1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/net/sunrpc/svc.c 4 * 5 * High-level RPC service routines 6 * 7 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 8 * 9 * Multiple threads pools and NUMAisation 10 * Copyright (c) 2006 Silicon Graphics, Inc. 11 * by Greg Banks <gnb@melbourne.sgi.com> 12 */ 13 14 #include <linux/linkage.h> 15 #include <linux/sched/signal.h> 16 #include <linux/errno.h> 17 #include <linux/net.h> 18 #include <linux/in.h> 19 #include <linux/mm.h> 20 #include <linux/interrupt.h> 21 #include <linux/module.h> 22 #include <linux/kthread.h> 23 #include <linux/slab.h> 24 25 #include <linux/sunrpc/types.h> 26 #include <linux/sunrpc/xdr.h> 27 #include <linux/sunrpc/stats.h> 28 #include <linux/sunrpc/svcsock.h> 29 #include <linux/sunrpc/clnt.h> 30 #include <linux/sunrpc/bc_xprt.h> 31 32 #include <trace/events/sunrpc.h> 33 34 #include "fail.h" 35 36 #define RPCDBG_FACILITY RPCDBG_SVCDSP 37 38 static void svc_unregister(const struct svc_serv *serv, struct net *net); 39 40 #define SVC_POOL_DEFAULT SVC_POOL_GLOBAL 41 42 /* 43 * Mode for mapping cpus to pools. 44 */ 45 enum { 46 SVC_POOL_AUTO = -1, /* choose one of the others */ 47 SVC_POOL_GLOBAL, /* no mapping, just a single global pool 48 * (legacy & UP mode) */ 49 SVC_POOL_PERCPU, /* one pool per cpu */ 50 SVC_POOL_PERNODE /* one pool per numa node */ 51 }; 52 53 /* 54 * Structure for mapping cpus to pools and vice versa. 55 * Setup once during sunrpc initialisation. 56 */ 57 58 struct svc_pool_map { 59 int count; /* How many svc_servs use us */ 60 int mode; /* Note: int not enum to avoid 61 * warnings about "enumeration value 62 * not handled in switch" */ 63 unsigned int npools; 64 unsigned int *pool_to; /* maps pool id to cpu or node */ 65 unsigned int *to_pool; /* maps cpu or node to pool id */ 66 }; 67 68 static struct svc_pool_map svc_pool_map = { 69 .mode = SVC_POOL_DEFAULT 70 }; 71 72 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */ 73 74 static int 75 param_set_pool_mode(const char *val, const struct kernel_param *kp) 76 { 77 int *ip = (int *)kp->arg; 78 struct svc_pool_map *m = &svc_pool_map; 79 int err; 80 81 mutex_lock(&svc_pool_map_mutex); 82 83 err = -EBUSY; 84 if (m->count) 85 goto out; 86 87 err = 0; 88 if (!strncmp(val, "auto", 4)) 89 *ip = SVC_POOL_AUTO; 90 else if (!strncmp(val, "global", 6)) 91 *ip = SVC_POOL_GLOBAL; 92 else if (!strncmp(val, "percpu", 6)) 93 *ip = SVC_POOL_PERCPU; 94 else if (!strncmp(val, "pernode", 7)) 95 *ip = SVC_POOL_PERNODE; 96 else 97 err = -EINVAL; 98 99 out: 100 mutex_unlock(&svc_pool_map_mutex); 101 return err; 102 } 103 104 static int 105 param_get_pool_mode(char *buf, const struct kernel_param *kp) 106 { 107 int *ip = (int *)kp->arg; 108 109 switch (*ip) 110 { 111 case SVC_POOL_AUTO: 112 return strlcpy(buf, "auto\n", 20); 113 case SVC_POOL_GLOBAL: 114 return strlcpy(buf, "global\n", 20); 115 case SVC_POOL_PERCPU: 116 return strlcpy(buf, "percpu\n", 20); 117 case SVC_POOL_PERNODE: 118 return strlcpy(buf, "pernode\n", 20); 119 default: 120 return sprintf(buf, "%d\n", *ip); 121 } 122 } 123 124 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode, 125 &svc_pool_map.mode, 0644); 126 127 /* 128 * Detect best pool mapping mode heuristically, 129 * according to the machine's topology. 130 */ 131 static int 132 svc_pool_map_choose_mode(void) 133 { 134 unsigned int node; 135 136 if (nr_online_nodes > 1) { 137 /* 138 * Actually have multiple NUMA nodes, 139 * so split pools on NUMA node boundaries 140 */ 141 return SVC_POOL_PERNODE; 142 } 143 144 node = first_online_node; 145 if (nr_cpus_node(node) > 2) { 146 /* 147 * Non-trivial SMP, or CONFIG_NUMA on 148 * non-NUMA hardware, e.g. with a generic 149 * x86_64 kernel on Xeons. In this case we 150 * want to divide the pools on cpu boundaries. 151 */ 152 return SVC_POOL_PERCPU; 153 } 154 155 /* default: one global pool */ 156 return SVC_POOL_GLOBAL; 157 } 158 159 /* 160 * Allocate the to_pool[] and pool_to[] arrays. 161 * Returns 0 on success or an errno. 162 */ 163 static int 164 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools) 165 { 166 m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL); 167 if (!m->to_pool) 168 goto fail; 169 m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL); 170 if (!m->pool_to) 171 goto fail_free; 172 173 return 0; 174 175 fail_free: 176 kfree(m->to_pool); 177 m->to_pool = NULL; 178 fail: 179 return -ENOMEM; 180 } 181 182 /* 183 * Initialise the pool map for SVC_POOL_PERCPU mode. 184 * Returns number of pools or <0 on error. 185 */ 186 static int 187 svc_pool_map_init_percpu(struct svc_pool_map *m) 188 { 189 unsigned int maxpools = nr_cpu_ids; 190 unsigned int pidx = 0; 191 unsigned int cpu; 192 int err; 193 194 err = svc_pool_map_alloc_arrays(m, maxpools); 195 if (err) 196 return err; 197 198 for_each_online_cpu(cpu) { 199 BUG_ON(pidx >= maxpools); 200 m->to_pool[cpu] = pidx; 201 m->pool_to[pidx] = cpu; 202 pidx++; 203 } 204 /* cpus brought online later all get mapped to pool0, sorry */ 205 206 return pidx; 207 }; 208 209 210 /* 211 * Initialise the pool map for SVC_POOL_PERNODE mode. 212 * Returns number of pools or <0 on error. 213 */ 214 static int 215 svc_pool_map_init_pernode(struct svc_pool_map *m) 216 { 217 unsigned int maxpools = nr_node_ids; 218 unsigned int pidx = 0; 219 unsigned int node; 220 int err; 221 222 err = svc_pool_map_alloc_arrays(m, maxpools); 223 if (err) 224 return err; 225 226 for_each_node_with_cpus(node) { 227 /* some architectures (e.g. SN2) have cpuless nodes */ 228 BUG_ON(pidx > maxpools); 229 m->to_pool[node] = pidx; 230 m->pool_to[pidx] = node; 231 pidx++; 232 } 233 /* nodes brought online later all get mapped to pool0, sorry */ 234 235 return pidx; 236 } 237 238 239 /* 240 * Add a reference to the global map of cpus to pools (and 241 * vice versa) if pools are in use. 242 * Initialise the map if we're the first user. 243 * Returns the number of pools. If this is '1', no reference 244 * was taken. 245 */ 246 static unsigned int 247 svc_pool_map_get(void) 248 { 249 struct svc_pool_map *m = &svc_pool_map; 250 int npools = -1; 251 252 mutex_lock(&svc_pool_map_mutex); 253 254 if (m->count++) { 255 mutex_unlock(&svc_pool_map_mutex); 256 WARN_ON_ONCE(m->npools <= 1); 257 return m->npools; 258 } 259 260 if (m->mode == SVC_POOL_AUTO) 261 m->mode = svc_pool_map_choose_mode(); 262 263 switch (m->mode) { 264 case SVC_POOL_PERCPU: 265 npools = svc_pool_map_init_percpu(m); 266 break; 267 case SVC_POOL_PERNODE: 268 npools = svc_pool_map_init_pernode(m); 269 break; 270 } 271 272 if (npools <= 0) { 273 /* default, or memory allocation failure */ 274 npools = 1; 275 m->mode = SVC_POOL_GLOBAL; 276 } 277 m->npools = npools; 278 279 if (npools == 1) 280 /* service is unpooled, so doesn't hold a reference */ 281 m->count--; 282 283 mutex_unlock(&svc_pool_map_mutex); 284 return npools; 285 } 286 287 /* 288 * Drop a reference to the global map of cpus to pools, if 289 * pools were in use, i.e. if npools > 1. 290 * When the last reference is dropped, the map data is 291 * freed; this allows the sysadmin to change the pool 292 * mode using the pool_mode module option without 293 * rebooting or re-loading sunrpc.ko. 294 */ 295 static void 296 svc_pool_map_put(int npools) 297 { 298 struct svc_pool_map *m = &svc_pool_map; 299 300 if (npools <= 1) 301 return; 302 mutex_lock(&svc_pool_map_mutex); 303 304 if (!--m->count) { 305 kfree(m->to_pool); 306 m->to_pool = NULL; 307 kfree(m->pool_to); 308 m->pool_to = NULL; 309 m->npools = 0; 310 } 311 312 mutex_unlock(&svc_pool_map_mutex); 313 } 314 315 static int svc_pool_map_get_node(unsigned int pidx) 316 { 317 const struct svc_pool_map *m = &svc_pool_map; 318 319 if (m->count) { 320 if (m->mode == SVC_POOL_PERCPU) 321 return cpu_to_node(m->pool_to[pidx]); 322 if (m->mode == SVC_POOL_PERNODE) 323 return m->pool_to[pidx]; 324 } 325 return NUMA_NO_NODE; 326 } 327 /* 328 * Set the given thread's cpus_allowed mask so that it 329 * will only run on cpus in the given pool. 330 */ 331 static inline void 332 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx) 333 { 334 struct svc_pool_map *m = &svc_pool_map; 335 unsigned int node = m->pool_to[pidx]; 336 337 /* 338 * The caller checks for sv_nrpools > 1, which 339 * implies that we've been initialized. 340 */ 341 WARN_ON_ONCE(m->count == 0); 342 if (m->count == 0) 343 return; 344 345 switch (m->mode) { 346 case SVC_POOL_PERCPU: 347 { 348 set_cpus_allowed_ptr(task, cpumask_of(node)); 349 break; 350 } 351 case SVC_POOL_PERNODE: 352 { 353 set_cpus_allowed_ptr(task, cpumask_of_node(node)); 354 break; 355 } 356 } 357 } 358 359 /** 360 * svc_pool_for_cpu - Select pool to run a thread on this cpu 361 * @serv: An RPC service 362 * 363 * Use the active CPU and the svc_pool_map's mode setting to 364 * select the svc thread pool to use. Once initialized, the 365 * svc_pool_map does not change. 366 * 367 * Return value: 368 * A pointer to an svc_pool 369 */ 370 struct svc_pool *svc_pool_for_cpu(struct svc_serv *serv) 371 { 372 struct svc_pool_map *m = &svc_pool_map; 373 int cpu = raw_smp_processor_id(); 374 unsigned int pidx = 0; 375 376 if (serv->sv_nrpools <= 1) 377 return serv->sv_pools; 378 379 switch (m->mode) { 380 case SVC_POOL_PERCPU: 381 pidx = m->to_pool[cpu]; 382 break; 383 case SVC_POOL_PERNODE: 384 pidx = m->to_pool[cpu_to_node(cpu)]; 385 break; 386 } 387 388 return &serv->sv_pools[pidx % serv->sv_nrpools]; 389 } 390 391 int svc_rpcb_setup(struct svc_serv *serv, struct net *net) 392 { 393 int err; 394 395 err = rpcb_create_local(net); 396 if (err) 397 return err; 398 399 /* Remove any stale portmap registrations */ 400 svc_unregister(serv, net); 401 return 0; 402 } 403 EXPORT_SYMBOL_GPL(svc_rpcb_setup); 404 405 void svc_rpcb_cleanup(struct svc_serv *serv, struct net *net) 406 { 407 svc_unregister(serv, net); 408 rpcb_put_local(net); 409 } 410 EXPORT_SYMBOL_GPL(svc_rpcb_cleanup); 411 412 static int svc_uses_rpcbind(struct svc_serv *serv) 413 { 414 struct svc_program *progp; 415 unsigned int i; 416 417 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 418 for (i = 0; i < progp->pg_nvers; i++) { 419 if (progp->pg_vers[i] == NULL) 420 continue; 421 if (!progp->pg_vers[i]->vs_hidden) 422 return 1; 423 } 424 } 425 426 return 0; 427 } 428 429 int svc_bind(struct svc_serv *serv, struct net *net) 430 { 431 if (!svc_uses_rpcbind(serv)) 432 return 0; 433 return svc_rpcb_setup(serv, net); 434 } 435 EXPORT_SYMBOL_GPL(svc_bind); 436 437 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 438 static void 439 __svc_init_bc(struct svc_serv *serv) 440 { 441 INIT_LIST_HEAD(&serv->sv_cb_list); 442 spin_lock_init(&serv->sv_cb_lock); 443 init_waitqueue_head(&serv->sv_cb_waitq); 444 } 445 #else 446 static void 447 __svc_init_bc(struct svc_serv *serv) 448 { 449 } 450 #endif 451 452 /* 453 * Create an RPC service 454 */ 455 static struct svc_serv * 456 __svc_create(struct svc_program *prog, unsigned int bufsize, int npools, 457 int (*threadfn)(void *data)) 458 { 459 struct svc_serv *serv; 460 unsigned int vers; 461 unsigned int xdrsize; 462 unsigned int i; 463 464 if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL))) 465 return NULL; 466 serv->sv_name = prog->pg_name; 467 serv->sv_program = prog; 468 kref_init(&serv->sv_refcnt); 469 serv->sv_stats = prog->pg_stats; 470 if (bufsize > RPCSVC_MAXPAYLOAD) 471 bufsize = RPCSVC_MAXPAYLOAD; 472 serv->sv_max_payload = bufsize? bufsize : 4096; 473 serv->sv_max_mesg = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE); 474 serv->sv_threadfn = threadfn; 475 xdrsize = 0; 476 while (prog) { 477 prog->pg_lovers = prog->pg_nvers-1; 478 for (vers=0; vers<prog->pg_nvers ; vers++) 479 if (prog->pg_vers[vers]) { 480 prog->pg_hivers = vers; 481 if (prog->pg_lovers > vers) 482 prog->pg_lovers = vers; 483 if (prog->pg_vers[vers]->vs_xdrsize > xdrsize) 484 xdrsize = prog->pg_vers[vers]->vs_xdrsize; 485 } 486 prog = prog->pg_next; 487 } 488 serv->sv_xdrsize = xdrsize; 489 INIT_LIST_HEAD(&serv->sv_tempsocks); 490 INIT_LIST_HEAD(&serv->sv_permsocks); 491 timer_setup(&serv->sv_temptimer, NULL, 0); 492 spin_lock_init(&serv->sv_lock); 493 494 __svc_init_bc(serv); 495 496 serv->sv_nrpools = npools; 497 serv->sv_pools = 498 kcalloc(serv->sv_nrpools, sizeof(struct svc_pool), 499 GFP_KERNEL); 500 if (!serv->sv_pools) { 501 kfree(serv); 502 return NULL; 503 } 504 505 for (i = 0; i < serv->sv_nrpools; i++) { 506 struct svc_pool *pool = &serv->sv_pools[i]; 507 508 dprintk("svc: initialising pool %u for %s\n", 509 i, serv->sv_name); 510 511 pool->sp_id = i; 512 INIT_LIST_HEAD(&pool->sp_sockets); 513 INIT_LIST_HEAD(&pool->sp_all_threads); 514 spin_lock_init(&pool->sp_lock); 515 } 516 517 return serv; 518 } 519 520 /** 521 * svc_create - Create an RPC service 522 * @prog: the RPC program the new service will handle 523 * @bufsize: maximum message size for @prog 524 * @threadfn: a function to service RPC requests for @prog 525 * 526 * Returns an instantiated struct svc_serv object or NULL. 527 */ 528 struct svc_serv *svc_create(struct svc_program *prog, unsigned int bufsize, 529 int (*threadfn)(void *data)) 530 { 531 return __svc_create(prog, bufsize, 1, threadfn); 532 } 533 EXPORT_SYMBOL_GPL(svc_create); 534 535 /** 536 * svc_create_pooled - Create an RPC service with pooled threads 537 * @prog: the RPC program the new service will handle 538 * @bufsize: maximum message size for @prog 539 * @threadfn: a function to service RPC requests for @prog 540 * 541 * Returns an instantiated struct svc_serv object or NULL. 542 */ 543 struct svc_serv *svc_create_pooled(struct svc_program *prog, 544 unsigned int bufsize, 545 int (*threadfn)(void *data)) 546 { 547 struct svc_serv *serv; 548 unsigned int npools = svc_pool_map_get(); 549 550 serv = __svc_create(prog, bufsize, npools, threadfn); 551 if (!serv) 552 goto out_err; 553 return serv; 554 out_err: 555 svc_pool_map_put(npools); 556 return NULL; 557 } 558 EXPORT_SYMBOL_GPL(svc_create_pooled); 559 560 /* 561 * Destroy an RPC service. Should be called with appropriate locking to 562 * protect sv_permsocks and sv_tempsocks. 563 */ 564 void 565 svc_destroy(struct kref *ref) 566 { 567 struct svc_serv *serv = container_of(ref, struct svc_serv, sv_refcnt); 568 569 dprintk("svc: svc_destroy(%s)\n", serv->sv_program->pg_name); 570 del_timer_sync(&serv->sv_temptimer); 571 572 /* 573 * The last user is gone and thus all sockets have to be destroyed to 574 * the point. Check this. 575 */ 576 BUG_ON(!list_empty(&serv->sv_permsocks)); 577 BUG_ON(!list_empty(&serv->sv_tempsocks)); 578 579 cache_clean_deferred(serv); 580 581 svc_pool_map_put(serv->sv_nrpools); 582 583 kfree(serv->sv_pools); 584 kfree(serv); 585 } 586 EXPORT_SYMBOL_GPL(svc_destroy); 587 588 /* 589 * Allocate an RPC server's buffer space. 590 * We allocate pages and place them in rq_pages. 591 */ 592 static int 593 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size, int node) 594 { 595 unsigned int pages, arghi; 596 597 /* bc_xprt uses fore channel allocated buffers */ 598 if (svc_is_backchannel(rqstp)) 599 return 1; 600 601 pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply. 602 * We assume one is at most one page 603 */ 604 arghi = 0; 605 WARN_ON_ONCE(pages > RPCSVC_MAXPAGES); 606 if (pages > RPCSVC_MAXPAGES) 607 pages = RPCSVC_MAXPAGES; 608 while (pages) { 609 struct page *p = alloc_pages_node(node, GFP_KERNEL, 0); 610 if (!p) 611 break; 612 rqstp->rq_pages[arghi++] = p; 613 pages--; 614 } 615 return pages == 0; 616 } 617 618 /* 619 * Release an RPC server buffer 620 */ 621 static void 622 svc_release_buffer(struct svc_rqst *rqstp) 623 { 624 unsigned int i; 625 626 for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++) 627 if (rqstp->rq_pages[i]) 628 put_page(rqstp->rq_pages[i]); 629 } 630 631 struct svc_rqst * 632 svc_rqst_alloc(struct svc_serv *serv, struct svc_pool *pool, int node) 633 { 634 struct svc_rqst *rqstp; 635 636 rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node); 637 if (!rqstp) 638 return rqstp; 639 640 __set_bit(RQ_BUSY, &rqstp->rq_flags); 641 spin_lock_init(&rqstp->rq_lock); 642 rqstp->rq_server = serv; 643 rqstp->rq_pool = pool; 644 645 rqstp->rq_scratch_page = alloc_pages_node(node, GFP_KERNEL, 0); 646 if (!rqstp->rq_scratch_page) 647 goto out_enomem; 648 649 rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node); 650 if (!rqstp->rq_argp) 651 goto out_enomem; 652 653 rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node); 654 if (!rqstp->rq_resp) 655 goto out_enomem; 656 657 if (!svc_init_buffer(rqstp, serv->sv_max_mesg, node)) 658 goto out_enomem; 659 660 return rqstp; 661 out_enomem: 662 svc_rqst_free(rqstp); 663 return NULL; 664 } 665 EXPORT_SYMBOL_GPL(svc_rqst_alloc); 666 667 static struct svc_rqst * 668 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node) 669 { 670 struct svc_rqst *rqstp; 671 672 rqstp = svc_rqst_alloc(serv, pool, node); 673 if (!rqstp) 674 return ERR_PTR(-ENOMEM); 675 676 svc_get(serv); 677 spin_lock_bh(&serv->sv_lock); 678 serv->sv_nrthreads += 1; 679 spin_unlock_bh(&serv->sv_lock); 680 681 spin_lock_bh(&pool->sp_lock); 682 pool->sp_nrthreads++; 683 list_add_rcu(&rqstp->rq_all, &pool->sp_all_threads); 684 spin_unlock_bh(&pool->sp_lock); 685 return rqstp; 686 } 687 688 /* 689 * Choose a pool in which to create a new thread, for svc_set_num_threads 690 */ 691 static inline struct svc_pool * 692 choose_pool(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state) 693 { 694 if (pool != NULL) 695 return pool; 696 697 return &serv->sv_pools[(*state)++ % serv->sv_nrpools]; 698 } 699 700 /* 701 * Choose a thread to kill, for svc_set_num_threads 702 */ 703 static inline struct task_struct * 704 choose_victim(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state) 705 { 706 unsigned int i; 707 struct task_struct *task = NULL; 708 709 if (pool != NULL) { 710 spin_lock_bh(&pool->sp_lock); 711 } else { 712 /* choose a pool in round-robin fashion */ 713 for (i = 0; i < serv->sv_nrpools; i++) { 714 pool = &serv->sv_pools[--(*state) % serv->sv_nrpools]; 715 spin_lock_bh(&pool->sp_lock); 716 if (!list_empty(&pool->sp_all_threads)) 717 goto found_pool; 718 spin_unlock_bh(&pool->sp_lock); 719 } 720 return NULL; 721 } 722 723 found_pool: 724 if (!list_empty(&pool->sp_all_threads)) { 725 struct svc_rqst *rqstp; 726 727 /* 728 * Remove from the pool->sp_all_threads list 729 * so we don't try to kill it again. 730 */ 731 rqstp = list_entry(pool->sp_all_threads.next, struct svc_rqst, rq_all); 732 set_bit(RQ_VICTIM, &rqstp->rq_flags); 733 list_del_rcu(&rqstp->rq_all); 734 task = rqstp->rq_task; 735 } 736 spin_unlock_bh(&pool->sp_lock); 737 738 return task; 739 } 740 741 /* create new threads */ 742 static int 743 svc_start_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs) 744 { 745 struct svc_rqst *rqstp; 746 struct task_struct *task; 747 struct svc_pool *chosen_pool; 748 unsigned int state = serv->sv_nrthreads-1; 749 int node; 750 751 do { 752 nrservs--; 753 chosen_pool = choose_pool(serv, pool, &state); 754 755 node = svc_pool_map_get_node(chosen_pool->sp_id); 756 rqstp = svc_prepare_thread(serv, chosen_pool, node); 757 if (IS_ERR(rqstp)) 758 return PTR_ERR(rqstp); 759 760 task = kthread_create_on_node(serv->sv_threadfn, rqstp, 761 node, "%s", serv->sv_name); 762 if (IS_ERR(task)) { 763 svc_exit_thread(rqstp); 764 return PTR_ERR(task); 765 } 766 767 rqstp->rq_task = task; 768 if (serv->sv_nrpools > 1) 769 svc_pool_map_set_cpumask(task, chosen_pool->sp_id); 770 771 svc_sock_update_bufs(serv); 772 wake_up_process(task); 773 } while (nrservs > 0); 774 775 return 0; 776 } 777 778 /* 779 * Create or destroy enough new threads to make the number 780 * of threads the given number. If `pool' is non-NULL, applies 781 * only to threads in that pool, otherwise round-robins between 782 * all pools. Caller must ensure that mutual exclusion between this and 783 * server startup or shutdown. 784 */ 785 786 /* destroy old threads */ 787 static int 788 svc_stop_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs) 789 { 790 struct task_struct *task; 791 unsigned int state = serv->sv_nrthreads-1; 792 793 /* destroy old threads */ 794 do { 795 task = choose_victim(serv, pool, &state); 796 if (task == NULL) 797 break; 798 kthread_stop(task); 799 nrservs++; 800 } while (nrservs < 0); 801 return 0; 802 } 803 804 int 805 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs) 806 { 807 if (pool == NULL) { 808 nrservs -= serv->sv_nrthreads; 809 } else { 810 spin_lock_bh(&pool->sp_lock); 811 nrservs -= pool->sp_nrthreads; 812 spin_unlock_bh(&pool->sp_lock); 813 } 814 815 if (nrservs > 0) 816 return svc_start_kthreads(serv, pool, nrservs); 817 if (nrservs < 0) 818 return svc_stop_kthreads(serv, pool, nrservs); 819 return 0; 820 } 821 EXPORT_SYMBOL_GPL(svc_set_num_threads); 822 823 /** 824 * svc_rqst_replace_page - Replace one page in rq_pages[] 825 * @rqstp: svc_rqst with pages to replace 826 * @page: replacement page 827 * 828 * When replacing a page in rq_pages, batch the release of the 829 * replaced pages to avoid hammering the page allocator. 830 */ 831 void svc_rqst_replace_page(struct svc_rqst *rqstp, struct page *page) 832 { 833 if (*rqstp->rq_next_page) { 834 if (!pagevec_space(&rqstp->rq_pvec)) 835 __pagevec_release(&rqstp->rq_pvec); 836 pagevec_add(&rqstp->rq_pvec, *rqstp->rq_next_page); 837 } 838 839 get_page(page); 840 *(rqstp->rq_next_page++) = page; 841 } 842 EXPORT_SYMBOL_GPL(svc_rqst_replace_page); 843 844 /* 845 * Called from a server thread as it's exiting. Caller must hold the "service 846 * mutex" for the service. 847 */ 848 void 849 svc_rqst_free(struct svc_rqst *rqstp) 850 { 851 svc_release_buffer(rqstp); 852 if (rqstp->rq_scratch_page) 853 put_page(rqstp->rq_scratch_page); 854 kfree(rqstp->rq_resp); 855 kfree(rqstp->rq_argp); 856 kfree(rqstp->rq_auth_data); 857 kfree_rcu(rqstp, rq_rcu_head); 858 } 859 EXPORT_SYMBOL_GPL(svc_rqst_free); 860 861 void 862 svc_exit_thread(struct svc_rqst *rqstp) 863 { 864 struct svc_serv *serv = rqstp->rq_server; 865 struct svc_pool *pool = rqstp->rq_pool; 866 867 spin_lock_bh(&pool->sp_lock); 868 pool->sp_nrthreads--; 869 if (!test_and_set_bit(RQ_VICTIM, &rqstp->rq_flags)) 870 list_del_rcu(&rqstp->rq_all); 871 spin_unlock_bh(&pool->sp_lock); 872 873 spin_lock_bh(&serv->sv_lock); 874 serv->sv_nrthreads -= 1; 875 spin_unlock_bh(&serv->sv_lock); 876 svc_sock_update_bufs(serv); 877 878 svc_rqst_free(rqstp); 879 880 svc_put(serv); 881 } 882 EXPORT_SYMBOL_GPL(svc_exit_thread); 883 884 /* 885 * Register an "inet" protocol family netid with the local 886 * rpcbind daemon via an rpcbind v4 SET request. 887 * 888 * No netconfig infrastructure is available in the kernel, so 889 * we map IP_ protocol numbers to netids by hand. 890 * 891 * Returns zero on success; a negative errno value is returned 892 * if any error occurs. 893 */ 894 static int __svc_rpcb_register4(struct net *net, const u32 program, 895 const u32 version, 896 const unsigned short protocol, 897 const unsigned short port) 898 { 899 const struct sockaddr_in sin = { 900 .sin_family = AF_INET, 901 .sin_addr.s_addr = htonl(INADDR_ANY), 902 .sin_port = htons(port), 903 }; 904 const char *netid; 905 int error; 906 907 switch (protocol) { 908 case IPPROTO_UDP: 909 netid = RPCBIND_NETID_UDP; 910 break; 911 case IPPROTO_TCP: 912 netid = RPCBIND_NETID_TCP; 913 break; 914 default: 915 return -ENOPROTOOPT; 916 } 917 918 error = rpcb_v4_register(net, program, version, 919 (const struct sockaddr *)&sin, netid); 920 921 /* 922 * User space didn't support rpcbind v4, so retry this 923 * registration request with the legacy rpcbind v2 protocol. 924 */ 925 if (error == -EPROTONOSUPPORT) 926 error = rpcb_register(net, program, version, protocol, port); 927 928 return error; 929 } 930 931 #if IS_ENABLED(CONFIG_IPV6) 932 /* 933 * Register an "inet6" protocol family netid with the local 934 * rpcbind daemon via an rpcbind v4 SET request. 935 * 936 * No netconfig infrastructure is available in the kernel, so 937 * we map IP_ protocol numbers to netids by hand. 938 * 939 * Returns zero on success; a negative errno value is returned 940 * if any error occurs. 941 */ 942 static int __svc_rpcb_register6(struct net *net, const u32 program, 943 const u32 version, 944 const unsigned short protocol, 945 const unsigned short port) 946 { 947 const struct sockaddr_in6 sin6 = { 948 .sin6_family = AF_INET6, 949 .sin6_addr = IN6ADDR_ANY_INIT, 950 .sin6_port = htons(port), 951 }; 952 const char *netid; 953 int error; 954 955 switch (protocol) { 956 case IPPROTO_UDP: 957 netid = RPCBIND_NETID_UDP6; 958 break; 959 case IPPROTO_TCP: 960 netid = RPCBIND_NETID_TCP6; 961 break; 962 default: 963 return -ENOPROTOOPT; 964 } 965 966 error = rpcb_v4_register(net, program, version, 967 (const struct sockaddr *)&sin6, netid); 968 969 /* 970 * User space didn't support rpcbind version 4, so we won't 971 * use a PF_INET6 listener. 972 */ 973 if (error == -EPROTONOSUPPORT) 974 error = -EAFNOSUPPORT; 975 976 return error; 977 } 978 #endif /* IS_ENABLED(CONFIG_IPV6) */ 979 980 /* 981 * Register a kernel RPC service via rpcbind version 4. 982 * 983 * Returns zero on success; a negative errno value is returned 984 * if any error occurs. 985 */ 986 static int __svc_register(struct net *net, const char *progname, 987 const u32 program, const u32 version, 988 const int family, 989 const unsigned short protocol, 990 const unsigned short port) 991 { 992 int error = -EAFNOSUPPORT; 993 994 switch (family) { 995 case PF_INET: 996 error = __svc_rpcb_register4(net, program, version, 997 protocol, port); 998 break; 999 #if IS_ENABLED(CONFIG_IPV6) 1000 case PF_INET6: 1001 error = __svc_rpcb_register6(net, program, version, 1002 protocol, port); 1003 #endif 1004 } 1005 1006 trace_svc_register(progname, version, protocol, port, family, error); 1007 return error; 1008 } 1009 1010 int svc_rpcbind_set_version(struct net *net, 1011 const struct svc_program *progp, 1012 u32 version, int family, 1013 unsigned short proto, 1014 unsigned short port) 1015 { 1016 return __svc_register(net, progp->pg_name, progp->pg_prog, 1017 version, family, proto, port); 1018 1019 } 1020 EXPORT_SYMBOL_GPL(svc_rpcbind_set_version); 1021 1022 int svc_generic_rpcbind_set(struct net *net, 1023 const struct svc_program *progp, 1024 u32 version, int family, 1025 unsigned short proto, 1026 unsigned short port) 1027 { 1028 const struct svc_version *vers = progp->pg_vers[version]; 1029 int error; 1030 1031 if (vers == NULL) 1032 return 0; 1033 1034 if (vers->vs_hidden) { 1035 trace_svc_noregister(progp->pg_name, version, proto, 1036 port, family, 0); 1037 return 0; 1038 } 1039 1040 /* 1041 * Don't register a UDP port if we need congestion 1042 * control. 1043 */ 1044 if (vers->vs_need_cong_ctrl && proto == IPPROTO_UDP) 1045 return 0; 1046 1047 error = svc_rpcbind_set_version(net, progp, version, 1048 family, proto, port); 1049 1050 return (vers->vs_rpcb_optnl) ? 0 : error; 1051 } 1052 EXPORT_SYMBOL_GPL(svc_generic_rpcbind_set); 1053 1054 /** 1055 * svc_register - register an RPC service with the local portmapper 1056 * @serv: svc_serv struct for the service to register 1057 * @net: net namespace for the service to register 1058 * @family: protocol family of service's listener socket 1059 * @proto: transport protocol number to advertise 1060 * @port: port to advertise 1061 * 1062 * Service is registered for any address in the passed-in protocol family 1063 */ 1064 int svc_register(const struct svc_serv *serv, struct net *net, 1065 const int family, const unsigned short proto, 1066 const unsigned short port) 1067 { 1068 struct svc_program *progp; 1069 unsigned int i; 1070 int error = 0; 1071 1072 WARN_ON_ONCE(proto == 0 && port == 0); 1073 if (proto == 0 && port == 0) 1074 return -EINVAL; 1075 1076 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 1077 for (i = 0; i < progp->pg_nvers; i++) { 1078 1079 error = progp->pg_rpcbind_set(net, progp, i, 1080 family, proto, port); 1081 if (error < 0) { 1082 printk(KERN_WARNING "svc: failed to register " 1083 "%sv%u RPC service (errno %d).\n", 1084 progp->pg_name, i, -error); 1085 break; 1086 } 1087 } 1088 } 1089 1090 return error; 1091 } 1092 1093 /* 1094 * If user space is running rpcbind, it should take the v4 UNSET 1095 * and clear everything for this [program, version]. If user space 1096 * is running portmap, it will reject the v4 UNSET, but won't have 1097 * any "inet6" entries anyway. So a PMAP_UNSET should be sufficient 1098 * in this case to clear all existing entries for [program, version]. 1099 */ 1100 static void __svc_unregister(struct net *net, const u32 program, const u32 version, 1101 const char *progname) 1102 { 1103 int error; 1104 1105 error = rpcb_v4_register(net, program, version, NULL, ""); 1106 1107 /* 1108 * User space didn't support rpcbind v4, so retry this 1109 * request with the legacy rpcbind v2 protocol. 1110 */ 1111 if (error == -EPROTONOSUPPORT) 1112 error = rpcb_register(net, program, version, 0, 0); 1113 1114 trace_svc_unregister(progname, version, error); 1115 } 1116 1117 /* 1118 * All netids, bind addresses and ports registered for [program, version] 1119 * are removed from the local rpcbind database (if the service is not 1120 * hidden) to make way for a new instance of the service. 1121 * 1122 * The result of unregistration is reported via dprintk for those who want 1123 * verification of the result, but is otherwise not important. 1124 */ 1125 static void svc_unregister(const struct svc_serv *serv, struct net *net) 1126 { 1127 struct svc_program *progp; 1128 unsigned long flags; 1129 unsigned int i; 1130 1131 clear_thread_flag(TIF_SIGPENDING); 1132 1133 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 1134 for (i = 0; i < progp->pg_nvers; i++) { 1135 if (progp->pg_vers[i] == NULL) 1136 continue; 1137 if (progp->pg_vers[i]->vs_hidden) 1138 continue; 1139 __svc_unregister(net, progp->pg_prog, i, progp->pg_name); 1140 } 1141 } 1142 1143 spin_lock_irqsave(¤t->sighand->siglock, flags); 1144 recalc_sigpending(); 1145 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 1146 } 1147 1148 /* 1149 * dprintk the given error with the address of the client that caused it. 1150 */ 1151 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 1152 static __printf(2, 3) 1153 void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) 1154 { 1155 struct va_format vaf; 1156 va_list args; 1157 char buf[RPC_MAX_ADDRBUFLEN]; 1158 1159 va_start(args, fmt); 1160 1161 vaf.fmt = fmt; 1162 vaf.va = &args; 1163 1164 dprintk("svc: %s: %pV", svc_print_addr(rqstp, buf, sizeof(buf)), &vaf); 1165 1166 va_end(args); 1167 } 1168 #else 1169 static __printf(2,3) void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) {} 1170 #endif 1171 1172 __be32 1173 svc_generic_init_request(struct svc_rqst *rqstp, 1174 const struct svc_program *progp, 1175 struct svc_process_info *ret) 1176 { 1177 const struct svc_version *versp = NULL; /* compiler food */ 1178 const struct svc_procedure *procp = NULL; 1179 1180 if (rqstp->rq_vers >= progp->pg_nvers ) 1181 goto err_bad_vers; 1182 versp = progp->pg_vers[rqstp->rq_vers]; 1183 if (!versp) 1184 goto err_bad_vers; 1185 1186 /* 1187 * Some protocol versions (namely NFSv4) require some form of 1188 * congestion control. (See RFC 7530 section 3.1 paragraph 2) 1189 * In other words, UDP is not allowed. We mark those when setting 1190 * up the svc_xprt, and verify that here. 1191 * 1192 * The spec is not very clear about what error should be returned 1193 * when someone tries to access a server that is listening on UDP 1194 * for lower versions. RPC_PROG_MISMATCH seems to be the closest 1195 * fit. 1196 */ 1197 if (versp->vs_need_cong_ctrl && rqstp->rq_xprt && 1198 !test_bit(XPT_CONG_CTRL, &rqstp->rq_xprt->xpt_flags)) 1199 goto err_bad_vers; 1200 1201 if (rqstp->rq_proc >= versp->vs_nproc) 1202 goto err_bad_proc; 1203 rqstp->rq_procinfo = procp = &versp->vs_proc[rqstp->rq_proc]; 1204 if (!procp) 1205 goto err_bad_proc; 1206 1207 /* Initialize storage for argp and resp */ 1208 memset(rqstp->rq_argp, 0, procp->pc_argsize); 1209 memset(rqstp->rq_resp, 0, procp->pc_ressize); 1210 1211 /* Bump per-procedure stats counter */ 1212 versp->vs_count[rqstp->rq_proc]++; 1213 1214 ret->dispatch = versp->vs_dispatch; 1215 return rpc_success; 1216 err_bad_vers: 1217 ret->mismatch.lovers = progp->pg_lovers; 1218 ret->mismatch.hivers = progp->pg_hivers; 1219 return rpc_prog_mismatch; 1220 err_bad_proc: 1221 return rpc_proc_unavail; 1222 } 1223 EXPORT_SYMBOL_GPL(svc_generic_init_request); 1224 1225 /* 1226 * Common routine for processing the RPC request. 1227 */ 1228 static int 1229 svc_process_common(struct svc_rqst *rqstp, struct kvec *argv, struct kvec *resv) 1230 { 1231 struct svc_program *progp; 1232 const struct svc_procedure *procp = NULL; 1233 struct svc_serv *serv = rqstp->rq_server; 1234 struct svc_process_info process; 1235 __be32 *statp; 1236 u32 prog, vers; 1237 __be32 rpc_stat; 1238 int auth_res, rc; 1239 __be32 *reply_statp; 1240 1241 rpc_stat = rpc_success; 1242 1243 if (argv->iov_len < 6*4) 1244 goto err_short_len; 1245 1246 /* Will be turned off by GSS integrity and privacy services */ 1247 __set_bit(RQ_SPLICE_OK, &rqstp->rq_flags); 1248 /* Will be turned off only when NFSv4 Sessions are used */ 1249 __set_bit(RQ_USEDEFERRAL, &rqstp->rq_flags); 1250 __clear_bit(RQ_DROPME, &rqstp->rq_flags); 1251 1252 svc_putu32(resv, rqstp->rq_xid); 1253 1254 vers = svc_getnl(argv); 1255 1256 /* First words of reply: */ 1257 svc_putnl(resv, 1); /* REPLY */ 1258 1259 if (vers != 2) /* RPC version number */ 1260 goto err_bad_rpc; 1261 1262 /* Save position in case we later decide to reject: */ 1263 reply_statp = resv->iov_base + resv->iov_len; 1264 1265 svc_putnl(resv, 0); /* ACCEPT */ 1266 1267 rqstp->rq_prog = prog = svc_getnl(argv); /* program number */ 1268 rqstp->rq_vers = svc_getnl(argv); /* version number */ 1269 rqstp->rq_proc = svc_getnl(argv); /* procedure number */ 1270 1271 for (progp = serv->sv_program; progp; progp = progp->pg_next) 1272 if (prog == progp->pg_prog) 1273 break; 1274 1275 /* 1276 * Decode auth data, and add verifier to reply buffer. 1277 * We do this before anything else in order to get a decent 1278 * auth verifier. 1279 */ 1280 auth_res = svc_authenticate(rqstp); 1281 /* Also give the program a chance to reject this call: */ 1282 if (auth_res == SVC_OK && progp) 1283 auth_res = progp->pg_authenticate(rqstp); 1284 if (auth_res != SVC_OK) 1285 trace_svc_authenticate(rqstp, auth_res); 1286 switch (auth_res) { 1287 case SVC_OK: 1288 break; 1289 case SVC_GARBAGE: 1290 goto err_garbage; 1291 case SVC_SYSERR: 1292 rpc_stat = rpc_system_err; 1293 goto err_bad; 1294 case SVC_DENIED: 1295 goto err_bad_auth; 1296 case SVC_CLOSE: 1297 goto close; 1298 case SVC_DROP: 1299 goto dropit; 1300 case SVC_COMPLETE: 1301 goto sendit; 1302 } 1303 1304 if (progp == NULL) 1305 goto err_bad_prog; 1306 1307 rpc_stat = progp->pg_init_request(rqstp, progp, &process); 1308 switch (rpc_stat) { 1309 case rpc_success: 1310 break; 1311 case rpc_prog_unavail: 1312 goto err_bad_prog; 1313 case rpc_prog_mismatch: 1314 goto err_bad_vers; 1315 case rpc_proc_unavail: 1316 goto err_bad_proc; 1317 } 1318 1319 procp = rqstp->rq_procinfo; 1320 /* Should this check go into the dispatcher? */ 1321 if (!procp || !procp->pc_func) 1322 goto err_bad_proc; 1323 1324 /* Syntactic check complete */ 1325 serv->sv_stats->rpccnt++; 1326 trace_svc_process(rqstp, progp->pg_name); 1327 1328 /* Build the reply header. */ 1329 statp = resv->iov_base +resv->iov_len; 1330 svc_putnl(resv, RPC_SUCCESS); 1331 1332 /* un-reserve some of the out-queue now that we have a 1333 * better idea of reply size 1334 */ 1335 if (procp->pc_xdrressize) 1336 svc_reserve_auth(rqstp, procp->pc_xdrressize<<2); 1337 1338 /* Call the function that processes the request. */ 1339 rc = process.dispatch(rqstp, statp); 1340 if (procp->pc_release) 1341 procp->pc_release(rqstp); 1342 if (!rc) 1343 goto dropit; 1344 if (rqstp->rq_auth_stat != rpc_auth_ok) 1345 goto err_bad_auth; 1346 1347 /* Check RPC status result */ 1348 if (*statp != rpc_success) 1349 resv->iov_len = ((void*)statp) - resv->iov_base + 4; 1350 1351 if (procp->pc_encode == NULL) 1352 goto dropit; 1353 1354 sendit: 1355 if (svc_authorise(rqstp)) 1356 goto close_xprt; 1357 return 1; /* Caller can now send it */ 1358 1359 dropit: 1360 svc_authorise(rqstp); /* doesn't hurt to call this twice */ 1361 dprintk("svc: svc_process dropit\n"); 1362 return 0; 1363 1364 close: 1365 svc_authorise(rqstp); 1366 close_xprt: 1367 if (rqstp->rq_xprt && test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags)) 1368 svc_xprt_close(rqstp->rq_xprt); 1369 dprintk("svc: svc_process close\n"); 1370 return 0; 1371 1372 err_short_len: 1373 svc_printk(rqstp, "short len %zd, dropping request\n", 1374 argv->iov_len); 1375 goto close_xprt; 1376 1377 err_bad_rpc: 1378 serv->sv_stats->rpcbadfmt++; 1379 svc_putnl(resv, 1); /* REJECT */ 1380 svc_putnl(resv, 0); /* RPC_MISMATCH */ 1381 svc_putnl(resv, 2); /* Only RPCv2 supported */ 1382 svc_putnl(resv, 2); 1383 goto sendit; 1384 1385 err_bad_auth: 1386 dprintk("svc: authentication failed (%d)\n", 1387 be32_to_cpu(rqstp->rq_auth_stat)); 1388 serv->sv_stats->rpcbadauth++; 1389 /* Restore write pointer to location of accept status: */ 1390 xdr_ressize_check(rqstp, reply_statp); 1391 svc_putnl(resv, 1); /* REJECT */ 1392 svc_putnl(resv, 1); /* AUTH_ERROR */ 1393 svc_putu32(resv, rqstp->rq_auth_stat); /* status */ 1394 goto sendit; 1395 1396 err_bad_prog: 1397 dprintk("svc: unknown program %d\n", prog); 1398 serv->sv_stats->rpcbadfmt++; 1399 svc_putnl(resv, RPC_PROG_UNAVAIL); 1400 goto sendit; 1401 1402 err_bad_vers: 1403 svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n", 1404 rqstp->rq_vers, rqstp->rq_prog, progp->pg_name); 1405 1406 serv->sv_stats->rpcbadfmt++; 1407 svc_putnl(resv, RPC_PROG_MISMATCH); 1408 svc_putnl(resv, process.mismatch.lovers); 1409 svc_putnl(resv, process.mismatch.hivers); 1410 goto sendit; 1411 1412 err_bad_proc: 1413 svc_printk(rqstp, "unknown procedure (%d)\n", rqstp->rq_proc); 1414 1415 serv->sv_stats->rpcbadfmt++; 1416 svc_putnl(resv, RPC_PROC_UNAVAIL); 1417 goto sendit; 1418 1419 err_garbage: 1420 svc_printk(rqstp, "failed to decode args\n"); 1421 1422 rpc_stat = rpc_garbage_args; 1423 err_bad: 1424 serv->sv_stats->rpcbadfmt++; 1425 svc_putnl(resv, ntohl(rpc_stat)); 1426 goto sendit; 1427 } 1428 1429 /* 1430 * Process the RPC request. 1431 */ 1432 int 1433 svc_process(struct svc_rqst *rqstp) 1434 { 1435 struct kvec *argv = &rqstp->rq_arg.head[0]; 1436 struct kvec *resv = &rqstp->rq_res.head[0]; 1437 struct svc_serv *serv = rqstp->rq_server; 1438 u32 dir; 1439 1440 #if IS_ENABLED(CONFIG_FAIL_SUNRPC) 1441 if (!fail_sunrpc.ignore_server_disconnect && 1442 should_fail(&fail_sunrpc.attr, 1)) 1443 svc_xprt_deferred_close(rqstp->rq_xprt); 1444 #endif 1445 1446 /* 1447 * Setup response xdr_buf. 1448 * Initially it has just one page 1449 */ 1450 rqstp->rq_next_page = &rqstp->rq_respages[1]; 1451 resv->iov_base = page_address(rqstp->rq_respages[0]); 1452 resv->iov_len = 0; 1453 rqstp->rq_res.pages = rqstp->rq_respages + 1; 1454 rqstp->rq_res.len = 0; 1455 rqstp->rq_res.page_base = 0; 1456 rqstp->rq_res.page_len = 0; 1457 rqstp->rq_res.buflen = PAGE_SIZE; 1458 rqstp->rq_res.tail[0].iov_base = NULL; 1459 rqstp->rq_res.tail[0].iov_len = 0; 1460 1461 dir = svc_getnl(argv); 1462 if (dir != 0) { 1463 /* direction != CALL */ 1464 svc_printk(rqstp, "bad direction %d, dropping request\n", dir); 1465 serv->sv_stats->rpcbadfmt++; 1466 goto out_drop; 1467 } 1468 1469 /* Returns 1 for send, 0 for drop */ 1470 if (likely(svc_process_common(rqstp, argv, resv))) 1471 return svc_send(rqstp); 1472 1473 out_drop: 1474 svc_drop(rqstp); 1475 return 0; 1476 } 1477 EXPORT_SYMBOL_GPL(svc_process); 1478 1479 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 1480 /* 1481 * Process a backchannel RPC request that arrived over an existing 1482 * outbound connection 1483 */ 1484 int 1485 bc_svc_process(struct svc_serv *serv, struct rpc_rqst *req, 1486 struct svc_rqst *rqstp) 1487 { 1488 struct kvec *argv = &rqstp->rq_arg.head[0]; 1489 struct kvec *resv = &rqstp->rq_res.head[0]; 1490 struct rpc_task *task; 1491 int proc_error; 1492 int error; 1493 1494 dprintk("svc: %s(%p)\n", __func__, req); 1495 1496 /* Build the svc_rqst used by the common processing routine */ 1497 rqstp->rq_xid = req->rq_xid; 1498 rqstp->rq_prot = req->rq_xprt->prot; 1499 rqstp->rq_server = serv; 1500 rqstp->rq_bc_net = req->rq_xprt->xprt_net; 1501 1502 rqstp->rq_addrlen = sizeof(req->rq_xprt->addr); 1503 memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen); 1504 memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg)); 1505 memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res)); 1506 1507 /* Adjust the argument buffer length */ 1508 rqstp->rq_arg.len = req->rq_private_buf.len; 1509 if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) { 1510 rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len; 1511 rqstp->rq_arg.page_len = 0; 1512 } else if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len + 1513 rqstp->rq_arg.page_len) 1514 rqstp->rq_arg.page_len = rqstp->rq_arg.len - 1515 rqstp->rq_arg.head[0].iov_len; 1516 else 1517 rqstp->rq_arg.len = rqstp->rq_arg.head[0].iov_len + 1518 rqstp->rq_arg.page_len; 1519 1520 /* reset result send buffer "put" position */ 1521 resv->iov_len = 0; 1522 1523 /* 1524 * Skip the next two words because they've already been 1525 * processed in the transport 1526 */ 1527 svc_getu32(argv); /* XID */ 1528 svc_getnl(argv); /* CALLDIR */ 1529 1530 /* Parse and execute the bc call */ 1531 proc_error = svc_process_common(rqstp, argv, resv); 1532 1533 atomic_dec(&req->rq_xprt->bc_slot_count); 1534 if (!proc_error) { 1535 /* Processing error: drop the request */ 1536 xprt_free_bc_request(req); 1537 error = -EINVAL; 1538 goto out; 1539 } 1540 /* Finally, send the reply synchronously */ 1541 memcpy(&req->rq_snd_buf, &rqstp->rq_res, sizeof(req->rq_snd_buf)); 1542 task = rpc_run_bc_task(req); 1543 if (IS_ERR(task)) { 1544 error = PTR_ERR(task); 1545 goto out; 1546 } 1547 1548 WARN_ON_ONCE(atomic_read(&task->tk_count) != 1); 1549 error = task->tk_status; 1550 rpc_put_task(task); 1551 1552 out: 1553 dprintk("svc: %s(), error=%d\n", __func__, error); 1554 return error; 1555 } 1556 EXPORT_SYMBOL_GPL(bc_svc_process); 1557 #endif /* CONFIG_SUNRPC_BACKCHANNEL */ 1558 1559 /* 1560 * Return (transport-specific) limit on the rpc payload. 1561 */ 1562 u32 svc_max_payload(const struct svc_rqst *rqstp) 1563 { 1564 u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload; 1565 1566 if (rqstp->rq_server->sv_max_payload < max) 1567 max = rqstp->rq_server->sv_max_payload; 1568 return max; 1569 } 1570 EXPORT_SYMBOL_GPL(svc_max_payload); 1571 1572 /** 1573 * svc_proc_name - Return RPC procedure name in string form 1574 * @rqstp: svc_rqst to operate on 1575 * 1576 * Return value: 1577 * Pointer to a NUL-terminated string 1578 */ 1579 const char *svc_proc_name(const struct svc_rqst *rqstp) 1580 { 1581 if (rqstp && rqstp->rq_procinfo) 1582 return rqstp->rq_procinfo->pc_name; 1583 return "unknown"; 1584 } 1585 1586 1587 /** 1588 * svc_encode_result_payload - mark a range of bytes as a result payload 1589 * @rqstp: svc_rqst to operate on 1590 * @offset: payload's byte offset in rqstp->rq_res 1591 * @length: size of payload, in bytes 1592 * 1593 * Returns zero on success, or a negative errno if a permanent 1594 * error occurred. 1595 */ 1596 int svc_encode_result_payload(struct svc_rqst *rqstp, unsigned int offset, 1597 unsigned int length) 1598 { 1599 return rqstp->rq_xprt->xpt_ops->xpo_result_payload(rqstp, offset, 1600 length); 1601 } 1602 EXPORT_SYMBOL_GPL(svc_encode_result_payload); 1603 1604 /** 1605 * svc_fill_write_vector - Construct data argument for VFS write call 1606 * @rqstp: svc_rqst to operate on 1607 * @payload: xdr_buf containing only the write data payload 1608 * 1609 * Fills in rqstp::rq_vec, and returns the number of elements. 1610 */ 1611 unsigned int svc_fill_write_vector(struct svc_rqst *rqstp, 1612 struct xdr_buf *payload) 1613 { 1614 struct page **pages = payload->pages; 1615 struct kvec *first = payload->head; 1616 struct kvec *vec = rqstp->rq_vec; 1617 size_t total = payload->len; 1618 unsigned int i; 1619 1620 /* Some types of transport can present the write payload 1621 * entirely in rq_arg.pages. In this case, @first is empty. 1622 */ 1623 i = 0; 1624 if (first->iov_len) { 1625 vec[i].iov_base = first->iov_base; 1626 vec[i].iov_len = min_t(size_t, total, first->iov_len); 1627 total -= vec[i].iov_len; 1628 ++i; 1629 } 1630 1631 while (total) { 1632 vec[i].iov_base = page_address(*pages); 1633 vec[i].iov_len = min_t(size_t, total, PAGE_SIZE); 1634 total -= vec[i].iov_len; 1635 ++i; 1636 ++pages; 1637 } 1638 1639 WARN_ON_ONCE(i > ARRAY_SIZE(rqstp->rq_vec)); 1640 return i; 1641 } 1642 EXPORT_SYMBOL_GPL(svc_fill_write_vector); 1643 1644 /** 1645 * svc_fill_symlink_pathname - Construct pathname argument for VFS symlink call 1646 * @rqstp: svc_rqst to operate on 1647 * @first: buffer containing first section of pathname 1648 * @p: buffer containing remaining section of pathname 1649 * @total: total length of the pathname argument 1650 * 1651 * The VFS symlink API demands a NUL-terminated pathname in mapped memory. 1652 * Returns pointer to a NUL-terminated string, or an ERR_PTR. Caller must free 1653 * the returned string. 1654 */ 1655 char *svc_fill_symlink_pathname(struct svc_rqst *rqstp, struct kvec *first, 1656 void *p, size_t total) 1657 { 1658 size_t len, remaining; 1659 char *result, *dst; 1660 1661 result = kmalloc(total + 1, GFP_KERNEL); 1662 if (!result) 1663 return ERR_PTR(-ESERVERFAULT); 1664 1665 dst = result; 1666 remaining = total; 1667 1668 len = min_t(size_t, total, first->iov_len); 1669 if (len) { 1670 memcpy(dst, first->iov_base, len); 1671 dst += len; 1672 remaining -= len; 1673 } 1674 1675 if (remaining) { 1676 len = min_t(size_t, remaining, PAGE_SIZE); 1677 memcpy(dst, p, len); 1678 dst += len; 1679 } 1680 1681 *dst = '\0'; 1682 1683 /* Sanity check: Linux doesn't allow the pathname argument to 1684 * contain a NUL byte. 1685 */ 1686 if (strlen(result) != total) { 1687 kfree(result); 1688 return ERR_PTR(-EINVAL); 1689 } 1690 return result; 1691 } 1692 EXPORT_SYMBOL_GPL(svc_fill_symlink_pathname); 1693