1 /* 2 * linux/net/sunrpc/svc.c 3 * 4 * High-level RPC service routines 5 * 6 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 7 * 8 * Multiple threads pools and NUMAisation 9 * Copyright (c) 2006 Silicon Graphics, Inc. 10 * by Greg Banks <gnb@melbourne.sgi.com> 11 */ 12 13 #include <linux/linkage.h> 14 #include <linux/sched.h> 15 #include <linux/errno.h> 16 #include <linux/net.h> 17 #include <linux/in.h> 18 #include <linux/mm.h> 19 #include <linux/interrupt.h> 20 #include <linux/module.h> 21 #include <linux/kthread.h> 22 #include <linux/slab.h> 23 24 #include <linux/sunrpc/types.h> 25 #include <linux/sunrpc/xdr.h> 26 #include <linux/sunrpc/stats.h> 27 #include <linux/sunrpc/svcsock.h> 28 #include <linux/sunrpc/clnt.h> 29 #include <linux/sunrpc/bc_xprt.h> 30 31 #define RPCDBG_FACILITY RPCDBG_SVCDSP 32 33 static void svc_unregister(const struct svc_serv *serv); 34 35 #define svc_serv_is_pooled(serv) ((serv)->sv_function) 36 37 /* 38 * Mode for mapping cpus to pools. 39 */ 40 enum { 41 SVC_POOL_AUTO = -1, /* choose one of the others */ 42 SVC_POOL_GLOBAL, /* no mapping, just a single global pool 43 * (legacy & UP mode) */ 44 SVC_POOL_PERCPU, /* one pool per cpu */ 45 SVC_POOL_PERNODE /* one pool per numa node */ 46 }; 47 #define SVC_POOL_DEFAULT SVC_POOL_GLOBAL 48 49 /* 50 * Structure for mapping cpus to pools and vice versa. 51 * Setup once during sunrpc initialisation. 52 */ 53 static struct svc_pool_map { 54 int count; /* How many svc_servs use us */ 55 int mode; /* Note: int not enum to avoid 56 * warnings about "enumeration value 57 * not handled in switch" */ 58 unsigned int npools; 59 unsigned int *pool_to; /* maps pool id to cpu or node */ 60 unsigned int *to_pool; /* maps cpu or node to pool id */ 61 } svc_pool_map = { 62 .count = 0, 63 .mode = SVC_POOL_DEFAULT 64 }; 65 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */ 66 67 static int 68 param_set_pool_mode(const char *val, struct kernel_param *kp) 69 { 70 int *ip = (int *)kp->arg; 71 struct svc_pool_map *m = &svc_pool_map; 72 int err; 73 74 mutex_lock(&svc_pool_map_mutex); 75 76 err = -EBUSY; 77 if (m->count) 78 goto out; 79 80 err = 0; 81 if (!strncmp(val, "auto", 4)) 82 *ip = SVC_POOL_AUTO; 83 else if (!strncmp(val, "global", 6)) 84 *ip = SVC_POOL_GLOBAL; 85 else if (!strncmp(val, "percpu", 6)) 86 *ip = SVC_POOL_PERCPU; 87 else if (!strncmp(val, "pernode", 7)) 88 *ip = SVC_POOL_PERNODE; 89 else 90 err = -EINVAL; 91 92 out: 93 mutex_unlock(&svc_pool_map_mutex); 94 return err; 95 } 96 97 static int 98 param_get_pool_mode(char *buf, struct kernel_param *kp) 99 { 100 int *ip = (int *)kp->arg; 101 102 switch (*ip) 103 { 104 case SVC_POOL_AUTO: 105 return strlcpy(buf, "auto", 20); 106 case SVC_POOL_GLOBAL: 107 return strlcpy(buf, "global", 20); 108 case SVC_POOL_PERCPU: 109 return strlcpy(buf, "percpu", 20); 110 case SVC_POOL_PERNODE: 111 return strlcpy(buf, "pernode", 20); 112 default: 113 return sprintf(buf, "%d", *ip); 114 } 115 } 116 117 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode, 118 &svc_pool_map.mode, 0644); 119 120 /* 121 * Detect best pool mapping mode heuristically, 122 * according to the machine's topology. 123 */ 124 static int 125 svc_pool_map_choose_mode(void) 126 { 127 unsigned int node; 128 129 if (nr_online_nodes > 1) { 130 /* 131 * Actually have multiple NUMA nodes, 132 * so split pools on NUMA node boundaries 133 */ 134 return SVC_POOL_PERNODE; 135 } 136 137 node = first_online_node; 138 if (nr_cpus_node(node) > 2) { 139 /* 140 * Non-trivial SMP, or CONFIG_NUMA on 141 * non-NUMA hardware, e.g. with a generic 142 * x86_64 kernel on Xeons. In this case we 143 * want to divide the pools on cpu boundaries. 144 */ 145 return SVC_POOL_PERCPU; 146 } 147 148 /* default: one global pool */ 149 return SVC_POOL_GLOBAL; 150 } 151 152 /* 153 * Allocate the to_pool[] and pool_to[] arrays. 154 * Returns 0 on success or an errno. 155 */ 156 static int 157 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools) 158 { 159 m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL); 160 if (!m->to_pool) 161 goto fail; 162 m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL); 163 if (!m->pool_to) 164 goto fail_free; 165 166 return 0; 167 168 fail_free: 169 kfree(m->to_pool); 170 fail: 171 return -ENOMEM; 172 } 173 174 /* 175 * Initialise the pool map for SVC_POOL_PERCPU mode. 176 * Returns number of pools or <0 on error. 177 */ 178 static int 179 svc_pool_map_init_percpu(struct svc_pool_map *m) 180 { 181 unsigned int maxpools = nr_cpu_ids; 182 unsigned int pidx = 0; 183 unsigned int cpu; 184 int err; 185 186 err = svc_pool_map_alloc_arrays(m, maxpools); 187 if (err) 188 return err; 189 190 for_each_online_cpu(cpu) { 191 BUG_ON(pidx > maxpools); 192 m->to_pool[cpu] = pidx; 193 m->pool_to[pidx] = cpu; 194 pidx++; 195 } 196 /* cpus brought online later all get mapped to pool0, sorry */ 197 198 return pidx; 199 }; 200 201 202 /* 203 * Initialise the pool map for SVC_POOL_PERNODE mode. 204 * Returns number of pools or <0 on error. 205 */ 206 static int 207 svc_pool_map_init_pernode(struct svc_pool_map *m) 208 { 209 unsigned int maxpools = nr_node_ids; 210 unsigned int pidx = 0; 211 unsigned int node; 212 int err; 213 214 err = svc_pool_map_alloc_arrays(m, maxpools); 215 if (err) 216 return err; 217 218 for_each_node_with_cpus(node) { 219 /* some architectures (e.g. SN2) have cpuless nodes */ 220 BUG_ON(pidx > maxpools); 221 m->to_pool[node] = pidx; 222 m->pool_to[pidx] = node; 223 pidx++; 224 } 225 /* nodes brought online later all get mapped to pool0, sorry */ 226 227 return pidx; 228 } 229 230 231 /* 232 * Add a reference to the global map of cpus to pools (and 233 * vice versa). Initialise the map if we're the first user. 234 * Returns the number of pools. 235 */ 236 static unsigned int 237 svc_pool_map_get(void) 238 { 239 struct svc_pool_map *m = &svc_pool_map; 240 int npools = -1; 241 242 mutex_lock(&svc_pool_map_mutex); 243 244 if (m->count++) { 245 mutex_unlock(&svc_pool_map_mutex); 246 return m->npools; 247 } 248 249 if (m->mode == SVC_POOL_AUTO) 250 m->mode = svc_pool_map_choose_mode(); 251 252 switch (m->mode) { 253 case SVC_POOL_PERCPU: 254 npools = svc_pool_map_init_percpu(m); 255 break; 256 case SVC_POOL_PERNODE: 257 npools = svc_pool_map_init_pernode(m); 258 break; 259 } 260 261 if (npools < 0) { 262 /* default, or memory allocation failure */ 263 npools = 1; 264 m->mode = SVC_POOL_GLOBAL; 265 } 266 m->npools = npools; 267 268 mutex_unlock(&svc_pool_map_mutex); 269 return m->npools; 270 } 271 272 273 /* 274 * Drop a reference to the global map of cpus to pools. 275 * When the last reference is dropped, the map data is 276 * freed; this allows the sysadmin to change the pool 277 * mode using the pool_mode module option without 278 * rebooting or re-loading sunrpc.ko. 279 */ 280 static void 281 svc_pool_map_put(void) 282 { 283 struct svc_pool_map *m = &svc_pool_map; 284 285 mutex_lock(&svc_pool_map_mutex); 286 287 if (!--m->count) { 288 m->mode = SVC_POOL_DEFAULT; 289 kfree(m->to_pool); 290 kfree(m->pool_to); 291 m->npools = 0; 292 } 293 294 mutex_unlock(&svc_pool_map_mutex); 295 } 296 297 298 /* 299 * Set the given thread's cpus_allowed mask so that it 300 * will only run on cpus in the given pool. 301 */ 302 static inline void 303 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx) 304 { 305 struct svc_pool_map *m = &svc_pool_map; 306 unsigned int node = m->pool_to[pidx]; 307 308 /* 309 * The caller checks for sv_nrpools > 1, which 310 * implies that we've been initialized. 311 */ 312 BUG_ON(m->count == 0); 313 314 switch (m->mode) { 315 case SVC_POOL_PERCPU: 316 { 317 set_cpus_allowed_ptr(task, cpumask_of(node)); 318 break; 319 } 320 case SVC_POOL_PERNODE: 321 { 322 set_cpus_allowed_ptr(task, cpumask_of_node(node)); 323 break; 324 } 325 } 326 } 327 328 /* 329 * Use the mapping mode to choose a pool for a given CPU. 330 * Used when enqueueing an incoming RPC. Always returns 331 * a non-NULL pool pointer. 332 */ 333 struct svc_pool * 334 svc_pool_for_cpu(struct svc_serv *serv, int cpu) 335 { 336 struct svc_pool_map *m = &svc_pool_map; 337 unsigned int pidx = 0; 338 339 /* 340 * An uninitialised map happens in a pure client when 341 * lockd is brought up, so silently treat it the 342 * same as SVC_POOL_GLOBAL. 343 */ 344 if (svc_serv_is_pooled(serv)) { 345 switch (m->mode) { 346 case SVC_POOL_PERCPU: 347 pidx = m->to_pool[cpu]; 348 break; 349 case SVC_POOL_PERNODE: 350 pidx = m->to_pool[cpu_to_node(cpu)]; 351 break; 352 } 353 } 354 return &serv->sv_pools[pidx % serv->sv_nrpools]; 355 } 356 357 358 /* 359 * Create an RPC service 360 */ 361 static struct svc_serv * 362 __svc_create(struct svc_program *prog, unsigned int bufsize, int npools, 363 void (*shutdown)(struct svc_serv *serv)) 364 { 365 struct svc_serv *serv; 366 unsigned int vers; 367 unsigned int xdrsize; 368 unsigned int i; 369 370 if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL))) 371 return NULL; 372 serv->sv_name = prog->pg_name; 373 serv->sv_program = prog; 374 serv->sv_nrthreads = 1; 375 serv->sv_stats = prog->pg_stats; 376 if (bufsize > RPCSVC_MAXPAYLOAD) 377 bufsize = RPCSVC_MAXPAYLOAD; 378 serv->sv_max_payload = bufsize? bufsize : 4096; 379 serv->sv_max_mesg = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE); 380 serv->sv_shutdown = shutdown; 381 xdrsize = 0; 382 while (prog) { 383 prog->pg_lovers = prog->pg_nvers-1; 384 for (vers=0; vers<prog->pg_nvers ; vers++) 385 if (prog->pg_vers[vers]) { 386 prog->pg_hivers = vers; 387 if (prog->pg_lovers > vers) 388 prog->pg_lovers = vers; 389 if (prog->pg_vers[vers]->vs_xdrsize > xdrsize) 390 xdrsize = prog->pg_vers[vers]->vs_xdrsize; 391 } 392 prog = prog->pg_next; 393 } 394 serv->sv_xdrsize = xdrsize; 395 INIT_LIST_HEAD(&serv->sv_tempsocks); 396 INIT_LIST_HEAD(&serv->sv_permsocks); 397 init_timer(&serv->sv_temptimer); 398 spin_lock_init(&serv->sv_lock); 399 400 serv->sv_nrpools = npools; 401 serv->sv_pools = 402 kcalloc(serv->sv_nrpools, sizeof(struct svc_pool), 403 GFP_KERNEL); 404 if (!serv->sv_pools) { 405 kfree(serv); 406 return NULL; 407 } 408 409 for (i = 0; i < serv->sv_nrpools; i++) { 410 struct svc_pool *pool = &serv->sv_pools[i]; 411 412 dprintk("svc: initialising pool %u for %s\n", 413 i, serv->sv_name); 414 415 pool->sp_id = i; 416 INIT_LIST_HEAD(&pool->sp_threads); 417 INIT_LIST_HEAD(&pool->sp_sockets); 418 INIT_LIST_HEAD(&pool->sp_all_threads); 419 spin_lock_init(&pool->sp_lock); 420 } 421 422 /* Remove any stale portmap registrations */ 423 svc_unregister(serv); 424 425 return serv; 426 } 427 428 struct svc_serv * 429 svc_create(struct svc_program *prog, unsigned int bufsize, 430 void (*shutdown)(struct svc_serv *serv)) 431 { 432 return __svc_create(prog, bufsize, /*npools*/1, shutdown); 433 } 434 EXPORT_SYMBOL_GPL(svc_create); 435 436 struct svc_serv * 437 svc_create_pooled(struct svc_program *prog, unsigned int bufsize, 438 void (*shutdown)(struct svc_serv *serv), 439 svc_thread_fn func, struct module *mod) 440 { 441 struct svc_serv *serv; 442 unsigned int npools = svc_pool_map_get(); 443 444 serv = __svc_create(prog, bufsize, npools, shutdown); 445 446 if (serv != NULL) { 447 serv->sv_function = func; 448 serv->sv_module = mod; 449 } 450 451 return serv; 452 } 453 EXPORT_SYMBOL_GPL(svc_create_pooled); 454 455 /* 456 * Destroy an RPC service. Should be called with appropriate locking to 457 * protect the sv_nrthreads, sv_permsocks and sv_tempsocks. 458 */ 459 void 460 svc_destroy(struct svc_serv *serv) 461 { 462 dprintk("svc: svc_destroy(%s, %d)\n", 463 serv->sv_program->pg_name, 464 serv->sv_nrthreads); 465 466 if (serv->sv_nrthreads) { 467 if (--(serv->sv_nrthreads) != 0) { 468 svc_sock_update_bufs(serv); 469 return; 470 } 471 } else 472 printk("svc_destroy: no threads for serv=%p!\n", serv); 473 474 del_timer_sync(&serv->sv_temptimer); 475 476 svc_close_all(&serv->sv_tempsocks); 477 478 if (serv->sv_shutdown) 479 serv->sv_shutdown(serv); 480 481 svc_close_all(&serv->sv_permsocks); 482 483 BUG_ON(!list_empty(&serv->sv_permsocks)); 484 BUG_ON(!list_empty(&serv->sv_tempsocks)); 485 486 cache_clean_deferred(serv); 487 488 if (svc_serv_is_pooled(serv)) 489 svc_pool_map_put(); 490 491 #if defined(CONFIG_NFS_V4_1) 492 svc_sock_destroy(serv->bc_xprt); 493 #endif /* CONFIG_NFS_V4_1 */ 494 495 svc_unregister(serv); 496 kfree(serv->sv_pools); 497 kfree(serv); 498 } 499 EXPORT_SYMBOL_GPL(svc_destroy); 500 501 /* 502 * Allocate an RPC server's buffer space. 503 * We allocate pages and place them in rq_argpages. 504 */ 505 static int 506 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size) 507 { 508 unsigned int pages, arghi; 509 510 /* bc_xprt uses fore channel allocated buffers */ 511 if (svc_is_backchannel(rqstp)) 512 return 1; 513 514 pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply. 515 * We assume one is at most one page 516 */ 517 arghi = 0; 518 BUG_ON(pages > RPCSVC_MAXPAGES); 519 while (pages) { 520 struct page *p = alloc_page(GFP_KERNEL); 521 if (!p) 522 break; 523 rqstp->rq_pages[arghi++] = p; 524 pages--; 525 } 526 return pages == 0; 527 } 528 529 /* 530 * Release an RPC server buffer 531 */ 532 static void 533 svc_release_buffer(struct svc_rqst *rqstp) 534 { 535 unsigned int i; 536 537 for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++) 538 if (rqstp->rq_pages[i]) 539 put_page(rqstp->rq_pages[i]); 540 } 541 542 struct svc_rqst * 543 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool) 544 { 545 struct svc_rqst *rqstp; 546 547 rqstp = kzalloc(sizeof(*rqstp), GFP_KERNEL); 548 if (!rqstp) 549 goto out_enomem; 550 551 init_waitqueue_head(&rqstp->rq_wait); 552 553 serv->sv_nrthreads++; 554 spin_lock_bh(&pool->sp_lock); 555 pool->sp_nrthreads++; 556 list_add(&rqstp->rq_all, &pool->sp_all_threads); 557 spin_unlock_bh(&pool->sp_lock); 558 rqstp->rq_server = serv; 559 rqstp->rq_pool = pool; 560 561 rqstp->rq_argp = kmalloc(serv->sv_xdrsize, GFP_KERNEL); 562 if (!rqstp->rq_argp) 563 goto out_thread; 564 565 rqstp->rq_resp = kmalloc(serv->sv_xdrsize, GFP_KERNEL); 566 if (!rqstp->rq_resp) 567 goto out_thread; 568 569 if (!svc_init_buffer(rqstp, serv->sv_max_mesg)) 570 goto out_thread; 571 572 return rqstp; 573 out_thread: 574 svc_exit_thread(rqstp); 575 out_enomem: 576 return ERR_PTR(-ENOMEM); 577 } 578 EXPORT_SYMBOL_GPL(svc_prepare_thread); 579 580 /* 581 * Choose a pool in which to create a new thread, for svc_set_num_threads 582 */ 583 static inline struct svc_pool * 584 choose_pool(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state) 585 { 586 if (pool != NULL) 587 return pool; 588 589 return &serv->sv_pools[(*state)++ % serv->sv_nrpools]; 590 } 591 592 /* 593 * Choose a thread to kill, for svc_set_num_threads 594 */ 595 static inline struct task_struct * 596 choose_victim(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state) 597 { 598 unsigned int i; 599 struct task_struct *task = NULL; 600 601 if (pool != NULL) { 602 spin_lock_bh(&pool->sp_lock); 603 } else { 604 /* choose a pool in round-robin fashion */ 605 for (i = 0; i < serv->sv_nrpools; i++) { 606 pool = &serv->sv_pools[--(*state) % serv->sv_nrpools]; 607 spin_lock_bh(&pool->sp_lock); 608 if (!list_empty(&pool->sp_all_threads)) 609 goto found_pool; 610 spin_unlock_bh(&pool->sp_lock); 611 } 612 return NULL; 613 } 614 615 found_pool: 616 if (!list_empty(&pool->sp_all_threads)) { 617 struct svc_rqst *rqstp; 618 619 /* 620 * Remove from the pool->sp_all_threads list 621 * so we don't try to kill it again. 622 */ 623 rqstp = list_entry(pool->sp_all_threads.next, struct svc_rqst, rq_all); 624 list_del_init(&rqstp->rq_all); 625 task = rqstp->rq_task; 626 } 627 spin_unlock_bh(&pool->sp_lock); 628 629 return task; 630 } 631 632 /* 633 * Create or destroy enough new threads to make the number 634 * of threads the given number. If `pool' is non-NULL, applies 635 * only to threads in that pool, otherwise round-robins between 636 * all pools. Must be called with a svc_get() reference and 637 * the BKL or another lock to protect access to svc_serv fields. 638 * 639 * Destroying threads relies on the service threads filling in 640 * rqstp->rq_task, which only the nfs ones do. Assumes the serv 641 * has been created using svc_create_pooled(). 642 * 643 * Based on code that used to be in nfsd_svc() but tweaked 644 * to be pool-aware. 645 */ 646 int 647 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs) 648 { 649 struct svc_rqst *rqstp; 650 struct task_struct *task; 651 struct svc_pool *chosen_pool; 652 int error = 0; 653 unsigned int state = serv->sv_nrthreads-1; 654 655 if (pool == NULL) { 656 /* The -1 assumes caller has done a svc_get() */ 657 nrservs -= (serv->sv_nrthreads-1); 658 } else { 659 spin_lock_bh(&pool->sp_lock); 660 nrservs -= pool->sp_nrthreads; 661 spin_unlock_bh(&pool->sp_lock); 662 } 663 664 /* create new threads */ 665 while (nrservs > 0) { 666 nrservs--; 667 chosen_pool = choose_pool(serv, pool, &state); 668 669 rqstp = svc_prepare_thread(serv, chosen_pool); 670 if (IS_ERR(rqstp)) { 671 error = PTR_ERR(rqstp); 672 break; 673 } 674 675 __module_get(serv->sv_module); 676 task = kthread_create(serv->sv_function, rqstp, serv->sv_name); 677 if (IS_ERR(task)) { 678 error = PTR_ERR(task); 679 module_put(serv->sv_module); 680 svc_exit_thread(rqstp); 681 break; 682 } 683 684 rqstp->rq_task = task; 685 if (serv->sv_nrpools > 1) 686 svc_pool_map_set_cpumask(task, chosen_pool->sp_id); 687 688 svc_sock_update_bufs(serv); 689 wake_up_process(task); 690 } 691 /* destroy old threads */ 692 while (nrservs < 0 && 693 (task = choose_victim(serv, pool, &state)) != NULL) { 694 send_sig(SIGINT, task, 1); 695 nrservs++; 696 } 697 698 return error; 699 } 700 EXPORT_SYMBOL_GPL(svc_set_num_threads); 701 702 /* 703 * Called from a server thread as it's exiting. Caller must hold the BKL or 704 * the "service mutex", whichever is appropriate for the service. 705 */ 706 void 707 svc_exit_thread(struct svc_rqst *rqstp) 708 { 709 struct svc_serv *serv = rqstp->rq_server; 710 struct svc_pool *pool = rqstp->rq_pool; 711 712 svc_release_buffer(rqstp); 713 kfree(rqstp->rq_resp); 714 kfree(rqstp->rq_argp); 715 kfree(rqstp->rq_auth_data); 716 717 spin_lock_bh(&pool->sp_lock); 718 pool->sp_nrthreads--; 719 list_del(&rqstp->rq_all); 720 spin_unlock_bh(&pool->sp_lock); 721 722 kfree(rqstp); 723 724 /* Release the server */ 725 if (serv) 726 svc_destroy(serv); 727 } 728 EXPORT_SYMBOL_GPL(svc_exit_thread); 729 730 /* 731 * Register an "inet" protocol family netid with the local 732 * rpcbind daemon via an rpcbind v4 SET request. 733 * 734 * No netconfig infrastructure is available in the kernel, so 735 * we map IP_ protocol numbers to netids by hand. 736 * 737 * Returns zero on success; a negative errno value is returned 738 * if any error occurs. 739 */ 740 static int __svc_rpcb_register4(const u32 program, const u32 version, 741 const unsigned short protocol, 742 const unsigned short port) 743 { 744 const struct sockaddr_in sin = { 745 .sin_family = AF_INET, 746 .sin_addr.s_addr = htonl(INADDR_ANY), 747 .sin_port = htons(port), 748 }; 749 const char *netid; 750 int error; 751 752 switch (protocol) { 753 case IPPROTO_UDP: 754 netid = RPCBIND_NETID_UDP; 755 break; 756 case IPPROTO_TCP: 757 netid = RPCBIND_NETID_TCP; 758 break; 759 default: 760 return -ENOPROTOOPT; 761 } 762 763 error = rpcb_v4_register(program, version, 764 (const struct sockaddr *)&sin, netid); 765 766 /* 767 * User space didn't support rpcbind v4, so retry this 768 * registration request with the legacy rpcbind v2 protocol. 769 */ 770 if (error == -EPROTONOSUPPORT) 771 error = rpcb_register(program, version, protocol, port); 772 773 return error; 774 } 775 776 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 777 /* 778 * Register an "inet6" protocol family netid with the local 779 * rpcbind daemon via an rpcbind v4 SET request. 780 * 781 * No netconfig infrastructure is available in the kernel, so 782 * we map IP_ protocol numbers to netids by hand. 783 * 784 * Returns zero on success; a negative errno value is returned 785 * if any error occurs. 786 */ 787 static int __svc_rpcb_register6(const u32 program, const u32 version, 788 const unsigned short protocol, 789 const unsigned short port) 790 { 791 const struct sockaddr_in6 sin6 = { 792 .sin6_family = AF_INET6, 793 .sin6_addr = IN6ADDR_ANY_INIT, 794 .sin6_port = htons(port), 795 }; 796 const char *netid; 797 int error; 798 799 switch (protocol) { 800 case IPPROTO_UDP: 801 netid = RPCBIND_NETID_UDP6; 802 break; 803 case IPPROTO_TCP: 804 netid = RPCBIND_NETID_TCP6; 805 break; 806 default: 807 return -ENOPROTOOPT; 808 } 809 810 error = rpcb_v4_register(program, version, 811 (const struct sockaddr *)&sin6, netid); 812 813 /* 814 * User space didn't support rpcbind version 4, so we won't 815 * use a PF_INET6 listener. 816 */ 817 if (error == -EPROTONOSUPPORT) 818 error = -EAFNOSUPPORT; 819 820 return error; 821 } 822 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */ 823 824 /* 825 * Register a kernel RPC service via rpcbind version 4. 826 * 827 * Returns zero on success; a negative errno value is returned 828 * if any error occurs. 829 */ 830 static int __svc_register(const char *progname, 831 const u32 program, const u32 version, 832 const int family, 833 const unsigned short protocol, 834 const unsigned short port) 835 { 836 int error = -EAFNOSUPPORT; 837 838 switch (family) { 839 case PF_INET: 840 error = __svc_rpcb_register4(program, version, 841 protocol, port); 842 break; 843 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 844 case PF_INET6: 845 error = __svc_rpcb_register6(program, version, 846 protocol, port); 847 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */ 848 } 849 850 if (error < 0) 851 printk(KERN_WARNING "svc: failed to register %sv%u RPC " 852 "service (errno %d).\n", progname, version, -error); 853 return error; 854 } 855 856 /** 857 * svc_register - register an RPC service with the local portmapper 858 * @serv: svc_serv struct for the service to register 859 * @family: protocol family of service's listener socket 860 * @proto: transport protocol number to advertise 861 * @port: port to advertise 862 * 863 * Service is registered for any address in the passed-in protocol family 864 */ 865 int svc_register(const struct svc_serv *serv, const int family, 866 const unsigned short proto, const unsigned short port) 867 { 868 struct svc_program *progp; 869 unsigned int i; 870 int error = 0; 871 872 BUG_ON(proto == 0 && port == 0); 873 874 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 875 for (i = 0; i < progp->pg_nvers; i++) { 876 if (progp->pg_vers[i] == NULL) 877 continue; 878 879 dprintk("svc: svc_register(%sv%d, %s, %u, %u)%s\n", 880 progp->pg_name, 881 i, 882 proto == IPPROTO_UDP? "udp" : "tcp", 883 port, 884 family, 885 progp->pg_vers[i]->vs_hidden? 886 " (but not telling portmap)" : ""); 887 888 if (progp->pg_vers[i]->vs_hidden) 889 continue; 890 891 error = __svc_register(progp->pg_name, progp->pg_prog, 892 i, family, proto, port); 893 if (error < 0) 894 break; 895 } 896 } 897 898 return error; 899 } 900 901 /* 902 * If user space is running rpcbind, it should take the v4 UNSET 903 * and clear everything for this [program, version]. If user space 904 * is running portmap, it will reject the v4 UNSET, but won't have 905 * any "inet6" entries anyway. So a PMAP_UNSET should be sufficient 906 * in this case to clear all existing entries for [program, version]. 907 */ 908 static void __svc_unregister(const u32 program, const u32 version, 909 const char *progname) 910 { 911 int error; 912 913 error = rpcb_v4_register(program, version, NULL, ""); 914 915 /* 916 * User space didn't support rpcbind v4, so retry this 917 * request with the legacy rpcbind v2 protocol. 918 */ 919 if (error == -EPROTONOSUPPORT) 920 error = rpcb_register(program, version, 0, 0); 921 922 dprintk("svc: %s(%sv%u), error %d\n", 923 __func__, progname, version, error); 924 } 925 926 /* 927 * All netids, bind addresses and ports registered for [program, version] 928 * are removed from the local rpcbind database (if the service is not 929 * hidden) to make way for a new instance of the service. 930 * 931 * The result of unregistration is reported via dprintk for those who want 932 * verification of the result, but is otherwise not important. 933 */ 934 static void svc_unregister(const struct svc_serv *serv) 935 { 936 struct svc_program *progp; 937 unsigned long flags; 938 unsigned int i; 939 940 clear_thread_flag(TIF_SIGPENDING); 941 942 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 943 for (i = 0; i < progp->pg_nvers; i++) { 944 if (progp->pg_vers[i] == NULL) 945 continue; 946 if (progp->pg_vers[i]->vs_hidden) 947 continue; 948 949 __svc_unregister(progp->pg_prog, i, progp->pg_name); 950 } 951 } 952 953 spin_lock_irqsave(¤t->sighand->siglock, flags); 954 recalc_sigpending(); 955 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 956 } 957 958 /* 959 * Printk the given error with the address of the client that caused it. 960 */ 961 static int 962 __attribute__ ((format (printf, 2, 3))) 963 svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) 964 { 965 va_list args; 966 int r; 967 char buf[RPC_MAX_ADDRBUFLEN]; 968 969 if (!net_ratelimit()) 970 return 0; 971 972 printk(KERN_WARNING "svc: %s: ", 973 svc_print_addr(rqstp, buf, sizeof(buf))); 974 975 va_start(args, fmt); 976 r = vprintk(fmt, args); 977 va_end(args); 978 979 return r; 980 } 981 982 /* 983 * Common routine for processing the RPC request. 984 */ 985 static int 986 svc_process_common(struct svc_rqst *rqstp, struct kvec *argv, struct kvec *resv) 987 { 988 struct svc_program *progp; 989 struct svc_version *versp = NULL; /* compiler food */ 990 struct svc_procedure *procp = NULL; 991 struct svc_serv *serv = rqstp->rq_server; 992 kxdrproc_t xdr; 993 __be32 *statp; 994 u32 prog, vers, proc; 995 __be32 auth_stat, rpc_stat; 996 int auth_res; 997 __be32 *reply_statp; 998 999 rpc_stat = rpc_success; 1000 1001 if (argv->iov_len < 6*4) 1002 goto err_short_len; 1003 1004 /* Will be turned off only in gss privacy case: */ 1005 rqstp->rq_splice_ok = 1; 1006 /* Will be turned off only when NFSv4 Sessions are used */ 1007 rqstp->rq_usedeferral = 1; 1008 1009 /* Setup reply header */ 1010 rqstp->rq_xprt->xpt_ops->xpo_prep_reply_hdr(rqstp); 1011 1012 svc_putu32(resv, rqstp->rq_xid); 1013 1014 vers = svc_getnl(argv); 1015 1016 /* First words of reply: */ 1017 svc_putnl(resv, 1); /* REPLY */ 1018 1019 if (vers != 2) /* RPC version number */ 1020 goto err_bad_rpc; 1021 1022 /* Save position in case we later decide to reject: */ 1023 reply_statp = resv->iov_base + resv->iov_len; 1024 1025 svc_putnl(resv, 0); /* ACCEPT */ 1026 1027 rqstp->rq_prog = prog = svc_getnl(argv); /* program number */ 1028 rqstp->rq_vers = vers = svc_getnl(argv); /* version number */ 1029 rqstp->rq_proc = proc = svc_getnl(argv); /* procedure number */ 1030 1031 progp = serv->sv_program; 1032 1033 for (progp = serv->sv_program; progp; progp = progp->pg_next) 1034 if (prog == progp->pg_prog) 1035 break; 1036 1037 /* 1038 * Decode auth data, and add verifier to reply buffer. 1039 * We do this before anything else in order to get a decent 1040 * auth verifier. 1041 */ 1042 auth_res = svc_authenticate(rqstp, &auth_stat); 1043 /* Also give the program a chance to reject this call: */ 1044 if (auth_res == SVC_OK && progp) { 1045 auth_stat = rpc_autherr_badcred; 1046 auth_res = progp->pg_authenticate(rqstp); 1047 } 1048 switch (auth_res) { 1049 case SVC_OK: 1050 break; 1051 case SVC_GARBAGE: 1052 goto err_garbage; 1053 case SVC_SYSERR: 1054 rpc_stat = rpc_system_err; 1055 goto err_bad; 1056 case SVC_DENIED: 1057 goto err_bad_auth; 1058 case SVC_CLOSE: 1059 if (test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags)) 1060 svc_close_xprt(rqstp->rq_xprt); 1061 case SVC_DROP: 1062 goto dropit; 1063 case SVC_COMPLETE: 1064 goto sendit; 1065 } 1066 1067 if (progp == NULL) 1068 goto err_bad_prog; 1069 1070 if (vers >= progp->pg_nvers || 1071 !(versp = progp->pg_vers[vers])) 1072 goto err_bad_vers; 1073 1074 procp = versp->vs_proc + proc; 1075 if (proc >= versp->vs_nproc || !procp->pc_func) 1076 goto err_bad_proc; 1077 rqstp->rq_procinfo = procp; 1078 1079 /* Syntactic check complete */ 1080 serv->sv_stats->rpccnt++; 1081 1082 /* Build the reply header. */ 1083 statp = resv->iov_base +resv->iov_len; 1084 svc_putnl(resv, RPC_SUCCESS); 1085 1086 /* Bump per-procedure stats counter */ 1087 procp->pc_count++; 1088 1089 /* Initialize storage for argp and resp */ 1090 memset(rqstp->rq_argp, 0, procp->pc_argsize); 1091 memset(rqstp->rq_resp, 0, procp->pc_ressize); 1092 1093 /* un-reserve some of the out-queue now that we have a 1094 * better idea of reply size 1095 */ 1096 if (procp->pc_xdrressize) 1097 svc_reserve_auth(rqstp, procp->pc_xdrressize<<2); 1098 1099 /* Call the function that processes the request. */ 1100 if (!versp->vs_dispatch) { 1101 /* Decode arguments */ 1102 xdr = procp->pc_decode; 1103 if (xdr && !xdr(rqstp, argv->iov_base, rqstp->rq_argp)) 1104 goto err_garbage; 1105 1106 *statp = procp->pc_func(rqstp, rqstp->rq_argp, rqstp->rq_resp); 1107 1108 /* Encode reply */ 1109 if (*statp == rpc_drop_reply) { 1110 if (procp->pc_release) 1111 procp->pc_release(rqstp, NULL, rqstp->rq_resp); 1112 goto dropit; 1113 } 1114 if (*statp == rpc_success && 1115 (xdr = procp->pc_encode) && 1116 !xdr(rqstp, resv->iov_base+resv->iov_len, rqstp->rq_resp)) { 1117 dprintk("svc: failed to encode reply\n"); 1118 /* serv->sv_stats->rpcsystemerr++; */ 1119 *statp = rpc_system_err; 1120 } 1121 } else { 1122 dprintk("svc: calling dispatcher\n"); 1123 if (!versp->vs_dispatch(rqstp, statp)) { 1124 /* Release reply info */ 1125 if (procp->pc_release) 1126 procp->pc_release(rqstp, NULL, rqstp->rq_resp); 1127 goto dropit; 1128 } 1129 } 1130 1131 /* Check RPC status result */ 1132 if (*statp != rpc_success) 1133 resv->iov_len = ((void*)statp) - resv->iov_base + 4; 1134 1135 /* Release reply info */ 1136 if (procp->pc_release) 1137 procp->pc_release(rqstp, NULL, rqstp->rq_resp); 1138 1139 if (procp->pc_encode == NULL) 1140 goto dropit; 1141 1142 sendit: 1143 if (svc_authorise(rqstp)) 1144 goto dropit; 1145 return 1; /* Caller can now send it */ 1146 1147 dropit: 1148 svc_authorise(rqstp); /* doesn't hurt to call this twice */ 1149 dprintk("svc: svc_process dropit\n"); 1150 svc_drop(rqstp); 1151 return 0; 1152 1153 err_short_len: 1154 svc_printk(rqstp, "short len %Zd, dropping request\n", 1155 argv->iov_len); 1156 1157 goto dropit; /* drop request */ 1158 1159 err_bad_rpc: 1160 serv->sv_stats->rpcbadfmt++; 1161 svc_putnl(resv, 1); /* REJECT */ 1162 svc_putnl(resv, 0); /* RPC_MISMATCH */ 1163 svc_putnl(resv, 2); /* Only RPCv2 supported */ 1164 svc_putnl(resv, 2); 1165 goto sendit; 1166 1167 err_bad_auth: 1168 dprintk("svc: authentication failed (%d)\n", ntohl(auth_stat)); 1169 serv->sv_stats->rpcbadauth++; 1170 /* Restore write pointer to location of accept status: */ 1171 xdr_ressize_check(rqstp, reply_statp); 1172 svc_putnl(resv, 1); /* REJECT */ 1173 svc_putnl(resv, 1); /* AUTH_ERROR */ 1174 svc_putnl(resv, ntohl(auth_stat)); /* status */ 1175 goto sendit; 1176 1177 err_bad_prog: 1178 dprintk("svc: unknown program %d\n", prog); 1179 serv->sv_stats->rpcbadfmt++; 1180 svc_putnl(resv, RPC_PROG_UNAVAIL); 1181 goto sendit; 1182 1183 err_bad_vers: 1184 svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n", 1185 vers, prog, progp->pg_name); 1186 1187 serv->sv_stats->rpcbadfmt++; 1188 svc_putnl(resv, RPC_PROG_MISMATCH); 1189 svc_putnl(resv, progp->pg_lovers); 1190 svc_putnl(resv, progp->pg_hivers); 1191 goto sendit; 1192 1193 err_bad_proc: 1194 svc_printk(rqstp, "unknown procedure (%d)\n", proc); 1195 1196 serv->sv_stats->rpcbadfmt++; 1197 svc_putnl(resv, RPC_PROC_UNAVAIL); 1198 goto sendit; 1199 1200 err_garbage: 1201 svc_printk(rqstp, "failed to decode args\n"); 1202 1203 rpc_stat = rpc_garbage_args; 1204 err_bad: 1205 serv->sv_stats->rpcbadfmt++; 1206 svc_putnl(resv, ntohl(rpc_stat)); 1207 goto sendit; 1208 } 1209 EXPORT_SYMBOL_GPL(svc_process); 1210 1211 /* 1212 * Process the RPC request. 1213 */ 1214 int 1215 svc_process(struct svc_rqst *rqstp) 1216 { 1217 struct kvec *argv = &rqstp->rq_arg.head[0]; 1218 struct kvec *resv = &rqstp->rq_res.head[0]; 1219 struct svc_serv *serv = rqstp->rq_server; 1220 u32 dir; 1221 int error; 1222 1223 /* 1224 * Setup response xdr_buf. 1225 * Initially it has just one page 1226 */ 1227 rqstp->rq_resused = 1; 1228 resv->iov_base = page_address(rqstp->rq_respages[0]); 1229 resv->iov_len = 0; 1230 rqstp->rq_res.pages = rqstp->rq_respages + 1; 1231 rqstp->rq_res.len = 0; 1232 rqstp->rq_res.page_base = 0; 1233 rqstp->rq_res.page_len = 0; 1234 rqstp->rq_res.buflen = PAGE_SIZE; 1235 rqstp->rq_res.tail[0].iov_base = NULL; 1236 rqstp->rq_res.tail[0].iov_len = 0; 1237 1238 rqstp->rq_xid = svc_getu32(argv); 1239 1240 dir = svc_getnl(argv); 1241 if (dir != 0) { 1242 /* direction != CALL */ 1243 svc_printk(rqstp, "bad direction %d, dropping request\n", dir); 1244 serv->sv_stats->rpcbadfmt++; 1245 svc_drop(rqstp); 1246 return 0; 1247 } 1248 1249 error = svc_process_common(rqstp, argv, resv); 1250 if (error <= 0) 1251 return error; 1252 1253 return svc_send(rqstp); 1254 } 1255 1256 #if defined(CONFIG_NFS_V4_1) 1257 /* 1258 * Process a backchannel RPC request that arrived over an existing 1259 * outbound connection 1260 */ 1261 int 1262 bc_svc_process(struct svc_serv *serv, struct rpc_rqst *req, 1263 struct svc_rqst *rqstp) 1264 { 1265 struct kvec *argv = &rqstp->rq_arg.head[0]; 1266 struct kvec *resv = &rqstp->rq_res.head[0]; 1267 int error; 1268 1269 /* Build the svc_rqst used by the common processing routine */ 1270 rqstp->rq_xprt = serv->bc_xprt; 1271 rqstp->rq_xid = req->rq_xid; 1272 rqstp->rq_prot = req->rq_xprt->prot; 1273 rqstp->rq_server = serv; 1274 1275 rqstp->rq_addrlen = sizeof(req->rq_xprt->addr); 1276 memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen); 1277 memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg)); 1278 memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res)); 1279 1280 /* reset result send buffer "put" position */ 1281 resv->iov_len = 0; 1282 1283 if (rqstp->rq_prot != IPPROTO_TCP) { 1284 printk(KERN_ERR "No support for Non-TCP transports!\n"); 1285 BUG(); 1286 } 1287 1288 /* 1289 * Skip the next two words because they've already been 1290 * processed in the trasport 1291 */ 1292 svc_getu32(argv); /* XID */ 1293 svc_getnl(argv); /* CALLDIR */ 1294 1295 error = svc_process_common(rqstp, argv, resv); 1296 if (error <= 0) 1297 return error; 1298 1299 memcpy(&req->rq_snd_buf, &rqstp->rq_res, sizeof(req->rq_snd_buf)); 1300 return bc_send(req); 1301 } 1302 EXPORT_SYMBOL(bc_svc_process); 1303 #endif /* CONFIG_NFS_V4_1 */ 1304 1305 /* 1306 * Return (transport-specific) limit on the rpc payload. 1307 */ 1308 u32 svc_max_payload(const struct svc_rqst *rqstp) 1309 { 1310 u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload; 1311 1312 if (rqstp->rq_server->sv_max_payload < max) 1313 max = rqstp->rq_server->sv_max_payload; 1314 return max; 1315 } 1316 EXPORT_SYMBOL_GPL(svc_max_payload); 1317