1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/net/sunrpc/svc.c 4 * 5 * High-level RPC service routines 6 * 7 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 8 * 9 * Multiple threads pools and NUMAisation 10 * Copyright (c) 2006 Silicon Graphics, Inc. 11 * by Greg Banks <gnb@melbourne.sgi.com> 12 */ 13 14 #include <linux/linkage.h> 15 #include <linux/sched/signal.h> 16 #include <linux/errno.h> 17 #include <linux/net.h> 18 #include <linux/in.h> 19 #include <linux/mm.h> 20 #include <linux/interrupt.h> 21 #include <linux/module.h> 22 #include <linux/kthread.h> 23 #include <linux/slab.h> 24 25 #include <linux/sunrpc/types.h> 26 #include <linux/sunrpc/xdr.h> 27 #include <linux/sunrpc/stats.h> 28 #include <linux/sunrpc/svcsock.h> 29 #include <linux/sunrpc/clnt.h> 30 #include <linux/sunrpc/bc_xprt.h> 31 32 #include <trace/events/sunrpc.h> 33 34 #include "fail.h" 35 36 #define RPCDBG_FACILITY RPCDBG_SVCDSP 37 38 static void svc_unregister(const struct svc_serv *serv, struct net *net); 39 40 #define SVC_POOL_DEFAULT SVC_POOL_GLOBAL 41 42 /* 43 * Mode for mapping cpus to pools. 44 */ 45 enum { 46 SVC_POOL_AUTO = -1, /* choose one of the others */ 47 SVC_POOL_GLOBAL, /* no mapping, just a single global pool 48 * (legacy & UP mode) */ 49 SVC_POOL_PERCPU, /* one pool per cpu */ 50 SVC_POOL_PERNODE /* one pool per numa node */ 51 }; 52 53 /* 54 * Structure for mapping cpus to pools and vice versa. 55 * Setup once during sunrpc initialisation. 56 */ 57 58 struct svc_pool_map { 59 int count; /* How many svc_servs use us */ 60 int mode; /* Note: int not enum to avoid 61 * warnings about "enumeration value 62 * not handled in switch" */ 63 unsigned int npools; 64 unsigned int *pool_to; /* maps pool id to cpu or node */ 65 unsigned int *to_pool; /* maps cpu or node to pool id */ 66 }; 67 68 static struct svc_pool_map svc_pool_map = { 69 .mode = SVC_POOL_DEFAULT 70 }; 71 72 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */ 73 74 static int 75 param_set_pool_mode(const char *val, const struct kernel_param *kp) 76 { 77 int *ip = (int *)kp->arg; 78 struct svc_pool_map *m = &svc_pool_map; 79 int err; 80 81 mutex_lock(&svc_pool_map_mutex); 82 83 err = -EBUSY; 84 if (m->count) 85 goto out; 86 87 err = 0; 88 if (!strncmp(val, "auto", 4)) 89 *ip = SVC_POOL_AUTO; 90 else if (!strncmp(val, "global", 6)) 91 *ip = SVC_POOL_GLOBAL; 92 else if (!strncmp(val, "percpu", 6)) 93 *ip = SVC_POOL_PERCPU; 94 else if (!strncmp(val, "pernode", 7)) 95 *ip = SVC_POOL_PERNODE; 96 else 97 err = -EINVAL; 98 99 out: 100 mutex_unlock(&svc_pool_map_mutex); 101 return err; 102 } 103 104 static int 105 param_get_pool_mode(char *buf, const struct kernel_param *kp) 106 { 107 int *ip = (int *)kp->arg; 108 109 switch (*ip) 110 { 111 case SVC_POOL_AUTO: 112 return strlcpy(buf, "auto\n", 20); 113 case SVC_POOL_GLOBAL: 114 return strlcpy(buf, "global\n", 20); 115 case SVC_POOL_PERCPU: 116 return strlcpy(buf, "percpu\n", 20); 117 case SVC_POOL_PERNODE: 118 return strlcpy(buf, "pernode\n", 20); 119 default: 120 return sprintf(buf, "%d\n", *ip); 121 } 122 } 123 124 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode, 125 &svc_pool_map.mode, 0644); 126 127 /* 128 * Detect best pool mapping mode heuristically, 129 * according to the machine's topology. 130 */ 131 static int 132 svc_pool_map_choose_mode(void) 133 { 134 unsigned int node; 135 136 if (nr_online_nodes > 1) { 137 /* 138 * Actually have multiple NUMA nodes, 139 * so split pools on NUMA node boundaries 140 */ 141 return SVC_POOL_PERNODE; 142 } 143 144 node = first_online_node; 145 if (nr_cpus_node(node) > 2) { 146 /* 147 * Non-trivial SMP, or CONFIG_NUMA on 148 * non-NUMA hardware, e.g. with a generic 149 * x86_64 kernel on Xeons. In this case we 150 * want to divide the pools on cpu boundaries. 151 */ 152 return SVC_POOL_PERCPU; 153 } 154 155 /* default: one global pool */ 156 return SVC_POOL_GLOBAL; 157 } 158 159 /* 160 * Allocate the to_pool[] and pool_to[] arrays. 161 * Returns 0 on success or an errno. 162 */ 163 static int 164 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools) 165 { 166 m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL); 167 if (!m->to_pool) 168 goto fail; 169 m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL); 170 if (!m->pool_to) 171 goto fail_free; 172 173 return 0; 174 175 fail_free: 176 kfree(m->to_pool); 177 m->to_pool = NULL; 178 fail: 179 return -ENOMEM; 180 } 181 182 /* 183 * Initialise the pool map for SVC_POOL_PERCPU mode. 184 * Returns number of pools or <0 on error. 185 */ 186 static int 187 svc_pool_map_init_percpu(struct svc_pool_map *m) 188 { 189 unsigned int maxpools = nr_cpu_ids; 190 unsigned int pidx = 0; 191 unsigned int cpu; 192 int err; 193 194 err = svc_pool_map_alloc_arrays(m, maxpools); 195 if (err) 196 return err; 197 198 for_each_online_cpu(cpu) { 199 BUG_ON(pidx >= maxpools); 200 m->to_pool[cpu] = pidx; 201 m->pool_to[pidx] = cpu; 202 pidx++; 203 } 204 /* cpus brought online later all get mapped to pool0, sorry */ 205 206 return pidx; 207 }; 208 209 210 /* 211 * Initialise the pool map for SVC_POOL_PERNODE mode. 212 * Returns number of pools or <0 on error. 213 */ 214 static int 215 svc_pool_map_init_pernode(struct svc_pool_map *m) 216 { 217 unsigned int maxpools = nr_node_ids; 218 unsigned int pidx = 0; 219 unsigned int node; 220 int err; 221 222 err = svc_pool_map_alloc_arrays(m, maxpools); 223 if (err) 224 return err; 225 226 for_each_node_with_cpus(node) { 227 /* some architectures (e.g. SN2) have cpuless nodes */ 228 BUG_ON(pidx > maxpools); 229 m->to_pool[node] = pidx; 230 m->pool_to[pidx] = node; 231 pidx++; 232 } 233 /* nodes brought online later all get mapped to pool0, sorry */ 234 235 return pidx; 236 } 237 238 239 /* 240 * Add a reference to the global map of cpus to pools (and 241 * vice versa) if pools are in use. 242 * Initialise the map if we're the first user. 243 * Returns the number of pools. If this is '1', no reference 244 * was taken. 245 */ 246 static unsigned int 247 svc_pool_map_get(void) 248 { 249 struct svc_pool_map *m = &svc_pool_map; 250 int npools = -1; 251 252 mutex_lock(&svc_pool_map_mutex); 253 254 if (m->count++) { 255 mutex_unlock(&svc_pool_map_mutex); 256 WARN_ON_ONCE(m->npools <= 1); 257 return m->npools; 258 } 259 260 if (m->mode == SVC_POOL_AUTO) 261 m->mode = svc_pool_map_choose_mode(); 262 263 switch (m->mode) { 264 case SVC_POOL_PERCPU: 265 npools = svc_pool_map_init_percpu(m); 266 break; 267 case SVC_POOL_PERNODE: 268 npools = svc_pool_map_init_pernode(m); 269 break; 270 } 271 272 if (npools <= 0) { 273 /* default, or memory allocation failure */ 274 npools = 1; 275 m->mode = SVC_POOL_GLOBAL; 276 } 277 m->npools = npools; 278 279 if (npools == 1) 280 /* service is unpooled, so doesn't hold a reference */ 281 m->count--; 282 283 mutex_unlock(&svc_pool_map_mutex); 284 return npools; 285 } 286 287 /* 288 * Drop a reference to the global map of cpus to pools, if 289 * pools were in use, i.e. if npools > 1. 290 * When the last reference is dropped, the map data is 291 * freed; this allows the sysadmin to change the pool 292 * mode using the pool_mode module option without 293 * rebooting or re-loading sunrpc.ko. 294 */ 295 static void 296 svc_pool_map_put(int npools) 297 { 298 struct svc_pool_map *m = &svc_pool_map; 299 300 if (npools <= 1) 301 return; 302 mutex_lock(&svc_pool_map_mutex); 303 304 if (!--m->count) { 305 kfree(m->to_pool); 306 m->to_pool = NULL; 307 kfree(m->pool_to); 308 m->pool_to = NULL; 309 m->npools = 0; 310 } 311 312 mutex_unlock(&svc_pool_map_mutex); 313 } 314 315 static int svc_pool_map_get_node(unsigned int pidx) 316 { 317 const struct svc_pool_map *m = &svc_pool_map; 318 319 if (m->count) { 320 if (m->mode == SVC_POOL_PERCPU) 321 return cpu_to_node(m->pool_to[pidx]); 322 if (m->mode == SVC_POOL_PERNODE) 323 return m->pool_to[pidx]; 324 } 325 return NUMA_NO_NODE; 326 } 327 /* 328 * Set the given thread's cpus_allowed mask so that it 329 * will only run on cpus in the given pool. 330 */ 331 static inline void 332 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx) 333 { 334 struct svc_pool_map *m = &svc_pool_map; 335 unsigned int node = m->pool_to[pidx]; 336 337 /* 338 * The caller checks for sv_nrpools > 1, which 339 * implies that we've been initialized. 340 */ 341 WARN_ON_ONCE(m->count == 0); 342 if (m->count == 0) 343 return; 344 345 switch (m->mode) { 346 case SVC_POOL_PERCPU: 347 { 348 set_cpus_allowed_ptr(task, cpumask_of(node)); 349 break; 350 } 351 case SVC_POOL_PERNODE: 352 { 353 set_cpus_allowed_ptr(task, cpumask_of_node(node)); 354 break; 355 } 356 } 357 } 358 359 /** 360 * svc_pool_for_cpu - Select pool to run a thread on this cpu 361 * @serv: An RPC service 362 * 363 * Use the active CPU and the svc_pool_map's mode setting to 364 * select the svc thread pool to use. Once initialized, the 365 * svc_pool_map does not change. 366 * 367 * Return value: 368 * A pointer to an svc_pool 369 */ 370 struct svc_pool *svc_pool_for_cpu(struct svc_serv *serv) 371 { 372 struct svc_pool_map *m = &svc_pool_map; 373 int cpu = raw_smp_processor_id(); 374 unsigned int pidx = 0; 375 376 if (serv->sv_nrpools <= 1) 377 return serv->sv_pools; 378 379 switch (m->mode) { 380 case SVC_POOL_PERCPU: 381 pidx = m->to_pool[cpu]; 382 break; 383 case SVC_POOL_PERNODE: 384 pidx = m->to_pool[cpu_to_node(cpu)]; 385 break; 386 } 387 388 return &serv->sv_pools[pidx % serv->sv_nrpools]; 389 } 390 391 int svc_rpcb_setup(struct svc_serv *serv, struct net *net) 392 { 393 int err; 394 395 err = rpcb_create_local(net); 396 if (err) 397 return err; 398 399 /* Remove any stale portmap registrations */ 400 svc_unregister(serv, net); 401 return 0; 402 } 403 EXPORT_SYMBOL_GPL(svc_rpcb_setup); 404 405 void svc_rpcb_cleanup(struct svc_serv *serv, struct net *net) 406 { 407 svc_unregister(serv, net); 408 rpcb_put_local(net); 409 } 410 EXPORT_SYMBOL_GPL(svc_rpcb_cleanup); 411 412 static int svc_uses_rpcbind(struct svc_serv *serv) 413 { 414 struct svc_program *progp; 415 unsigned int i; 416 417 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 418 for (i = 0; i < progp->pg_nvers; i++) { 419 if (progp->pg_vers[i] == NULL) 420 continue; 421 if (!progp->pg_vers[i]->vs_hidden) 422 return 1; 423 } 424 } 425 426 return 0; 427 } 428 429 int svc_bind(struct svc_serv *serv, struct net *net) 430 { 431 if (!svc_uses_rpcbind(serv)) 432 return 0; 433 return svc_rpcb_setup(serv, net); 434 } 435 EXPORT_SYMBOL_GPL(svc_bind); 436 437 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 438 static void 439 __svc_init_bc(struct svc_serv *serv) 440 { 441 INIT_LIST_HEAD(&serv->sv_cb_list); 442 spin_lock_init(&serv->sv_cb_lock); 443 init_waitqueue_head(&serv->sv_cb_waitq); 444 } 445 #else 446 static void 447 __svc_init_bc(struct svc_serv *serv) 448 { 449 } 450 #endif 451 452 /* 453 * Create an RPC service 454 */ 455 static struct svc_serv * 456 __svc_create(struct svc_program *prog, unsigned int bufsize, int npools, 457 int (*threadfn)(void *data)) 458 { 459 struct svc_serv *serv; 460 unsigned int vers; 461 unsigned int xdrsize; 462 unsigned int i; 463 464 if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL))) 465 return NULL; 466 serv->sv_name = prog->pg_name; 467 serv->sv_program = prog; 468 kref_init(&serv->sv_refcnt); 469 serv->sv_stats = prog->pg_stats; 470 if (bufsize > RPCSVC_MAXPAYLOAD) 471 bufsize = RPCSVC_MAXPAYLOAD; 472 serv->sv_max_payload = bufsize? bufsize : 4096; 473 serv->sv_max_mesg = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE); 474 serv->sv_threadfn = threadfn; 475 xdrsize = 0; 476 while (prog) { 477 prog->pg_lovers = prog->pg_nvers-1; 478 for (vers=0; vers<prog->pg_nvers ; vers++) 479 if (prog->pg_vers[vers]) { 480 prog->pg_hivers = vers; 481 if (prog->pg_lovers > vers) 482 prog->pg_lovers = vers; 483 if (prog->pg_vers[vers]->vs_xdrsize > xdrsize) 484 xdrsize = prog->pg_vers[vers]->vs_xdrsize; 485 } 486 prog = prog->pg_next; 487 } 488 serv->sv_xdrsize = xdrsize; 489 INIT_LIST_HEAD(&serv->sv_tempsocks); 490 INIT_LIST_HEAD(&serv->sv_permsocks); 491 timer_setup(&serv->sv_temptimer, NULL, 0); 492 spin_lock_init(&serv->sv_lock); 493 494 __svc_init_bc(serv); 495 496 serv->sv_nrpools = npools; 497 serv->sv_pools = 498 kcalloc(serv->sv_nrpools, sizeof(struct svc_pool), 499 GFP_KERNEL); 500 if (!serv->sv_pools) { 501 kfree(serv); 502 return NULL; 503 } 504 505 for (i = 0; i < serv->sv_nrpools; i++) { 506 struct svc_pool *pool = &serv->sv_pools[i]; 507 508 dprintk("svc: initialising pool %u for %s\n", 509 i, serv->sv_name); 510 511 pool->sp_id = i; 512 INIT_LIST_HEAD(&pool->sp_sockets); 513 INIT_LIST_HEAD(&pool->sp_all_threads); 514 spin_lock_init(&pool->sp_lock); 515 } 516 517 return serv; 518 } 519 520 /** 521 * svc_create - Create an RPC service 522 * @prog: the RPC program the new service will handle 523 * @bufsize: maximum message size for @prog 524 * @threadfn: a function to service RPC requests for @prog 525 * 526 * Returns an instantiated struct svc_serv object or NULL. 527 */ 528 struct svc_serv *svc_create(struct svc_program *prog, unsigned int bufsize, 529 int (*threadfn)(void *data)) 530 { 531 return __svc_create(prog, bufsize, 1, threadfn); 532 } 533 EXPORT_SYMBOL_GPL(svc_create); 534 535 /** 536 * svc_create_pooled - Create an RPC service with pooled threads 537 * @prog: the RPC program the new service will handle 538 * @bufsize: maximum message size for @prog 539 * @threadfn: a function to service RPC requests for @prog 540 * 541 * Returns an instantiated struct svc_serv object or NULL. 542 */ 543 struct svc_serv *svc_create_pooled(struct svc_program *prog, 544 unsigned int bufsize, 545 int (*threadfn)(void *data)) 546 { 547 struct svc_serv *serv; 548 unsigned int npools = svc_pool_map_get(); 549 550 serv = __svc_create(prog, bufsize, npools, threadfn); 551 if (!serv) 552 goto out_err; 553 return serv; 554 out_err: 555 svc_pool_map_put(npools); 556 return NULL; 557 } 558 EXPORT_SYMBOL_GPL(svc_create_pooled); 559 560 /* 561 * Destroy an RPC service. Should be called with appropriate locking to 562 * protect sv_permsocks and sv_tempsocks. 563 */ 564 void 565 svc_destroy(struct kref *ref) 566 { 567 struct svc_serv *serv = container_of(ref, struct svc_serv, sv_refcnt); 568 569 dprintk("svc: svc_destroy(%s)\n", serv->sv_program->pg_name); 570 del_timer_sync(&serv->sv_temptimer); 571 572 /* 573 * The last user is gone and thus all sockets have to be destroyed to 574 * the point. Check this. 575 */ 576 BUG_ON(!list_empty(&serv->sv_permsocks)); 577 BUG_ON(!list_empty(&serv->sv_tempsocks)); 578 579 cache_clean_deferred(serv); 580 581 svc_pool_map_put(serv->sv_nrpools); 582 583 kfree(serv->sv_pools); 584 kfree(serv); 585 } 586 EXPORT_SYMBOL_GPL(svc_destroy); 587 588 /* 589 * Allocate an RPC server's buffer space. 590 * We allocate pages and place them in rq_pages. 591 */ 592 static int 593 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size, int node) 594 { 595 unsigned int pages, arghi; 596 597 /* bc_xprt uses fore channel allocated buffers */ 598 if (svc_is_backchannel(rqstp)) 599 return 1; 600 601 pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply. 602 * We assume one is at most one page 603 */ 604 arghi = 0; 605 WARN_ON_ONCE(pages > RPCSVC_MAXPAGES); 606 if (pages > RPCSVC_MAXPAGES) 607 pages = RPCSVC_MAXPAGES; 608 while (pages) { 609 struct page *p = alloc_pages_node(node, GFP_KERNEL, 0); 610 if (!p) 611 break; 612 rqstp->rq_pages[arghi++] = p; 613 pages--; 614 } 615 return pages == 0; 616 } 617 618 /* 619 * Release an RPC server buffer 620 */ 621 static void 622 svc_release_buffer(struct svc_rqst *rqstp) 623 { 624 unsigned int i; 625 626 for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++) 627 if (rqstp->rq_pages[i]) 628 put_page(rqstp->rq_pages[i]); 629 } 630 631 struct svc_rqst * 632 svc_rqst_alloc(struct svc_serv *serv, struct svc_pool *pool, int node) 633 { 634 struct svc_rqst *rqstp; 635 636 rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node); 637 if (!rqstp) 638 return rqstp; 639 640 __set_bit(RQ_BUSY, &rqstp->rq_flags); 641 rqstp->rq_server = serv; 642 rqstp->rq_pool = pool; 643 644 rqstp->rq_scratch_page = alloc_pages_node(node, GFP_KERNEL, 0); 645 if (!rqstp->rq_scratch_page) 646 goto out_enomem; 647 648 rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node); 649 if (!rqstp->rq_argp) 650 goto out_enomem; 651 652 rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node); 653 if (!rqstp->rq_resp) 654 goto out_enomem; 655 656 if (!svc_init_buffer(rqstp, serv->sv_max_mesg, node)) 657 goto out_enomem; 658 659 return rqstp; 660 out_enomem: 661 svc_rqst_free(rqstp); 662 return NULL; 663 } 664 EXPORT_SYMBOL_GPL(svc_rqst_alloc); 665 666 static struct svc_rqst * 667 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node) 668 { 669 struct svc_rqst *rqstp; 670 671 rqstp = svc_rqst_alloc(serv, pool, node); 672 if (!rqstp) 673 return ERR_PTR(-ENOMEM); 674 675 svc_get(serv); 676 spin_lock_bh(&serv->sv_lock); 677 serv->sv_nrthreads += 1; 678 spin_unlock_bh(&serv->sv_lock); 679 680 spin_lock_bh(&pool->sp_lock); 681 pool->sp_nrthreads++; 682 list_add_rcu(&rqstp->rq_all, &pool->sp_all_threads); 683 spin_unlock_bh(&pool->sp_lock); 684 return rqstp; 685 } 686 687 /* 688 * Choose a pool in which to create a new thread, for svc_set_num_threads 689 */ 690 static inline struct svc_pool * 691 choose_pool(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state) 692 { 693 if (pool != NULL) 694 return pool; 695 696 return &serv->sv_pools[(*state)++ % serv->sv_nrpools]; 697 } 698 699 /* 700 * Choose a thread to kill, for svc_set_num_threads 701 */ 702 static inline struct task_struct * 703 choose_victim(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state) 704 { 705 unsigned int i; 706 struct task_struct *task = NULL; 707 708 if (pool != NULL) { 709 spin_lock_bh(&pool->sp_lock); 710 } else { 711 /* choose a pool in round-robin fashion */ 712 for (i = 0; i < serv->sv_nrpools; i++) { 713 pool = &serv->sv_pools[--(*state) % serv->sv_nrpools]; 714 spin_lock_bh(&pool->sp_lock); 715 if (!list_empty(&pool->sp_all_threads)) 716 goto found_pool; 717 spin_unlock_bh(&pool->sp_lock); 718 } 719 return NULL; 720 } 721 722 found_pool: 723 if (!list_empty(&pool->sp_all_threads)) { 724 struct svc_rqst *rqstp; 725 726 /* 727 * Remove from the pool->sp_all_threads list 728 * so we don't try to kill it again. 729 */ 730 rqstp = list_entry(pool->sp_all_threads.next, struct svc_rqst, rq_all); 731 set_bit(RQ_VICTIM, &rqstp->rq_flags); 732 list_del_rcu(&rqstp->rq_all); 733 task = rqstp->rq_task; 734 } 735 spin_unlock_bh(&pool->sp_lock); 736 737 return task; 738 } 739 740 /* create new threads */ 741 static int 742 svc_start_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs) 743 { 744 struct svc_rqst *rqstp; 745 struct task_struct *task; 746 struct svc_pool *chosen_pool; 747 unsigned int state = serv->sv_nrthreads-1; 748 int node; 749 750 do { 751 nrservs--; 752 chosen_pool = choose_pool(serv, pool, &state); 753 754 node = svc_pool_map_get_node(chosen_pool->sp_id); 755 rqstp = svc_prepare_thread(serv, chosen_pool, node); 756 if (IS_ERR(rqstp)) 757 return PTR_ERR(rqstp); 758 759 task = kthread_create_on_node(serv->sv_threadfn, rqstp, 760 node, "%s", serv->sv_name); 761 if (IS_ERR(task)) { 762 svc_exit_thread(rqstp); 763 return PTR_ERR(task); 764 } 765 766 rqstp->rq_task = task; 767 if (serv->sv_nrpools > 1) 768 svc_pool_map_set_cpumask(task, chosen_pool->sp_id); 769 770 svc_sock_update_bufs(serv); 771 wake_up_process(task); 772 } while (nrservs > 0); 773 774 return 0; 775 } 776 777 /* 778 * Create or destroy enough new threads to make the number 779 * of threads the given number. If `pool' is non-NULL, applies 780 * only to threads in that pool, otherwise round-robins between 781 * all pools. Caller must ensure that mutual exclusion between this and 782 * server startup or shutdown. 783 */ 784 785 /* destroy old threads */ 786 static int 787 svc_stop_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs) 788 { 789 struct task_struct *task; 790 unsigned int state = serv->sv_nrthreads-1; 791 792 /* destroy old threads */ 793 do { 794 task = choose_victim(serv, pool, &state); 795 if (task == NULL) 796 break; 797 kthread_stop(task); 798 nrservs++; 799 } while (nrservs < 0); 800 return 0; 801 } 802 803 int 804 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs) 805 { 806 if (pool == NULL) { 807 nrservs -= serv->sv_nrthreads; 808 } else { 809 spin_lock_bh(&pool->sp_lock); 810 nrservs -= pool->sp_nrthreads; 811 spin_unlock_bh(&pool->sp_lock); 812 } 813 814 if (nrservs > 0) 815 return svc_start_kthreads(serv, pool, nrservs); 816 if (nrservs < 0) 817 return svc_stop_kthreads(serv, pool, nrservs); 818 return 0; 819 } 820 EXPORT_SYMBOL_GPL(svc_set_num_threads); 821 822 /** 823 * svc_rqst_replace_page - Replace one page in rq_pages[] 824 * @rqstp: svc_rqst with pages to replace 825 * @page: replacement page 826 * 827 * When replacing a page in rq_pages, batch the release of the 828 * replaced pages to avoid hammering the page allocator. 829 */ 830 void svc_rqst_replace_page(struct svc_rqst *rqstp, struct page *page) 831 { 832 if (*rqstp->rq_next_page) { 833 if (!pagevec_space(&rqstp->rq_pvec)) 834 __pagevec_release(&rqstp->rq_pvec); 835 pagevec_add(&rqstp->rq_pvec, *rqstp->rq_next_page); 836 } 837 838 get_page(page); 839 *(rqstp->rq_next_page++) = page; 840 } 841 EXPORT_SYMBOL_GPL(svc_rqst_replace_page); 842 843 /* 844 * Called from a server thread as it's exiting. Caller must hold the "service 845 * mutex" for the service. 846 */ 847 void 848 svc_rqst_free(struct svc_rqst *rqstp) 849 { 850 svc_release_buffer(rqstp); 851 if (rqstp->rq_scratch_page) 852 put_page(rqstp->rq_scratch_page); 853 kfree(rqstp->rq_resp); 854 kfree(rqstp->rq_argp); 855 kfree(rqstp->rq_auth_data); 856 kfree_rcu(rqstp, rq_rcu_head); 857 } 858 EXPORT_SYMBOL_GPL(svc_rqst_free); 859 860 void 861 svc_exit_thread(struct svc_rqst *rqstp) 862 { 863 struct svc_serv *serv = rqstp->rq_server; 864 struct svc_pool *pool = rqstp->rq_pool; 865 866 spin_lock_bh(&pool->sp_lock); 867 pool->sp_nrthreads--; 868 if (!test_and_set_bit(RQ_VICTIM, &rqstp->rq_flags)) 869 list_del_rcu(&rqstp->rq_all); 870 spin_unlock_bh(&pool->sp_lock); 871 872 spin_lock_bh(&serv->sv_lock); 873 serv->sv_nrthreads -= 1; 874 spin_unlock_bh(&serv->sv_lock); 875 svc_sock_update_bufs(serv); 876 877 svc_rqst_free(rqstp); 878 879 svc_put(serv); 880 } 881 EXPORT_SYMBOL_GPL(svc_exit_thread); 882 883 /* 884 * Register an "inet" protocol family netid with the local 885 * rpcbind daemon via an rpcbind v4 SET request. 886 * 887 * No netconfig infrastructure is available in the kernel, so 888 * we map IP_ protocol numbers to netids by hand. 889 * 890 * Returns zero on success; a negative errno value is returned 891 * if any error occurs. 892 */ 893 static int __svc_rpcb_register4(struct net *net, const u32 program, 894 const u32 version, 895 const unsigned short protocol, 896 const unsigned short port) 897 { 898 const struct sockaddr_in sin = { 899 .sin_family = AF_INET, 900 .sin_addr.s_addr = htonl(INADDR_ANY), 901 .sin_port = htons(port), 902 }; 903 const char *netid; 904 int error; 905 906 switch (protocol) { 907 case IPPROTO_UDP: 908 netid = RPCBIND_NETID_UDP; 909 break; 910 case IPPROTO_TCP: 911 netid = RPCBIND_NETID_TCP; 912 break; 913 default: 914 return -ENOPROTOOPT; 915 } 916 917 error = rpcb_v4_register(net, program, version, 918 (const struct sockaddr *)&sin, netid); 919 920 /* 921 * User space didn't support rpcbind v4, so retry this 922 * registration request with the legacy rpcbind v2 protocol. 923 */ 924 if (error == -EPROTONOSUPPORT) 925 error = rpcb_register(net, program, version, protocol, port); 926 927 return error; 928 } 929 930 #if IS_ENABLED(CONFIG_IPV6) 931 /* 932 * Register an "inet6" protocol family netid with the local 933 * rpcbind daemon via an rpcbind v4 SET request. 934 * 935 * No netconfig infrastructure is available in the kernel, so 936 * we map IP_ protocol numbers to netids by hand. 937 * 938 * Returns zero on success; a negative errno value is returned 939 * if any error occurs. 940 */ 941 static int __svc_rpcb_register6(struct net *net, const u32 program, 942 const u32 version, 943 const unsigned short protocol, 944 const unsigned short port) 945 { 946 const struct sockaddr_in6 sin6 = { 947 .sin6_family = AF_INET6, 948 .sin6_addr = IN6ADDR_ANY_INIT, 949 .sin6_port = htons(port), 950 }; 951 const char *netid; 952 int error; 953 954 switch (protocol) { 955 case IPPROTO_UDP: 956 netid = RPCBIND_NETID_UDP6; 957 break; 958 case IPPROTO_TCP: 959 netid = RPCBIND_NETID_TCP6; 960 break; 961 default: 962 return -ENOPROTOOPT; 963 } 964 965 error = rpcb_v4_register(net, program, version, 966 (const struct sockaddr *)&sin6, netid); 967 968 /* 969 * User space didn't support rpcbind version 4, so we won't 970 * use a PF_INET6 listener. 971 */ 972 if (error == -EPROTONOSUPPORT) 973 error = -EAFNOSUPPORT; 974 975 return error; 976 } 977 #endif /* IS_ENABLED(CONFIG_IPV6) */ 978 979 /* 980 * Register a kernel RPC service via rpcbind version 4. 981 * 982 * Returns zero on success; a negative errno value is returned 983 * if any error occurs. 984 */ 985 static int __svc_register(struct net *net, const char *progname, 986 const u32 program, const u32 version, 987 const int family, 988 const unsigned short protocol, 989 const unsigned short port) 990 { 991 int error = -EAFNOSUPPORT; 992 993 switch (family) { 994 case PF_INET: 995 error = __svc_rpcb_register4(net, program, version, 996 protocol, port); 997 break; 998 #if IS_ENABLED(CONFIG_IPV6) 999 case PF_INET6: 1000 error = __svc_rpcb_register6(net, program, version, 1001 protocol, port); 1002 #endif 1003 } 1004 1005 trace_svc_register(progname, version, protocol, port, family, error); 1006 return error; 1007 } 1008 1009 int svc_rpcbind_set_version(struct net *net, 1010 const struct svc_program *progp, 1011 u32 version, int family, 1012 unsigned short proto, 1013 unsigned short port) 1014 { 1015 return __svc_register(net, progp->pg_name, progp->pg_prog, 1016 version, family, proto, port); 1017 1018 } 1019 EXPORT_SYMBOL_GPL(svc_rpcbind_set_version); 1020 1021 int svc_generic_rpcbind_set(struct net *net, 1022 const struct svc_program *progp, 1023 u32 version, int family, 1024 unsigned short proto, 1025 unsigned short port) 1026 { 1027 const struct svc_version *vers = progp->pg_vers[version]; 1028 int error; 1029 1030 if (vers == NULL) 1031 return 0; 1032 1033 if (vers->vs_hidden) { 1034 trace_svc_noregister(progp->pg_name, version, proto, 1035 port, family, 0); 1036 return 0; 1037 } 1038 1039 /* 1040 * Don't register a UDP port if we need congestion 1041 * control. 1042 */ 1043 if (vers->vs_need_cong_ctrl && proto == IPPROTO_UDP) 1044 return 0; 1045 1046 error = svc_rpcbind_set_version(net, progp, version, 1047 family, proto, port); 1048 1049 return (vers->vs_rpcb_optnl) ? 0 : error; 1050 } 1051 EXPORT_SYMBOL_GPL(svc_generic_rpcbind_set); 1052 1053 /** 1054 * svc_register - register an RPC service with the local portmapper 1055 * @serv: svc_serv struct for the service to register 1056 * @net: net namespace for the service to register 1057 * @family: protocol family of service's listener socket 1058 * @proto: transport protocol number to advertise 1059 * @port: port to advertise 1060 * 1061 * Service is registered for any address in the passed-in protocol family 1062 */ 1063 int svc_register(const struct svc_serv *serv, struct net *net, 1064 const int family, const unsigned short proto, 1065 const unsigned short port) 1066 { 1067 struct svc_program *progp; 1068 unsigned int i; 1069 int error = 0; 1070 1071 WARN_ON_ONCE(proto == 0 && port == 0); 1072 if (proto == 0 && port == 0) 1073 return -EINVAL; 1074 1075 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 1076 for (i = 0; i < progp->pg_nvers; i++) { 1077 1078 error = progp->pg_rpcbind_set(net, progp, i, 1079 family, proto, port); 1080 if (error < 0) { 1081 printk(KERN_WARNING "svc: failed to register " 1082 "%sv%u RPC service (errno %d).\n", 1083 progp->pg_name, i, -error); 1084 break; 1085 } 1086 } 1087 } 1088 1089 return error; 1090 } 1091 1092 /* 1093 * If user space is running rpcbind, it should take the v4 UNSET 1094 * and clear everything for this [program, version]. If user space 1095 * is running portmap, it will reject the v4 UNSET, but won't have 1096 * any "inet6" entries anyway. So a PMAP_UNSET should be sufficient 1097 * in this case to clear all existing entries for [program, version]. 1098 */ 1099 static void __svc_unregister(struct net *net, const u32 program, const u32 version, 1100 const char *progname) 1101 { 1102 int error; 1103 1104 error = rpcb_v4_register(net, program, version, NULL, ""); 1105 1106 /* 1107 * User space didn't support rpcbind v4, so retry this 1108 * request with the legacy rpcbind v2 protocol. 1109 */ 1110 if (error == -EPROTONOSUPPORT) 1111 error = rpcb_register(net, program, version, 0, 0); 1112 1113 trace_svc_unregister(progname, version, error); 1114 } 1115 1116 /* 1117 * All netids, bind addresses and ports registered for [program, version] 1118 * are removed from the local rpcbind database (if the service is not 1119 * hidden) to make way for a new instance of the service. 1120 * 1121 * The result of unregistration is reported via dprintk for those who want 1122 * verification of the result, but is otherwise not important. 1123 */ 1124 static void svc_unregister(const struct svc_serv *serv, struct net *net) 1125 { 1126 struct svc_program *progp; 1127 unsigned long flags; 1128 unsigned int i; 1129 1130 clear_thread_flag(TIF_SIGPENDING); 1131 1132 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 1133 for (i = 0; i < progp->pg_nvers; i++) { 1134 if (progp->pg_vers[i] == NULL) 1135 continue; 1136 if (progp->pg_vers[i]->vs_hidden) 1137 continue; 1138 __svc_unregister(net, progp->pg_prog, i, progp->pg_name); 1139 } 1140 } 1141 1142 spin_lock_irqsave(¤t->sighand->siglock, flags); 1143 recalc_sigpending(); 1144 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 1145 } 1146 1147 /* 1148 * dprintk the given error with the address of the client that caused it. 1149 */ 1150 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 1151 static __printf(2, 3) 1152 void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) 1153 { 1154 struct va_format vaf; 1155 va_list args; 1156 char buf[RPC_MAX_ADDRBUFLEN]; 1157 1158 va_start(args, fmt); 1159 1160 vaf.fmt = fmt; 1161 vaf.va = &args; 1162 1163 dprintk("svc: %s: %pV", svc_print_addr(rqstp, buf, sizeof(buf)), &vaf); 1164 1165 va_end(args); 1166 } 1167 #else 1168 static __printf(2,3) void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) {} 1169 #endif 1170 1171 __be32 1172 svc_generic_init_request(struct svc_rqst *rqstp, 1173 const struct svc_program *progp, 1174 struct svc_process_info *ret) 1175 { 1176 const struct svc_version *versp = NULL; /* compiler food */ 1177 const struct svc_procedure *procp = NULL; 1178 1179 if (rqstp->rq_vers >= progp->pg_nvers ) 1180 goto err_bad_vers; 1181 versp = progp->pg_vers[rqstp->rq_vers]; 1182 if (!versp) 1183 goto err_bad_vers; 1184 1185 /* 1186 * Some protocol versions (namely NFSv4) require some form of 1187 * congestion control. (See RFC 7530 section 3.1 paragraph 2) 1188 * In other words, UDP is not allowed. We mark those when setting 1189 * up the svc_xprt, and verify that here. 1190 * 1191 * The spec is not very clear about what error should be returned 1192 * when someone tries to access a server that is listening on UDP 1193 * for lower versions. RPC_PROG_MISMATCH seems to be the closest 1194 * fit. 1195 */ 1196 if (versp->vs_need_cong_ctrl && rqstp->rq_xprt && 1197 !test_bit(XPT_CONG_CTRL, &rqstp->rq_xprt->xpt_flags)) 1198 goto err_bad_vers; 1199 1200 if (rqstp->rq_proc >= versp->vs_nproc) 1201 goto err_bad_proc; 1202 rqstp->rq_procinfo = procp = &versp->vs_proc[rqstp->rq_proc]; 1203 if (!procp) 1204 goto err_bad_proc; 1205 1206 /* Initialize storage for argp and resp */ 1207 memset(rqstp->rq_argp, 0, procp->pc_argzero); 1208 memset(rqstp->rq_resp, 0, procp->pc_ressize); 1209 1210 /* Bump per-procedure stats counter */ 1211 versp->vs_count[rqstp->rq_proc]++; 1212 1213 ret->dispatch = versp->vs_dispatch; 1214 return rpc_success; 1215 err_bad_vers: 1216 ret->mismatch.lovers = progp->pg_lovers; 1217 ret->mismatch.hivers = progp->pg_hivers; 1218 return rpc_prog_mismatch; 1219 err_bad_proc: 1220 return rpc_proc_unavail; 1221 } 1222 EXPORT_SYMBOL_GPL(svc_generic_init_request); 1223 1224 /* 1225 * Common routine for processing the RPC request. 1226 */ 1227 static int 1228 svc_process_common(struct svc_rqst *rqstp, struct kvec *argv, struct kvec *resv) 1229 { 1230 struct svc_program *progp; 1231 const struct svc_procedure *procp = NULL; 1232 struct svc_serv *serv = rqstp->rq_server; 1233 struct svc_process_info process; 1234 __be32 *statp; 1235 u32 prog, vers; 1236 __be32 rpc_stat; 1237 int auth_res, rc; 1238 __be32 *reply_statp; 1239 1240 rpc_stat = rpc_success; 1241 1242 if (argv->iov_len < 6*4) 1243 goto err_short_len; 1244 1245 /* Will be turned off by GSS integrity and privacy services */ 1246 __set_bit(RQ_SPLICE_OK, &rqstp->rq_flags); 1247 /* Will be turned off only when NFSv4 Sessions are used */ 1248 __set_bit(RQ_USEDEFERRAL, &rqstp->rq_flags); 1249 __clear_bit(RQ_DROPME, &rqstp->rq_flags); 1250 1251 svc_putu32(resv, rqstp->rq_xid); 1252 1253 vers = svc_getnl(argv); 1254 1255 /* First words of reply: */ 1256 svc_putnl(resv, 1); /* REPLY */ 1257 1258 if (vers != 2) /* RPC version number */ 1259 goto err_bad_rpc; 1260 1261 /* Save position in case we later decide to reject: */ 1262 reply_statp = resv->iov_base + resv->iov_len; 1263 1264 svc_putnl(resv, 0); /* ACCEPT */ 1265 1266 rqstp->rq_prog = prog = svc_getnl(argv); /* program number */ 1267 rqstp->rq_vers = svc_getnl(argv); /* version number */ 1268 rqstp->rq_proc = svc_getnl(argv); /* procedure number */ 1269 1270 for (progp = serv->sv_program; progp; progp = progp->pg_next) 1271 if (prog == progp->pg_prog) 1272 break; 1273 1274 /* 1275 * Decode auth data, and add verifier to reply buffer. 1276 * We do this before anything else in order to get a decent 1277 * auth verifier. 1278 */ 1279 auth_res = svc_authenticate(rqstp); 1280 /* Also give the program a chance to reject this call: */ 1281 if (auth_res == SVC_OK && progp) 1282 auth_res = progp->pg_authenticate(rqstp); 1283 trace_svc_authenticate(rqstp, auth_res); 1284 switch (auth_res) { 1285 case SVC_OK: 1286 break; 1287 case SVC_GARBAGE: 1288 goto err_garbage; 1289 case SVC_SYSERR: 1290 rpc_stat = rpc_system_err; 1291 goto err_bad; 1292 case SVC_DENIED: 1293 goto err_bad_auth; 1294 case SVC_CLOSE: 1295 goto close; 1296 case SVC_DROP: 1297 goto dropit; 1298 case SVC_COMPLETE: 1299 goto sendit; 1300 } 1301 1302 if (progp == NULL) 1303 goto err_bad_prog; 1304 1305 rpc_stat = progp->pg_init_request(rqstp, progp, &process); 1306 switch (rpc_stat) { 1307 case rpc_success: 1308 break; 1309 case rpc_prog_unavail: 1310 goto err_bad_prog; 1311 case rpc_prog_mismatch: 1312 goto err_bad_vers; 1313 case rpc_proc_unavail: 1314 goto err_bad_proc; 1315 } 1316 1317 procp = rqstp->rq_procinfo; 1318 /* Should this check go into the dispatcher? */ 1319 if (!procp || !procp->pc_func) 1320 goto err_bad_proc; 1321 1322 /* Syntactic check complete */ 1323 serv->sv_stats->rpccnt++; 1324 trace_svc_process(rqstp, progp->pg_name); 1325 1326 /* Build the reply header. */ 1327 statp = resv->iov_base +resv->iov_len; 1328 svc_putnl(resv, RPC_SUCCESS); 1329 1330 /* un-reserve some of the out-queue now that we have a 1331 * better idea of reply size 1332 */ 1333 if (procp->pc_xdrressize) 1334 svc_reserve_auth(rqstp, procp->pc_xdrressize<<2); 1335 1336 /* Call the function that processes the request. */ 1337 rc = process.dispatch(rqstp, statp); 1338 if (procp->pc_release) 1339 procp->pc_release(rqstp); 1340 if (!rc) 1341 goto dropit; 1342 if (rqstp->rq_auth_stat != rpc_auth_ok) 1343 goto err_bad_auth; 1344 1345 /* Check RPC status result */ 1346 if (*statp != rpc_success) 1347 resv->iov_len = ((void*)statp) - resv->iov_base + 4; 1348 1349 if (procp->pc_encode == NULL) 1350 goto dropit; 1351 1352 sendit: 1353 if (svc_authorise(rqstp)) 1354 goto close_xprt; 1355 return 1; /* Caller can now send it */ 1356 1357 dropit: 1358 svc_authorise(rqstp); /* doesn't hurt to call this twice */ 1359 dprintk("svc: svc_process dropit\n"); 1360 return 0; 1361 1362 close: 1363 svc_authorise(rqstp); 1364 close_xprt: 1365 if (rqstp->rq_xprt && test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags)) 1366 svc_xprt_close(rqstp->rq_xprt); 1367 dprintk("svc: svc_process close\n"); 1368 return 0; 1369 1370 err_short_len: 1371 svc_printk(rqstp, "short len %zd, dropping request\n", 1372 argv->iov_len); 1373 goto close_xprt; 1374 1375 err_bad_rpc: 1376 serv->sv_stats->rpcbadfmt++; 1377 svc_putnl(resv, 1); /* REJECT */ 1378 svc_putnl(resv, 0); /* RPC_MISMATCH */ 1379 svc_putnl(resv, 2); /* Only RPCv2 supported */ 1380 svc_putnl(resv, 2); 1381 goto sendit; 1382 1383 err_bad_auth: 1384 dprintk("svc: authentication failed (%d)\n", 1385 be32_to_cpu(rqstp->rq_auth_stat)); 1386 serv->sv_stats->rpcbadauth++; 1387 /* Restore write pointer to location of accept status: */ 1388 xdr_ressize_check(rqstp, reply_statp); 1389 svc_putnl(resv, 1); /* REJECT */ 1390 svc_putnl(resv, 1); /* AUTH_ERROR */ 1391 svc_putu32(resv, rqstp->rq_auth_stat); /* status */ 1392 goto sendit; 1393 1394 err_bad_prog: 1395 dprintk("svc: unknown program %d\n", prog); 1396 serv->sv_stats->rpcbadfmt++; 1397 svc_putnl(resv, RPC_PROG_UNAVAIL); 1398 goto sendit; 1399 1400 err_bad_vers: 1401 svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n", 1402 rqstp->rq_vers, rqstp->rq_prog, progp->pg_name); 1403 1404 serv->sv_stats->rpcbadfmt++; 1405 svc_putnl(resv, RPC_PROG_MISMATCH); 1406 svc_putnl(resv, process.mismatch.lovers); 1407 svc_putnl(resv, process.mismatch.hivers); 1408 goto sendit; 1409 1410 err_bad_proc: 1411 svc_printk(rqstp, "unknown procedure (%d)\n", rqstp->rq_proc); 1412 1413 serv->sv_stats->rpcbadfmt++; 1414 svc_putnl(resv, RPC_PROC_UNAVAIL); 1415 goto sendit; 1416 1417 err_garbage: 1418 svc_printk(rqstp, "failed to decode args\n"); 1419 1420 rpc_stat = rpc_garbage_args; 1421 err_bad: 1422 serv->sv_stats->rpcbadfmt++; 1423 svc_putnl(resv, ntohl(rpc_stat)); 1424 goto sendit; 1425 } 1426 1427 /* 1428 * Process the RPC request. 1429 */ 1430 int 1431 svc_process(struct svc_rqst *rqstp) 1432 { 1433 struct kvec *argv = &rqstp->rq_arg.head[0]; 1434 struct kvec *resv = &rqstp->rq_res.head[0]; 1435 __be32 dir; 1436 1437 #if IS_ENABLED(CONFIG_FAIL_SUNRPC) 1438 if (!fail_sunrpc.ignore_server_disconnect && 1439 should_fail(&fail_sunrpc.attr, 1)) 1440 svc_xprt_deferred_close(rqstp->rq_xprt); 1441 #endif 1442 1443 /* 1444 * Setup response xdr_buf. 1445 * Initially it has just one page 1446 */ 1447 rqstp->rq_next_page = &rqstp->rq_respages[1]; 1448 resv->iov_base = page_address(rqstp->rq_respages[0]); 1449 resv->iov_len = 0; 1450 rqstp->rq_res.pages = rqstp->rq_next_page; 1451 rqstp->rq_res.len = 0; 1452 rqstp->rq_res.page_base = 0; 1453 rqstp->rq_res.page_len = 0; 1454 rqstp->rq_res.buflen = PAGE_SIZE; 1455 rqstp->rq_res.tail[0].iov_base = NULL; 1456 rqstp->rq_res.tail[0].iov_len = 0; 1457 1458 dir = svc_getu32(argv); 1459 if (dir != rpc_call) 1460 goto out_baddir; 1461 if (!svc_process_common(rqstp, argv, resv)) 1462 goto out_drop; 1463 return svc_send(rqstp); 1464 1465 out_baddir: 1466 svc_printk(rqstp, "bad direction 0x%08x, dropping request\n", 1467 be32_to_cpu(dir)); 1468 rqstp->rq_server->sv_stats->rpcbadfmt++; 1469 out_drop: 1470 svc_drop(rqstp); 1471 return 0; 1472 } 1473 EXPORT_SYMBOL_GPL(svc_process); 1474 1475 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 1476 /* 1477 * Process a backchannel RPC request that arrived over an existing 1478 * outbound connection 1479 */ 1480 int 1481 bc_svc_process(struct svc_serv *serv, struct rpc_rqst *req, 1482 struct svc_rqst *rqstp) 1483 { 1484 struct kvec *argv = &rqstp->rq_arg.head[0]; 1485 struct kvec *resv = &rqstp->rq_res.head[0]; 1486 struct rpc_task *task; 1487 int proc_error; 1488 int error; 1489 1490 dprintk("svc: %s(%p)\n", __func__, req); 1491 1492 /* Build the svc_rqst used by the common processing routine */ 1493 rqstp->rq_xid = req->rq_xid; 1494 rqstp->rq_prot = req->rq_xprt->prot; 1495 rqstp->rq_server = serv; 1496 rqstp->rq_bc_net = req->rq_xprt->xprt_net; 1497 1498 rqstp->rq_addrlen = sizeof(req->rq_xprt->addr); 1499 memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen); 1500 memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg)); 1501 memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res)); 1502 1503 /* Adjust the argument buffer length */ 1504 rqstp->rq_arg.len = req->rq_private_buf.len; 1505 if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) { 1506 rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len; 1507 rqstp->rq_arg.page_len = 0; 1508 } else if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len + 1509 rqstp->rq_arg.page_len) 1510 rqstp->rq_arg.page_len = rqstp->rq_arg.len - 1511 rqstp->rq_arg.head[0].iov_len; 1512 else 1513 rqstp->rq_arg.len = rqstp->rq_arg.head[0].iov_len + 1514 rqstp->rq_arg.page_len; 1515 1516 /* reset result send buffer "put" position */ 1517 resv->iov_len = 0; 1518 1519 /* 1520 * Skip the next two words because they've already been 1521 * processed in the transport 1522 */ 1523 svc_getu32(argv); /* XID */ 1524 svc_getnl(argv); /* CALLDIR */ 1525 1526 /* Parse and execute the bc call */ 1527 proc_error = svc_process_common(rqstp, argv, resv); 1528 1529 atomic_dec(&req->rq_xprt->bc_slot_count); 1530 if (!proc_error) { 1531 /* Processing error: drop the request */ 1532 xprt_free_bc_request(req); 1533 error = -EINVAL; 1534 goto out; 1535 } 1536 /* Finally, send the reply synchronously */ 1537 memcpy(&req->rq_snd_buf, &rqstp->rq_res, sizeof(req->rq_snd_buf)); 1538 task = rpc_run_bc_task(req); 1539 if (IS_ERR(task)) { 1540 error = PTR_ERR(task); 1541 goto out; 1542 } 1543 1544 WARN_ON_ONCE(atomic_read(&task->tk_count) != 1); 1545 error = task->tk_status; 1546 rpc_put_task(task); 1547 1548 out: 1549 dprintk("svc: %s(), error=%d\n", __func__, error); 1550 return error; 1551 } 1552 EXPORT_SYMBOL_GPL(bc_svc_process); 1553 #endif /* CONFIG_SUNRPC_BACKCHANNEL */ 1554 1555 /** 1556 * svc_max_payload - Return transport-specific limit on the RPC payload 1557 * @rqstp: RPC transaction context 1558 * 1559 * Returns the maximum number of payload bytes the current transport 1560 * allows. 1561 */ 1562 u32 svc_max_payload(const struct svc_rqst *rqstp) 1563 { 1564 u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload; 1565 1566 if (rqstp->rq_server->sv_max_payload < max) 1567 max = rqstp->rq_server->sv_max_payload; 1568 return max; 1569 } 1570 EXPORT_SYMBOL_GPL(svc_max_payload); 1571 1572 /** 1573 * svc_proc_name - Return RPC procedure name in string form 1574 * @rqstp: svc_rqst to operate on 1575 * 1576 * Return value: 1577 * Pointer to a NUL-terminated string 1578 */ 1579 const char *svc_proc_name(const struct svc_rqst *rqstp) 1580 { 1581 if (rqstp && rqstp->rq_procinfo) 1582 return rqstp->rq_procinfo->pc_name; 1583 return "unknown"; 1584 } 1585 1586 1587 /** 1588 * svc_encode_result_payload - mark a range of bytes as a result payload 1589 * @rqstp: svc_rqst to operate on 1590 * @offset: payload's byte offset in rqstp->rq_res 1591 * @length: size of payload, in bytes 1592 * 1593 * Returns zero on success, or a negative errno if a permanent 1594 * error occurred. 1595 */ 1596 int svc_encode_result_payload(struct svc_rqst *rqstp, unsigned int offset, 1597 unsigned int length) 1598 { 1599 return rqstp->rq_xprt->xpt_ops->xpo_result_payload(rqstp, offset, 1600 length); 1601 } 1602 EXPORT_SYMBOL_GPL(svc_encode_result_payload); 1603 1604 /** 1605 * svc_fill_write_vector - Construct data argument for VFS write call 1606 * @rqstp: svc_rqst to operate on 1607 * @payload: xdr_buf containing only the write data payload 1608 * 1609 * Fills in rqstp::rq_vec, and returns the number of elements. 1610 */ 1611 unsigned int svc_fill_write_vector(struct svc_rqst *rqstp, 1612 struct xdr_buf *payload) 1613 { 1614 struct page **pages = payload->pages; 1615 struct kvec *first = payload->head; 1616 struct kvec *vec = rqstp->rq_vec; 1617 size_t total = payload->len; 1618 unsigned int i; 1619 1620 /* Some types of transport can present the write payload 1621 * entirely in rq_arg.pages. In this case, @first is empty. 1622 */ 1623 i = 0; 1624 if (first->iov_len) { 1625 vec[i].iov_base = first->iov_base; 1626 vec[i].iov_len = min_t(size_t, total, first->iov_len); 1627 total -= vec[i].iov_len; 1628 ++i; 1629 } 1630 1631 while (total) { 1632 vec[i].iov_base = page_address(*pages); 1633 vec[i].iov_len = min_t(size_t, total, PAGE_SIZE); 1634 total -= vec[i].iov_len; 1635 ++i; 1636 ++pages; 1637 } 1638 1639 WARN_ON_ONCE(i > ARRAY_SIZE(rqstp->rq_vec)); 1640 return i; 1641 } 1642 EXPORT_SYMBOL_GPL(svc_fill_write_vector); 1643 1644 /** 1645 * svc_fill_symlink_pathname - Construct pathname argument for VFS symlink call 1646 * @rqstp: svc_rqst to operate on 1647 * @first: buffer containing first section of pathname 1648 * @p: buffer containing remaining section of pathname 1649 * @total: total length of the pathname argument 1650 * 1651 * The VFS symlink API demands a NUL-terminated pathname in mapped memory. 1652 * Returns pointer to a NUL-terminated string, or an ERR_PTR. Caller must free 1653 * the returned string. 1654 */ 1655 char *svc_fill_symlink_pathname(struct svc_rqst *rqstp, struct kvec *first, 1656 void *p, size_t total) 1657 { 1658 size_t len, remaining; 1659 char *result, *dst; 1660 1661 result = kmalloc(total + 1, GFP_KERNEL); 1662 if (!result) 1663 return ERR_PTR(-ESERVERFAULT); 1664 1665 dst = result; 1666 remaining = total; 1667 1668 len = min_t(size_t, total, first->iov_len); 1669 if (len) { 1670 memcpy(dst, first->iov_base, len); 1671 dst += len; 1672 remaining -= len; 1673 } 1674 1675 if (remaining) { 1676 len = min_t(size_t, remaining, PAGE_SIZE); 1677 memcpy(dst, p, len); 1678 dst += len; 1679 } 1680 1681 *dst = '\0'; 1682 1683 /* Sanity check: Linux doesn't allow the pathname argument to 1684 * contain a NUL byte. 1685 */ 1686 if (strlen(result) != total) { 1687 kfree(result); 1688 return ERR_PTR(-EINVAL); 1689 } 1690 return result; 1691 } 1692 EXPORT_SYMBOL_GPL(svc_fill_symlink_pathname); 1693