1 /* 2 * linux/net/sunrpc/svc.c 3 * 4 * High-level RPC service routines 5 * 6 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 7 * 8 * Multiple threads pools and NUMAisation 9 * Copyright (c) 2006 Silicon Graphics, Inc. 10 * by Greg Banks <gnb@melbourne.sgi.com> 11 */ 12 13 #include <linux/linkage.h> 14 #include <linux/sched.h> 15 #include <linux/errno.h> 16 #include <linux/net.h> 17 #include <linux/in.h> 18 #include <linux/mm.h> 19 #include <linux/interrupt.h> 20 #include <linux/module.h> 21 #include <linux/kthread.h> 22 23 #include <linux/sunrpc/types.h> 24 #include <linux/sunrpc/xdr.h> 25 #include <linux/sunrpc/stats.h> 26 #include <linux/sunrpc/svcsock.h> 27 #include <linux/sunrpc/clnt.h> 28 #include <linux/sunrpc/bc_xprt.h> 29 30 #define RPCDBG_FACILITY RPCDBG_SVCDSP 31 32 static void svc_unregister(const struct svc_serv *serv); 33 34 #define svc_serv_is_pooled(serv) ((serv)->sv_function) 35 36 /* 37 * Mode for mapping cpus to pools. 38 */ 39 enum { 40 SVC_POOL_AUTO = -1, /* choose one of the others */ 41 SVC_POOL_GLOBAL, /* no mapping, just a single global pool 42 * (legacy & UP mode) */ 43 SVC_POOL_PERCPU, /* one pool per cpu */ 44 SVC_POOL_PERNODE /* one pool per numa node */ 45 }; 46 #define SVC_POOL_DEFAULT SVC_POOL_GLOBAL 47 48 /* 49 * Structure for mapping cpus to pools and vice versa. 50 * Setup once during sunrpc initialisation. 51 */ 52 static struct svc_pool_map { 53 int count; /* How many svc_servs use us */ 54 int mode; /* Note: int not enum to avoid 55 * warnings about "enumeration value 56 * not handled in switch" */ 57 unsigned int npools; 58 unsigned int *pool_to; /* maps pool id to cpu or node */ 59 unsigned int *to_pool; /* maps cpu or node to pool id */ 60 } svc_pool_map = { 61 .count = 0, 62 .mode = SVC_POOL_DEFAULT 63 }; 64 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */ 65 66 static int 67 param_set_pool_mode(const char *val, struct kernel_param *kp) 68 { 69 int *ip = (int *)kp->arg; 70 struct svc_pool_map *m = &svc_pool_map; 71 int err; 72 73 mutex_lock(&svc_pool_map_mutex); 74 75 err = -EBUSY; 76 if (m->count) 77 goto out; 78 79 err = 0; 80 if (!strncmp(val, "auto", 4)) 81 *ip = SVC_POOL_AUTO; 82 else if (!strncmp(val, "global", 6)) 83 *ip = SVC_POOL_GLOBAL; 84 else if (!strncmp(val, "percpu", 6)) 85 *ip = SVC_POOL_PERCPU; 86 else if (!strncmp(val, "pernode", 7)) 87 *ip = SVC_POOL_PERNODE; 88 else 89 err = -EINVAL; 90 91 out: 92 mutex_unlock(&svc_pool_map_mutex); 93 return err; 94 } 95 96 static int 97 param_get_pool_mode(char *buf, struct kernel_param *kp) 98 { 99 int *ip = (int *)kp->arg; 100 101 switch (*ip) 102 { 103 case SVC_POOL_AUTO: 104 return strlcpy(buf, "auto", 20); 105 case SVC_POOL_GLOBAL: 106 return strlcpy(buf, "global", 20); 107 case SVC_POOL_PERCPU: 108 return strlcpy(buf, "percpu", 20); 109 case SVC_POOL_PERNODE: 110 return strlcpy(buf, "pernode", 20); 111 default: 112 return sprintf(buf, "%d", *ip); 113 } 114 } 115 116 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode, 117 &svc_pool_map.mode, 0644); 118 119 /* 120 * Detect best pool mapping mode heuristically, 121 * according to the machine's topology. 122 */ 123 static int 124 svc_pool_map_choose_mode(void) 125 { 126 unsigned int node; 127 128 if (nr_online_nodes > 1) { 129 /* 130 * Actually have multiple NUMA nodes, 131 * so split pools on NUMA node boundaries 132 */ 133 return SVC_POOL_PERNODE; 134 } 135 136 node = any_online_node(node_online_map); 137 if (nr_cpus_node(node) > 2) { 138 /* 139 * Non-trivial SMP, or CONFIG_NUMA on 140 * non-NUMA hardware, e.g. with a generic 141 * x86_64 kernel on Xeons. In this case we 142 * want to divide the pools on cpu boundaries. 143 */ 144 return SVC_POOL_PERCPU; 145 } 146 147 /* default: one global pool */ 148 return SVC_POOL_GLOBAL; 149 } 150 151 /* 152 * Allocate the to_pool[] and pool_to[] arrays. 153 * Returns 0 on success or an errno. 154 */ 155 static int 156 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools) 157 { 158 m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL); 159 if (!m->to_pool) 160 goto fail; 161 m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL); 162 if (!m->pool_to) 163 goto fail_free; 164 165 return 0; 166 167 fail_free: 168 kfree(m->to_pool); 169 fail: 170 return -ENOMEM; 171 } 172 173 /* 174 * Initialise the pool map for SVC_POOL_PERCPU mode. 175 * Returns number of pools or <0 on error. 176 */ 177 static int 178 svc_pool_map_init_percpu(struct svc_pool_map *m) 179 { 180 unsigned int maxpools = nr_cpu_ids; 181 unsigned int pidx = 0; 182 unsigned int cpu; 183 int err; 184 185 err = svc_pool_map_alloc_arrays(m, maxpools); 186 if (err) 187 return err; 188 189 for_each_online_cpu(cpu) { 190 BUG_ON(pidx > maxpools); 191 m->to_pool[cpu] = pidx; 192 m->pool_to[pidx] = cpu; 193 pidx++; 194 } 195 /* cpus brought online later all get mapped to pool0, sorry */ 196 197 return pidx; 198 }; 199 200 201 /* 202 * Initialise the pool map for SVC_POOL_PERNODE mode. 203 * Returns number of pools or <0 on error. 204 */ 205 static int 206 svc_pool_map_init_pernode(struct svc_pool_map *m) 207 { 208 unsigned int maxpools = nr_node_ids; 209 unsigned int pidx = 0; 210 unsigned int node; 211 int err; 212 213 err = svc_pool_map_alloc_arrays(m, maxpools); 214 if (err) 215 return err; 216 217 for_each_node_with_cpus(node) { 218 /* some architectures (e.g. SN2) have cpuless nodes */ 219 BUG_ON(pidx > maxpools); 220 m->to_pool[node] = pidx; 221 m->pool_to[pidx] = node; 222 pidx++; 223 } 224 /* nodes brought online later all get mapped to pool0, sorry */ 225 226 return pidx; 227 } 228 229 230 /* 231 * Add a reference to the global map of cpus to pools (and 232 * vice versa). Initialise the map if we're the first user. 233 * Returns the number of pools. 234 */ 235 static unsigned int 236 svc_pool_map_get(void) 237 { 238 struct svc_pool_map *m = &svc_pool_map; 239 int npools = -1; 240 241 mutex_lock(&svc_pool_map_mutex); 242 243 if (m->count++) { 244 mutex_unlock(&svc_pool_map_mutex); 245 return m->npools; 246 } 247 248 if (m->mode == SVC_POOL_AUTO) 249 m->mode = svc_pool_map_choose_mode(); 250 251 switch (m->mode) { 252 case SVC_POOL_PERCPU: 253 npools = svc_pool_map_init_percpu(m); 254 break; 255 case SVC_POOL_PERNODE: 256 npools = svc_pool_map_init_pernode(m); 257 break; 258 } 259 260 if (npools < 0) { 261 /* default, or memory allocation failure */ 262 npools = 1; 263 m->mode = SVC_POOL_GLOBAL; 264 } 265 m->npools = npools; 266 267 mutex_unlock(&svc_pool_map_mutex); 268 return m->npools; 269 } 270 271 272 /* 273 * Drop a reference to the global map of cpus to pools. 274 * When the last reference is dropped, the map data is 275 * freed; this allows the sysadmin to change the pool 276 * mode using the pool_mode module option without 277 * rebooting or re-loading sunrpc.ko. 278 */ 279 static void 280 svc_pool_map_put(void) 281 { 282 struct svc_pool_map *m = &svc_pool_map; 283 284 mutex_lock(&svc_pool_map_mutex); 285 286 if (!--m->count) { 287 m->mode = SVC_POOL_DEFAULT; 288 kfree(m->to_pool); 289 kfree(m->pool_to); 290 m->npools = 0; 291 } 292 293 mutex_unlock(&svc_pool_map_mutex); 294 } 295 296 297 /* 298 * Set the given thread's cpus_allowed mask so that it 299 * will only run on cpus in the given pool. 300 */ 301 static inline void 302 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx) 303 { 304 struct svc_pool_map *m = &svc_pool_map; 305 unsigned int node = m->pool_to[pidx]; 306 307 /* 308 * The caller checks for sv_nrpools > 1, which 309 * implies that we've been initialized. 310 */ 311 BUG_ON(m->count == 0); 312 313 switch (m->mode) { 314 case SVC_POOL_PERCPU: 315 { 316 set_cpus_allowed_ptr(task, cpumask_of(node)); 317 break; 318 } 319 case SVC_POOL_PERNODE: 320 { 321 set_cpus_allowed_ptr(task, cpumask_of_node(node)); 322 break; 323 } 324 } 325 } 326 327 /* 328 * Use the mapping mode to choose a pool for a given CPU. 329 * Used when enqueueing an incoming RPC. Always returns 330 * a non-NULL pool pointer. 331 */ 332 struct svc_pool * 333 svc_pool_for_cpu(struct svc_serv *serv, int cpu) 334 { 335 struct svc_pool_map *m = &svc_pool_map; 336 unsigned int pidx = 0; 337 338 /* 339 * An uninitialised map happens in a pure client when 340 * lockd is brought up, so silently treat it the 341 * same as SVC_POOL_GLOBAL. 342 */ 343 if (svc_serv_is_pooled(serv)) { 344 switch (m->mode) { 345 case SVC_POOL_PERCPU: 346 pidx = m->to_pool[cpu]; 347 break; 348 case SVC_POOL_PERNODE: 349 pidx = m->to_pool[cpu_to_node(cpu)]; 350 break; 351 } 352 } 353 return &serv->sv_pools[pidx % serv->sv_nrpools]; 354 } 355 356 357 /* 358 * Create an RPC service 359 */ 360 static struct svc_serv * 361 __svc_create(struct svc_program *prog, unsigned int bufsize, int npools, 362 void (*shutdown)(struct svc_serv *serv)) 363 { 364 struct svc_serv *serv; 365 unsigned int vers; 366 unsigned int xdrsize; 367 unsigned int i; 368 369 if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL))) 370 return NULL; 371 serv->sv_name = prog->pg_name; 372 serv->sv_program = prog; 373 serv->sv_nrthreads = 1; 374 serv->sv_stats = prog->pg_stats; 375 if (bufsize > RPCSVC_MAXPAYLOAD) 376 bufsize = RPCSVC_MAXPAYLOAD; 377 serv->sv_max_payload = bufsize? bufsize : 4096; 378 serv->sv_max_mesg = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE); 379 serv->sv_shutdown = shutdown; 380 xdrsize = 0; 381 while (prog) { 382 prog->pg_lovers = prog->pg_nvers-1; 383 for (vers=0; vers<prog->pg_nvers ; vers++) 384 if (prog->pg_vers[vers]) { 385 prog->pg_hivers = vers; 386 if (prog->pg_lovers > vers) 387 prog->pg_lovers = vers; 388 if (prog->pg_vers[vers]->vs_xdrsize > xdrsize) 389 xdrsize = prog->pg_vers[vers]->vs_xdrsize; 390 } 391 prog = prog->pg_next; 392 } 393 serv->sv_xdrsize = xdrsize; 394 INIT_LIST_HEAD(&serv->sv_tempsocks); 395 INIT_LIST_HEAD(&serv->sv_permsocks); 396 init_timer(&serv->sv_temptimer); 397 spin_lock_init(&serv->sv_lock); 398 399 serv->sv_nrpools = npools; 400 serv->sv_pools = 401 kcalloc(serv->sv_nrpools, sizeof(struct svc_pool), 402 GFP_KERNEL); 403 if (!serv->sv_pools) { 404 kfree(serv); 405 return NULL; 406 } 407 408 for (i = 0; i < serv->sv_nrpools; i++) { 409 struct svc_pool *pool = &serv->sv_pools[i]; 410 411 dprintk("svc: initialising pool %u for %s\n", 412 i, serv->sv_name); 413 414 pool->sp_id = i; 415 INIT_LIST_HEAD(&pool->sp_threads); 416 INIT_LIST_HEAD(&pool->sp_sockets); 417 INIT_LIST_HEAD(&pool->sp_all_threads); 418 spin_lock_init(&pool->sp_lock); 419 } 420 421 /* Remove any stale portmap registrations */ 422 svc_unregister(serv); 423 424 return serv; 425 } 426 427 struct svc_serv * 428 svc_create(struct svc_program *prog, unsigned int bufsize, 429 void (*shutdown)(struct svc_serv *serv)) 430 { 431 return __svc_create(prog, bufsize, /*npools*/1, shutdown); 432 } 433 EXPORT_SYMBOL_GPL(svc_create); 434 435 struct svc_serv * 436 svc_create_pooled(struct svc_program *prog, unsigned int bufsize, 437 void (*shutdown)(struct svc_serv *serv), 438 svc_thread_fn func, struct module *mod) 439 { 440 struct svc_serv *serv; 441 unsigned int npools = svc_pool_map_get(); 442 443 serv = __svc_create(prog, bufsize, npools, shutdown); 444 445 if (serv != NULL) { 446 serv->sv_function = func; 447 serv->sv_module = mod; 448 } 449 450 return serv; 451 } 452 EXPORT_SYMBOL_GPL(svc_create_pooled); 453 454 /* 455 * Destroy an RPC service. Should be called with appropriate locking to 456 * protect the sv_nrthreads, sv_permsocks and sv_tempsocks. 457 */ 458 void 459 svc_destroy(struct svc_serv *serv) 460 { 461 dprintk("svc: svc_destroy(%s, %d)\n", 462 serv->sv_program->pg_name, 463 serv->sv_nrthreads); 464 465 if (serv->sv_nrthreads) { 466 if (--(serv->sv_nrthreads) != 0) { 467 svc_sock_update_bufs(serv); 468 return; 469 } 470 } else 471 printk("svc_destroy: no threads for serv=%p!\n", serv); 472 473 del_timer_sync(&serv->sv_temptimer); 474 475 svc_close_all(&serv->sv_tempsocks); 476 477 if (serv->sv_shutdown) 478 serv->sv_shutdown(serv); 479 480 svc_close_all(&serv->sv_permsocks); 481 482 BUG_ON(!list_empty(&serv->sv_permsocks)); 483 BUG_ON(!list_empty(&serv->sv_tempsocks)); 484 485 cache_clean_deferred(serv); 486 487 if (svc_serv_is_pooled(serv)) 488 svc_pool_map_put(); 489 490 #if defined(CONFIG_NFS_V4_1) 491 svc_sock_destroy(serv->bc_xprt); 492 #endif /* CONFIG_NFS_V4_1 */ 493 494 svc_unregister(serv); 495 kfree(serv->sv_pools); 496 kfree(serv); 497 } 498 EXPORT_SYMBOL_GPL(svc_destroy); 499 500 /* 501 * Allocate an RPC server's buffer space. 502 * We allocate pages and place them in rq_argpages. 503 */ 504 static int 505 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size) 506 { 507 unsigned int pages, arghi; 508 509 pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply. 510 * We assume one is at most one page 511 */ 512 arghi = 0; 513 BUG_ON(pages > RPCSVC_MAXPAGES); 514 while (pages) { 515 struct page *p = alloc_page(GFP_KERNEL); 516 if (!p) 517 break; 518 rqstp->rq_pages[arghi++] = p; 519 pages--; 520 } 521 return pages == 0; 522 } 523 524 /* 525 * Release an RPC server buffer 526 */ 527 static void 528 svc_release_buffer(struct svc_rqst *rqstp) 529 { 530 unsigned int i; 531 532 for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++) 533 if (rqstp->rq_pages[i]) 534 put_page(rqstp->rq_pages[i]); 535 } 536 537 struct svc_rqst * 538 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool) 539 { 540 struct svc_rqst *rqstp; 541 542 rqstp = kzalloc(sizeof(*rqstp), GFP_KERNEL); 543 if (!rqstp) 544 goto out_enomem; 545 546 init_waitqueue_head(&rqstp->rq_wait); 547 548 serv->sv_nrthreads++; 549 spin_lock_bh(&pool->sp_lock); 550 pool->sp_nrthreads++; 551 list_add(&rqstp->rq_all, &pool->sp_all_threads); 552 spin_unlock_bh(&pool->sp_lock); 553 rqstp->rq_server = serv; 554 rqstp->rq_pool = pool; 555 556 rqstp->rq_argp = kmalloc(serv->sv_xdrsize, GFP_KERNEL); 557 if (!rqstp->rq_argp) 558 goto out_thread; 559 560 rqstp->rq_resp = kmalloc(serv->sv_xdrsize, GFP_KERNEL); 561 if (!rqstp->rq_resp) 562 goto out_thread; 563 564 if (!svc_init_buffer(rqstp, serv->sv_max_mesg)) 565 goto out_thread; 566 567 return rqstp; 568 out_thread: 569 svc_exit_thread(rqstp); 570 out_enomem: 571 return ERR_PTR(-ENOMEM); 572 } 573 EXPORT_SYMBOL_GPL(svc_prepare_thread); 574 575 /* 576 * Choose a pool in which to create a new thread, for svc_set_num_threads 577 */ 578 static inline struct svc_pool * 579 choose_pool(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state) 580 { 581 if (pool != NULL) 582 return pool; 583 584 return &serv->sv_pools[(*state)++ % serv->sv_nrpools]; 585 } 586 587 /* 588 * Choose a thread to kill, for svc_set_num_threads 589 */ 590 static inline struct task_struct * 591 choose_victim(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state) 592 { 593 unsigned int i; 594 struct task_struct *task = NULL; 595 596 if (pool != NULL) { 597 spin_lock_bh(&pool->sp_lock); 598 } else { 599 /* choose a pool in round-robin fashion */ 600 for (i = 0; i < serv->sv_nrpools; i++) { 601 pool = &serv->sv_pools[--(*state) % serv->sv_nrpools]; 602 spin_lock_bh(&pool->sp_lock); 603 if (!list_empty(&pool->sp_all_threads)) 604 goto found_pool; 605 spin_unlock_bh(&pool->sp_lock); 606 } 607 return NULL; 608 } 609 610 found_pool: 611 if (!list_empty(&pool->sp_all_threads)) { 612 struct svc_rqst *rqstp; 613 614 /* 615 * Remove from the pool->sp_all_threads list 616 * so we don't try to kill it again. 617 */ 618 rqstp = list_entry(pool->sp_all_threads.next, struct svc_rqst, rq_all); 619 list_del_init(&rqstp->rq_all); 620 task = rqstp->rq_task; 621 } 622 spin_unlock_bh(&pool->sp_lock); 623 624 return task; 625 } 626 627 /* 628 * Create or destroy enough new threads to make the number 629 * of threads the given number. If `pool' is non-NULL, applies 630 * only to threads in that pool, otherwise round-robins between 631 * all pools. Must be called with a svc_get() reference and 632 * the BKL or another lock to protect access to svc_serv fields. 633 * 634 * Destroying threads relies on the service threads filling in 635 * rqstp->rq_task, which only the nfs ones do. Assumes the serv 636 * has been created using svc_create_pooled(). 637 * 638 * Based on code that used to be in nfsd_svc() but tweaked 639 * to be pool-aware. 640 */ 641 int 642 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs) 643 { 644 struct svc_rqst *rqstp; 645 struct task_struct *task; 646 struct svc_pool *chosen_pool; 647 int error = 0; 648 unsigned int state = serv->sv_nrthreads-1; 649 650 if (pool == NULL) { 651 /* The -1 assumes caller has done a svc_get() */ 652 nrservs -= (serv->sv_nrthreads-1); 653 } else { 654 spin_lock_bh(&pool->sp_lock); 655 nrservs -= pool->sp_nrthreads; 656 spin_unlock_bh(&pool->sp_lock); 657 } 658 659 /* create new threads */ 660 while (nrservs > 0) { 661 nrservs--; 662 chosen_pool = choose_pool(serv, pool, &state); 663 664 rqstp = svc_prepare_thread(serv, chosen_pool); 665 if (IS_ERR(rqstp)) { 666 error = PTR_ERR(rqstp); 667 break; 668 } 669 670 __module_get(serv->sv_module); 671 task = kthread_create(serv->sv_function, rqstp, serv->sv_name); 672 if (IS_ERR(task)) { 673 error = PTR_ERR(task); 674 module_put(serv->sv_module); 675 svc_exit_thread(rqstp); 676 break; 677 } 678 679 rqstp->rq_task = task; 680 if (serv->sv_nrpools > 1) 681 svc_pool_map_set_cpumask(task, chosen_pool->sp_id); 682 683 svc_sock_update_bufs(serv); 684 wake_up_process(task); 685 } 686 /* destroy old threads */ 687 while (nrservs < 0 && 688 (task = choose_victim(serv, pool, &state)) != NULL) { 689 send_sig(SIGINT, task, 1); 690 nrservs++; 691 } 692 693 return error; 694 } 695 EXPORT_SYMBOL_GPL(svc_set_num_threads); 696 697 /* 698 * Called from a server thread as it's exiting. Caller must hold the BKL or 699 * the "service mutex", whichever is appropriate for the service. 700 */ 701 void 702 svc_exit_thread(struct svc_rqst *rqstp) 703 { 704 struct svc_serv *serv = rqstp->rq_server; 705 struct svc_pool *pool = rqstp->rq_pool; 706 707 svc_release_buffer(rqstp); 708 kfree(rqstp->rq_resp); 709 kfree(rqstp->rq_argp); 710 kfree(rqstp->rq_auth_data); 711 712 spin_lock_bh(&pool->sp_lock); 713 pool->sp_nrthreads--; 714 list_del(&rqstp->rq_all); 715 spin_unlock_bh(&pool->sp_lock); 716 717 kfree(rqstp); 718 719 /* Release the server */ 720 if (serv) 721 svc_destroy(serv); 722 } 723 EXPORT_SYMBOL_GPL(svc_exit_thread); 724 725 /* 726 * Register an "inet" protocol family netid with the local 727 * rpcbind daemon via an rpcbind v4 SET request. 728 * 729 * No netconfig infrastructure is available in the kernel, so 730 * we map IP_ protocol numbers to netids by hand. 731 * 732 * Returns zero on success; a negative errno value is returned 733 * if any error occurs. 734 */ 735 static int __svc_rpcb_register4(const u32 program, const u32 version, 736 const unsigned short protocol, 737 const unsigned short port) 738 { 739 const struct sockaddr_in sin = { 740 .sin_family = AF_INET, 741 .sin_addr.s_addr = htonl(INADDR_ANY), 742 .sin_port = htons(port), 743 }; 744 const char *netid; 745 int error; 746 747 switch (protocol) { 748 case IPPROTO_UDP: 749 netid = RPCBIND_NETID_UDP; 750 break; 751 case IPPROTO_TCP: 752 netid = RPCBIND_NETID_TCP; 753 break; 754 default: 755 return -ENOPROTOOPT; 756 } 757 758 error = rpcb_v4_register(program, version, 759 (const struct sockaddr *)&sin, netid); 760 761 /* 762 * User space didn't support rpcbind v4, so retry this 763 * registration request with the legacy rpcbind v2 protocol. 764 */ 765 if (error == -EPROTONOSUPPORT) 766 error = rpcb_register(program, version, protocol, port); 767 768 return error; 769 } 770 771 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 772 /* 773 * Register an "inet6" protocol family netid with the local 774 * rpcbind daemon via an rpcbind v4 SET request. 775 * 776 * No netconfig infrastructure is available in the kernel, so 777 * we map IP_ protocol numbers to netids by hand. 778 * 779 * Returns zero on success; a negative errno value is returned 780 * if any error occurs. 781 */ 782 static int __svc_rpcb_register6(const u32 program, const u32 version, 783 const unsigned short protocol, 784 const unsigned short port) 785 { 786 const struct sockaddr_in6 sin6 = { 787 .sin6_family = AF_INET6, 788 .sin6_addr = IN6ADDR_ANY_INIT, 789 .sin6_port = htons(port), 790 }; 791 const char *netid; 792 int error; 793 794 switch (protocol) { 795 case IPPROTO_UDP: 796 netid = RPCBIND_NETID_UDP6; 797 break; 798 case IPPROTO_TCP: 799 netid = RPCBIND_NETID_TCP6; 800 break; 801 default: 802 return -ENOPROTOOPT; 803 } 804 805 error = rpcb_v4_register(program, version, 806 (const struct sockaddr *)&sin6, netid); 807 808 /* 809 * User space didn't support rpcbind version 4, so we won't 810 * use a PF_INET6 listener. 811 */ 812 if (error == -EPROTONOSUPPORT) 813 error = -EAFNOSUPPORT; 814 815 return error; 816 } 817 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */ 818 819 /* 820 * Register a kernel RPC service via rpcbind version 4. 821 * 822 * Returns zero on success; a negative errno value is returned 823 * if any error occurs. 824 */ 825 static int __svc_register(const char *progname, 826 const u32 program, const u32 version, 827 const int family, 828 const unsigned short protocol, 829 const unsigned short port) 830 { 831 int error = -EAFNOSUPPORT; 832 833 switch (family) { 834 case PF_INET: 835 error = __svc_rpcb_register4(program, version, 836 protocol, port); 837 break; 838 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 839 case PF_INET6: 840 error = __svc_rpcb_register6(program, version, 841 protocol, port); 842 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */ 843 } 844 845 if (error < 0) 846 printk(KERN_WARNING "svc: failed to register %sv%u RPC " 847 "service (errno %d).\n", progname, version, -error); 848 return error; 849 } 850 851 /** 852 * svc_register - register an RPC service with the local portmapper 853 * @serv: svc_serv struct for the service to register 854 * @family: protocol family of service's listener socket 855 * @proto: transport protocol number to advertise 856 * @port: port to advertise 857 * 858 * Service is registered for any address in the passed-in protocol family 859 */ 860 int svc_register(const struct svc_serv *serv, const int family, 861 const unsigned short proto, const unsigned short port) 862 { 863 struct svc_program *progp; 864 unsigned int i; 865 int error = 0; 866 867 BUG_ON(proto == 0 && port == 0); 868 869 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 870 for (i = 0; i < progp->pg_nvers; i++) { 871 if (progp->pg_vers[i] == NULL) 872 continue; 873 874 dprintk("svc: svc_register(%sv%d, %s, %u, %u)%s\n", 875 progp->pg_name, 876 i, 877 proto == IPPROTO_UDP? "udp" : "tcp", 878 port, 879 family, 880 progp->pg_vers[i]->vs_hidden? 881 " (but not telling portmap)" : ""); 882 883 if (progp->pg_vers[i]->vs_hidden) 884 continue; 885 886 error = __svc_register(progp->pg_name, progp->pg_prog, 887 i, family, proto, port); 888 if (error < 0) 889 break; 890 } 891 } 892 893 return error; 894 } 895 896 /* 897 * If user space is running rpcbind, it should take the v4 UNSET 898 * and clear everything for this [program, version]. If user space 899 * is running portmap, it will reject the v4 UNSET, but won't have 900 * any "inet6" entries anyway. So a PMAP_UNSET should be sufficient 901 * in this case to clear all existing entries for [program, version]. 902 */ 903 static void __svc_unregister(const u32 program, const u32 version, 904 const char *progname) 905 { 906 int error; 907 908 error = rpcb_v4_register(program, version, NULL, ""); 909 910 /* 911 * User space didn't support rpcbind v4, so retry this 912 * request with the legacy rpcbind v2 protocol. 913 */ 914 if (error == -EPROTONOSUPPORT) 915 error = rpcb_register(program, version, 0, 0); 916 917 dprintk("svc: %s(%sv%u), error %d\n", 918 __func__, progname, version, error); 919 } 920 921 /* 922 * All netids, bind addresses and ports registered for [program, version] 923 * are removed from the local rpcbind database (if the service is not 924 * hidden) to make way for a new instance of the service. 925 * 926 * The result of unregistration is reported via dprintk for those who want 927 * verification of the result, but is otherwise not important. 928 */ 929 static void svc_unregister(const struct svc_serv *serv) 930 { 931 struct svc_program *progp; 932 unsigned long flags; 933 unsigned int i; 934 935 clear_thread_flag(TIF_SIGPENDING); 936 937 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 938 for (i = 0; i < progp->pg_nvers; i++) { 939 if (progp->pg_vers[i] == NULL) 940 continue; 941 if (progp->pg_vers[i]->vs_hidden) 942 continue; 943 944 __svc_unregister(progp->pg_prog, i, progp->pg_name); 945 } 946 } 947 948 spin_lock_irqsave(¤t->sighand->siglock, flags); 949 recalc_sigpending(); 950 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 951 } 952 953 /* 954 * Printk the given error with the address of the client that caused it. 955 */ 956 static int 957 __attribute__ ((format (printf, 2, 3))) 958 svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) 959 { 960 va_list args; 961 int r; 962 char buf[RPC_MAX_ADDRBUFLEN]; 963 964 if (!net_ratelimit()) 965 return 0; 966 967 printk(KERN_WARNING "svc: %s: ", 968 svc_print_addr(rqstp, buf, sizeof(buf))); 969 970 va_start(args, fmt); 971 r = vprintk(fmt, args); 972 va_end(args); 973 974 return r; 975 } 976 977 /* 978 * Common routine for processing the RPC request. 979 */ 980 static int 981 svc_process_common(struct svc_rqst *rqstp, struct kvec *argv, struct kvec *resv) 982 { 983 struct svc_program *progp; 984 struct svc_version *versp = NULL; /* compiler food */ 985 struct svc_procedure *procp = NULL; 986 struct svc_serv *serv = rqstp->rq_server; 987 kxdrproc_t xdr; 988 __be32 *statp; 989 u32 prog, vers, proc; 990 __be32 auth_stat, rpc_stat; 991 int auth_res; 992 __be32 *reply_statp; 993 994 rpc_stat = rpc_success; 995 996 if (argv->iov_len < 6*4) 997 goto err_short_len; 998 999 /* Will be turned off only in gss privacy case: */ 1000 rqstp->rq_splice_ok = 1; 1001 /* Will be turned off only when NFSv4 Sessions are used */ 1002 rqstp->rq_usedeferral = 1; 1003 1004 /* Setup reply header */ 1005 rqstp->rq_xprt->xpt_ops->xpo_prep_reply_hdr(rqstp); 1006 1007 svc_putu32(resv, rqstp->rq_xid); 1008 1009 vers = svc_getnl(argv); 1010 1011 /* First words of reply: */ 1012 svc_putnl(resv, 1); /* REPLY */ 1013 1014 if (vers != 2) /* RPC version number */ 1015 goto err_bad_rpc; 1016 1017 /* Save position in case we later decide to reject: */ 1018 reply_statp = resv->iov_base + resv->iov_len; 1019 1020 svc_putnl(resv, 0); /* ACCEPT */ 1021 1022 rqstp->rq_prog = prog = svc_getnl(argv); /* program number */ 1023 rqstp->rq_vers = vers = svc_getnl(argv); /* version number */ 1024 rqstp->rq_proc = proc = svc_getnl(argv); /* procedure number */ 1025 1026 progp = serv->sv_program; 1027 1028 for (progp = serv->sv_program; progp; progp = progp->pg_next) 1029 if (prog == progp->pg_prog) 1030 break; 1031 1032 /* 1033 * Decode auth data, and add verifier to reply buffer. 1034 * We do this before anything else in order to get a decent 1035 * auth verifier. 1036 */ 1037 auth_res = svc_authenticate(rqstp, &auth_stat); 1038 /* Also give the program a chance to reject this call: */ 1039 if (auth_res == SVC_OK && progp) { 1040 auth_stat = rpc_autherr_badcred; 1041 auth_res = progp->pg_authenticate(rqstp); 1042 } 1043 switch (auth_res) { 1044 case SVC_OK: 1045 break; 1046 case SVC_GARBAGE: 1047 goto err_garbage; 1048 case SVC_SYSERR: 1049 rpc_stat = rpc_system_err; 1050 goto err_bad; 1051 case SVC_DENIED: 1052 goto err_bad_auth; 1053 case SVC_DROP: 1054 goto dropit; 1055 case SVC_COMPLETE: 1056 goto sendit; 1057 } 1058 1059 if (progp == NULL) 1060 goto err_bad_prog; 1061 1062 if (vers >= progp->pg_nvers || 1063 !(versp = progp->pg_vers[vers])) 1064 goto err_bad_vers; 1065 1066 procp = versp->vs_proc + proc; 1067 if (proc >= versp->vs_nproc || !procp->pc_func) 1068 goto err_bad_proc; 1069 rqstp->rq_procinfo = procp; 1070 1071 /* Syntactic check complete */ 1072 serv->sv_stats->rpccnt++; 1073 1074 /* Build the reply header. */ 1075 statp = resv->iov_base +resv->iov_len; 1076 svc_putnl(resv, RPC_SUCCESS); 1077 1078 /* Bump per-procedure stats counter */ 1079 procp->pc_count++; 1080 1081 /* Initialize storage for argp and resp */ 1082 memset(rqstp->rq_argp, 0, procp->pc_argsize); 1083 memset(rqstp->rq_resp, 0, procp->pc_ressize); 1084 1085 /* un-reserve some of the out-queue now that we have a 1086 * better idea of reply size 1087 */ 1088 if (procp->pc_xdrressize) 1089 svc_reserve_auth(rqstp, procp->pc_xdrressize<<2); 1090 1091 /* Call the function that processes the request. */ 1092 if (!versp->vs_dispatch) { 1093 /* Decode arguments */ 1094 xdr = procp->pc_decode; 1095 if (xdr && !xdr(rqstp, argv->iov_base, rqstp->rq_argp)) 1096 goto err_garbage; 1097 1098 *statp = procp->pc_func(rqstp, rqstp->rq_argp, rqstp->rq_resp); 1099 1100 /* Encode reply */ 1101 if (*statp == rpc_drop_reply) { 1102 if (procp->pc_release) 1103 procp->pc_release(rqstp, NULL, rqstp->rq_resp); 1104 goto dropit; 1105 } 1106 if (*statp == rpc_success && 1107 (xdr = procp->pc_encode) && 1108 !xdr(rqstp, resv->iov_base+resv->iov_len, rqstp->rq_resp)) { 1109 dprintk("svc: failed to encode reply\n"); 1110 /* serv->sv_stats->rpcsystemerr++; */ 1111 *statp = rpc_system_err; 1112 } 1113 } else { 1114 dprintk("svc: calling dispatcher\n"); 1115 if (!versp->vs_dispatch(rqstp, statp)) { 1116 /* Release reply info */ 1117 if (procp->pc_release) 1118 procp->pc_release(rqstp, NULL, rqstp->rq_resp); 1119 goto dropit; 1120 } 1121 } 1122 1123 /* Check RPC status result */ 1124 if (*statp != rpc_success) 1125 resv->iov_len = ((void*)statp) - resv->iov_base + 4; 1126 1127 /* Release reply info */ 1128 if (procp->pc_release) 1129 procp->pc_release(rqstp, NULL, rqstp->rq_resp); 1130 1131 if (procp->pc_encode == NULL) 1132 goto dropit; 1133 1134 sendit: 1135 if (svc_authorise(rqstp)) 1136 goto dropit; 1137 return 1; /* Caller can now send it */ 1138 1139 dropit: 1140 svc_authorise(rqstp); /* doesn't hurt to call this twice */ 1141 dprintk("svc: svc_process dropit\n"); 1142 svc_drop(rqstp); 1143 return 0; 1144 1145 err_short_len: 1146 svc_printk(rqstp, "short len %Zd, dropping request\n", 1147 argv->iov_len); 1148 1149 goto dropit; /* drop request */ 1150 1151 err_bad_rpc: 1152 serv->sv_stats->rpcbadfmt++; 1153 svc_putnl(resv, 1); /* REJECT */ 1154 svc_putnl(resv, 0); /* RPC_MISMATCH */ 1155 svc_putnl(resv, 2); /* Only RPCv2 supported */ 1156 svc_putnl(resv, 2); 1157 goto sendit; 1158 1159 err_bad_auth: 1160 dprintk("svc: authentication failed (%d)\n", ntohl(auth_stat)); 1161 serv->sv_stats->rpcbadauth++; 1162 /* Restore write pointer to location of accept status: */ 1163 xdr_ressize_check(rqstp, reply_statp); 1164 svc_putnl(resv, 1); /* REJECT */ 1165 svc_putnl(resv, 1); /* AUTH_ERROR */ 1166 svc_putnl(resv, ntohl(auth_stat)); /* status */ 1167 goto sendit; 1168 1169 err_bad_prog: 1170 dprintk("svc: unknown program %d\n", prog); 1171 serv->sv_stats->rpcbadfmt++; 1172 svc_putnl(resv, RPC_PROG_UNAVAIL); 1173 goto sendit; 1174 1175 err_bad_vers: 1176 svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n", 1177 vers, prog, progp->pg_name); 1178 1179 serv->sv_stats->rpcbadfmt++; 1180 svc_putnl(resv, RPC_PROG_MISMATCH); 1181 svc_putnl(resv, progp->pg_lovers); 1182 svc_putnl(resv, progp->pg_hivers); 1183 goto sendit; 1184 1185 err_bad_proc: 1186 svc_printk(rqstp, "unknown procedure (%d)\n", proc); 1187 1188 serv->sv_stats->rpcbadfmt++; 1189 svc_putnl(resv, RPC_PROC_UNAVAIL); 1190 goto sendit; 1191 1192 err_garbage: 1193 svc_printk(rqstp, "failed to decode args\n"); 1194 1195 rpc_stat = rpc_garbage_args; 1196 err_bad: 1197 serv->sv_stats->rpcbadfmt++; 1198 svc_putnl(resv, ntohl(rpc_stat)); 1199 goto sendit; 1200 } 1201 EXPORT_SYMBOL_GPL(svc_process); 1202 1203 /* 1204 * Process the RPC request. 1205 */ 1206 int 1207 svc_process(struct svc_rqst *rqstp) 1208 { 1209 struct kvec *argv = &rqstp->rq_arg.head[0]; 1210 struct kvec *resv = &rqstp->rq_res.head[0]; 1211 struct svc_serv *serv = rqstp->rq_server; 1212 u32 dir; 1213 int error; 1214 1215 /* 1216 * Setup response xdr_buf. 1217 * Initially it has just one page 1218 */ 1219 rqstp->rq_resused = 1; 1220 resv->iov_base = page_address(rqstp->rq_respages[0]); 1221 resv->iov_len = 0; 1222 rqstp->rq_res.pages = rqstp->rq_respages + 1; 1223 rqstp->rq_res.len = 0; 1224 rqstp->rq_res.page_base = 0; 1225 rqstp->rq_res.page_len = 0; 1226 rqstp->rq_res.buflen = PAGE_SIZE; 1227 rqstp->rq_res.tail[0].iov_base = NULL; 1228 rqstp->rq_res.tail[0].iov_len = 0; 1229 1230 rqstp->rq_xid = svc_getu32(argv); 1231 1232 dir = svc_getnl(argv); 1233 if (dir != 0) { 1234 /* direction != CALL */ 1235 svc_printk(rqstp, "bad direction %d, dropping request\n", dir); 1236 serv->sv_stats->rpcbadfmt++; 1237 svc_drop(rqstp); 1238 return 0; 1239 } 1240 1241 error = svc_process_common(rqstp, argv, resv); 1242 if (error <= 0) 1243 return error; 1244 1245 return svc_send(rqstp); 1246 } 1247 1248 #if defined(CONFIG_NFS_V4_1) 1249 /* 1250 * Process a backchannel RPC request that arrived over an existing 1251 * outbound connection 1252 */ 1253 int 1254 bc_svc_process(struct svc_serv *serv, struct rpc_rqst *req, 1255 struct svc_rqst *rqstp) 1256 { 1257 struct kvec *argv = &rqstp->rq_arg.head[0]; 1258 struct kvec *resv = &rqstp->rq_res.head[0]; 1259 int error; 1260 1261 /* Build the svc_rqst used by the common processing routine */ 1262 rqstp->rq_xprt = serv->bc_xprt; 1263 rqstp->rq_xid = req->rq_xid; 1264 rqstp->rq_prot = req->rq_xprt->prot; 1265 rqstp->rq_server = serv; 1266 1267 rqstp->rq_addrlen = sizeof(req->rq_xprt->addr); 1268 memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen); 1269 memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg)); 1270 memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res)); 1271 1272 /* reset result send buffer "put" position */ 1273 resv->iov_len = 0; 1274 1275 if (rqstp->rq_prot != IPPROTO_TCP) { 1276 printk(KERN_ERR "No support for Non-TCP transports!\n"); 1277 BUG(); 1278 } 1279 1280 /* 1281 * Skip the next two words because they've already been 1282 * processed in the trasport 1283 */ 1284 svc_getu32(argv); /* XID */ 1285 svc_getnl(argv); /* CALLDIR */ 1286 1287 error = svc_process_common(rqstp, argv, resv); 1288 if (error <= 0) 1289 return error; 1290 1291 memcpy(&req->rq_snd_buf, &rqstp->rq_res, sizeof(req->rq_snd_buf)); 1292 return bc_send(req); 1293 } 1294 EXPORT_SYMBOL(bc_svc_process); 1295 #endif /* CONFIG_NFS_V4_1 */ 1296 1297 /* 1298 * Return (transport-specific) limit on the rpc payload. 1299 */ 1300 u32 svc_max_payload(const struct svc_rqst *rqstp) 1301 { 1302 u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload; 1303 1304 if (rqstp->rq_server->sv_max_payload < max) 1305 max = rqstp->rq_server->sv_max_payload; 1306 return max; 1307 } 1308 EXPORT_SYMBOL_GPL(svc_max_payload); 1309