = pidx; 193 m->pool_to[pidx] = cpu; 194 pidx++; 195 } 196 /* cpus brought online later all get mapped to pool0, sorry */ 197 198 return pidx; 199 }; 200 201 202 /* 203 * Initialise the pool map for SVC_POOL_PERNODE mode. 204 * Returns number of pools or <0 on error. 205 */ 206 static int 207 svc_pool_map_init_pernode(struct svc_pool_map *m) 208 { 209 unsigned int maxpools = nr_node_ids; 210 unsigned int pidx = 0; 211 unsigned int node; 212 int err; 213 214 err = svc_pool_map_alloc_arrays(m, maxpools); 215 if (err) 216 return err; 217 218 for_each_node_with_cpus(node) { 219 /* some architectures (e.g. SN2) have cpuless nodes */ 220 BUG_ON(pidx > maxpools); 221 m->to_pool[node] = pidx; 222 m->pool_to[pidx] = node; 223 pidx++; 224 } 225 /* nodes brought online later all get mapped to pool0, sorry */ 226 227 return pidx; 228 } 229 230 231 /* 232 * Add a reference to the global map of cpus to pools (and 233 * vice versa). Initialise the map if we're the first user. 234 * Returns the number of pools. 235 */ 236 static unsigned int 237 svc_pool_map_get(void) 238 { 239 struct svc_pool_map *m = &svc_pool_map; 240 int npools = -1; 241 242 mutex_lock(&svc_pool_map_mutex); 243 244 if (m->count++) { 245 mutex_unlock(&svc_pool_map_mutex); 246 return m->npools; 247 } 248 249 if (m->mode == SVC_POOL_AUTO) 250 m->mode = svc_pool_map_choose_mode(); 251 252 switch (m->mode) { 253 case SVC_POOL_PERCPU: 254 npools = svc_pool_map_init_percpu(m); 255 break; 256 case SVC_POOL_PERNODE: 257 npools = svc_pool_map_init_pernode(m); 258 break; 259 } 260 261 if (npools < 0) { 262 /* default, or memory allocation failure */ 263 npools = 1; 264 m->mode = SVC_POOL_GLOBAL; 265 } 266 m->npools = npools; 267 268 mutex_unlock(&svc_pool_map_mutex); 269 return m->npools; 270 } 271 272 273 /* 274 * Drop a reference to the global map of cpus to pools. 275 * When the last reference is dropped, the map data is 276 * freed; this allows the sysadmin to change the pool 277 * mode using the pool_mode module option without 278 * rebooting or re-loading sunrpc.ko. 279 */ 280 static void 281 svc_pool_map_put(void) 282 { 283 struct svc_pool_map *m = &svc_pool_map; 284 285 mutex_lock(&svc_pool_map_mutex); 286 287 if (!--m->count) { 288 m->mode = SVC_POOL_DEFAULT; 289 kfree(m->to_pool); 290 kfree(m->pool_to); 291 m->npools = 0; 292 } 293 294 mutex_unlock(&svc_pool_map_mutex); 295 } 296 297 298 /* 299 * Set the given thread's cpus_allowed mask so that it 300 * will only run on cpus in the given pool. 301 */ 302 static inline void 303 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx) 304 { 305 struct svc_pool_map *m = &svc_pool_map; 306 unsigned int node = m->pool_to[pidx]; 307 308 /* 309 * The caller checks for sv_nrpools > 1, which 310 * implies that we've been initialized. 311 */ 312 BUG_ON(m->count == 0); 313 314 switch (m->mode) { 315 case SVC_POOL_PERCPU: 316 { 317 set_cpus_allowed_ptr(task, cpumask_of(node)); 318 break; 319 } 320 case SVC_POOL_PERNODE: 321 { 322 set_cpus_allowed_ptr(task, cpumask_of_node(node)); 323 break; 324 } 325 } 326 } 327 328 /* 329 * Use the mapping mode to choose a pool for a given CPU. 330 * Used when enqueueing an incoming RPC. Always returns 331 * a non-NULL pool pointer. 332 */ 333 struct svc_pool * 334 svc_pool_for_cpu(struct svc_serv *serv, int cpu) 335 { 336 struct svc_pool_map *m = &svc_pool_map; 337 unsigned int pidx = 0; 338 339 /* 340 * An uninitialised map happens in a pure client when 341 * lockd is brought up, so silently treat it the 342 * same as SVC_POOL_GLOBAL. 343 */ 344 if (svc_serv_is_pooled(serv)) { 345 switch (m->mode) { 346 case SVC_POOL_PERCPU: 347 pidx = m->to_pool[cpu]; 348 break; 349 case SVC_POOL_PERNODE: 350 pidx = m->to_pool[cpu_to_node(cpu)]; 351 break; 352 } 353 } 354 return &serv->sv_pools[pidx % serv->sv_nrpools]; 355 } 356 357 358 /* 359 * Create an RPC service 360 */ 361 static struct svc_serv * 362 __svc_create(struct svc_program *prog, unsigned int bufsize, int npools, 363 void (*shutdown)(struct svc_serv *serv)) 364 { 365 struct svc_serv *serv; 366 unsigned int vers; 367 unsigned int xdrsize; 368 unsigned int i; 369 370 if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL))) 371 return NULL; 372 serv->sv_name = prog->pg_name; 373 serv->sv_program = prog; 374 serv->sv_nrthreads = 1; 375 serv->sv_stats = prog->pg_stats; 376 if (bufsize > RPCSVC_MAXPAYLOAD) 377 bufsize = RPCSVC_MAXPAYLOAD; 378 serv->sv_max_payload = bufsize? bufsize : 4096; 379 serv->sv_max_mesg = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE); 380 serv->sv_shutdown = shutdown; 381 xdrsize = 0; 382 while (prog) { 383 prog->pg_lovers = prog->pg_nvers-1; 384 for (vers=0; vers<prog->pg_nvers ; vers++) 385 if (prog->pg_vers[vers]) { 386 prog->pg_hivers = vers; 387 if (prog->pg_lovers > vers) 388 prog->pg_lovers = vers; 389 if (prog->pg_vers[vers]->vs_xdrsize > xdrsize) 390 xdrsize = prog->pg_vers[vers]->vs_xdrsize; 391 } 392 prog = prog->pg_next; 393 } 394 serv->sv_xdrsize = xdrsize; 395 INIT_LIST_HEAD(&serv->sv_tempsocks); 396 INIT_LIST_HEAD(&serv->sv_permsocks); 397 init_timer(&serv->sv_temptimer); 398 spin_lock_init(&serv->sv_lock); 399 400 serv->sv_nrpools = npools; 401 serv->sv_pools = 402 kcalloc(serv->sv_nrpools, sizeof(struct svc_pool), 403 GFP_KERNEL); 404 if (!serv->sv_pools) { 405 kfree(serv); 406 return NULL; 407 } 408 409 for (i = 0; i < serv->sv_nrpools; i++) { 410 struct svc_pool *pool = &serv->sv_pools[i]; 411 412 dprintk("svc: initialising pool %u for %s\n", 413 i, serv->sv_name); 414 415 pool->sp_id = i; 416 INIT_LIST_HEAD(&pool->sp_threads); 417 INIT_LIST_HEAD(&pool->sp_sockets); 418 INIT_LIST_HEAD(&pool->sp_all_threads); 419 spin_lock_init(&pool->sp_lock); 420 } 421 422 /* Remove any stale portmap registrations */ 423 svc_unregister(serv); 424 425 return serv; 426 } 427 428 struct svc_serv * 429 svc_create(struct svc_program *prog, unsigned int bufsize, 430 void (*shutdown)(struct svc_serv *serv)) 431 { 432 return __svc_create(prog, bufsize, /*npools*/1, shutdown); 433 } 434 EXPORT_SYMBOL_GPL(svc_create); 435 436 struct svc_serv * 437 svc_create_pooled(struct svc_program *prog, unsigned int bufsize, 438 void (*shutdown)(struct svc_serv *serv), 439 svc_thread_fn func, struct module *mod) 440 { 441 struct svc_serv *serv; 442 unsigned int npools = svc_pool_map_get(); 443 444 serv = __svc_create(prog, bufsize, npools, shutdown); 445 446 if (serv != NULL) { 447 serv->sv_function = func; 448 serv->sv_module = mod; 449 } 450 451 return serv; 452 } 453 EXPORT_SYMBOL_GPL(svc_create_pooled); 454 455 /* 456 * Destroy an RPC service. Should be called with appropriate locking to 457 * protect the sv_nrthreads, sv_permsocks and sv_tempsocks. 458 */ 459 void 460 svc_destroy(struct svc_serv *serv) 461 { 462 dprintk("svc: svc_destroy(%s, %d)\n", 463 serv->sv_program->pg_name, 464 serv->sv_nrthreads); 465 466 if (serv->sv_nrthreads) { 467 if (--(serv->sv_nrthreads) != 0) { 468 svc_sock_update_bufs(serv); 469 return; 470 } 471 } else 472 printk("svc_destroy: no threads for serv=%p!\n", serv); 473 474 del_timer_sync(&serv->sv_temptimer); 475 476 svc_close_all(&serv->sv_tempsocks); 477 478 if (serv->sv_shutdown) 479 serv->sv_shutdown(serv); 480 481 svc_close_all(&serv->sv_permsocks); 482 483 BUG_ON(!list_empty(&serv->sv_permsocks)); 484 BUG_ON(!list_empty(&serv->sv_tempsocks)); 485 486 cache_clean_deferred(serv); 487 488 if (svc_serv_is_pooled(serv)) 489 svc_pool_map_put(); 490 491 svc_unregister(serv); 492 kfree(serv->sv_pools); 493 kfree(serv); 494 } 495 EXPORT_SYMBOL_GPL(svc_destroy); 496 497 /* 498 * Allocate an RPC server's buffer space. 499 * We allocate pages and place them in rq_argpages. 500 */ 501 static int 502 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size) 503 { 504 unsigned int pages, arghi; 505 506 /* bc_xprt uses fore channel allocated buffers */ 507 if (svc_is_backchannel(rqstp)) 508 return 1; 509 510 pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply. 511 * We assume one is at most one page 512 */ 513 arghi = 0; 514 BUG_ON(pages > RPCSVC_MAXPAGES); 515 while (pages) { 516 struct page *p = alloc_page(GFP_KERNEL); 517 if (!p) 518 break; 519 rqstp->rq_pages[arghi++] = p; 520 pages--; 521 } 522 return pages == 0; 523 } 524 525 /* 526 * Release an RPC server buffer 527 */ 528 static void 529 svc_release_buffer(struct svc_rqst *rqstp) 530 { 531 unsigned int i; 532 533 for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++) 534 if (rqstp->rq_pages[i]) 535 put_page(rqstp->rq_pages[i]); 536 } 537 538 struct svc_rqst * 539 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool) 540 { 541 struct svc_rqst *rqstp; 542 543 rqstp = kzalloc(sizeof(*rqstp), GFP_KERNEL); 544 if (!rqstp) 545 goto out_enomem; 546 547 init_waitqueue_head(&rqstp->rq_wait); 548 549 serv->sv_nrthreads++; 550 spin_lock_bh(&pool->sp_lock); 551 pool->sp_nrthreads++; 552 list_add(&rqstp->rq_all, &pool->sp_all_threads); 553 spin_unlock_bh(&pool->sp_lock); 554 rqstp->rq_server = serv; 555 rqstp->rq_pool = pool; 556 557 rqstp->rq_argp = kmalloc(serv->sv_xdrsize, GFP_KERNEL); 558 if (!rqstp->rq_argp) 559 goto out_thread; 560 561 rqstp->rq_resp = kmalloc(serv->sv_xdrsize, GFP_KERNEL); 562 if (!rqstp->rq_resp) 563 goto out_thread; 564 565 if (!svc_init_buffer(rqstp, serv->sv_max_mesg)) 566 goto out_thread; 567 568 return rqstp; 569 out_thread: 570 svc_exit_thread(rqstp); 571 out_enomem: 572 return ERR_PTR(-ENOMEM); 573 } 574 EXPORT_SYMBOL_GPL(svc_prepare_thread); 575 576 /* 577 * Choose a pool in which to create a new thread, for svc_set_num_threads 578 */ 579 static inline struct svc_pool * 580 choose_pool(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state) 581 { 582 if (pool != NULL) 583 return pool; 584 585 return &serv->sv_pools[(*state)++ % serv->sv_nrpools]; 586 } 587 588 /* 589 * Choose a thread to kill, for svc_set_num_threads 590 */ 591 static inline struct task_struct * 592 choose_victim(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state) 593 { 594 unsigned int i; 595 struct task_struct *task = NULL; 596 597 if (pool != NULL) { 598 spin_lock_bh(&pool->sp_lock); 599 } else { 600 /* choose a pool in round-robin fashion */ 601 for (i = 0; i < serv->sv_nrpools; i++) { 602 pool = &serv->sv_pools[--(*state) % serv->sv_nrpools]; 603 spin_lock_bh(&pool->sp_lock); 604 if (!list_empty(&pool->sp_all_threads)) 605 goto found_pool; 606 spin_unlock_bh(&pool->sp_lock); 607 } 608 return NULL; 609 } 610 611 found_pool: 612 if (!list_empty(&pool->sp_all_threads)) { 613 struct svc_rqst *rqstp; 614 615 /* 616 * Remove from the pool->sp_all_threads list 617 * so we don't try to kill it again. 618 */ 619 rqstp = list_entry(pool->sp_all_threads.next, struct svc_rqst, rq_all); 620 list_del_init(&rqstp->rq_all); 621 task = rqstp->rq_task; 622 } 623 spin_unlock_bh(&pool->sp_lock); 624 625 return task; 626 } 627 628 /* 629 * Create or destroy enough new threads to make the number 630 * of threads the given number. If `pool' is non-NULL, applies 631 * only to threads in that pool, otherwise round-robins between 632 * all pools. Must be called with a svc_get() reference and 633 * the BKL or another lock to protect access to svc_serv fields. 634 * 635 * Destroying threads relies on the service threads filling in 636 * rqstp->rq_task, which only the nfs ones do. Assumes the serv 637 * has been created using svc_create_pooled(). 638 * 639 * Based on code that used to be in nfsd_svc() but tweaked 640 * to be pool-aware. 641 */ 642 int 643 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs) 644 { 645 struct svc_rqst *rqstp; 646 struct task_struct *task; 647 struct svc_pool *chosen_pool; 648 int error = 0; 649 unsigned int state = serv->sv_nrthreads-1; 650 651 if (pool == NULL) { 652 /* The -1 assumes caller has done a svc_get() */ 653 nrservs -= (serv->sv_nrthreads-1); 654 } else { 655 spin_lock_bh(&pool->sp_lock); 656 nrservs -= pool->sp_nrthreads; 657 spin_unlock_bh(&pool->sp_lock); 658 } 659 660 /* create new threads */ 661 while (nrservs > 0) { 662 nrservs--; 663 chosen_pool = choose_pool(serv, pool, &state); 664 665 rqstp = svc_prepare_thread(serv, chosen_pool); 666 if (IS_ERR(rqstp)) { 667 error = PTR_ERR(rqstp); 668 break; 669 } 670 671 __module_get(serv->sv_module); 672 task = kthread_create(serv->sv_function, rqstp, serv->sv_name); 673 if (IS_ERR(task)) { 674 error = PTR_ERR(task); 675 module_put(serv->sv_module); 676 svc_exit_thread(rqstp); 677 break; 678 } 679 680 rqstp->rq_task = task; 681 if (serv->sv_nrpools > 1) 682 svc_pool_map_set_cpumask(task, chosen_pool->sp_id); 683 684 svc_sock_update_bufs(serv); 685 wake_up_process(task); 686 } 687 /* destroy old threads */ 688 while (nrservs < 0 && 689 (task = choose_victim(serv, pool, &state)) != NULL) { 690 send_sig(SIGINT, task, 1); 691 nrservs++; 692 } 693 694 return error; 695 } 696 EXPORT_SYMBOL_GPL(svc_set_num_threads); 697 698 /* 699 * Called from a server thread as it's exiting. Caller must hold the BKL or 700 * the "service mutex", whichever is appropriate for the service. 701 */ 702 void 703 svc_exit_thread(struct svc_rqst *rqstp) 704 { 705 struct svc_serv *serv = rqstp->rq_server; 706 struct svc_pool *pool = rqstp->rq_pool; 707 708 svc_release_buffer(rqstp); 709 kfree(rqstp->rq_resp); 710 kfree(rqstp->rq_argp); 711 kfree(rqstp->rq_auth_data); 712 713 spin_lock_bh(&pool->sp_lock); 714 pool->sp_nrthreads--; 715 list_del(&rqstp->rq_all); 716 spin_unlock_bh(&pool->sp_lock); 717 718 kfree(rqstp); 719 720 /* Release the server */ 721 if (serv) 722 svc_destroy(serv); 723 } 724 EXPORT_SYMBOL_GPL(svc_exit_thread); 725 726 /* 727 * Register an "inet" protocol family netid with the local 728 * rpcbind daemon via an rpcbind v4 SET request. 729 * 730 * No netconfig infrastructure is available in the kernel, so 731 * we map IP_ protocol numbers to netids by hand. 732 * 733 * Returns zero on success; a negative errno value is returned 734 * if any error occurs. 735 */ 736 static int __svc_rpcb_register4(const u32 program, const u32 version, 737 const unsigned short protocol, 738 const unsigned short port) 739 { 740 const struct sockaddr_in sin = { 741 .sin_family = AF_INET, 742 .sin_addr.s_addr = htonl(INADDR_ANY), 743 .sin_port = htons(port), 744 }; 745 const char *netid; 746 int error; 747 748 switch (protocol) { 749 case IPPROTO_UDP: 750 netid = RPCBIND_NETID_UDP; 751 break; 752 case IPPROTO_TCP: 753 netid = RPCBIND_NETID_TCP; 754 break; 755 default: 756 return -ENOPROTOOPT; 757 } 758 759 error = rpcb_v4_register(program, version, 760 (const struct sockaddr *)&sin, netid); 761 762 /* 763 * User space didn't support rpcbind v4, so retry this 764 * registration request with the legacy rpcbind v2 protocol. 765 */ 766 if (error == -EPROTONOSUPPORT) 767 error = rpcb_register(program, version, protocol, port); 768 769 return error; 770 } 771 772 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 773 /* 774 * Register an "inet6" protocol family netid with the local 775 * rpcbind daemon via an rpcbind v4 SET request. 776 * 777 * No netconfig infrastructure is available in the kernel, so 778 * we map IP_ protocol numbers to netids by hand. 779 * 780 * Returns zero on success; a negative errno value is returned 781 * if any error occurs. 782 */ 783 static int __svc_rpcb_register6(const u32 program, const u32 version, 784 const unsigned short protocol, 785 const unsigned short port) 786 { 787 const struct sockaddr_in6 sin6 = { 788 .sin6_family = AF_INET6, 789 .sin6_addr = IN6ADDR_ANY_INIT, 790 .sin6_port = htons(port), 791 }; 792 const char *netid; 793 int error; 794 795 switch (protocol) { 796 case IPPROTO_UDP: 797 netid = RPCBIND_NETID_UDP6; 798 break; 799 case IPPROTO_TCP: 800 netid = RPCBIND_NETID_TCP6; 801 break; 802 default: 803 return -ENOPROTOOPT; 804 } 805 806 error = rpcb_v4_register(program, version, 807 (const struct sockaddr *)&sin6, netid); 808 809 /* 810 * User space didn't support rpcbind version 4, so we won't 811 * use a PF_INET6 listener. 812 */ 813 if (error == -EPROTONOSUPPORT) 814 error = -EAFNOSUPPORT; 815 816 return error; 817 } 818 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */ 819 820 /* 821 * Register a kernel RPC service via rpcbind version 4. 822 * 823 * Returns zero on success; a negative errno value is returned 824 * if any error occurs. 825 */ 826 static int __svc_register(const char *progname, 827 const u32 program, const u32 version, 828 const int family, 829 const unsigned short protocol, 830 const unsigned short port) 831 { 832 int error = -EAFNOSUPPORT; 833 834 switch (family) { 835 case PF_INET: 836 error = __svc_rpcb_register4(program, version, 837 protocol, port); 838 break; 839 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 840 case PF_INET6: 841 error = __svc_rpcb_register6(program, version, 842 protocol, port); 843 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */ 844 } 845 846 if (error < 0) 847 printk(KERN_WARNING "svc: failed to register %sv%u RPC " 848 "service (errno %d).\n", progname, version, -error); 849 return error; 850 } 851 852 /** 853 * svc_register - register an RPC service with the local portmapper 854 * @serv: svc_serv struct for the service to register 855 * @family: protocol family of service's listener socket 856 * @proto: transport protocol number to advertise 857 * @port: port to advertise 858 * 859 * Service is registered for any address in the passed-in protocol family 860 */ 861 int svc_register(const struct svc_serv *serv, const int family, 862 const unsigned short proto, const unsigned short port) 863 { 864 struct svc_program *progp; 865 unsigned int i; 866 int error = 0; 867 868 BUG_ON(proto == 0 && port == 0); 869 870 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 871 for (i = 0; i < progp->pg_nvers; i++) { 872 if (progp->pg_vers[i] == NULL) 873 continue; 874 875 dprintk("svc: svc_register(%sv%d, %s, %u, %u)%s\n", 876 progp->pg_name, 877 i, 878 proto == IPPROTO_UDP? "udp" : "tcp", 879 port, 880 family, 881 progp->pg_vers[i]->vs_hidden? 882 " (but not telling portmap)" : ""); 883 884 if (progp->pg_vers[i]->vs_hidden) 885 continue; 886 887 error = __svc_register(progp->pg_name, progp->pg_prog, 888 i, family, proto, port); 889 if (error < 0) 890 break; 891 } 892 } 893 894 return error; 895 } 896 897 /* 898 * If user space is running rpcbind, it should take the v4 UNSET 899 * and clear everything for this [program, version]. If user space 900 * is running portmap, it will reject the v4 UNSET, but won't have 901 * any "inet6" entries anyway. So a PMAP_UNSET should be sufficient 902 * in this case to clear all existing entries for [program, version]. 903 */ 904 static void __svc_unregister(const u32 program, const u32 version, 905 const char *progname) 906 { 907 int error; 908 909 error = rpcb_v4_register(program, version, NULL, ""); 910 911 /* 912 * User space didn't support rpcbind v4, so retry this 913 * request with the legacy rpcbind v2 protocol. 914 */ 915 if (error == -EPROTONOSUPPORT) 916 error = rpcb_register(program, version, 0, 0); 917 918 dprintk("svc: %s(%sv%u), error %d\n", 919 __func__, progname, version, error); 920 } 921 922 /* 923 * All netids, bind addresses and ports registered for [program, version] 924 * are removed from the local rpcbind database (if the service is not 925 * hidden) to make way for a new instance of the service. 926 * 927 * The result of unregistration is reported via dprintk for those who want 928 * verification of the result, but is otherwise not important. 929 */ 930 static void svc_unregister(const struct svc_serv *serv) 931 { 932 struct svc_program *progp; 933 unsigned long flags; 934 unsigned int i; 935 936 clear_thread_flag(TIF_SIGPENDING); 937 938 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 939 for (i = 0; i < progp->pg_nvers; i++) { 940 if (progp->pg_vers[i] == NULL) 941 continue; 942 if (progp->pg_vers[i]->vs_hidden) 943 continue; 944 945 dprintk("svc: attempting to unregister %sv%u\n", 946 progp->pg_name, i); 947 __svc_unregister(progp->pg_prog, i, progp->pg_name); 948 } 949 } 950 951 spin_lock_irqsave(¤t->sighand->siglock, flags); 952 recalc_sigpending(); 953 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 954 } 955 956 /* 957 * Printk the given error with the address of the client that caused it. 958 */ 959 static int 960 __attribute__ ((format (printf, 2, 3))) 961 svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) 962 { 963 va_list args; 964 int r; 965 char buf[RPC_MAX_ADDRBUFLEN]; 966 967 if (!net_ratelimit()) 968 return 0; 969 970 printk(KERN_WARNING "svc: %s: ", 971 svc_print_addr(rqstp, buf, sizeof(buf))); 972 973 va_start(args, fmt); 974 r = vprintk(fmt, args); 975 va_end(args); 976 977 return r; 978 } 979 980 /* 981 * Common routine for processing the RPC request. 982 */ 983 static int 984 svc_process_common(struct svc_rqst *rqstp, struct kvec *argv, struct kvec *resv) 985 { 986 struct svc_program *progp; 987 struct svc_version *versp = NULL; /* compiler food */ 988 struct svc_procedure *procp = NULL; 989 struct svc_serv *serv = rqstp->rq_server; 990 kxdrproc_t xdr; 991 __be32 *statp; 992 u32 prog, vers, proc; 993 __be32 auth_stat, rpc_stat; 994 int auth_res; 995 __be32 *reply_statp; 996 997 rpc_stat = rpc_success; 998 999 if (argv->iov_len < 6*4) 1000 goto err_short_len; 1001 1002 /* Will be turned off only in gss privacy case: */ 1003 rqstp->rq_splice_ok = 1; 1004 /* Will be turned off only when NFSv4 Sessions are used */ 1005 rqstp->rq_usedeferral = 1; 1006 rqstp->rq_dropme = false; 1007 1008 /* Setup reply header */ 1009 rqstp->rq_xprt->xpt_ops->xpo_prep_reply_hdr(rqstp); 1010 1011 svc_putu32(resv, rqstp->rq_xid); 1012 1013 vers = svc_getnl(argv); 1014 1015 /* First words of reply: */ 1016 svc_putnl(resv, 1); /* REPLY */ 1017 1018 if (vers != 2) /* RPC version number */ 1019 goto err_bad_rpc; 1020 1021 /* Save position in case we later decide to reject: */ 1022 reply_statp = resv->iov_base + resv->iov_len; 1023 1024 svc_putnl(resv, 0); /* ACCEPT */ 1025 1026 rqstp->rq_prog = prog = svc_getnl(argv); /* program number */ 1027 rqstp->rq_vers = vers = svc_getnl(argv); /* version number */ 1028 rqstp->rq_proc = proc = svc_getnl(argv); /* procedure number */ 1029 1030 progp = serv->sv_program; 1031 1032 for (progp = serv->sv_program; progp; progp = progp->pg_next) 1033 if (prog == progp->pg_prog) 1034 break; 1035 1036 /* 1037 * Decode auth data, and add verifier to reply buffer. 1038 * We do this before anything else in order to get a decent 1039 * auth verifier. 1040 */ 1041 auth_res = svc_authenticate(rqstp, &auth_stat); 1042 /* Also give the program a chance to reject this call: */ 1043 if (auth_res == SVC_OK && progp) { 1044 auth_stat = rpc_autherr_badcred; 1045 auth_res = progp->pg_authenticate(rqstp); 1046 } 1047 switch (auth_res) { 1048 case SVC_OK: 1049 break; 1050 case SVC_GARBAGE: 1051 goto err_garbage; 1052 case SVC_SYSERR: 1053 rpc_stat = rpc_system_err; 1054 goto err_bad; 1055 case SVC_DENIED: 1056 goto err_bad_auth; 1057 case SVC_CLOSE: 1058 if (test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags)) 1059 svc_close_xprt(rqstp->rq_xprt); 1060 case SVC_DROP: 1061 goto dropit; 1062 case SVC_COMPLETE: 1063 goto sendit; 1064 } 1065 1066 if (progp == NULL) 1067 goto err_bad_prog; 1068 1069 if (vers >= progp->pg_nvers || 1070 !(versp = progp->pg_vers[vers])) 1071 goto err_bad_vers; 1072 1073 procp = versp->vs_proc + proc; 1074 if (proc >= versp->vs_nproc || !procp->pc_func) 1075 goto err_bad_proc; 1076 rqstp->rq_procinfo = procp; 1077 1078 /* Syntactic check complete */ 1079 serv->sv_stats->rpccnt++; 1080 1081 /* Build the reply header. */ 1082 statp = resv->iov_base +resv->iov_len; 1083 svc_putnl(resv, RPC_SUCCESS); 1084 1085 /* Bump per-procedure stats counter */ 1086 procp->pc_count++; 1087 1088 /* Initialize storage for argp and resp */ 1089 memset(rqstp->rq_argp, 0, procp->pc_argsize); 1090 memset(rqstp->rq_resp, 0, procp->pc_ressize); 1091 1092 /* un-reserve some of the out-queue now that we have a 1093 * better idea of reply size 1094 */ 1095 if (procp->pc_xdrressize) 1096 svc_reserve_auth(rqstp, procp->pc_xdrressize<<2); 1097 1098 /* Call the function that processes the request. */ 1099 if (!versp->vs_dispatch) { 1100 /* Decode arguments */ 1101 xdr = procp->pc_decode; 1102 if (xdr && !xdr(rqstp, argv->iov_base, rqstp->rq_argp)) 1103 goto err_garbage; 1104 1105 *statp = procp->pc_func(rqstp, rqstp->rq_argp, rqstp->rq_resp); 1106 1107 /* Encode reply */ 1108 if (rqstp->rq_dropme) { 1109 if (procp->pc_release) 1110 procp->pc_release(rqstp, NULL, rqstp->rq_resp); 1111 goto dropit; 1112 } 1113 if (*statp == rpc_success && 1114 (xdr = procp->pc_encode) && 1115 !xdr(rqstp, resv->iov_base+resv->iov_len, rqstp->rq_resp)) { 1116 dprintk("svc: failed to encode reply\n"); 1117 /* serv->sv_stats->rpcsystemerr++; */ 1118 *statp = rpc_system_err; 1119 } 1120 } else { 1121 dprintk("svc: calling dispatcher\n"); 1122 if (!versp->vs_dispatch(rqstp, statp)) { 1123 /* Release reply info */ 1124 if (procp->pc_release) 1125 procp->pc_release(rqstp, NULL, rqstp->rq_resp); 1126 goto dropit; 1127 } 1128 } 1129 1130 /* Check RPC status result */ 1131 if (*statp != rpc_success) 1132 resv->iov_len = ((void*)statp) - resv->iov_base + 4; 1133 1134 /* Release reply info */ 1135 if (procp->pc_release) 1136 procp->pc_release(rqstp, NULL, rqstp->rq_resp); 1137 1138 if (procp->pc_encode == NULL) 1139 goto dropit; 1140 1141 sendit: 1142 if (svc_authorise(rqstp)) 1143 goto dropit; 1144 return 1; /* Caller can now send it */ 1145 1146 dropit: 1147 svc_authorise(rqstp); /* doesn't hurt to call this twice */ 1148 dprintk("svc: svc_process dropit\n"); 1149 return 0; 1150 1151 err_short_len: 1152 svc_printk(rqstp, "short len %Zd, dropping request\n", 1153 argv->iov_len); 1154 1155 goto dropit; /* drop request */ 1156 1157 err_bad_rpc: 1158 serv->sv_stats->rpcbadfmt++; 1159 svc_putnl(resv, 1); /* REJECT */ 1160 svc_putnl(resv, 0); /* RPC_MISMATCH */ 1161 svc_putnl(resv, 2); /* Only RPCv2 supported */ 1162 svc_putnl(resv, 2); 1163 goto sendit; 1164 1165 err_bad_auth: 1166 dprintk("svc: authentication failed (%d)\n", ntohl(auth_stat)); 1167 serv->sv_stats->rpcbadauth++; 1168 /* Restore write pointer to location of accept status: */ 1169 xdr_ressize_check(rqstp, reply_statp); 1170 svc_putnl(resv, 1); /* REJECT */ 1171 svc_putnl(resv, 1); /* AUTH_ERROR */ 1172 svc_putnl(resv, ntohl(auth_stat)); /* status */ 1173 goto sendit; 1174 1175 err_bad_prog: 1176 dprintk("svc: unknown program %d\n", prog); 1177 serv->sv_stats->rpcbadfmt++; 1178 svc_putnl(resv, RPC_PROG_UNAVAIL); 1179 goto sendit; 1180 1181 err_bad_vers: 1182 svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n", 1183 vers, prog, progp->pg_name); 1184 1185 serv->sv_stats->rpcbadfmt++; 1186 svc_putnl(resv, RPC_PROG_MISMATCH); 1187 svc_putnl(resv, progp->pg_lovers); 1188 svc_putnl(resv, progp->pg_hivers); 1189 goto sendit; 1190 1191 err_bad_proc: 1192 svc_printk(rqstp, "unknown procedure (%d)\n", proc); 1193 1194 serv->sv_stats->rpcbadfmt++; 1195 svc_putnl(resv, RPC_PROC_UNAVAIL); 1196 goto sendit; 1197 1198 err_garbage: 1199 svc_printk(rqstp, "failed to decode args\n"); 1200 1201 rpc_stat = rpc_garbage_args; 1202 err_bad: 1203 serv->sv_stats->rpcbadfmt++; 1204 svc_putnl(resv, ntohl(rpc_stat)); 1205 goto sendit; 1206 } 1207 EXPORT_SYMBOL_GPL(svc_process); 1208 1209 /* 1210 * Process the RPC request. 1211 */ 1212 int 1213 svc_process(struct svc_rqst *rqstp) 1214 { 1215 struct kvec *argv = &rqstp->rq_arg.head[0]; 1216 struct kvec *resv = &rqstp->rq_res.head[0]; 1217 struct svc_serv *serv = rqstp->rq_server; 1218 u32 dir; 1219 1220 /* 1221 * Setup response xdr_buf. 1222 * Initially it has just one page 1223 */ 1224 rqstp->rq_resused = 1; 1225 resv->iov_base = page_address(rqstp->rq_respages[0]); 1226 resv->iov_len = 0; 1227 rqstp->rq_res.pages = rqstp->rq_respages + 1; 1228 rqstp->rq_res.len = 0; 1229 rqstp->rq_res.page_base = 0; 1230 rqstp->rq_res.page_len = 0; 1231 rqstp->rq_res.buflen = PAGE_SIZE; 1232 rqstp->rq_res.tail[0].iov_base = NULL; 1233 rqstp->rq_res.tail[0].iov_len = 0; 1234 1235 rqstp->rq_xid = svc_getu32(argv); 1236 1237 dir = svc_getnl(argv); 1238 if (dir != 0) { 1239 /* direction != CALL */ 1240 svc_printk(rqstp, "bad direction %d, dropping request\n", dir); 1241 serv->sv_stats->rpcbadfmt++; 1242 svc_drop(rqstp); 1243 return 0; 1244 } 1245 1246 /* Returns 1 for send, 0 for drop */ 1247 if (svc_process_common(rqstp, argv, resv)) 1248 return svc_send(rqstp); 1249 else { 1250 svc_drop(rqstp); 1251 return 0; 1252 } 1253 } 1254 1255 #if defined(CONFIG_NFS_V4_1) 1256 /* 1257 * Process a backchannel RPC request that arrived over an existing 1258 * outbound connection 1259 */ 1260 int 1261 bc_svc_process(struct svc_serv *serv, struct rpc_rqst *req, 1262 struct svc_rqst *rqstp) 1263 { 1264 struct kvec *argv = &rqstp->rq_arg.head[0]; 1265 struct kvec *resv = &rqstp->rq_res.head[0]; 1266 1267 /* Build the svc_rqst used by the common processing routine */ 1268 rqstp->rq_xprt = serv->sv_bc_xprt; 1269 rqstp->rq_xid = req->rq_xid; 1270 rqstp->rq_prot = req->rq_xprt->prot; 1271 rqstp->rq_server = serv; 1272 1273 rqstp->rq_addrlen = sizeof(req->rq_xprt->addr); 1274 memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen); 1275 memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg)); 1276 memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res)); 1277 1278 /* reset result send buffer "put" position */ 1279 resv->iov_len = 0; 1280 1281 if (rqstp->rq_prot != IPPROTO_TCP) { 1282 printk(KERN_ERR "No support for Non-TCP transports!\n"); 1283 BUG(); 1284 } 1285 1286 /* 1287 * Skip the next two words because they've already been 1288 * processed in the trasport 1289 */ 1290 svc_getu32(argv); /* XID */ 1291 svc_getnl(argv); /* CALLDIR */ 1292 1293 /* Returns 1 for send, 0 for drop */ 1294 if (svc_process_common(rqstp, argv, resv)) { 1295 memcpy(&req->rq_snd_buf, &rqstp->rq_res, 1296 sizeof(req->rq_snd_buf)); 1297 return bc_send(req); 1298 } else { 1299 /* Nothing to do to drop request */ 1300 return 0; 1301 } 1302 } 1303 EXPORT_SYMBOL(bc_svc_process); 1304 #endif /* CONFIG_NFS_V4_1 */ 1305 1306 /* 1307 * Return (transport-specific) limit on the rpc payload. 1308 */ 1309 u32 svc_max_payload(const struct svc_rqst *rqstp) 1310 { 1311 u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload; 1312 1313 if (rqstp->rq_server->sv_max_payload < max) 1314 max = rqstp->rq_server->sv_max_payload; 1315 return max; 1316 } 1317 EXPORT_SYMBOL_GPL(svc_max_payload); 1318