1 /* 2 * linux/net/sunrpc/svc.c 3 * 4 * High-level RPC service routines 5 * 6 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 7 * 8 * Multiple threads pools and NUMAisation 9 * Copyright (c) 2006 Silicon Graphics, Inc. 10 * by Greg Banks <gnb@melbourne.sgi.com> 11 */ 12 13 #include <linux/linkage.h> 14 #include <linux/sched.h> 15 #include <linux/errno.h> 16 #include <linux/net.h> 17 #include <linux/in.h> 18 #include <linux/mm.h> 19 #include <linux/interrupt.h> 20 #include <linux/module.h> 21 #include <linux/kthread.h> 22 #include <linux/slab.h> 23 24 #include <linux/sunrpc/types.h> 25 #include <linux/sunrpc/xdr.h> 26 #include <linux/sunrpc/stats.h> 27 #include <linux/sunrpc/svcsock.h> 28 #include <linux/sunrpc/clnt.h> 29 #include <linux/sunrpc/bc_xprt.h> 30 31 #define RPCDBG_FACILITY RPCDBG_SVCDSP 32 33 static void svc_unregister(const struct svc_serv *serv, struct net *net); 34 35 #define svc_serv_is_pooled(serv) ((serv)->sv_function) 36 37 /* 38 * Mode for mapping cpus to pools. 39 */ 40 enum { 41 SVC_POOL_AUTO = -1, /* choose one of the others */ 42 SVC_POOL_GLOBAL, /* no mapping, just a single global pool 43 * (legacy & UP mode) */ 44 SVC_POOL_PERCPU, /* one pool per cpu */ 45 SVC_POOL_PERNODE /* one pool per numa node */ 46 }; 47 #define SVC_POOL_DEFAULT SVC_POOL_GLOBAL 48 49 /* 50 * Structure for mapping cpus to pools and vice versa. 51 * Setup once during sunrpc initialisation. 52 */ 53 static struct svc_pool_map { 54 int count; /* How many svc_servs use us */ 55 int mode; /* Note: int not enum to avoid 56 * warnings about "enumeration value 57 * not handled in switch" */ 58 unsigned int npools; 59 unsigned int *pool_to; /* maps pool id to cpu or node */ 60 unsigned int *to_pool; /* maps cpu or node to pool id */ 61 } svc_pool_map = { 62 .count = 0, 63 .mode = SVC_POOL_DEFAULT 64 }; 65 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */ 66 67 static int 68 param_set_pool_mode(const char *val, struct kernel_param *kp) 69 { 70 int *ip = (int *)kp->arg; 71 struct svc_pool_map *m = &svc_pool_map; 72 int err; 73 74 mutex_lock(&svc_pool_map_mutex); 75 76 err = -EBUSY; 77 if (m->count) 78 goto out; 79 80 err = 0; 81 if (!strncmp(val, "auto", 4)) 82 *ip = SVC_POOL_AUTO; 83 else if (!strncmp(val, "global", 6)) 84 *ip = SVC_POOL_GLOBAL; 85 else if (!strncmp(val, "percpu", 6)) 86 *ip = SVC_POOL_PERCPU; 87 else if (!strncmp(val, "pernode", 7)) 88 *ip = SVC_POOL_PERNODE; 89 else 90 err = -EINVAL; 91 92 out: 93 mutex_unlock(&svc_pool_map_mutex); 94 return err; 95 } 96 97 static int 98 param_get_pool_mode(char *buf, struct kernel_param *kp) 99 { 100 int *ip = (int *)kp->arg; 101 102 switch (*ip) 103 { 104 case SVC_POOL_AUTO: 105 return strlcpy(buf, "auto", 20); 106 case SVC_POOL_GLOBAL: 107 return strlcpy(buf, "global", 20); 108 case SVC_POOL_PERCPU: 109 return strlcpy(buf, "percpu", 20); 110 case SVC_POOL_PERNODE: 111 return strlcpy(buf, "pernode", 20); 112 default: 113 return sprintf(buf, "%d", *ip); 114 } 115 } 116 117 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode, 118 &svc_pool_map.mode, 0644); 119 120 /* 121 * Detect best pool mapping mode heuristically, 122 * according to the machine's topology. 123 */ 124 static int 125 svc_pool_map_choose_mode(void) 126 { 127 unsigned int node; 128 129 if (nr_online_nodes > 1) { 130 /* 131 * Actually have multiple NUMA nodes, 132 * so split pools on NUMA node boundaries 133 */ 134 return SVC_POOL_PERNODE; 135 } 136 137 node = first_online_node; 138 if (nr_cpus_node(node) > 2) { 139 /* 140 * Non-trivial SMP, or CONFIG_NUMA on 141 * non-NUMA hardware, e.g. with a generic 142 * x86_64 kernel on Xeons. In this case we 143 * want to divide the pools on cpu boundaries. 144 */ 145 return SVC_POOL_PERCPU; 146 } 147 148 /* default: one global pool */ 149 return SVC_POOL_GLOBAL; 150 } 151 152 /* 153 * Allocate the to_pool[] and pool_to[] arrays. 154 * Returns 0 on success or an errno. 155 */ 156 static int 157 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools) 158 { 159 m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL); 160 if (!m->to_pool) 161 goto fail; 162 m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL); 163 if (!m->pool_to) 164 goto fail_free; 165 166 return 0; 167 168 fail_free: 169 kfree(m->to_pool); 170 m->to_pool = NULL; 171 fail: 172 return -ENOMEM; 173 } 174 175 /* 176 * Initialise the pool map for SVC_POOL_PERCPU mode. 177 * Returns number of pools or <0 on error. 178 */ 179 static int 180 svc_pool_map_init_percpu(struct svc_pool_map *m) 181 { 182 unsigned int maxpools = nr_cpu_ids; 183 unsigned int pidx = 0; 184 unsigned int cpu; 185 int err; 186 187 err = svc_pool_map_alloc_arrays(m, maxpools); 188 if (err) 189 return err; 190 191 for_each_online_cpu(cpu) { 192 BUG_ON(pidx > maxpools); 193 m->to_pool[cpu] = pidx; 194 m->pool_to[pidx] = cpu; 195 pidx++; 196 } 197 /* cpus brought online later all get mapped to pool0, sorry */ 198 199 return pidx; 200 }; 201 202 203 /* 204 * Initialise the pool map for SVC_POOL_PERNODE mode. 205 * Returns number of pools or <0 on error. 206 */ 207 static int 208 svc_pool_map_init_pernode(struct svc_pool_map *m) 209 { 210 unsigned int maxpools = nr_node_ids; 211 unsigned int pidx = 0; 212 unsigned int node; 213 int err; 214 215 err = svc_pool_map_alloc_arrays(m, maxpools); 216 if (err) 217 return err; 218 219 for_each_node_with_cpus(node) { 220 /* some architectures (e.g. SN2) have cpuless nodes */ 221 BUG_ON(pidx > maxpools); 222 m->to_pool[node] = pidx; 223 m->pool_to[pidx] = node; 224 pidx++; 225 } 226 /* nodes brought online later all get mapped to pool0, sorry */ 227 228 return pidx; 229 } 230 231 232 /* 233 * Add a reference to the global map of cpus to pools (and 234 * vice versa). Initialise the map if we're the first user. 235 * Returns the number of pools. 236 */ 237 static unsigned int 238 svc_pool_map_get(void) 239 { 240 struct svc_pool_map *m = &svc_pool_map; 241 int npools = -1; 242 243 mutex_lock(&svc_pool_map_mutex); 244 245 if (m->count++) { 246 mutex_unlock(&svc_pool_map_mutex); 247 return m->npools; 248 } 249 250 if (m->mode == SVC_POOL_AUTO) 251 m->mode = svc_pool_map_choose_mode(); 252 253 switch (m->mode) { 254 case SVC_POOL_PERCPU: 255 npools = svc_pool_map_init_percpu(m); 256 break; 257 case SVC_POOL_PERNODE: 258 npools = svc_pool_map_init_pernode(m); 259 break; 260 } 261 262 if (npools < 0) { 263 /* default, or memory allocation failure */ 264 npools = 1; 265 m->mode = SVC_POOL_GLOBAL; 266 } 267 m->npools = npools; 268 269 mutex_unlock(&svc_pool_map_mutex); 270 return m->npools; 271 } 272 273 274 /* 275 * Drop a reference to the global map of cpus to pools. 276 * When the last reference is dropped, the map data is 277 * freed; this allows the sysadmin to change the pool 278 * mode using the pool_mode module option without 279 * rebooting or re-loading sunrpc.ko. 280 */ 281 static void 282 svc_pool_map_put(void) 283 { 284 struct svc_pool_map *m = &svc_pool_map; 285 286 mutex_lock(&svc_pool_map_mutex); 287 288 if (!--m->count) { 289 kfree(m->to_pool); 290 m->to_pool = NULL; 291 kfree(m->pool_to); 292 m->pool_to = NULL; 293 m->npools = 0; 294 } 295 296 mutex_unlock(&svc_pool_map_mutex); 297 } 298 299 300 static int svc_pool_map_get_node(unsigned int pidx) 301 { 302 const struct svc_pool_map *m = &svc_pool_map; 303 304 if (m->count) { 305 if (m->mode == SVC_POOL_PERCPU) 306 return cpu_to_node(m->pool_to[pidx]); 307 if (m->mode == SVC_POOL_PERNODE) 308 return m->pool_to[pidx]; 309 } 310 return NUMA_NO_NODE; 311 } 312 /* 313 * Set the given thread's cpus_allowed mask so that it 314 * will only run on cpus in the given pool. 315 */ 316 static inline void 317 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx) 318 { 319 struct svc_pool_map *m = &svc_pool_map; 320 unsigned int node = m->pool_to[pidx]; 321 322 /* 323 * The caller checks for sv_nrpools > 1, which 324 * implies that we've been initialized. 325 */ 326 WARN_ON_ONCE(m->count == 0); 327 if (m->count == 0) 328 return; 329 330 switch (m->mode) { 331 case SVC_POOL_PERCPU: 332 { 333 set_cpus_allowed_ptr(task, cpumask_of(node)); 334 break; 335 } 336 case SVC_POOL_PERNODE: 337 { 338 set_cpus_allowed_ptr(task, cpumask_of_node(node)); 339 break; 340 } 341 } 342 } 343 344 /* 345 * Use the mapping mode to choose a pool for a given CPU. 346 * Used when enqueueing an incoming RPC. Always returns 347 * a non-NULL pool pointer. 348 */ 349 struct svc_pool * 350 svc_pool_for_cpu(struct svc_serv *serv, int cpu) 351 { 352 struct svc_pool_map *m = &svc_pool_map; 353 unsigned int pidx = 0; 354 355 /* 356 * An uninitialised map happens in a pure client when 357 * lockd is brought up, so silently treat it the 358 * same as SVC_POOL_GLOBAL. 359 */ 360 if (svc_serv_is_pooled(serv)) { 361 switch (m->mode) { 362 case SVC_POOL_PERCPU: 363 pidx = m->to_pool[cpu]; 364 break; 365 case SVC_POOL_PERNODE: 366 pidx = m->to_pool[cpu_to_node(cpu)]; 367 break; 368 } 369 } 370 return &serv->sv_pools[pidx % serv->sv_nrpools]; 371 } 372 373 int svc_rpcb_setup(struct svc_serv *serv, struct net *net) 374 { 375 int err; 376 377 err = rpcb_create_local(net); 378 if (err) 379 return err; 380 381 /* Remove any stale portmap registrations */ 382 svc_unregister(serv, net); 383 return 0; 384 } 385 EXPORT_SYMBOL_GPL(svc_rpcb_setup); 386 387 void svc_rpcb_cleanup(struct svc_serv *serv, struct net *net) 388 { 389 svc_unregister(serv, net); 390 rpcb_put_local(net); 391 } 392 EXPORT_SYMBOL_GPL(svc_rpcb_cleanup); 393 394 static int svc_uses_rpcbind(struct svc_serv *serv) 395 { 396 struct svc_program *progp; 397 unsigned int i; 398 399 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 400 for (i = 0; i < progp->pg_nvers; i++) { 401 if (progp->pg_vers[i] == NULL) 402 continue; 403 if (progp->pg_vers[i]->vs_hidden == 0) 404 return 1; 405 } 406 } 407 408 return 0; 409 } 410 411 int svc_bind(struct svc_serv *serv, struct net *net) 412 { 413 if (!svc_uses_rpcbind(serv)) 414 return 0; 415 return svc_rpcb_setup(serv, net); 416 } 417 EXPORT_SYMBOL_GPL(svc_bind); 418 419 /* 420 * Create an RPC service 421 */ 422 static struct svc_serv * 423 __svc_create(struct svc_program *prog, unsigned int bufsize, int npools, 424 void (*shutdown)(struct svc_serv *serv, struct net *net)) 425 { 426 struct svc_serv *serv; 427 unsigned int vers; 428 unsigned int xdrsize; 429 unsigned int i; 430 431 if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL))) 432 return NULL; 433 serv->sv_name = prog->pg_name; 434 serv->sv_program = prog; 435 serv->sv_nrthreads = 1; 436 serv->sv_stats = prog->pg_stats; 437 if (bufsize > RPCSVC_MAXPAYLOAD) 438 bufsize = RPCSVC_MAXPAYLOAD; 439 serv->sv_max_payload = bufsize? bufsize : 4096; 440 serv->sv_max_mesg = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE); 441 serv->sv_shutdown = shutdown; 442 xdrsize = 0; 443 while (prog) { 444 prog->pg_lovers = prog->pg_nvers-1; 445 for (vers=0; vers<prog->pg_nvers ; vers++) 446 if (prog->pg_vers[vers]) { 447 prog->pg_hivers = vers; 448 if (prog->pg_lovers > vers) 449 prog->pg_lovers = vers; 450 if (prog->pg_vers[vers]->vs_xdrsize > xdrsize) 451 xdrsize = prog->pg_vers[vers]->vs_xdrsize; 452 } 453 prog = prog->pg_next; 454 } 455 serv->sv_xdrsize = xdrsize; 456 INIT_LIST_HEAD(&serv->sv_tempsocks); 457 INIT_LIST_HEAD(&serv->sv_permsocks); 458 init_timer(&serv->sv_temptimer); 459 spin_lock_init(&serv->sv_lock); 460 461 serv->sv_nrpools = npools; 462 serv->sv_pools = 463 kcalloc(serv->sv_nrpools, sizeof(struct svc_pool), 464 GFP_KERNEL); 465 if (!serv->sv_pools) { 466 kfree(serv); 467 return NULL; 468 } 469 470 for (i = 0; i < serv->sv_nrpools; i++) { 471 struct svc_pool *pool = &serv->sv_pools[i]; 472 473 dprintk("svc: initialising pool %u for %s\n", 474 i, serv->sv_name); 475 476 pool->sp_id = i; 477 INIT_LIST_HEAD(&pool->sp_threads); 478 INIT_LIST_HEAD(&pool->sp_sockets); 479 INIT_LIST_HEAD(&pool->sp_all_threads); 480 spin_lock_init(&pool->sp_lock); 481 } 482 483 if (svc_uses_rpcbind(serv) && (!serv->sv_shutdown)) 484 serv->sv_shutdown = svc_rpcb_cleanup; 485 486 return serv; 487 } 488 489 struct svc_serv * 490 svc_create(struct svc_program *prog, unsigned int bufsize, 491 void (*shutdown)(struct svc_serv *serv, struct net *net)) 492 { 493 return __svc_create(prog, bufsize, /*npools*/1, shutdown); 494 } 495 EXPORT_SYMBOL_GPL(svc_create); 496 497 struct svc_serv * 498 svc_create_pooled(struct svc_program *prog, unsigned int bufsize, 499 void (*shutdown)(struct svc_serv *serv, struct net *net), 500 svc_thread_fn func, struct module *mod) 501 { 502 struct svc_serv *serv; 503 unsigned int npools = svc_pool_map_get(); 504 505 serv = __svc_create(prog, bufsize, npools, shutdown); 506 507 if (serv != NULL) { 508 serv->sv_function = func; 509 serv->sv_module = mod; 510 } 511 512 return serv; 513 } 514 EXPORT_SYMBOL_GPL(svc_create_pooled); 515 516 void svc_shutdown_net(struct svc_serv *serv, struct net *net) 517 { 518 svc_close_net(serv, net); 519 520 if (serv->sv_shutdown) 521 serv->sv_shutdown(serv, net); 522 } 523 EXPORT_SYMBOL_GPL(svc_shutdown_net); 524 525 /* 526 * Destroy an RPC service. Should be called with appropriate locking to 527 * protect the sv_nrthreads, sv_permsocks and sv_tempsocks. 528 */ 529 void 530 svc_destroy(struct svc_serv *serv) 531 { 532 dprintk("svc: svc_destroy(%s, %d)\n", 533 serv->sv_program->pg_name, 534 serv->sv_nrthreads); 535 536 if (serv->sv_nrthreads) { 537 if (--(serv->sv_nrthreads) != 0) { 538 svc_sock_update_bufs(serv); 539 return; 540 } 541 } else 542 printk("svc_destroy: no threads for serv=%p!\n", serv); 543 544 del_timer_sync(&serv->sv_temptimer); 545 546 /* 547 * The last user is gone and thus all sockets have to be destroyed to 548 * the point. Check this. 549 */ 550 BUG_ON(!list_empty(&serv->sv_permsocks)); 551 BUG_ON(!list_empty(&serv->sv_tempsocks)); 552 553 cache_clean_deferred(serv); 554 555 if (svc_serv_is_pooled(serv)) 556 svc_pool_map_put(); 557 558 kfree(serv->sv_pools); 559 kfree(serv); 560 } 561 EXPORT_SYMBOL_GPL(svc_destroy); 562 563 /* 564 * Allocate an RPC server's buffer space. 565 * We allocate pages and place them in rq_argpages. 566 */ 567 static int 568 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size, int node) 569 { 570 unsigned int pages, arghi; 571 572 /* bc_xprt uses fore channel allocated buffers */ 573 if (svc_is_backchannel(rqstp)) 574 return 1; 575 576 pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply. 577 * We assume one is at most one page 578 */ 579 arghi = 0; 580 WARN_ON_ONCE(pages > RPCSVC_MAXPAGES); 581 if (pages > RPCSVC_MAXPAGES) 582 pages = RPCSVC_MAXPAGES; 583 while (pages) { 584 struct page *p = alloc_pages_node(node, GFP_KERNEL, 0); 585 if (!p) 586 break; 587 rqstp->rq_pages[arghi++] = p; 588 pages--; 589 } 590 return pages == 0; 591 } 592 593 /* 594 * Release an RPC server buffer 595 */ 596 static void 597 svc_release_buffer(struct svc_rqst *rqstp) 598 { 599 unsigned int i; 600 601 for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++) 602 if (rqstp->rq_pages[i]) 603 put_page(rqstp->rq_pages[i]); 604 } 605 606 struct svc_rqst * 607 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node) 608 { 609 struct svc_rqst *rqstp; 610 611 rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node); 612 if (!rqstp) 613 goto out_enomem; 614 615 init_waitqueue_head(&rqstp->rq_wait); 616 617 serv->sv_nrthreads++; 618 spin_lock_bh(&pool->sp_lock); 619 pool->sp_nrthreads++; 620 list_add(&rqstp->rq_all, &pool->sp_all_threads); 621 spin_unlock_bh(&pool->sp_lock); 622 rqstp->rq_server = serv; 623 rqstp->rq_pool = pool; 624 625 rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node); 626 if (!rqstp->rq_argp) 627 goto out_thread; 628 629 rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node); 630 if (!rqstp->rq_resp) 631 goto out_thread; 632 633 if (!svc_init_buffer(rqstp, serv->sv_max_mesg, node)) 634 goto out_thread; 635 636 return rqstp; 637 out_thread: 638 svc_exit_thread(rqstp); 639 out_enomem: 640 return ERR_PTR(-ENOMEM); 641 } 642 EXPORT_SYMBOL_GPL(svc_prepare_thread); 643 644 /* 645 * Choose a pool in which to create a new thread, for svc_set_num_threads 646 */ 647 static inline struct svc_pool * 648 choose_pool(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state) 649 { 650 if (pool != NULL) 651 return pool; 652 653 return &serv->sv_pools[(*state)++ % serv->sv_nrpools]; 654 } 655 656 /* 657 * Choose a thread to kill, for svc_set_num_threads 658 */ 659 static inline struct task_struct * 660 choose_victim(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state) 661 { 662 unsigned int i; 663 struct task_struct *task = NULL; 664 665 if (pool != NULL) { 666 spin_lock_bh(&pool->sp_lock); 667 } else { 668 /* choose a pool in round-robin fashion */ 669 for (i = 0; i < serv->sv_nrpools; i++) { 670 pool = &serv->sv_pools[--(*state) % serv->sv_nrpools]; 671 spin_lock_bh(&pool->sp_lock); 672 if (!list_empty(&pool->sp_all_threads)) 673 goto found_pool; 674 spin_unlock_bh(&pool->sp_lock); 675 } 676 return NULL; 677 } 678 679 found_pool: 680 if (!list_empty(&pool->sp_all_threads)) { 681 struct svc_rqst *rqstp; 682 683 /* 684 * Remove from the pool->sp_all_threads list 685 * so we don't try to kill it again. 686 */ 687 rqstp = list_entry(pool->sp_all_threads.next, struct svc_rqst, rq_all); 688 list_del_init(&rqstp->rq_all); 689 task = rqstp->rq_task; 690 } 691 spin_unlock_bh(&pool->sp_lock); 692 693 return task; 694 } 695 696 /* 697 * Create or destroy enough new threads to make the number 698 * of threads the given number. If `pool' is non-NULL, applies 699 * only to threads in that pool, otherwise round-robins between 700 * all pools. Caller must ensure that mutual exclusion between this and 701 * server startup or shutdown. 702 * 703 * Destroying threads relies on the service threads filling in 704 * rqstp->rq_task, which only the nfs ones do. Assumes the serv 705 * has been created using svc_create_pooled(). 706 * 707 * Based on code that used to be in nfsd_svc() but tweaked 708 * to be pool-aware. 709 */ 710 int 711 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs) 712 { 713 struct svc_rqst *rqstp; 714 struct task_struct *task; 715 struct svc_pool *chosen_pool; 716 int error = 0; 717 unsigned int state = serv->sv_nrthreads-1; 718 int node; 719 720 if (pool == NULL) { 721 /* The -1 assumes caller has done a svc_get() */ 722 nrservs -= (serv->sv_nrthreads-1); 723 } else { 724 spin_lock_bh(&pool->sp_lock); 725 nrservs -= pool->sp_nrthreads; 726 spin_unlock_bh(&pool->sp_lock); 727 } 728 729 /* create new threads */ 730 while (nrservs > 0) { 731 nrservs--; 732 chosen_pool = choose_pool(serv, pool, &state); 733 734 node = svc_pool_map_get_node(chosen_pool->sp_id); 735 rqstp = svc_prepare_thread(serv, chosen_pool, node); 736 if (IS_ERR(rqstp)) { 737 error = PTR_ERR(rqstp); 738 break; 739 } 740 741 __module_get(serv->sv_module); 742 task = kthread_create_on_node(serv->sv_function, rqstp, 743 node, "%s", serv->sv_name); 744 if (IS_ERR(task)) { 745 error = PTR_ERR(task); 746 module_put(serv->sv_module); 747 svc_exit_thread(rqstp); 748 break; 749 } 750 751 rqstp->rq_task = task; 752 if (serv->sv_nrpools > 1) 753 svc_pool_map_set_cpumask(task, chosen_pool->sp_id); 754 755 svc_sock_update_bufs(serv); 756 wake_up_process(task); 757 } 758 /* destroy old threads */ 759 while (nrservs < 0 && 760 (task = choose_victim(serv, pool, &state)) != NULL) { 761 send_sig(SIGINT, task, 1); 762 nrservs++; 763 } 764 765 return error; 766 } 767 EXPORT_SYMBOL_GPL(svc_set_num_threads); 768 769 /* 770 * Called from a server thread as it's exiting. Caller must hold the BKL or 771 * the "service mutex", whichever is appropriate for the service. 772 */ 773 void 774 svc_exit_thread(struct svc_rqst *rqstp) 775 { 776 struct svc_serv *serv = rqstp->rq_server; 777 struct svc_pool *pool = rqstp->rq_pool; 778 779 svc_release_buffer(rqstp); 780 kfree(rqstp->rq_resp); 781 kfree(rqstp->rq_argp); 782 kfree(rqstp->rq_auth_data); 783 784 spin_lock_bh(&pool->sp_lock); 785 pool->sp_nrthreads--; 786 list_del(&rqstp->rq_all); 787 spin_unlock_bh(&pool->sp_lock); 788 789 kfree(rqstp); 790 791 /* Release the server */ 792 if (serv) 793 svc_destroy(serv); 794 } 795 EXPORT_SYMBOL_GPL(svc_exit_thread); 796 797 /* 798 * Register an "inet" protocol family netid with the local 799 * rpcbind daemon via an rpcbind v4 SET request. 800 * 801 * No netconfig infrastructure is available in the kernel, so 802 * we map IP_ protocol numbers to netids by hand. 803 * 804 * Returns zero on success; a negative errno value is returned 805 * if any error occurs. 806 */ 807 static int __svc_rpcb_register4(struct net *net, const u32 program, 808 const u32 version, 809 const unsigned short protocol, 810 const unsigned short port) 811 { 812 const struct sockaddr_in sin = { 813 .sin_family = AF_INET, 814 .sin_addr.s_addr = htonl(INADDR_ANY), 815 .sin_port = htons(port), 816 }; 817 const char *netid; 818 int error; 819 820 switch (protocol) { 821 case IPPROTO_UDP: 822 netid = RPCBIND_NETID_UDP; 823 break; 824 case IPPROTO_TCP: 825 netid = RPCBIND_NETID_TCP; 826 break; 827 default: 828 return -ENOPROTOOPT; 829 } 830 831 error = rpcb_v4_register(net, program, version, 832 (const struct sockaddr *)&sin, netid); 833 834 /* 835 * User space didn't support rpcbind v4, so retry this 836 * registration request with the legacy rpcbind v2 protocol. 837 */ 838 if (error == -EPROTONOSUPPORT) 839 error = rpcb_register(net, program, version, protocol, port); 840 841 return error; 842 } 843 844 #if IS_ENABLED(CONFIG_IPV6) 845 /* 846 * Register an "inet6" protocol family netid with the local 847 * rpcbind daemon via an rpcbind v4 SET request. 848 * 849 * No netconfig infrastructure is available in the kernel, so 850 * we map IP_ protocol numbers to netids by hand. 851 * 852 * Returns zero on success; a negative errno value is returned 853 * if any error occurs. 854 */ 855 static int __svc_rpcb_register6(struct net *net, const u32 program, 856 const u32 version, 857 const unsigned short protocol, 858 const unsigned short port) 859 { 860 const struct sockaddr_in6 sin6 = { 861 .sin6_family = AF_INET6, 862 .sin6_addr = IN6ADDR_ANY_INIT, 863 .sin6_port = htons(port), 864 }; 865 const char *netid; 866 int error; 867 868 switch (protocol) { 869 case IPPROTO_UDP: 870 netid = RPCBIND_NETID_UDP6; 871 break; 872 case IPPROTO_TCP: 873 netid = RPCBIND_NETID_TCP6; 874 break; 875 default: 876 return -ENOPROTOOPT; 877 } 878 879 error = rpcb_v4_register(net, program, version, 880 (const struct sockaddr *)&sin6, netid); 881 882 /* 883 * User space didn't support rpcbind version 4, so we won't 884 * use a PF_INET6 listener. 885 */ 886 if (error == -EPROTONOSUPPORT) 887 error = -EAFNOSUPPORT; 888 889 return error; 890 } 891 #endif /* IS_ENABLED(CONFIG_IPV6) */ 892 893 /* 894 * Register a kernel RPC service via rpcbind version 4. 895 * 896 * Returns zero on success; a negative errno value is returned 897 * if any error occurs. 898 */ 899 static int __svc_register(struct net *net, const char *progname, 900 const u32 program, const u32 version, 901 const int family, 902 const unsigned short protocol, 903 const unsigned short port) 904 { 905 int error = -EAFNOSUPPORT; 906 907 switch (family) { 908 case PF_INET: 909 error = __svc_rpcb_register4(net, program, version, 910 protocol, port); 911 break; 912 #if IS_ENABLED(CONFIG_IPV6) 913 case PF_INET6: 914 error = __svc_rpcb_register6(net, program, version, 915 protocol, port); 916 #endif 917 } 918 919 return error; 920 } 921 922 /** 923 * svc_register - register an RPC service with the local portmapper 924 * @serv: svc_serv struct for the service to register 925 * @net: net namespace for the service to register 926 * @family: protocol family of service's listener socket 927 * @proto: transport protocol number to advertise 928 * @port: port to advertise 929 * 930 * Service is registered for any address in the passed-in protocol family 931 */ 932 int svc_register(const struct svc_serv *serv, struct net *net, 933 const int family, const unsigned short proto, 934 const unsigned short port) 935 { 936 struct svc_program *progp; 937 struct svc_version *vers; 938 unsigned int i; 939 int error = 0; 940 941 WARN_ON_ONCE(proto == 0 && port == 0); 942 if (proto == 0 && port == 0) 943 return -EINVAL; 944 945 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 946 for (i = 0; i < progp->pg_nvers; i++) { 947 vers = progp->pg_vers[i]; 948 if (vers == NULL) 949 continue; 950 951 dprintk("svc: svc_register(%sv%d, %s, %u, %u)%s\n", 952 progp->pg_name, 953 i, 954 proto == IPPROTO_UDP? "udp" : "tcp", 955 port, 956 family, 957 vers->vs_hidden ? 958 " (but not telling portmap)" : ""); 959 960 if (vers->vs_hidden) 961 continue; 962 963 error = __svc_register(net, progp->pg_name, progp->pg_prog, 964 i, family, proto, port); 965 966 if (vers->vs_rpcb_optnl) { 967 error = 0; 968 continue; 969 } 970 971 if (error < 0) { 972 printk(KERN_WARNING "svc: failed to register " 973 "%sv%u RPC service (errno %d).\n", 974 progp->pg_name, i, -error); 975 break; 976 } 977 } 978 } 979 980 return error; 981 } 982 983 /* 984 * If user space is running rpcbind, it should take the v4 UNSET 985 * and clear everything for this [program, version]. If user space 986 * is running portmap, it will reject the v4 UNSET, but won't have 987 * any "inet6" entries anyway. So a PMAP_UNSET should be sufficient 988 * in this case to clear all existing entries for [program, version]. 989 */ 990 static void __svc_unregister(struct net *net, const u32 program, const u32 version, 991 const char *progname) 992 { 993 int error; 994 995 error = rpcb_v4_register(net, program, version, NULL, ""); 996 997 /* 998 * User space didn't support rpcbind v4, so retry this 999 * request with the legacy rpcbind v2 protocol. 1000 */ 1001 if (error == -EPROTONOSUPPORT) 1002 error = rpcb_register(net, program, version, 0, 0); 1003 1004 dprintk("svc: %s(%sv%u), error %d\n", 1005 __func__, progname, version, error); 1006 } 1007 1008 /* 1009 * All netids, bind addresses and ports registered for [program, version] 1010 * are removed from the local rpcbind database (if the service is not 1011 * hidden) to make way for a new instance of the service. 1012 * 1013 * The result of unregistration is reported via dprintk for those who want 1014 * verification of the result, but is otherwise not important. 1015 */ 1016 static void svc_unregister(const struct svc_serv *serv, struct net *net) 1017 { 1018 struct svc_program *progp; 1019 unsigned long flags; 1020 unsigned int i; 1021 1022 clear_thread_flag(TIF_SIGPENDING); 1023 1024 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 1025 for (i = 0; i < progp->pg_nvers; i++) { 1026 if (progp->pg_vers[i] == NULL) 1027 continue; 1028 if (progp->pg_vers[i]->vs_hidden) 1029 continue; 1030 1031 dprintk("svc: attempting to unregister %sv%u\n", 1032 progp->pg_name, i); 1033 __svc_unregister(net, progp->pg_prog, i, progp->pg_name); 1034 } 1035 } 1036 1037 spin_lock_irqsave(¤t->sighand->siglock, flags); 1038 recalc_sigpending(); 1039 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 1040 } 1041 1042 /* 1043 * dprintk the given error with the address of the client that caused it. 1044 */ 1045 #ifdef RPC_DEBUG 1046 static __printf(2, 3) 1047 void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) 1048 { 1049 struct va_format vaf; 1050 va_list args; 1051 char buf[RPC_MAX_ADDRBUFLEN]; 1052 1053 va_start(args, fmt); 1054 1055 vaf.fmt = fmt; 1056 vaf.va = &args; 1057 1058 dprintk("svc: %s: %pV", svc_print_addr(rqstp, buf, sizeof(buf)), &vaf); 1059 1060 va_end(args); 1061 } 1062 #else 1063 static __printf(2,3) void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) {} 1064 #endif 1065 1066 /* 1067 * Common routine for processing the RPC request. 1068 */ 1069 static int 1070 svc_process_common(struct svc_rqst *rqstp, struct kvec *argv, struct kvec *resv) 1071 { 1072 struct svc_program *progp; 1073 struct svc_version *versp = NULL; /* compiler food */ 1074 struct svc_procedure *procp = NULL; 1075 struct svc_serv *serv = rqstp->rq_server; 1076 kxdrproc_t xdr; 1077 __be32 *statp; 1078 u32 prog, vers, proc; 1079 __be32 auth_stat, rpc_stat; 1080 int auth_res; 1081 __be32 *reply_statp; 1082 1083 rpc_stat = rpc_success; 1084 1085 if (argv->iov_len < 6*4) 1086 goto err_short_len; 1087 1088 /* Will be turned off only in gss privacy case: */ 1089 rqstp->rq_splice_ok = 1; 1090 /* Will be turned off only when NFSv4 Sessions are used */ 1091 rqstp->rq_usedeferral = 1; 1092 rqstp->rq_dropme = false; 1093 1094 /* Setup reply header */ 1095 rqstp->rq_xprt->xpt_ops->xpo_prep_reply_hdr(rqstp); 1096 1097 svc_putu32(resv, rqstp->rq_xid); 1098 1099 vers = svc_getnl(argv); 1100 1101 /* First words of reply: */ 1102 svc_putnl(resv, 1); /* REPLY */ 1103 1104 if (vers != 2) /* RPC version number */ 1105 goto err_bad_rpc; 1106 1107 /* Save position in case we later decide to reject: */ 1108 reply_statp = resv->iov_base + resv->iov_len; 1109 1110 svc_putnl(resv, 0); /* ACCEPT */ 1111 1112 rqstp->rq_prog = prog = svc_getnl(argv); /* program number */ 1113 rqstp->rq_vers = vers = svc_getnl(argv); /* version number */ 1114 rqstp->rq_proc = proc = svc_getnl(argv); /* procedure number */ 1115 1116 for (progp = serv->sv_program; progp; progp = progp->pg_next) 1117 if (prog == progp->pg_prog) 1118 break; 1119 1120 /* 1121 * Decode auth data, and add verifier to reply buffer. 1122 * We do this before anything else in order to get a decent 1123 * auth verifier. 1124 */ 1125 auth_res = svc_authenticate(rqstp, &auth_stat); 1126 /* Also give the program a chance to reject this call: */ 1127 if (auth_res == SVC_OK && progp) { 1128 auth_stat = rpc_autherr_badcred; 1129 auth_res = progp->pg_authenticate(rqstp); 1130 } 1131 switch (auth_res) { 1132 case SVC_OK: 1133 break; 1134 case SVC_GARBAGE: 1135 goto err_garbage; 1136 case SVC_SYSERR: 1137 rpc_stat = rpc_system_err; 1138 goto err_bad; 1139 case SVC_DENIED: 1140 goto err_bad_auth; 1141 case SVC_CLOSE: 1142 if (test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags)) 1143 svc_close_xprt(rqstp->rq_xprt); 1144 case SVC_DROP: 1145 goto dropit; 1146 case SVC_COMPLETE: 1147 goto sendit; 1148 } 1149 1150 if (progp == NULL) 1151 goto err_bad_prog; 1152 1153 if (vers >= progp->pg_nvers || 1154 !(versp = progp->pg_vers[vers])) 1155 goto err_bad_vers; 1156 1157 procp = versp->vs_proc + proc; 1158 if (proc >= versp->vs_nproc || !procp->pc_func) 1159 goto err_bad_proc; 1160 rqstp->rq_procinfo = procp; 1161 1162 /* Syntactic check complete */ 1163 serv->sv_stats->rpccnt++; 1164 1165 /* Build the reply header. */ 1166 statp = resv->iov_base +resv->iov_len; 1167 svc_putnl(resv, RPC_SUCCESS); 1168 1169 /* Bump per-procedure stats counter */ 1170 procp->pc_count++; 1171 1172 /* Initialize storage for argp and resp */ 1173 memset(rqstp->rq_argp, 0, procp->pc_argsize); 1174 memset(rqstp->rq_resp, 0, procp->pc_ressize); 1175 1176 /* un-reserve some of the out-queue now that we have a 1177 * better idea of reply size 1178 */ 1179 if (procp->pc_xdrressize) 1180 svc_reserve_auth(rqstp, procp->pc_xdrressize<<2); 1181 1182 /* Call the function that processes the request. */ 1183 if (!versp->vs_dispatch) { 1184 /* Decode arguments */ 1185 xdr = procp->pc_decode; 1186 if (xdr && !xdr(rqstp, argv->iov_base, rqstp->rq_argp)) 1187 goto err_garbage; 1188 1189 *statp = procp->pc_func(rqstp, rqstp->rq_argp, rqstp->rq_resp); 1190 1191 /* Encode reply */ 1192 if (rqstp->rq_dropme) { 1193 if (procp->pc_release) 1194 procp->pc_release(rqstp, NULL, rqstp->rq_resp); 1195 goto dropit; 1196 } 1197 if (*statp == rpc_success && 1198 (xdr = procp->pc_encode) && 1199 !xdr(rqstp, resv->iov_base+resv->iov_len, rqstp->rq_resp)) { 1200 dprintk("svc: failed to encode reply\n"); 1201 /* serv->sv_stats->rpcsystemerr++; */ 1202 *statp = rpc_system_err; 1203 } 1204 } else { 1205 dprintk("svc: calling dispatcher\n"); 1206 if (!versp->vs_dispatch(rqstp, statp)) { 1207 /* Release reply info */ 1208 if (procp->pc_release) 1209 procp->pc_release(rqstp, NULL, rqstp->rq_resp); 1210 goto dropit; 1211 } 1212 } 1213 1214 /* Check RPC status result */ 1215 if (*statp != rpc_success) 1216 resv->iov_len = ((void*)statp) - resv->iov_base + 4; 1217 1218 /* Release reply info */ 1219 if (procp->pc_release) 1220 procp->pc_release(rqstp, NULL, rqstp->rq_resp); 1221 1222 if (procp->pc_encode == NULL) 1223 goto dropit; 1224 1225 sendit: 1226 if (svc_authorise(rqstp)) 1227 goto dropit; 1228 return 1; /* Caller can now send it */ 1229 1230 dropit: 1231 svc_authorise(rqstp); /* doesn't hurt to call this twice */ 1232 dprintk("svc: svc_process dropit\n"); 1233 return 0; 1234 1235 err_short_len: 1236 svc_printk(rqstp, "short len %Zd, dropping request\n", 1237 argv->iov_len); 1238 1239 goto dropit; /* drop request */ 1240 1241 err_bad_rpc: 1242 serv->sv_stats->rpcbadfmt++; 1243 svc_putnl(resv, 1); /* REJECT */ 1244 svc_putnl(resv, 0); /* RPC_MISMATCH */ 1245 svc_putnl(resv, 2); /* Only RPCv2 supported */ 1246 svc_putnl(resv, 2); 1247 goto sendit; 1248 1249 err_bad_auth: 1250 dprintk("svc: authentication failed (%d)\n", ntohl(auth_stat)); 1251 serv->sv_stats->rpcbadauth++; 1252 /* Restore write pointer to location of accept status: */ 1253 xdr_ressize_check(rqstp, reply_statp); 1254 svc_putnl(resv, 1); /* REJECT */ 1255 svc_putnl(resv, 1); /* AUTH_ERROR */ 1256 svc_putnl(resv, ntohl(auth_stat)); /* status */ 1257 goto sendit; 1258 1259 err_bad_prog: 1260 dprintk("svc: unknown program %d\n", prog); 1261 serv->sv_stats->rpcbadfmt++; 1262 svc_putnl(resv, RPC_PROG_UNAVAIL); 1263 goto sendit; 1264 1265 err_bad_vers: 1266 svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n", 1267 vers, prog, progp->pg_name); 1268 1269 serv->sv_stats->rpcbadfmt++; 1270 svc_putnl(resv, RPC_PROG_MISMATCH); 1271 svc_putnl(resv, progp->pg_lovers); 1272 svc_putnl(resv, progp->pg_hivers); 1273 goto sendit; 1274 1275 err_bad_proc: 1276 svc_printk(rqstp, "unknown procedure (%d)\n", proc); 1277 1278 serv->sv_stats->rpcbadfmt++; 1279 svc_putnl(resv, RPC_PROC_UNAVAIL); 1280 goto sendit; 1281 1282 err_garbage: 1283 svc_printk(rqstp, "failed to decode args\n"); 1284 1285 rpc_stat = rpc_garbage_args; 1286 err_bad: 1287 serv->sv_stats->rpcbadfmt++; 1288 svc_putnl(resv, ntohl(rpc_stat)); 1289 goto sendit; 1290 } 1291 EXPORT_SYMBOL_GPL(svc_process); 1292 1293 /* 1294 * Process the RPC request. 1295 */ 1296 int 1297 svc_process(struct svc_rqst *rqstp) 1298 { 1299 struct kvec *argv = &rqstp->rq_arg.head[0]; 1300 struct kvec *resv = &rqstp->rq_res.head[0]; 1301 struct svc_serv *serv = rqstp->rq_server; 1302 u32 dir; 1303 1304 /* 1305 * Setup response xdr_buf. 1306 * Initially it has just one page 1307 */ 1308 rqstp->rq_next_page = &rqstp->rq_respages[1]; 1309 resv->iov_base = page_address(rqstp->rq_respages[0]); 1310 resv->iov_len = 0; 1311 rqstp->rq_res.pages = rqstp->rq_respages + 1; 1312 rqstp->rq_res.len = 0; 1313 rqstp->rq_res.page_base = 0; 1314 rqstp->rq_res.page_len = 0; 1315 rqstp->rq_res.buflen = PAGE_SIZE; 1316 rqstp->rq_res.tail[0].iov_base = NULL; 1317 rqstp->rq_res.tail[0].iov_len = 0; 1318 1319 rqstp->rq_xid = svc_getu32(argv); 1320 1321 dir = svc_getnl(argv); 1322 if (dir != 0) { 1323 /* direction != CALL */ 1324 svc_printk(rqstp, "bad direction %d, dropping request\n", dir); 1325 serv->sv_stats->rpcbadfmt++; 1326 svc_drop(rqstp); 1327 return 0; 1328 } 1329 1330 /* Returns 1 for send, 0 for drop */ 1331 if (svc_process_common(rqstp, argv, resv)) 1332 return svc_send(rqstp); 1333 else { 1334 svc_drop(rqstp); 1335 return 0; 1336 } 1337 } 1338 1339 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 1340 /* 1341 * Process a backchannel RPC request that arrived over an existing 1342 * outbound connection 1343 */ 1344 int 1345 bc_svc_process(struct svc_serv *serv, struct rpc_rqst *req, 1346 struct svc_rqst *rqstp) 1347 { 1348 struct kvec *argv = &rqstp->rq_arg.head[0]; 1349 struct kvec *resv = &rqstp->rq_res.head[0]; 1350 1351 /* Build the svc_rqst used by the common processing routine */ 1352 rqstp->rq_xprt = serv->sv_bc_xprt; 1353 rqstp->rq_xid = req->rq_xid; 1354 rqstp->rq_prot = req->rq_xprt->prot; 1355 rqstp->rq_server = serv; 1356 1357 rqstp->rq_addrlen = sizeof(req->rq_xprt->addr); 1358 memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen); 1359 memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg)); 1360 memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res)); 1361 1362 /* reset result send buffer "put" position */ 1363 resv->iov_len = 0; 1364 1365 if (rqstp->rq_prot != IPPROTO_TCP) { 1366 printk(KERN_ERR "No support for Non-TCP transports!\n"); 1367 BUG(); 1368 } 1369 1370 /* 1371 * Skip the next two words because they've already been 1372 * processed in the trasport 1373 */ 1374 svc_getu32(argv); /* XID */ 1375 svc_getnl(argv); /* CALLDIR */ 1376 1377 /* Returns 1 for send, 0 for drop */ 1378 if (svc_process_common(rqstp, argv, resv)) { 1379 memcpy(&req->rq_snd_buf, &rqstp->rq_res, 1380 sizeof(req->rq_snd_buf)); 1381 return bc_send(req); 1382 } else { 1383 /* drop request */ 1384 xprt_free_bc_request(req); 1385 return 0; 1386 } 1387 } 1388 EXPORT_SYMBOL_GPL(bc_svc_process); 1389 #endif /* CONFIG_SUNRPC_BACKCHANNEL */ 1390 1391 /* 1392 * Return (transport-specific) limit on the rpc payload. 1393 */ 1394 u32 svc_max_payload(const struct svc_rqst *rqstp) 1395 { 1396 u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload; 1397 1398 if (rqstp->rq_server->sv_max_payload < max) 1399 max = rqstp->rq_server->sv_max_payload; 1400 return max; 1401 } 1402 EXPORT_SYMBOL_GPL(svc_max_payload); 1403