xref: /openbmc/linux/net/sunrpc/svc.c (revision aadaeca4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/svc.c
4  *
5  * High-level RPC service routines
6  *
7  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
8  *
9  * Multiple threads pools and NUMAisation
10  * Copyright (c) 2006 Silicon Graphics, Inc.
11  * by Greg Banks <gnb@melbourne.sgi.com>
12  */
13 
14 #include <linux/linkage.h>
15 #include <linux/sched/signal.h>
16 #include <linux/errno.h>
17 #include <linux/net.h>
18 #include <linux/in.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/module.h>
22 #include <linux/kthread.h>
23 #include <linux/slab.h>
24 
25 #include <linux/sunrpc/types.h>
26 #include <linux/sunrpc/xdr.h>
27 #include <linux/sunrpc/stats.h>
28 #include <linux/sunrpc/svcsock.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/sunrpc/bc_xprt.h>
31 
32 #include <trace/events/sunrpc.h>
33 
34 #include "fail.h"
35 
36 #define RPCDBG_FACILITY	RPCDBG_SVCDSP
37 
38 static void svc_unregister(const struct svc_serv *serv, struct net *net);
39 
40 #define SVC_POOL_DEFAULT	SVC_POOL_GLOBAL
41 
42 /*
43  * Mode for mapping cpus to pools.
44  */
45 enum {
46 	SVC_POOL_AUTO = -1,	/* choose one of the others */
47 	SVC_POOL_GLOBAL,	/* no mapping, just a single global pool
48 				 * (legacy & UP mode) */
49 	SVC_POOL_PERCPU,	/* one pool per cpu */
50 	SVC_POOL_PERNODE	/* one pool per numa node */
51 };
52 
53 /*
54  * Structure for mapping cpus to pools and vice versa.
55  * Setup once during sunrpc initialisation.
56  */
57 
58 struct svc_pool_map {
59 	int count;			/* How many svc_servs use us */
60 	int mode;			/* Note: int not enum to avoid
61 					 * warnings about "enumeration value
62 					 * not handled in switch" */
63 	unsigned int npools;
64 	unsigned int *pool_to;		/* maps pool id to cpu or node */
65 	unsigned int *to_pool;		/* maps cpu or node to pool id */
66 };
67 
68 static struct svc_pool_map svc_pool_map = {
69 	.mode = SVC_POOL_DEFAULT
70 };
71 
72 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */
73 
74 static int
75 param_set_pool_mode(const char *val, const struct kernel_param *kp)
76 {
77 	int *ip = (int *)kp->arg;
78 	struct svc_pool_map *m = &svc_pool_map;
79 	int err;
80 
81 	mutex_lock(&svc_pool_map_mutex);
82 
83 	err = -EBUSY;
84 	if (m->count)
85 		goto out;
86 
87 	err = 0;
88 	if (!strncmp(val, "auto", 4))
89 		*ip = SVC_POOL_AUTO;
90 	else if (!strncmp(val, "global", 6))
91 		*ip = SVC_POOL_GLOBAL;
92 	else if (!strncmp(val, "percpu", 6))
93 		*ip = SVC_POOL_PERCPU;
94 	else if (!strncmp(val, "pernode", 7))
95 		*ip = SVC_POOL_PERNODE;
96 	else
97 		err = -EINVAL;
98 
99 out:
100 	mutex_unlock(&svc_pool_map_mutex);
101 	return err;
102 }
103 
104 static int
105 param_get_pool_mode(char *buf, const struct kernel_param *kp)
106 {
107 	int *ip = (int *)kp->arg;
108 
109 	switch (*ip)
110 	{
111 	case SVC_POOL_AUTO:
112 		return strlcpy(buf, "auto\n", 20);
113 	case SVC_POOL_GLOBAL:
114 		return strlcpy(buf, "global\n", 20);
115 	case SVC_POOL_PERCPU:
116 		return strlcpy(buf, "percpu\n", 20);
117 	case SVC_POOL_PERNODE:
118 		return strlcpy(buf, "pernode\n", 20);
119 	default:
120 		return sprintf(buf, "%d\n", *ip);
121 	}
122 }
123 
124 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode,
125 		 &svc_pool_map.mode, 0644);
126 
127 /*
128  * Detect best pool mapping mode heuristically,
129  * according to the machine's topology.
130  */
131 static int
132 svc_pool_map_choose_mode(void)
133 {
134 	unsigned int node;
135 
136 	if (nr_online_nodes > 1) {
137 		/*
138 		 * Actually have multiple NUMA nodes,
139 		 * so split pools on NUMA node boundaries
140 		 */
141 		return SVC_POOL_PERNODE;
142 	}
143 
144 	node = first_online_node;
145 	if (nr_cpus_node(node) > 2) {
146 		/*
147 		 * Non-trivial SMP, or CONFIG_NUMA on
148 		 * non-NUMA hardware, e.g. with a generic
149 		 * x86_64 kernel on Xeons.  In this case we
150 		 * want to divide the pools on cpu boundaries.
151 		 */
152 		return SVC_POOL_PERCPU;
153 	}
154 
155 	/* default: one global pool */
156 	return SVC_POOL_GLOBAL;
157 }
158 
159 /*
160  * Allocate the to_pool[] and pool_to[] arrays.
161  * Returns 0 on success or an errno.
162  */
163 static int
164 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools)
165 {
166 	m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
167 	if (!m->to_pool)
168 		goto fail;
169 	m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
170 	if (!m->pool_to)
171 		goto fail_free;
172 
173 	return 0;
174 
175 fail_free:
176 	kfree(m->to_pool);
177 	m->to_pool = NULL;
178 fail:
179 	return -ENOMEM;
180 }
181 
182 /*
183  * Initialise the pool map for SVC_POOL_PERCPU mode.
184  * Returns number of pools or <0 on error.
185  */
186 static int
187 svc_pool_map_init_percpu(struct svc_pool_map *m)
188 {
189 	unsigned int maxpools = nr_cpu_ids;
190 	unsigned int pidx = 0;
191 	unsigned int cpu;
192 	int err;
193 
194 	err = svc_pool_map_alloc_arrays(m, maxpools);
195 	if (err)
196 		return err;
197 
198 	for_each_online_cpu(cpu) {
199 		BUG_ON(pidx >= maxpools);
200 		m->to_pool[cpu] = pidx;
201 		m->pool_to[pidx] = cpu;
202 		pidx++;
203 	}
204 	/* cpus brought online later all get mapped to pool0, sorry */
205 
206 	return pidx;
207 };
208 
209 
210 /*
211  * Initialise the pool map for SVC_POOL_PERNODE mode.
212  * Returns number of pools or <0 on error.
213  */
214 static int
215 svc_pool_map_init_pernode(struct svc_pool_map *m)
216 {
217 	unsigned int maxpools = nr_node_ids;
218 	unsigned int pidx = 0;
219 	unsigned int node;
220 	int err;
221 
222 	err = svc_pool_map_alloc_arrays(m, maxpools);
223 	if (err)
224 		return err;
225 
226 	for_each_node_with_cpus(node) {
227 		/* some architectures (e.g. SN2) have cpuless nodes */
228 		BUG_ON(pidx > maxpools);
229 		m->to_pool[node] = pidx;
230 		m->pool_to[pidx] = node;
231 		pidx++;
232 	}
233 	/* nodes brought online later all get mapped to pool0, sorry */
234 
235 	return pidx;
236 }
237 
238 
239 /*
240  * Add a reference to the global map of cpus to pools (and
241  * vice versa) if pools are in use.
242  * Initialise the map if we're the first user.
243  * Returns the number of pools. If this is '1', no reference
244  * was taken.
245  */
246 static unsigned int
247 svc_pool_map_get(void)
248 {
249 	struct svc_pool_map *m = &svc_pool_map;
250 	int npools = -1;
251 
252 	mutex_lock(&svc_pool_map_mutex);
253 
254 	if (m->count++) {
255 		mutex_unlock(&svc_pool_map_mutex);
256 		WARN_ON_ONCE(m->npools <= 1);
257 		return m->npools;
258 	}
259 
260 	if (m->mode == SVC_POOL_AUTO)
261 		m->mode = svc_pool_map_choose_mode();
262 
263 	switch (m->mode) {
264 	case SVC_POOL_PERCPU:
265 		npools = svc_pool_map_init_percpu(m);
266 		break;
267 	case SVC_POOL_PERNODE:
268 		npools = svc_pool_map_init_pernode(m);
269 		break;
270 	}
271 
272 	if (npools <= 0) {
273 		/* default, or memory allocation failure */
274 		npools = 1;
275 		m->mode = SVC_POOL_GLOBAL;
276 	}
277 	m->npools = npools;
278 
279 	if (npools == 1)
280 		/* service is unpooled, so doesn't hold a reference */
281 		m->count--;
282 
283 	mutex_unlock(&svc_pool_map_mutex);
284 	return npools;
285 }
286 
287 /*
288  * Drop a reference to the global map of cpus to pools, if
289  * pools were in use, i.e. if npools > 1.
290  * When the last reference is dropped, the map data is
291  * freed; this allows the sysadmin to change the pool
292  * mode using the pool_mode module option without
293  * rebooting or re-loading sunrpc.ko.
294  */
295 static void
296 svc_pool_map_put(int npools)
297 {
298 	struct svc_pool_map *m = &svc_pool_map;
299 
300 	if (npools <= 1)
301 		return;
302 	mutex_lock(&svc_pool_map_mutex);
303 
304 	if (!--m->count) {
305 		kfree(m->to_pool);
306 		m->to_pool = NULL;
307 		kfree(m->pool_to);
308 		m->pool_to = NULL;
309 		m->npools = 0;
310 	}
311 
312 	mutex_unlock(&svc_pool_map_mutex);
313 }
314 
315 static int svc_pool_map_get_node(unsigned int pidx)
316 {
317 	const struct svc_pool_map *m = &svc_pool_map;
318 
319 	if (m->count) {
320 		if (m->mode == SVC_POOL_PERCPU)
321 			return cpu_to_node(m->pool_to[pidx]);
322 		if (m->mode == SVC_POOL_PERNODE)
323 			return m->pool_to[pidx];
324 	}
325 	return NUMA_NO_NODE;
326 }
327 /*
328  * Set the given thread's cpus_allowed mask so that it
329  * will only run on cpus in the given pool.
330  */
331 static inline void
332 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx)
333 {
334 	struct svc_pool_map *m = &svc_pool_map;
335 	unsigned int node = m->pool_to[pidx];
336 
337 	/*
338 	 * The caller checks for sv_nrpools > 1, which
339 	 * implies that we've been initialized.
340 	 */
341 	WARN_ON_ONCE(m->count == 0);
342 	if (m->count == 0)
343 		return;
344 
345 	switch (m->mode) {
346 	case SVC_POOL_PERCPU:
347 	{
348 		set_cpus_allowed_ptr(task, cpumask_of(node));
349 		break;
350 	}
351 	case SVC_POOL_PERNODE:
352 	{
353 		set_cpus_allowed_ptr(task, cpumask_of_node(node));
354 		break;
355 	}
356 	}
357 }
358 
359 /*
360  * Use the mapping mode to choose a pool for a given CPU.
361  * Used when enqueueing an incoming RPC.  Always returns
362  * a non-NULL pool pointer.
363  */
364 struct svc_pool *
365 svc_pool_for_cpu(struct svc_serv *serv, int cpu)
366 {
367 	struct svc_pool_map *m = &svc_pool_map;
368 	unsigned int pidx = 0;
369 
370 	if (serv->sv_nrpools <= 1)
371 		return serv->sv_pools;
372 
373 	switch (m->mode) {
374 	case SVC_POOL_PERCPU:
375 		pidx = m->to_pool[cpu];
376 		break;
377 	case SVC_POOL_PERNODE:
378 		pidx = m->to_pool[cpu_to_node(cpu)];
379 		break;
380 	}
381 
382 	return &serv->sv_pools[pidx % serv->sv_nrpools];
383 }
384 
385 int svc_rpcb_setup(struct svc_serv *serv, struct net *net)
386 {
387 	int err;
388 
389 	err = rpcb_create_local(net);
390 	if (err)
391 		return err;
392 
393 	/* Remove any stale portmap registrations */
394 	svc_unregister(serv, net);
395 	return 0;
396 }
397 EXPORT_SYMBOL_GPL(svc_rpcb_setup);
398 
399 void svc_rpcb_cleanup(struct svc_serv *serv, struct net *net)
400 {
401 	svc_unregister(serv, net);
402 	rpcb_put_local(net);
403 }
404 EXPORT_SYMBOL_GPL(svc_rpcb_cleanup);
405 
406 static int svc_uses_rpcbind(struct svc_serv *serv)
407 {
408 	struct svc_program	*progp;
409 	unsigned int		i;
410 
411 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
412 		for (i = 0; i < progp->pg_nvers; i++) {
413 			if (progp->pg_vers[i] == NULL)
414 				continue;
415 			if (!progp->pg_vers[i]->vs_hidden)
416 				return 1;
417 		}
418 	}
419 
420 	return 0;
421 }
422 
423 int svc_bind(struct svc_serv *serv, struct net *net)
424 {
425 	if (!svc_uses_rpcbind(serv))
426 		return 0;
427 	return svc_rpcb_setup(serv, net);
428 }
429 EXPORT_SYMBOL_GPL(svc_bind);
430 
431 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
432 static void
433 __svc_init_bc(struct svc_serv *serv)
434 {
435 	INIT_LIST_HEAD(&serv->sv_cb_list);
436 	spin_lock_init(&serv->sv_cb_lock);
437 	init_waitqueue_head(&serv->sv_cb_waitq);
438 }
439 #else
440 static void
441 __svc_init_bc(struct svc_serv *serv)
442 {
443 }
444 #endif
445 
446 /*
447  * Create an RPC service
448  */
449 static struct svc_serv *
450 __svc_create(struct svc_program *prog, unsigned int bufsize, int npools,
451 	     int (*threadfn)(void *data))
452 {
453 	struct svc_serv	*serv;
454 	unsigned int vers;
455 	unsigned int xdrsize;
456 	unsigned int i;
457 
458 	if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL)))
459 		return NULL;
460 	serv->sv_name      = prog->pg_name;
461 	serv->sv_program   = prog;
462 	kref_init(&serv->sv_refcnt);
463 	serv->sv_stats     = prog->pg_stats;
464 	if (bufsize > RPCSVC_MAXPAYLOAD)
465 		bufsize = RPCSVC_MAXPAYLOAD;
466 	serv->sv_max_payload = bufsize? bufsize : 4096;
467 	serv->sv_max_mesg  = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE);
468 	serv->sv_threadfn = threadfn;
469 	xdrsize = 0;
470 	while (prog) {
471 		prog->pg_lovers = prog->pg_nvers-1;
472 		for (vers=0; vers<prog->pg_nvers ; vers++)
473 			if (prog->pg_vers[vers]) {
474 				prog->pg_hivers = vers;
475 				if (prog->pg_lovers > vers)
476 					prog->pg_lovers = vers;
477 				if (prog->pg_vers[vers]->vs_xdrsize > xdrsize)
478 					xdrsize = prog->pg_vers[vers]->vs_xdrsize;
479 			}
480 		prog = prog->pg_next;
481 	}
482 	serv->sv_xdrsize   = xdrsize;
483 	INIT_LIST_HEAD(&serv->sv_tempsocks);
484 	INIT_LIST_HEAD(&serv->sv_permsocks);
485 	timer_setup(&serv->sv_temptimer, NULL, 0);
486 	spin_lock_init(&serv->sv_lock);
487 
488 	__svc_init_bc(serv);
489 
490 	serv->sv_nrpools = npools;
491 	serv->sv_pools =
492 		kcalloc(serv->sv_nrpools, sizeof(struct svc_pool),
493 			GFP_KERNEL);
494 	if (!serv->sv_pools) {
495 		kfree(serv);
496 		return NULL;
497 	}
498 
499 	for (i = 0; i < serv->sv_nrpools; i++) {
500 		struct svc_pool *pool = &serv->sv_pools[i];
501 
502 		dprintk("svc: initialising pool %u for %s\n",
503 				i, serv->sv_name);
504 
505 		pool->sp_id = i;
506 		INIT_LIST_HEAD(&pool->sp_sockets);
507 		INIT_LIST_HEAD(&pool->sp_all_threads);
508 		spin_lock_init(&pool->sp_lock);
509 	}
510 
511 	return serv;
512 }
513 
514 /**
515  * svc_create - Create an RPC service
516  * @prog: the RPC program the new service will handle
517  * @bufsize: maximum message size for @prog
518  * @threadfn: a function to service RPC requests for @prog
519  *
520  * Returns an instantiated struct svc_serv object or NULL.
521  */
522 struct svc_serv *svc_create(struct svc_program *prog, unsigned int bufsize,
523 			    int (*threadfn)(void *data))
524 {
525 	return __svc_create(prog, bufsize, 1, threadfn);
526 }
527 EXPORT_SYMBOL_GPL(svc_create);
528 
529 /**
530  * svc_create_pooled - Create an RPC service with pooled threads
531  * @prog: the RPC program the new service will handle
532  * @bufsize: maximum message size for @prog
533  * @threadfn: a function to service RPC requests for @prog
534  *
535  * Returns an instantiated struct svc_serv object or NULL.
536  */
537 struct svc_serv *svc_create_pooled(struct svc_program *prog,
538 				   unsigned int bufsize,
539 				   int (*threadfn)(void *data))
540 {
541 	struct svc_serv *serv;
542 	unsigned int npools = svc_pool_map_get();
543 
544 	serv = __svc_create(prog, bufsize, npools, threadfn);
545 	if (!serv)
546 		goto out_err;
547 	return serv;
548 out_err:
549 	svc_pool_map_put(npools);
550 	return NULL;
551 }
552 EXPORT_SYMBOL_GPL(svc_create_pooled);
553 
554 /*
555  * Destroy an RPC service. Should be called with appropriate locking to
556  * protect sv_permsocks and sv_tempsocks.
557  */
558 void
559 svc_destroy(struct kref *ref)
560 {
561 	struct svc_serv *serv = container_of(ref, struct svc_serv, sv_refcnt);
562 
563 	dprintk("svc: svc_destroy(%s)\n", serv->sv_program->pg_name);
564 	del_timer_sync(&serv->sv_temptimer);
565 
566 	/*
567 	 * The last user is gone and thus all sockets have to be destroyed to
568 	 * the point. Check this.
569 	 */
570 	BUG_ON(!list_empty(&serv->sv_permsocks));
571 	BUG_ON(!list_empty(&serv->sv_tempsocks));
572 
573 	cache_clean_deferred(serv);
574 
575 	svc_pool_map_put(serv->sv_nrpools);
576 
577 	kfree(serv->sv_pools);
578 	kfree(serv);
579 }
580 EXPORT_SYMBOL_GPL(svc_destroy);
581 
582 /*
583  * Allocate an RPC server's buffer space.
584  * We allocate pages and place them in rq_pages.
585  */
586 static int
587 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size, int node)
588 {
589 	unsigned int pages, arghi;
590 
591 	/* bc_xprt uses fore channel allocated buffers */
592 	if (svc_is_backchannel(rqstp))
593 		return 1;
594 
595 	pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply.
596 				       * We assume one is at most one page
597 				       */
598 	arghi = 0;
599 	WARN_ON_ONCE(pages > RPCSVC_MAXPAGES);
600 	if (pages > RPCSVC_MAXPAGES)
601 		pages = RPCSVC_MAXPAGES;
602 	while (pages) {
603 		struct page *p = alloc_pages_node(node, GFP_KERNEL, 0);
604 		if (!p)
605 			break;
606 		rqstp->rq_pages[arghi++] = p;
607 		pages--;
608 	}
609 	return pages == 0;
610 }
611 
612 /*
613  * Release an RPC server buffer
614  */
615 static void
616 svc_release_buffer(struct svc_rqst *rqstp)
617 {
618 	unsigned int i;
619 
620 	for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++)
621 		if (rqstp->rq_pages[i])
622 			put_page(rqstp->rq_pages[i]);
623 }
624 
625 struct svc_rqst *
626 svc_rqst_alloc(struct svc_serv *serv, struct svc_pool *pool, int node)
627 {
628 	struct svc_rqst	*rqstp;
629 
630 	rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node);
631 	if (!rqstp)
632 		return rqstp;
633 
634 	__set_bit(RQ_BUSY, &rqstp->rq_flags);
635 	spin_lock_init(&rqstp->rq_lock);
636 	rqstp->rq_server = serv;
637 	rqstp->rq_pool = pool;
638 
639 	rqstp->rq_scratch_page = alloc_pages_node(node, GFP_KERNEL, 0);
640 	if (!rqstp->rq_scratch_page)
641 		goto out_enomem;
642 
643 	rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
644 	if (!rqstp->rq_argp)
645 		goto out_enomem;
646 
647 	rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
648 	if (!rqstp->rq_resp)
649 		goto out_enomem;
650 
651 	if (!svc_init_buffer(rqstp, serv->sv_max_mesg, node))
652 		goto out_enomem;
653 
654 	return rqstp;
655 out_enomem:
656 	svc_rqst_free(rqstp);
657 	return NULL;
658 }
659 EXPORT_SYMBOL_GPL(svc_rqst_alloc);
660 
661 static struct svc_rqst *
662 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node)
663 {
664 	struct svc_rqst	*rqstp;
665 
666 	rqstp = svc_rqst_alloc(serv, pool, node);
667 	if (!rqstp)
668 		return ERR_PTR(-ENOMEM);
669 
670 	svc_get(serv);
671 	spin_lock_bh(&serv->sv_lock);
672 	serv->sv_nrthreads += 1;
673 	spin_unlock_bh(&serv->sv_lock);
674 
675 	spin_lock_bh(&pool->sp_lock);
676 	pool->sp_nrthreads++;
677 	list_add_rcu(&rqstp->rq_all, &pool->sp_all_threads);
678 	spin_unlock_bh(&pool->sp_lock);
679 	return rqstp;
680 }
681 
682 /*
683  * Choose a pool in which to create a new thread, for svc_set_num_threads
684  */
685 static inline struct svc_pool *
686 choose_pool(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
687 {
688 	if (pool != NULL)
689 		return pool;
690 
691 	return &serv->sv_pools[(*state)++ % serv->sv_nrpools];
692 }
693 
694 /*
695  * Choose a thread to kill, for svc_set_num_threads
696  */
697 static inline struct task_struct *
698 choose_victim(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
699 {
700 	unsigned int i;
701 	struct task_struct *task = NULL;
702 
703 	if (pool != NULL) {
704 		spin_lock_bh(&pool->sp_lock);
705 	} else {
706 		/* choose a pool in round-robin fashion */
707 		for (i = 0; i < serv->sv_nrpools; i++) {
708 			pool = &serv->sv_pools[--(*state) % serv->sv_nrpools];
709 			spin_lock_bh(&pool->sp_lock);
710 			if (!list_empty(&pool->sp_all_threads))
711 				goto found_pool;
712 			spin_unlock_bh(&pool->sp_lock);
713 		}
714 		return NULL;
715 	}
716 
717 found_pool:
718 	if (!list_empty(&pool->sp_all_threads)) {
719 		struct svc_rqst *rqstp;
720 
721 		/*
722 		 * Remove from the pool->sp_all_threads list
723 		 * so we don't try to kill it again.
724 		 */
725 		rqstp = list_entry(pool->sp_all_threads.next, struct svc_rqst, rq_all);
726 		set_bit(RQ_VICTIM, &rqstp->rq_flags);
727 		list_del_rcu(&rqstp->rq_all);
728 		task = rqstp->rq_task;
729 	}
730 	spin_unlock_bh(&pool->sp_lock);
731 
732 	return task;
733 }
734 
735 /* create new threads */
736 static int
737 svc_start_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
738 {
739 	struct svc_rqst	*rqstp;
740 	struct task_struct *task;
741 	struct svc_pool *chosen_pool;
742 	unsigned int state = serv->sv_nrthreads-1;
743 	int node;
744 
745 	do {
746 		nrservs--;
747 		chosen_pool = choose_pool(serv, pool, &state);
748 
749 		node = svc_pool_map_get_node(chosen_pool->sp_id);
750 		rqstp = svc_prepare_thread(serv, chosen_pool, node);
751 		if (IS_ERR(rqstp))
752 			return PTR_ERR(rqstp);
753 
754 		task = kthread_create_on_node(serv->sv_threadfn, rqstp,
755 					      node, "%s", serv->sv_name);
756 		if (IS_ERR(task)) {
757 			svc_exit_thread(rqstp);
758 			return PTR_ERR(task);
759 		}
760 
761 		rqstp->rq_task = task;
762 		if (serv->sv_nrpools > 1)
763 			svc_pool_map_set_cpumask(task, chosen_pool->sp_id);
764 
765 		svc_sock_update_bufs(serv);
766 		wake_up_process(task);
767 	} while (nrservs > 0);
768 
769 	return 0;
770 }
771 
772 /*
773  * Create or destroy enough new threads to make the number
774  * of threads the given number.  If `pool' is non-NULL, applies
775  * only to threads in that pool, otherwise round-robins between
776  * all pools.  Caller must ensure that mutual exclusion between this and
777  * server startup or shutdown.
778  */
779 
780 /* destroy old threads */
781 static int
782 svc_stop_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
783 {
784 	struct task_struct *task;
785 	unsigned int state = serv->sv_nrthreads-1;
786 
787 	/* destroy old threads */
788 	do {
789 		task = choose_victim(serv, pool, &state);
790 		if (task == NULL)
791 			break;
792 		kthread_stop(task);
793 		nrservs++;
794 	} while (nrservs < 0);
795 	return 0;
796 }
797 
798 int
799 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
800 {
801 	if (pool == NULL) {
802 		nrservs -= serv->sv_nrthreads;
803 	} else {
804 		spin_lock_bh(&pool->sp_lock);
805 		nrservs -= pool->sp_nrthreads;
806 		spin_unlock_bh(&pool->sp_lock);
807 	}
808 
809 	if (nrservs > 0)
810 		return svc_start_kthreads(serv, pool, nrservs);
811 	if (nrservs < 0)
812 		return svc_stop_kthreads(serv, pool, nrservs);
813 	return 0;
814 }
815 EXPORT_SYMBOL_GPL(svc_set_num_threads);
816 
817 /**
818  * svc_rqst_replace_page - Replace one page in rq_pages[]
819  * @rqstp: svc_rqst with pages to replace
820  * @page: replacement page
821  *
822  * When replacing a page in rq_pages, batch the release of the
823  * replaced pages to avoid hammering the page allocator.
824  */
825 void svc_rqst_replace_page(struct svc_rqst *rqstp, struct page *page)
826 {
827 	if (*rqstp->rq_next_page) {
828 		if (!pagevec_space(&rqstp->rq_pvec))
829 			__pagevec_release(&rqstp->rq_pvec);
830 		pagevec_add(&rqstp->rq_pvec, *rqstp->rq_next_page);
831 	}
832 
833 	get_page(page);
834 	*(rqstp->rq_next_page++) = page;
835 }
836 EXPORT_SYMBOL_GPL(svc_rqst_replace_page);
837 
838 /*
839  * Called from a server thread as it's exiting. Caller must hold the "service
840  * mutex" for the service.
841  */
842 void
843 svc_rqst_free(struct svc_rqst *rqstp)
844 {
845 	svc_release_buffer(rqstp);
846 	if (rqstp->rq_scratch_page)
847 		put_page(rqstp->rq_scratch_page);
848 	kfree(rqstp->rq_resp);
849 	kfree(rqstp->rq_argp);
850 	kfree(rqstp->rq_auth_data);
851 	kfree_rcu(rqstp, rq_rcu_head);
852 }
853 EXPORT_SYMBOL_GPL(svc_rqst_free);
854 
855 void
856 svc_exit_thread(struct svc_rqst *rqstp)
857 {
858 	struct svc_serv	*serv = rqstp->rq_server;
859 	struct svc_pool	*pool = rqstp->rq_pool;
860 
861 	spin_lock_bh(&pool->sp_lock);
862 	pool->sp_nrthreads--;
863 	if (!test_and_set_bit(RQ_VICTIM, &rqstp->rq_flags))
864 		list_del_rcu(&rqstp->rq_all);
865 	spin_unlock_bh(&pool->sp_lock);
866 
867 	spin_lock_bh(&serv->sv_lock);
868 	serv->sv_nrthreads -= 1;
869 	spin_unlock_bh(&serv->sv_lock);
870 	svc_sock_update_bufs(serv);
871 
872 	svc_rqst_free(rqstp);
873 
874 	svc_put(serv);
875 }
876 EXPORT_SYMBOL_GPL(svc_exit_thread);
877 
878 /*
879  * Register an "inet" protocol family netid with the local
880  * rpcbind daemon via an rpcbind v4 SET request.
881  *
882  * No netconfig infrastructure is available in the kernel, so
883  * we map IP_ protocol numbers to netids by hand.
884  *
885  * Returns zero on success; a negative errno value is returned
886  * if any error occurs.
887  */
888 static int __svc_rpcb_register4(struct net *net, const u32 program,
889 				const u32 version,
890 				const unsigned short protocol,
891 				const unsigned short port)
892 {
893 	const struct sockaddr_in sin = {
894 		.sin_family		= AF_INET,
895 		.sin_addr.s_addr	= htonl(INADDR_ANY),
896 		.sin_port		= htons(port),
897 	};
898 	const char *netid;
899 	int error;
900 
901 	switch (protocol) {
902 	case IPPROTO_UDP:
903 		netid = RPCBIND_NETID_UDP;
904 		break;
905 	case IPPROTO_TCP:
906 		netid = RPCBIND_NETID_TCP;
907 		break;
908 	default:
909 		return -ENOPROTOOPT;
910 	}
911 
912 	error = rpcb_v4_register(net, program, version,
913 					(const struct sockaddr *)&sin, netid);
914 
915 	/*
916 	 * User space didn't support rpcbind v4, so retry this
917 	 * registration request with the legacy rpcbind v2 protocol.
918 	 */
919 	if (error == -EPROTONOSUPPORT)
920 		error = rpcb_register(net, program, version, protocol, port);
921 
922 	return error;
923 }
924 
925 #if IS_ENABLED(CONFIG_IPV6)
926 /*
927  * Register an "inet6" protocol family netid with the local
928  * rpcbind daemon via an rpcbind v4 SET request.
929  *
930  * No netconfig infrastructure is available in the kernel, so
931  * we map IP_ protocol numbers to netids by hand.
932  *
933  * Returns zero on success; a negative errno value is returned
934  * if any error occurs.
935  */
936 static int __svc_rpcb_register6(struct net *net, const u32 program,
937 				const u32 version,
938 				const unsigned short protocol,
939 				const unsigned short port)
940 {
941 	const struct sockaddr_in6 sin6 = {
942 		.sin6_family		= AF_INET6,
943 		.sin6_addr		= IN6ADDR_ANY_INIT,
944 		.sin6_port		= htons(port),
945 	};
946 	const char *netid;
947 	int error;
948 
949 	switch (protocol) {
950 	case IPPROTO_UDP:
951 		netid = RPCBIND_NETID_UDP6;
952 		break;
953 	case IPPROTO_TCP:
954 		netid = RPCBIND_NETID_TCP6;
955 		break;
956 	default:
957 		return -ENOPROTOOPT;
958 	}
959 
960 	error = rpcb_v4_register(net, program, version,
961 					(const struct sockaddr *)&sin6, netid);
962 
963 	/*
964 	 * User space didn't support rpcbind version 4, so we won't
965 	 * use a PF_INET6 listener.
966 	 */
967 	if (error == -EPROTONOSUPPORT)
968 		error = -EAFNOSUPPORT;
969 
970 	return error;
971 }
972 #endif	/* IS_ENABLED(CONFIG_IPV6) */
973 
974 /*
975  * Register a kernel RPC service via rpcbind version 4.
976  *
977  * Returns zero on success; a negative errno value is returned
978  * if any error occurs.
979  */
980 static int __svc_register(struct net *net, const char *progname,
981 			  const u32 program, const u32 version,
982 			  const int family,
983 			  const unsigned short protocol,
984 			  const unsigned short port)
985 {
986 	int error = -EAFNOSUPPORT;
987 
988 	switch (family) {
989 	case PF_INET:
990 		error = __svc_rpcb_register4(net, program, version,
991 						protocol, port);
992 		break;
993 #if IS_ENABLED(CONFIG_IPV6)
994 	case PF_INET6:
995 		error = __svc_rpcb_register6(net, program, version,
996 						protocol, port);
997 #endif
998 	}
999 
1000 	trace_svc_register(progname, version, protocol, port, family, error);
1001 	return error;
1002 }
1003 
1004 int svc_rpcbind_set_version(struct net *net,
1005 			    const struct svc_program *progp,
1006 			    u32 version, int family,
1007 			    unsigned short proto,
1008 			    unsigned short port)
1009 {
1010 	return __svc_register(net, progp->pg_name, progp->pg_prog,
1011 				version, family, proto, port);
1012 
1013 }
1014 EXPORT_SYMBOL_GPL(svc_rpcbind_set_version);
1015 
1016 int svc_generic_rpcbind_set(struct net *net,
1017 			    const struct svc_program *progp,
1018 			    u32 version, int family,
1019 			    unsigned short proto,
1020 			    unsigned short port)
1021 {
1022 	const struct svc_version *vers = progp->pg_vers[version];
1023 	int error;
1024 
1025 	if (vers == NULL)
1026 		return 0;
1027 
1028 	if (vers->vs_hidden) {
1029 		trace_svc_noregister(progp->pg_name, version, proto,
1030 				     port, family, 0);
1031 		return 0;
1032 	}
1033 
1034 	/*
1035 	 * Don't register a UDP port if we need congestion
1036 	 * control.
1037 	 */
1038 	if (vers->vs_need_cong_ctrl && proto == IPPROTO_UDP)
1039 		return 0;
1040 
1041 	error = svc_rpcbind_set_version(net, progp, version,
1042 					family, proto, port);
1043 
1044 	return (vers->vs_rpcb_optnl) ? 0 : error;
1045 }
1046 EXPORT_SYMBOL_GPL(svc_generic_rpcbind_set);
1047 
1048 /**
1049  * svc_register - register an RPC service with the local portmapper
1050  * @serv: svc_serv struct for the service to register
1051  * @net: net namespace for the service to register
1052  * @family: protocol family of service's listener socket
1053  * @proto: transport protocol number to advertise
1054  * @port: port to advertise
1055  *
1056  * Service is registered for any address in the passed-in protocol family
1057  */
1058 int svc_register(const struct svc_serv *serv, struct net *net,
1059 		 const int family, const unsigned short proto,
1060 		 const unsigned short port)
1061 {
1062 	struct svc_program	*progp;
1063 	unsigned int		i;
1064 	int			error = 0;
1065 
1066 	WARN_ON_ONCE(proto == 0 && port == 0);
1067 	if (proto == 0 && port == 0)
1068 		return -EINVAL;
1069 
1070 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
1071 		for (i = 0; i < progp->pg_nvers; i++) {
1072 
1073 			error = progp->pg_rpcbind_set(net, progp, i,
1074 					family, proto, port);
1075 			if (error < 0) {
1076 				printk(KERN_WARNING "svc: failed to register "
1077 					"%sv%u RPC service (errno %d).\n",
1078 					progp->pg_name, i, -error);
1079 				break;
1080 			}
1081 		}
1082 	}
1083 
1084 	return error;
1085 }
1086 
1087 /*
1088  * If user space is running rpcbind, it should take the v4 UNSET
1089  * and clear everything for this [program, version].  If user space
1090  * is running portmap, it will reject the v4 UNSET, but won't have
1091  * any "inet6" entries anyway.  So a PMAP_UNSET should be sufficient
1092  * in this case to clear all existing entries for [program, version].
1093  */
1094 static void __svc_unregister(struct net *net, const u32 program, const u32 version,
1095 			     const char *progname)
1096 {
1097 	int error;
1098 
1099 	error = rpcb_v4_register(net, program, version, NULL, "");
1100 
1101 	/*
1102 	 * User space didn't support rpcbind v4, so retry this
1103 	 * request with the legacy rpcbind v2 protocol.
1104 	 */
1105 	if (error == -EPROTONOSUPPORT)
1106 		error = rpcb_register(net, program, version, 0, 0);
1107 
1108 	trace_svc_unregister(progname, version, error);
1109 }
1110 
1111 /*
1112  * All netids, bind addresses and ports registered for [program, version]
1113  * are removed from the local rpcbind database (if the service is not
1114  * hidden) to make way for a new instance of the service.
1115  *
1116  * The result of unregistration is reported via dprintk for those who want
1117  * verification of the result, but is otherwise not important.
1118  */
1119 static void svc_unregister(const struct svc_serv *serv, struct net *net)
1120 {
1121 	struct svc_program *progp;
1122 	unsigned long flags;
1123 	unsigned int i;
1124 
1125 	clear_thread_flag(TIF_SIGPENDING);
1126 
1127 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
1128 		for (i = 0; i < progp->pg_nvers; i++) {
1129 			if (progp->pg_vers[i] == NULL)
1130 				continue;
1131 			if (progp->pg_vers[i]->vs_hidden)
1132 				continue;
1133 			__svc_unregister(net, progp->pg_prog, i, progp->pg_name);
1134 		}
1135 	}
1136 
1137 	spin_lock_irqsave(&current->sighand->siglock, flags);
1138 	recalc_sigpending();
1139 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
1140 }
1141 
1142 /*
1143  * dprintk the given error with the address of the client that caused it.
1144  */
1145 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
1146 static __printf(2, 3)
1147 void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...)
1148 {
1149 	struct va_format vaf;
1150 	va_list args;
1151 	char 	buf[RPC_MAX_ADDRBUFLEN];
1152 
1153 	va_start(args, fmt);
1154 
1155 	vaf.fmt = fmt;
1156 	vaf.va = &args;
1157 
1158 	dprintk("svc: %s: %pV", svc_print_addr(rqstp, buf, sizeof(buf)), &vaf);
1159 
1160 	va_end(args);
1161 }
1162 #else
1163 static __printf(2,3) void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) {}
1164 #endif
1165 
1166 __be32
1167 svc_generic_init_request(struct svc_rqst *rqstp,
1168 		const struct svc_program *progp,
1169 		struct svc_process_info *ret)
1170 {
1171 	const struct svc_version *versp = NULL;	/* compiler food */
1172 	const struct svc_procedure *procp = NULL;
1173 
1174 	if (rqstp->rq_vers >= progp->pg_nvers )
1175 		goto err_bad_vers;
1176 	versp = progp->pg_vers[rqstp->rq_vers];
1177 	if (!versp)
1178 		goto err_bad_vers;
1179 
1180 	/*
1181 	 * Some protocol versions (namely NFSv4) require some form of
1182 	 * congestion control.  (See RFC 7530 section 3.1 paragraph 2)
1183 	 * In other words, UDP is not allowed. We mark those when setting
1184 	 * up the svc_xprt, and verify that here.
1185 	 *
1186 	 * The spec is not very clear about what error should be returned
1187 	 * when someone tries to access a server that is listening on UDP
1188 	 * for lower versions. RPC_PROG_MISMATCH seems to be the closest
1189 	 * fit.
1190 	 */
1191 	if (versp->vs_need_cong_ctrl && rqstp->rq_xprt &&
1192 	    !test_bit(XPT_CONG_CTRL, &rqstp->rq_xprt->xpt_flags))
1193 		goto err_bad_vers;
1194 
1195 	if (rqstp->rq_proc >= versp->vs_nproc)
1196 		goto err_bad_proc;
1197 	rqstp->rq_procinfo = procp = &versp->vs_proc[rqstp->rq_proc];
1198 	if (!procp)
1199 		goto err_bad_proc;
1200 
1201 	/* Initialize storage for argp and resp */
1202 	memset(rqstp->rq_argp, 0, procp->pc_argsize);
1203 	memset(rqstp->rq_resp, 0, procp->pc_ressize);
1204 
1205 	/* Bump per-procedure stats counter */
1206 	versp->vs_count[rqstp->rq_proc]++;
1207 
1208 	ret->dispatch = versp->vs_dispatch;
1209 	return rpc_success;
1210 err_bad_vers:
1211 	ret->mismatch.lovers = progp->pg_lovers;
1212 	ret->mismatch.hivers = progp->pg_hivers;
1213 	return rpc_prog_mismatch;
1214 err_bad_proc:
1215 	return rpc_proc_unavail;
1216 }
1217 EXPORT_SYMBOL_GPL(svc_generic_init_request);
1218 
1219 /*
1220  * Common routine for processing the RPC request.
1221  */
1222 static int
1223 svc_process_common(struct svc_rqst *rqstp, struct kvec *argv, struct kvec *resv)
1224 {
1225 	struct svc_program	*progp;
1226 	const struct svc_procedure *procp = NULL;
1227 	struct svc_serv		*serv = rqstp->rq_server;
1228 	struct svc_process_info process;
1229 	__be32			*statp;
1230 	u32			prog, vers;
1231 	__be32			rpc_stat;
1232 	int			auth_res, rc;
1233 	__be32			*reply_statp;
1234 
1235 	rpc_stat = rpc_success;
1236 
1237 	if (argv->iov_len < 6*4)
1238 		goto err_short_len;
1239 
1240 	/* Will be turned off by GSS integrity and privacy services */
1241 	set_bit(RQ_SPLICE_OK, &rqstp->rq_flags);
1242 	/* Will be turned off only when NFSv4 Sessions are used */
1243 	set_bit(RQ_USEDEFERRAL, &rqstp->rq_flags);
1244 	clear_bit(RQ_DROPME, &rqstp->rq_flags);
1245 
1246 	svc_putu32(resv, rqstp->rq_xid);
1247 
1248 	vers = svc_getnl(argv);
1249 
1250 	/* First words of reply: */
1251 	svc_putnl(resv, 1);		/* REPLY */
1252 
1253 	if (vers != 2)		/* RPC version number */
1254 		goto err_bad_rpc;
1255 
1256 	/* Save position in case we later decide to reject: */
1257 	reply_statp = resv->iov_base + resv->iov_len;
1258 
1259 	svc_putnl(resv, 0);		/* ACCEPT */
1260 
1261 	rqstp->rq_prog = prog = svc_getnl(argv);	/* program number */
1262 	rqstp->rq_vers = svc_getnl(argv);	/* version number */
1263 	rqstp->rq_proc = svc_getnl(argv);	/* procedure number */
1264 
1265 	for (progp = serv->sv_program; progp; progp = progp->pg_next)
1266 		if (prog == progp->pg_prog)
1267 			break;
1268 
1269 	/*
1270 	 * Decode auth data, and add verifier to reply buffer.
1271 	 * We do this before anything else in order to get a decent
1272 	 * auth verifier.
1273 	 */
1274 	auth_res = svc_authenticate(rqstp);
1275 	/* Also give the program a chance to reject this call: */
1276 	if (auth_res == SVC_OK && progp)
1277 		auth_res = progp->pg_authenticate(rqstp);
1278 	if (auth_res != SVC_OK)
1279 		trace_svc_authenticate(rqstp, auth_res);
1280 	switch (auth_res) {
1281 	case SVC_OK:
1282 		break;
1283 	case SVC_GARBAGE:
1284 		goto err_garbage;
1285 	case SVC_SYSERR:
1286 		rpc_stat = rpc_system_err;
1287 		goto err_bad;
1288 	case SVC_DENIED:
1289 		goto err_bad_auth;
1290 	case SVC_CLOSE:
1291 		goto close;
1292 	case SVC_DROP:
1293 		goto dropit;
1294 	case SVC_COMPLETE:
1295 		goto sendit;
1296 	}
1297 
1298 	if (progp == NULL)
1299 		goto err_bad_prog;
1300 
1301 	rpc_stat = progp->pg_init_request(rqstp, progp, &process);
1302 	switch (rpc_stat) {
1303 	case rpc_success:
1304 		break;
1305 	case rpc_prog_unavail:
1306 		goto err_bad_prog;
1307 	case rpc_prog_mismatch:
1308 		goto err_bad_vers;
1309 	case rpc_proc_unavail:
1310 		goto err_bad_proc;
1311 	}
1312 
1313 	procp = rqstp->rq_procinfo;
1314 	/* Should this check go into the dispatcher? */
1315 	if (!procp || !procp->pc_func)
1316 		goto err_bad_proc;
1317 
1318 	/* Syntactic check complete */
1319 	serv->sv_stats->rpccnt++;
1320 	trace_svc_process(rqstp, progp->pg_name);
1321 
1322 	/* Build the reply header. */
1323 	statp = resv->iov_base +resv->iov_len;
1324 	svc_putnl(resv, RPC_SUCCESS);
1325 
1326 	/* un-reserve some of the out-queue now that we have a
1327 	 * better idea of reply size
1328 	 */
1329 	if (procp->pc_xdrressize)
1330 		svc_reserve_auth(rqstp, procp->pc_xdrressize<<2);
1331 
1332 	/* Call the function that processes the request. */
1333 	rc = process.dispatch(rqstp, statp);
1334 	if (procp->pc_release)
1335 		procp->pc_release(rqstp);
1336 	if (!rc)
1337 		goto dropit;
1338 	if (rqstp->rq_auth_stat != rpc_auth_ok)
1339 		goto err_bad_auth;
1340 
1341 	/* Check RPC status result */
1342 	if (*statp != rpc_success)
1343 		resv->iov_len = ((void*)statp)  - resv->iov_base + 4;
1344 
1345 	if (procp->pc_encode == NULL)
1346 		goto dropit;
1347 
1348  sendit:
1349 	if (svc_authorise(rqstp))
1350 		goto close_xprt;
1351 	return 1;		/* Caller can now send it */
1352 
1353  dropit:
1354 	svc_authorise(rqstp);	/* doesn't hurt to call this twice */
1355 	dprintk("svc: svc_process dropit\n");
1356 	return 0;
1357 
1358  close:
1359 	svc_authorise(rqstp);
1360 close_xprt:
1361 	if (rqstp->rq_xprt && test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags))
1362 		svc_xprt_close(rqstp->rq_xprt);
1363 	dprintk("svc: svc_process close\n");
1364 	return 0;
1365 
1366 err_short_len:
1367 	svc_printk(rqstp, "short len %zd, dropping request\n",
1368 			argv->iov_len);
1369 	goto close_xprt;
1370 
1371 err_bad_rpc:
1372 	serv->sv_stats->rpcbadfmt++;
1373 	svc_putnl(resv, 1);	/* REJECT */
1374 	svc_putnl(resv, 0);	/* RPC_MISMATCH */
1375 	svc_putnl(resv, 2);	/* Only RPCv2 supported */
1376 	svc_putnl(resv, 2);
1377 	goto sendit;
1378 
1379 err_bad_auth:
1380 	dprintk("svc: authentication failed (%d)\n",
1381 		be32_to_cpu(rqstp->rq_auth_stat));
1382 	serv->sv_stats->rpcbadauth++;
1383 	/* Restore write pointer to location of accept status: */
1384 	xdr_ressize_check(rqstp, reply_statp);
1385 	svc_putnl(resv, 1);	/* REJECT */
1386 	svc_putnl(resv, 1);	/* AUTH_ERROR */
1387 	svc_putu32(resv, rqstp->rq_auth_stat);	/* status */
1388 	goto sendit;
1389 
1390 err_bad_prog:
1391 	dprintk("svc: unknown program %d\n", prog);
1392 	serv->sv_stats->rpcbadfmt++;
1393 	svc_putnl(resv, RPC_PROG_UNAVAIL);
1394 	goto sendit;
1395 
1396 err_bad_vers:
1397 	svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n",
1398 		       rqstp->rq_vers, rqstp->rq_prog, progp->pg_name);
1399 
1400 	serv->sv_stats->rpcbadfmt++;
1401 	svc_putnl(resv, RPC_PROG_MISMATCH);
1402 	svc_putnl(resv, process.mismatch.lovers);
1403 	svc_putnl(resv, process.mismatch.hivers);
1404 	goto sendit;
1405 
1406 err_bad_proc:
1407 	svc_printk(rqstp, "unknown procedure (%d)\n", rqstp->rq_proc);
1408 
1409 	serv->sv_stats->rpcbadfmt++;
1410 	svc_putnl(resv, RPC_PROC_UNAVAIL);
1411 	goto sendit;
1412 
1413 err_garbage:
1414 	svc_printk(rqstp, "failed to decode args\n");
1415 
1416 	rpc_stat = rpc_garbage_args;
1417 err_bad:
1418 	serv->sv_stats->rpcbadfmt++;
1419 	svc_putnl(resv, ntohl(rpc_stat));
1420 	goto sendit;
1421 }
1422 
1423 /*
1424  * Process the RPC request.
1425  */
1426 int
1427 svc_process(struct svc_rqst *rqstp)
1428 {
1429 	struct kvec		*argv = &rqstp->rq_arg.head[0];
1430 	struct kvec		*resv = &rqstp->rq_res.head[0];
1431 	struct svc_serv		*serv = rqstp->rq_server;
1432 	u32			dir;
1433 
1434 #if IS_ENABLED(CONFIG_FAIL_SUNRPC)
1435 	if (!fail_sunrpc.ignore_server_disconnect &&
1436 	    should_fail(&fail_sunrpc.attr, 1))
1437 		svc_xprt_deferred_close(rqstp->rq_xprt);
1438 #endif
1439 
1440 	/*
1441 	 * Setup response xdr_buf.
1442 	 * Initially it has just one page
1443 	 */
1444 	rqstp->rq_next_page = &rqstp->rq_respages[1];
1445 	resv->iov_base = page_address(rqstp->rq_respages[0]);
1446 	resv->iov_len = 0;
1447 	rqstp->rq_res.pages = rqstp->rq_respages + 1;
1448 	rqstp->rq_res.len = 0;
1449 	rqstp->rq_res.page_base = 0;
1450 	rqstp->rq_res.page_len = 0;
1451 	rqstp->rq_res.buflen = PAGE_SIZE;
1452 	rqstp->rq_res.tail[0].iov_base = NULL;
1453 	rqstp->rq_res.tail[0].iov_len = 0;
1454 
1455 	dir  = svc_getnl(argv);
1456 	if (dir != 0) {
1457 		/* direction != CALL */
1458 		svc_printk(rqstp, "bad direction %d, dropping request\n", dir);
1459 		serv->sv_stats->rpcbadfmt++;
1460 		goto out_drop;
1461 	}
1462 
1463 	/* Returns 1 for send, 0 for drop */
1464 	if (likely(svc_process_common(rqstp, argv, resv)))
1465 		return svc_send(rqstp);
1466 
1467 out_drop:
1468 	svc_drop(rqstp);
1469 	return 0;
1470 }
1471 EXPORT_SYMBOL_GPL(svc_process);
1472 
1473 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1474 /*
1475  * Process a backchannel RPC request that arrived over an existing
1476  * outbound connection
1477  */
1478 int
1479 bc_svc_process(struct svc_serv *serv, struct rpc_rqst *req,
1480 	       struct svc_rqst *rqstp)
1481 {
1482 	struct kvec	*argv = &rqstp->rq_arg.head[0];
1483 	struct kvec	*resv = &rqstp->rq_res.head[0];
1484 	struct rpc_task *task;
1485 	int proc_error;
1486 	int error;
1487 
1488 	dprintk("svc: %s(%p)\n", __func__, req);
1489 
1490 	/* Build the svc_rqst used by the common processing routine */
1491 	rqstp->rq_xid = req->rq_xid;
1492 	rqstp->rq_prot = req->rq_xprt->prot;
1493 	rqstp->rq_server = serv;
1494 	rqstp->rq_bc_net = req->rq_xprt->xprt_net;
1495 
1496 	rqstp->rq_addrlen = sizeof(req->rq_xprt->addr);
1497 	memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen);
1498 	memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg));
1499 	memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res));
1500 
1501 	/* Adjust the argument buffer length */
1502 	rqstp->rq_arg.len = req->rq_private_buf.len;
1503 	if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) {
1504 		rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len;
1505 		rqstp->rq_arg.page_len = 0;
1506 	} else if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len +
1507 			rqstp->rq_arg.page_len)
1508 		rqstp->rq_arg.page_len = rqstp->rq_arg.len -
1509 			rqstp->rq_arg.head[0].iov_len;
1510 	else
1511 		rqstp->rq_arg.len = rqstp->rq_arg.head[0].iov_len +
1512 			rqstp->rq_arg.page_len;
1513 
1514 	/* reset result send buffer "put" position */
1515 	resv->iov_len = 0;
1516 
1517 	/*
1518 	 * Skip the next two words because they've already been
1519 	 * processed in the transport
1520 	 */
1521 	svc_getu32(argv);	/* XID */
1522 	svc_getnl(argv);	/* CALLDIR */
1523 
1524 	/* Parse and execute the bc call */
1525 	proc_error = svc_process_common(rqstp, argv, resv);
1526 
1527 	atomic_dec(&req->rq_xprt->bc_slot_count);
1528 	if (!proc_error) {
1529 		/* Processing error: drop the request */
1530 		xprt_free_bc_request(req);
1531 		error = -EINVAL;
1532 		goto out;
1533 	}
1534 	/* Finally, send the reply synchronously */
1535 	memcpy(&req->rq_snd_buf, &rqstp->rq_res, sizeof(req->rq_snd_buf));
1536 	task = rpc_run_bc_task(req);
1537 	if (IS_ERR(task)) {
1538 		error = PTR_ERR(task);
1539 		goto out;
1540 	}
1541 
1542 	WARN_ON_ONCE(atomic_read(&task->tk_count) != 1);
1543 	error = task->tk_status;
1544 	rpc_put_task(task);
1545 
1546 out:
1547 	dprintk("svc: %s(), error=%d\n", __func__, error);
1548 	return error;
1549 }
1550 EXPORT_SYMBOL_GPL(bc_svc_process);
1551 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
1552 
1553 /*
1554  * Return (transport-specific) limit on the rpc payload.
1555  */
1556 u32 svc_max_payload(const struct svc_rqst *rqstp)
1557 {
1558 	u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload;
1559 
1560 	if (rqstp->rq_server->sv_max_payload < max)
1561 		max = rqstp->rq_server->sv_max_payload;
1562 	return max;
1563 }
1564 EXPORT_SYMBOL_GPL(svc_max_payload);
1565 
1566 /**
1567  * svc_proc_name - Return RPC procedure name in string form
1568  * @rqstp: svc_rqst to operate on
1569  *
1570  * Return value:
1571  *   Pointer to a NUL-terminated string
1572  */
1573 const char *svc_proc_name(const struct svc_rqst *rqstp)
1574 {
1575 	if (rqstp && rqstp->rq_procinfo)
1576 		return rqstp->rq_procinfo->pc_name;
1577 	return "unknown";
1578 }
1579 
1580 
1581 /**
1582  * svc_encode_result_payload - mark a range of bytes as a result payload
1583  * @rqstp: svc_rqst to operate on
1584  * @offset: payload's byte offset in rqstp->rq_res
1585  * @length: size of payload, in bytes
1586  *
1587  * Returns zero on success, or a negative errno if a permanent
1588  * error occurred.
1589  */
1590 int svc_encode_result_payload(struct svc_rqst *rqstp, unsigned int offset,
1591 			      unsigned int length)
1592 {
1593 	return rqstp->rq_xprt->xpt_ops->xpo_result_payload(rqstp, offset,
1594 							   length);
1595 }
1596 EXPORT_SYMBOL_GPL(svc_encode_result_payload);
1597 
1598 /**
1599  * svc_fill_write_vector - Construct data argument for VFS write call
1600  * @rqstp: svc_rqst to operate on
1601  * @payload: xdr_buf containing only the write data payload
1602  *
1603  * Fills in rqstp::rq_vec, and returns the number of elements.
1604  */
1605 unsigned int svc_fill_write_vector(struct svc_rqst *rqstp,
1606 				   struct xdr_buf *payload)
1607 {
1608 	struct page **pages = payload->pages;
1609 	struct kvec *first = payload->head;
1610 	struct kvec *vec = rqstp->rq_vec;
1611 	size_t total = payload->len;
1612 	unsigned int i;
1613 
1614 	/* Some types of transport can present the write payload
1615 	 * entirely in rq_arg.pages. In this case, @first is empty.
1616 	 */
1617 	i = 0;
1618 	if (first->iov_len) {
1619 		vec[i].iov_base = first->iov_base;
1620 		vec[i].iov_len = min_t(size_t, total, first->iov_len);
1621 		total -= vec[i].iov_len;
1622 		++i;
1623 	}
1624 
1625 	while (total) {
1626 		vec[i].iov_base = page_address(*pages);
1627 		vec[i].iov_len = min_t(size_t, total, PAGE_SIZE);
1628 		total -= vec[i].iov_len;
1629 		++i;
1630 		++pages;
1631 	}
1632 
1633 	WARN_ON_ONCE(i > ARRAY_SIZE(rqstp->rq_vec));
1634 	return i;
1635 }
1636 EXPORT_SYMBOL_GPL(svc_fill_write_vector);
1637 
1638 /**
1639  * svc_fill_symlink_pathname - Construct pathname argument for VFS symlink call
1640  * @rqstp: svc_rqst to operate on
1641  * @first: buffer containing first section of pathname
1642  * @p: buffer containing remaining section of pathname
1643  * @total: total length of the pathname argument
1644  *
1645  * The VFS symlink API demands a NUL-terminated pathname in mapped memory.
1646  * Returns pointer to a NUL-terminated string, or an ERR_PTR. Caller must free
1647  * the returned string.
1648  */
1649 char *svc_fill_symlink_pathname(struct svc_rqst *rqstp, struct kvec *first,
1650 				void *p, size_t total)
1651 {
1652 	size_t len, remaining;
1653 	char *result, *dst;
1654 
1655 	result = kmalloc(total + 1, GFP_KERNEL);
1656 	if (!result)
1657 		return ERR_PTR(-ESERVERFAULT);
1658 
1659 	dst = result;
1660 	remaining = total;
1661 
1662 	len = min_t(size_t, total, first->iov_len);
1663 	if (len) {
1664 		memcpy(dst, first->iov_base, len);
1665 		dst += len;
1666 		remaining -= len;
1667 	}
1668 
1669 	if (remaining) {
1670 		len = min_t(size_t, remaining, PAGE_SIZE);
1671 		memcpy(dst, p, len);
1672 		dst += len;
1673 	}
1674 
1675 	*dst = '\0';
1676 
1677 	/* Sanity check: Linux doesn't allow the pathname argument to
1678 	 * contain a NUL byte.
1679 	 */
1680 	if (strlen(result) != total) {
1681 		kfree(result);
1682 		return ERR_PTR(-EINVAL);
1683 	}
1684 	return result;
1685 }
1686 EXPORT_SYMBOL_GPL(svc_fill_symlink_pathname);
1687