1 /* 2 * linux/net/sunrpc/svc.c 3 * 4 * High-level RPC service routines 5 * 6 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 7 * 8 * Multiple threads pools and NUMAisation 9 * Copyright (c) 2006 Silicon Graphics, Inc. 10 * by Greg Banks <gnb@melbourne.sgi.com> 11 */ 12 13 #include <linux/linkage.h> 14 #include <linux/sched.h> 15 #include <linux/errno.h> 16 #include <linux/net.h> 17 #include <linux/in.h> 18 #include <linux/mm.h> 19 #include <linux/interrupt.h> 20 #include <linux/module.h> 21 #include <linux/kthread.h> 22 #include <linux/slab.h> 23 #include <linux/nsproxy.h> 24 25 #include <linux/sunrpc/types.h> 26 #include <linux/sunrpc/xdr.h> 27 #include <linux/sunrpc/stats.h> 28 #include <linux/sunrpc/svcsock.h> 29 #include <linux/sunrpc/clnt.h> 30 #include <linux/sunrpc/bc_xprt.h> 31 32 #define RPCDBG_FACILITY RPCDBG_SVCDSP 33 34 static void svc_unregister(const struct svc_serv *serv, struct net *net); 35 36 #define svc_serv_is_pooled(serv) ((serv)->sv_function) 37 38 /* 39 * Mode for mapping cpus to pools. 40 */ 41 enum { 42 SVC_POOL_AUTO = -1, /* choose one of the others */ 43 SVC_POOL_GLOBAL, /* no mapping, just a single global pool 44 * (legacy & UP mode) */ 45 SVC_POOL_PERCPU, /* one pool per cpu */ 46 SVC_POOL_PERNODE /* one pool per numa node */ 47 }; 48 #define SVC_POOL_DEFAULT SVC_POOL_GLOBAL 49 50 /* 51 * Structure for mapping cpus to pools and vice versa. 52 * Setup once during sunrpc initialisation. 53 */ 54 static struct svc_pool_map { 55 int count; /* How many svc_servs use us */ 56 int mode; /* Note: int not enum to avoid 57 * warnings about "enumeration value 58 * not handled in switch" */ 59 unsigned int npools; 60 unsigned int *pool_to; /* maps pool id to cpu or node */ 61 unsigned int *to_pool; /* maps cpu or node to pool id */ 62 } svc_pool_map = { 63 .count = 0, 64 .mode = SVC_POOL_DEFAULT 65 }; 66 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */ 67 68 static int 69 param_set_pool_mode(const char *val, struct kernel_param *kp) 70 { 71 int *ip = (int *)kp->arg; 72 struct svc_pool_map *m = &svc_pool_map; 73 int err; 74 75 mutex_lock(&svc_pool_map_mutex); 76 77 err = -EBUSY; 78 if (m->count) 79 goto out; 80 81 err = 0; 82 if (!strncmp(val, "auto", 4)) 83 *ip = SVC_POOL_AUTO; 84 else if (!strncmp(val, "global", 6)) 85 *ip = SVC_POOL_GLOBAL; 86 else if (!strncmp(val, "percpu", 6)) 87 *ip = SVC_POOL_PERCPU; 88 else if (!strncmp(val, "pernode", 7)) 89 *ip = SVC_POOL_PERNODE; 90 else 91 err = -EINVAL; 92 93 out: 94 mutex_unlock(&svc_pool_map_mutex); 95 return err; 96 } 97 98 static int 99 param_get_pool_mode(char *buf, struct kernel_param *kp) 100 { 101 int *ip = (int *)kp->arg; 102 103 switch (*ip) 104 { 105 case SVC_POOL_AUTO: 106 return strlcpy(buf, "auto", 20); 107 case SVC_POOL_GLOBAL: 108 return strlcpy(buf, "global", 20); 109 case SVC_POOL_PERCPU: 110 return strlcpy(buf, "percpu", 20); 111 case SVC_POOL_PERNODE: 112 return strlcpy(buf, "pernode", 20); 113 default: 114 return sprintf(buf, "%d", *ip); 115 } 116 } 117 118 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode, 119 &svc_pool_map.mode, 0644); 120 121 /* 122 * Detect best pool mapping mode heuristically, 123 * according to the machine's topology. 124 */ 125 static int 126 svc_pool_map_choose_mode(void) 127 { 128 unsigned int node; 129 130 if (nr_online_nodes > 1) { 131 /* 132 * Actually have multiple NUMA nodes, 133 * so split pools on NUMA node boundaries 134 */ 135 return SVC_POOL_PERNODE; 136 } 137 138 node = first_online_node; 139 if (nr_cpus_node(node) > 2) { 140 /* 141 * Non-trivial SMP, or CONFIG_NUMA on 142 * non-NUMA hardware, e.g. with a generic 143 * x86_64 kernel on Xeons. In this case we 144 * want to divide the pools on cpu boundaries. 145 */ 146 return SVC_POOL_PERCPU; 147 } 148 149 /* default: one global pool */ 150 return SVC_POOL_GLOBAL; 151 } 152 153 /* 154 * Allocate the to_pool[] and pool_to[] arrays. 155 * Returns 0 on success or an errno. 156 */ 157 static int 158 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools) 159 { 160 m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL); 161 if (!m->to_pool) 162 goto fail; 163 m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL); 164 if (!m->pool_to) 165 goto fail_free; 166 167 return 0; 168 169 fail_free: 170 kfree(m->to_pool); 171 m->to_pool = NULL; 172 fail: 173 return -ENOMEM; 174 } 175 176 /* 177 * Initialise the pool map for SVC_POOL_PERCPU mode. 178 * Returns number of pools or <0 on error. 179 */ 180 static int 181 svc_pool_map_init_percpu(struct svc_pool_map *m) 182 { 183 unsigned int maxpools = nr_cpu_ids; 184 unsigned int pidx = 0; 185 unsigned int cpu; 186 int err; 187 188 err = svc_pool_map_alloc_arrays(m, maxpools); 189 if (err) 190 return err; 191 192 for_each_online_cpu(cpu) { 193 BUG_ON(pidx > maxpools); 194 m->to_pool[cpu] = pidx; 195 m->pool_to[pidx] = cpu; 196 pidx++; 197 } 198 /* cpus brought online later all get mapped to pool0, sorry */ 199 200 return pidx; 201 }; 202 203 204 /* 205 * Initialise the pool map for SVC_POOL_PERNODE mode. 206 * Returns number of pools or <0 on error. 207 */ 208 static int 209 svc_pool_map_init_pernode(struct svc_pool_map *m) 210 { 211 unsigned int maxpools = nr_node_ids; 212 unsigned int pidx = 0; 213 unsigned int node; 214 int err; 215 216 err = svc_pool_map_alloc_arrays(m, maxpools); 217 if (err) 218 return err; 219 220 for_each_node_with_cpus(node) { 221 /* some architectures (e.g. SN2) have cpuless nodes */ 222 BUG_ON(pidx > maxpools); 223 m->to_pool[node] = pidx; 224 m->pool_to[pidx] = node; 225 pidx++; 226 } 227 /* nodes brought online later all get mapped to pool0, sorry */ 228 229 return pidx; 230 } 231 232 233 /* 234 * Add a reference to the global map of cpus to pools (and 235 * vice versa). Initialise the map if we're the first user. 236 * Returns the number of pools. 237 */ 238 static unsigned int 239 svc_pool_map_get(void) 240 { 241 struct svc_pool_map *m = &svc_pool_map; 242 int npools = -1; 243 244 mutex_lock(&svc_pool_map_mutex); 245 246 if (m->count++) { 247 mutex_unlock(&svc_pool_map_mutex); 248 return m->npools; 249 } 250 251 if (m->mode == SVC_POOL_AUTO) 252 m->mode = svc_pool_map_choose_mode(); 253 254 switch (m->mode) { 255 case SVC_POOL_PERCPU: 256 npools = svc_pool_map_init_percpu(m); 257 break; 258 case SVC_POOL_PERNODE: 259 npools = svc_pool_map_init_pernode(m); 260 break; 261 } 262 263 if (npools < 0) { 264 /* default, or memory allocation failure */ 265 npools = 1; 266 m->mode = SVC_POOL_GLOBAL; 267 } 268 m->npools = npools; 269 270 mutex_unlock(&svc_pool_map_mutex); 271 return m->npools; 272 } 273 274 275 /* 276 * Drop a reference to the global map of cpus to pools. 277 * When the last reference is dropped, the map data is 278 * freed; this allows the sysadmin to change the pool 279 * mode using the pool_mode module option without 280 * rebooting or re-loading sunrpc.ko. 281 */ 282 static void 283 svc_pool_map_put(void) 284 { 285 struct svc_pool_map *m = &svc_pool_map; 286 287 mutex_lock(&svc_pool_map_mutex); 288 289 if (!--m->count) { 290 kfree(m->to_pool); 291 m->to_pool = NULL; 292 kfree(m->pool_to); 293 m->pool_to = NULL; 294 m->npools = 0; 295 } 296 297 mutex_unlock(&svc_pool_map_mutex); 298 } 299 300 301 static int svc_pool_map_get_node(unsigned int pidx) 302 { 303 const struct svc_pool_map *m = &svc_pool_map; 304 305 if (m->count) { 306 if (m->mode == SVC_POOL_PERCPU) 307 return cpu_to_node(m->pool_to[pidx]); 308 if (m->mode == SVC_POOL_PERNODE) 309 return m->pool_to[pidx]; 310 } 311 return NUMA_NO_NODE; 312 } 313 /* 314 * Set the given thread's cpus_allowed mask so that it 315 * will only run on cpus in the given pool. 316 */ 317 static inline void 318 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx) 319 { 320 struct svc_pool_map *m = &svc_pool_map; 321 unsigned int node = m->pool_to[pidx]; 322 323 /* 324 * The caller checks for sv_nrpools > 1, which 325 * implies that we've been initialized. 326 */ 327 BUG_ON(m->count == 0); 328 329 switch (m->mode) { 330 case SVC_POOL_PERCPU: 331 { 332 set_cpus_allowed_ptr(task, cpumask_of(node)); 333 break; 334 } 335 case SVC_POOL_PERNODE: 336 { 337 set_cpus_allowed_ptr(task, cpumask_of_node(node)); 338 break; 339 } 340 } 341 } 342 343 /* 344 * Use the mapping mode to choose a pool for a given CPU. 345 * Used when enqueueing an incoming RPC. Always returns 346 * a non-NULL pool pointer. 347 */ 348 struct svc_pool * 349 svc_pool_for_cpu(struct svc_serv *serv, int cpu) 350 { 351 struct svc_pool_map *m = &svc_pool_map; 352 unsigned int pidx = 0; 353 354 /* 355 * An uninitialised map happens in a pure client when 356 * lockd is brought up, so silently treat it the 357 * same as SVC_POOL_GLOBAL. 358 */ 359 if (svc_serv_is_pooled(serv)) { 360 switch (m->mode) { 361 case SVC_POOL_PERCPU: 362 pidx = m->to_pool[cpu]; 363 break; 364 case SVC_POOL_PERNODE: 365 pidx = m->to_pool[cpu_to_node(cpu)]; 366 break; 367 } 368 } 369 return &serv->sv_pools[pidx % serv->sv_nrpools]; 370 } 371 372 int svc_rpcb_setup(struct svc_serv *serv, struct net *net) 373 { 374 int err; 375 376 err = rpcb_create_local(net); 377 if (err) 378 return err; 379 380 /* Remove any stale portmap registrations */ 381 svc_unregister(serv, net); 382 return 0; 383 } 384 EXPORT_SYMBOL_GPL(svc_rpcb_setup); 385 386 void svc_rpcb_cleanup(struct svc_serv *serv, struct net *net) 387 { 388 svc_unregister(serv, net); 389 rpcb_put_local(net); 390 } 391 EXPORT_SYMBOL_GPL(svc_rpcb_cleanup); 392 393 static int svc_uses_rpcbind(struct svc_serv *serv) 394 { 395 struct svc_program *progp; 396 unsigned int i; 397 398 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 399 for (i = 0; i < progp->pg_nvers; i++) { 400 if (progp->pg_vers[i] == NULL) 401 continue; 402 if (progp->pg_vers[i]->vs_hidden == 0) 403 return 1; 404 } 405 } 406 407 return 0; 408 } 409 410 int svc_bind(struct svc_serv *serv, struct net *net) 411 { 412 if (!svc_uses_rpcbind(serv)) 413 return 0; 414 return svc_rpcb_setup(serv, net); 415 } 416 EXPORT_SYMBOL_GPL(svc_bind); 417 418 /* 419 * Create an RPC service 420 */ 421 static struct svc_serv * 422 __svc_create(struct svc_program *prog, unsigned int bufsize, int npools, 423 void (*shutdown)(struct svc_serv *serv, struct net *net)) 424 { 425 struct svc_serv *serv; 426 unsigned int vers; 427 unsigned int xdrsize; 428 unsigned int i; 429 430 if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL))) 431 return NULL; 432 serv->sv_name = prog->pg_name; 433 serv->sv_program = prog; 434 serv->sv_nrthreads = 1; 435 serv->sv_stats = prog->pg_stats; 436 if (bufsize > RPCSVC_MAXPAYLOAD) 437 bufsize = RPCSVC_MAXPAYLOAD; 438 serv->sv_max_payload = bufsize? bufsize : 4096; 439 serv->sv_max_mesg = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE); 440 serv->sv_shutdown = shutdown; 441 xdrsize = 0; 442 while (prog) { 443 prog->pg_lovers = prog->pg_nvers-1; 444 for (vers=0; vers<prog->pg_nvers ; vers++) 445 if (prog->pg_vers[vers]) { 446 prog->pg_hivers = vers; 447 if (prog->pg_lovers > vers) 448 prog->pg_lovers = vers; 449 if (prog->pg_vers[vers]->vs_xdrsize > xdrsize) 450 xdrsize = prog->pg_vers[vers]->vs_xdrsize; 451 } 452 prog = prog->pg_next; 453 } 454 serv->sv_xdrsize = xdrsize; 455 INIT_LIST_HEAD(&serv->sv_tempsocks); 456 INIT_LIST_HEAD(&serv->sv_permsocks); 457 init_timer(&serv->sv_temptimer); 458 spin_lock_init(&serv->sv_lock); 459 460 serv->sv_nrpools = npools; 461 serv->sv_pools = 462 kcalloc(serv->sv_nrpools, sizeof(struct svc_pool), 463 GFP_KERNEL); 464 if (!serv->sv_pools) { 465 kfree(serv); 466 return NULL; 467 } 468 469 for (i = 0; i < serv->sv_nrpools; i++) { 470 struct svc_pool *pool = &serv->sv_pools[i]; 471 472 dprintk("svc: initialising pool %u for %s\n", 473 i, serv->sv_name); 474 475 pool->sp_id = i; 476 INIT_LIST_HEAD(&pool->sp_threads); 477 INIT_LIST_HEAD(&pool->sp_sockets); 478 INIT_LIST_HEAD(&pool->sp_all_threads); 479 spin_lock_init(&pool->sp_lock); 480 } 481 482 if (svc_uses_rpcbind(serv) && (!serv->sv_shutdown)) 483 serv->sv_shutdown = svc_rpcb_cleanup; 484 485 return serv; 486 } 487 488 struct svc_serv * 489 svc_create(struct svc_program *prog, unsigned int bufsize, 490 void (*shutdown)(struct svc_serv *serv, struct net *net)) 491 { 492 return __svc_create(prog, bufsize, /*npools*/1, shutdown); 493 } 494 EXPORT_SYMBOL_GPL(svc_create); 495 496 struct svc_serv * 497 svc_create_pooled(struct svc_program *prog, unsigned int bufsize, 498 void (*shutdown)(struct svc_serv *serv, struct net *net), 499 svc_thread_fn func, struct module *mod) 500 { 501 struct svc_serv *serv; 502 unsigned int npools = svc_pool_map_get(); 503 504 serv = __svc_create(prog, bufsize, npools, shutdown); 505 506 if (serv != NULL) { 507 serv->sv_function = func; 508 serv->sv_module = mod; 509 } 510 511 return serv; 512 } 513 EXPORT_SYMBOL_GPL(svc_create_pooled); 514 515 void svc_shutdown_net(struct svc_serv *serv, struct net *net) 516 { 517 /* 518 * The set of xprts (contained in the sv_tempsocks and 519 * sv_permsocks lists) is now constant, since it is modified 520 * only by accepting new sockets (done by service threads in 521 * svc_recv) or aging old ones (done by sv_temptimer), or 522 * configuration changes (excluded by whatever locking the 523 * caller is using--nfsd_mutex in the case of nfsd). So it's 524 * safe to traverse those lists and shut everything down: 525 */ 526 svc_close_net(serv, net); 527 528 if (serv->sv_shutdown) 529 serv->sv_shutdown(serv, net); 530 } 531 EXPORT_SYMBOL_GPL(svc_shutdown_net); 532 533 /* 534 * Destroy an RPC service. Should be called with appropriate locking to 535 * protect the sv_nrthreads, sv_permsocks and sv_tempsocks. 536 */ 537 void 538 svc_destroy(struct svc_serv *serv) 539 { 540 dprintk("svc: svc_destroy(%s, %d)\n", 541 serv->sv_program->pg_name, 542 serv->sv_nrthreads); 543 544 if (serv->sv_nrthreads) { 545 if (--(serv->sv_nrthreads) != 0) { 546 svc_sock_update_bufs(serv); 547 return; 548 } 549 } else 550 printk("svc_destroy: no threads for serv=%p!\n", serv); 551 552 del_timer_sync(&serv->sv_temptimer); 553 554 /* 555 * The last user is gone and thus all sockets have to be destroyed to 556 * the point. Check this. 557 */ 558 BUG_ON(!list_empty(&serv->sv_permsocks)); 559 BUG_ON(!list_empty(&serv->sv_tempsocks)); 560 561 cache_clean_deferred(serv); 562 563 if (svc_serv_is_pooled(serv)) 564 svc_pool_map_put(); 565 566 kfree(serv->sv_pools); 567 kfree(serv); 568 } 569 EXPORT_SYMBOL_GPL(svc_destroy); 570 571 /* 572 * Allocate an RPC server's buffer space. 573 * We allocate pages and place them in rq_argpages. 574 */ 575 static int 576 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size, int node) 577 { 578 unsigned int pages, arghi; 579 580 /* bc_xprt uses fore channel allocated buffers */ 581 if (svc_is_backchannel(rqstp)) 582 return 1; 583 584 pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply. 585 * We assume one is at most one page 586 */ 587 arghi = 0; 588 BUG_ON(pages > RPCSVC_MAXPAGES); 589 while (pages) { 590 struct page *p = alloc_pages_node(node, GFP_KERNEL, 0); 591 if (!p) 592 break; 593 rqstp->rq_pages[arghi++] = p; 594 pages--; 595 } 596 return pages == 0; 597 } 598 599 /* 600 * Release an RPC server buffer 601 */ 602 static void 603 svc_release_buffer(struct svc_rqst *rqstp) 604 { 605 unsigned int i; 606 607 for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++) 608 if (rqstp->rq_pages[i]) 609 put_page(rqstp->rq_pages[i]); 610 } 611 612 struct svc_rqst * 613 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node) 614 { 615 struct svc_rqst *rqstp; 616 617 rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node); 618 if (!rqstp) 619 goto out_enomem; 620 621 init_waitqueue_head(&rqstp->rq_wait); 622 623 serv->sv_nrthreads++; 624 spin_lock_bh(&pool->sp_lock); 625 pool->sp_nrthreads++; 626 list_add(&rqstp->rq_all, &pool->sp_all_threads); 627 spin_unlock_bh(&pool->sp_lock); 628 rqstp->rq_server = serv; 629 rqstp->rq_pool = pool; 630 631 rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node); 632 if (!rqstp->rq_argp) 633 goto out_thread; 634 635 rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node); 636 if (!rqstp->rq_resp) 637 goto out_thread; 638 639 if (!svc_init_buffer(rqstp, serv->sv_max_mesg, node)) 640 goto out_thread; 641 642 return rqstp; 643 out_thread: 644 svc_exit_thread(rqstp); 645 out_enomem: 646 return ERR_PTR(-ENOMEM); 647 } 648 EXPORT_SYMBOL_GPL(svc_prepare_thread); 649 650 /* 651 * Choose a pool in which to create a new thread, for svc_set_num_threads 652 */ 653 static inline struct svc_pool * 654 choose_pool(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state) 655 { 656 if (pool != NULL) 657 return pool; 658 659 return &serv->sv_pools[(*state)++ % serv->sv_nrpools]; 660 } 661 662 /* 663 * Choose a thread to kill, for svc_set_num_threads 664 */ 665 static inline struct task_struct * 666 choose_victim(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state) 667 { 668 unsigned int i; 669 struct task_struct *task = NULL; 670 671 if (pool != NULL) { 672 spin_lock_bh(&pool->sp_lock); 673 } else { 674 /* choose a pool in round-robin fashion */ 675 for (i = 0; i < serv->sv_nrpools; i++) { 676 pool = &serv->sv_pools[--(*state) % serv->sv_nrpools]; 677 spin_lock_bh(&pool->sp_lock); 678 if (!list_empty(&pool->sp_all_threads)) 679 goto found_pool; 680 spin_unlock_bh(&pool->sp_lock); 681 } 682 return NULL; 683 } 684 685 found_pool: 686 if (!list_empty(&pool->sp_all_threads)) { 687 struct svc_rqst *rqstp; 688 689 /* 690 * Remove from the pool->sp_all_threads list 691 * so we don't try to kill it again. 692 */ 693 rqstp = list_entry(pool->sp_all_threads.next, struct svc_rqst, rq_all); 694 list_del_init(&rqstp->rq_all); 695 task = rqstp->rq_task; 696 } 697 spin_unlock_bh(&pool->sp_lock); 698 699 return task; 700 } 701 702 /* 703 * Create or destroy enough new threads to make the number 704 * of threads the given number. If `pool' is non-NULL, applies 705 * only to threads in that pool, otherwise round-robins between 706 * all pools. Caller must ensure that mutual exclusion between this and 707 * server startup or shutdown. 708 * 709 * Destroying threads relies on the service threads filling in 710 * rqstp->rq_task, which only the nfs ones do. Assumes the serv 711 * has been created using svc_create_pooled(). 712 * 713 * Based on code that used to be in nfsd_svc() but tweaked 714 * to be pool-aware. 715 */ 716 int 717 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs) 718 { 719 struct svc_rqst *rqstp; 720 struct task_struct *task; 721 struct svc_pool *chosen_pool; 722 int error = 0; 723 unsigned int state = serv->sv_nrthreads-1; 724 int node; 725 726 if (pool == NULL) { 727 /* The -1 assumes caller has done a svc_get() */ 728 nrservs -= (serv->sv_nrthreads-1); 729 } else { 730 spin_lock_bh(&pool->sp_lock); 731 nrservs -= pool->sp_nrthreads; 732 spin_unlock_bh(&pool->sp_lock); 733 } 734 735 /* create new threads */ 736 while (nrservs > 0) { 737 nrservs--; 738 chosen_pool = choose_pool(serv, pool, &state); 739 740 node = svc_pool_map_get_node(chosen_pool->sp_id); 741 rqstp = svc_prepare_thread(serv, chosen_pool, node); 742 if (IS_ERR(rqstp)) { 743 error = PTR_ERR(rqstp); 744 break; 745 } 746 747 __module_get(serv->sv_module); 748 task = kthread_create_on_node(serv->sv_function, rqstp, 749 node, serv->sv_name); 750 if (IS_ERR(task)) { 751 error = PTR_ERR(task); 752 module_put(serv->sv_module); 753 svc_exit_thread(rqstp); 754 break; 755 } 756 757 rqstp->rq_task = task; 758 if (serv->sv_nrpools > 1) 759 svc_pool_map_set_cpumask(task, chosen_pool->sp_id); 760 761 svc_sock_update_bufs(serv); 762 wake_up_process(task); 763 } 764 /* destroy old threads */ 765 while (nrservs < 0 && 766 (task = choose_victim(serv, pool, &state)) != NULL) { 767 send_sig(SIGINT, task, 1); 768 nrservs++; 769 } 770 771 return error; 772 } 773 EXPORT_SYMBOL_GPL(svc_set_num_threads); 774 775 /* 776 * Called from a server thread as it's exiting. Caller must hold the BKL or 777 * the "service mutex", whichever is appropriate for the service. 778 */ 779 void 780 svc_exit_thread(struct svc_rqst *rqstp) 781 { 782 struct svc_serv *serv = rqstp->rq_server; 783 struct svc_pool *pool = rqstp->rq_pool; 784 785 svc_release_buffer(rqstp); 786 kfree(rqstp->rq_resp); 787 kfree(rqstp->rq_argp); 788 kfree(rqstp->rq_auth_data); 789 790 spin_lock_bh(&pool->sp_lock); 791 pool->sp_nrthreads--; 792 list_del(&rqstp->rq_all); 793 spin_unlock_bh(&pool->sp_lock); 794 795 kfree(rqstp); 796 797 /* Release the server */ 798 if (serv) 799 svc_destroy(serv); 800 } 801 EXPORT_SYMBOL_GPL(svc_exit_thread); 802 803 /* 804 * Register an "inet" protocol family netid with the local 805 * rpcbind daemon via an rpcbind v4 SET request. 806 * 807 * No netconfig infrastructure is available in the kernel, so 808 * we map IP_ protocol numbers to netids by hand. 809 * 810 * Returns zero on success; a negative errno value is returned 811 * if any error occurs. 812 */ 813 static int __svc_rpcb_register4(struct net *net, const u32 program, 814 const u32 version, 815 const unsigned short protocol, 816 const unsigned short port) 817 { 818 const struct sockaddr_in sin = { 819 .sin_family = AF_INET, 820 .sin_addr.s_addr = htonl(INADDR_ANY), 821 .sin_port = htons(port), 822 }; 823 const char *netid; 824 int error; 825 826 switch (protocol) { 827 case IPPROTO_UDP: 828 netid = RPCBIND_NETID_UDP; 829 break; 830 case IPPROTO_TCP: 831 netid = RPCBIND_NETID_TCP; 832 break; 833 default: 834 return -ENOPROTOOPT; 835 } 836 837 error = rpcb_v4_register(net, program, version, 838 (const struct sockaddr *)&sin, netid); 839 840 /* 841 * User space didn't support rpcbind v4, so retry this 842 * registration request with the legacy rpcbind v2 protocol. 843 */ 844 if (error == -EPROTONOSUPPORT) 845 error = rpcb_register(net, program, version, protocol, port); 846 847 return error; 848 } 849 850 #if IS_ENABLED(CONFIG_IPV6) 851 /* 852 * Register an "inet6" protocol family netid with the local 853 * rpcbind daemon via an rpcbind v4 SET request. 854 * 855 * No netconfig infrastructure is available in the kernel, so 856 * we map IP_ protocol numbers to netids by hand. 857 * 858 * Returns zero on success; a negative errno value is returned 859 * if any error occurs. 860 */ 861 static int __svc_rpcb_register6(struct net *net, const u32 program, 862 const u32 version, 863 const unsigned short protocol, 864 const unsigned short port) 865 { 866 const struct sockaddr_in6 sin6 = { 867 .sin6_family = AF_INET6, 868 .sin6_addr = IN6ADDR_ANY_INIT, 869 .sin6_port = htons(port), 870 }; 871 const char *netid; 872 int error; 873 874 switch (protocol) { 875 case IPPROTO_UDP: 876 netid = RPCBIND_NETID_UDP6; 877 break; 878 case IPPROTO_TCP: 879 netid = RPCBIND_NETID_TCP6; 880 break; 881 default: 882 return -ENOPROTOOPT; 883 } 884 885 error = rpcb_v4_register(net, program, version, 886 (const struct sockaddr *)&sin6, netid); 887 888 /* 889 * User space didn't support rpcbind version 4, so we won't 890 * use a PF_INET6 listener. 891 */ 892 if (error == -EPROTONOSUPPORT) 893 error = -EAFNOSUPPORT; 894 895 return error; 896 } 897 #endif /* IS_ENABLED(CONFIG_IPV6) */ 898 899 /* 900 * Register a kernel RPC service via rpcbind version 4. 901 * 902 * Returns zero on success; a negative errno value is returned 903 * if any error occurs. 904 */ 905 static int __svc_register(struct net *net, const char *progname, 906 const u32 program, const u32 version, 907 const int family, 908 const unsigned short protocol, 909 const unsigned short port) 910 { 911 int error = -EAFNOSUPPORT; 912 913 switch (family) { 914 case PF_INET: 915 error = __svc_rpcb_register4(net, program, version, 916 protocol, port); 917 break; 918 #if IS_ENABLED(CONFIG_IPV6) 919 case PF_INET6: 920 error = __svc_rpcb_register6(net, program, version, 921 protocol, port); 922 #endif 923 } 924 925 if (error < 0) 926 printk(KERN_WARNING "svc: failed to register %sv%u RPC " 927 "service (errno %d).\n", progname, version, -error); 928 return error; 929 } 930 931 /** 932 * svc_register - register an RPC service with the local portmapper 933 * @serv: svc_serv struct for the service to register 934 * @net: net namespace for the service to register 935 * @family: protocol family of service's listener socket 936 * @proto: transport protocol number to advertise 937 * @port: port to advertise 938 * 939 * Service is registered for any address in the passed-in protocol family 940 */ 941 int svc_register(const struct svc_serv *serv, struct net *net, 942 const int family, const unsigned short proto, 943 const unsigned short port) 944 { 945 struct svc_program *progp; 946 unsigned int i; 947 int error = 0; 948 949 BUG_ON(proto == 0 && port == 0); 950 951 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 952 for (i = 0; i < progp->pg_nvers; i++) { 953 if (progp->pg_vers[i] == NULL) 954 continue; 955 956 dprintk("svc: svc_register(%sv%d, %s, %u, %u)%s\n", 957 progp->pg_name, 958 i, 959 proto == IPPROTO_UDP? "udp" : "tcp", 960 port, 961 family, 962 progp->pg_vers[i]->vs_hidden? 963 " (but not telling portmap)" : ""); 964 965 if (progp->pg_vers[i]->vs_hidden) 966 continue; 967 968 error = __svc_register(net, progp->pg_name, progp->pg_prog, 969 i, family, proto, port); 970 if (error < 0) 971 break; 972 } 973 } 974 975 return error; 976 } 977 978 /* 979 * If user space is running rpcbind, it should take the v4 UNSET 980 * and clear everything for this [program, version]. If user space 981 * is running portmap, it will reject the v4 UNSET, but won't have 982 * any "inet6" entries anyway. So a PMAP_UNSET should be sufficient 983 * in this case to clear all existing entries for [program, version]. 984 */ 985 static void __svc_unregister(struct net *net, const u32 program, const u32 version, 986 const char *progname) 987 { 988 int error; 989 990 error = rpcb_v4_register(net, program, version, NULL, ""); 991 992 /* 993 * User space didn't support rpcbind v4, so retry this 994 * request with the legacy rpcbind v2 protocol. 995 */ 996 if (error == -EPROTONOSUPPORT) 997 error = rpcb_register(net, program, version, 0, 0); 998 999 dprintk("svc: %s(%sv%u), error %d\n", 1000 __func__, progname, version, error); 1001 } 1002 1003 /* 1004 * All netids, bind addresses and ports registered for [program, version] 1005 * are removed from the local rpcbind database (if the service is not 1006 * hidden) to make way for a new instance of the service. 1007 * 1008 * The result of unregistration is reported via dprintk for those who want 1009 * verification of the result, but is otherwise not important. 1010 */ 1011 static void svc_unregister(const struct svc_serv *serv, struct net *net) 1012 { 1013 struct svc_program *progp; 1014 unsigned long flags; 1015 unsigned int i; 1016 1017 clear_thread_flag(TIF_SIGPENDING); 1018 1019 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 1020 for (i = 0; i < progp->pg_nvers; i++) { 1021 if (progp->pg_vers[i] == NULL) 1022 continue; 1023 if (progp->pg_vers[i]->vs_hidden) 1024 continue; 1025 1026 dprintk("svc: attempting to unregister %sv%u\n", 1027 progp->pg_name, i); 1028 __svc_unregister(net, progp->pg_prog, i, progp->pg_name); 1029 } 1030 } 1031 1032 spin_lock_irqsave(¤t->sighand->siglock, flags); 1033 recalc_sigpending(); 1034 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 1035 } 1036 1037 /* 1038 * Printk the given error with the address of the client that caused it. 1039 */ 1040 static __printf(2, 3) 1041 void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) 1042 { 1043 struct va_format vaf; 1044 va_list args; 1045 char buf[RPC_MAX_ADDRBUFLEN]; 1046 1047 va_start(args, fmt); 1048 1049 vaf.fmt = fmt; 1050 vaf.va = &args; 1051 1052 net_warn_ratelimited("svc: %s: %pV", 1053 svc_print_addr(rqstp, buf, sizeof(buf)), &vaf); 1054 1055 va_end(args); 1056 } 1057 1058 /* 1059 * Common routine for processing the RPC request. 1060 */ 1061 static int 1062 svc_process_common(struct svc_rqst *rqstp, struct kvec *argv, struct kvec *resv) 1063 { 1064 struct svc_program *progp; 1065 struct svc_version *versp = NULL; /* compiler food */ 1066 struct svc_procedure *procp = NULL; 1067 struct svc_serv *serv = rqstp->rq_server; 1068 kxdrproc_t xdr; 1069 __be32 *statp; 1070 u32 prog, vers, proc; 1071 __be32 auth_stat, rpc_stat; 1072 int auth_res; 1073 __be32 *reply_statp; 1074 1075 rpc_stat = rpc_success; 1076 1077 if (argv->iov_len < 6*4) 1078 goto err_short_len; 1079 1080 /* Will be turned off only in gss privacy case: */ 1081 rqstp->rq_splice_ok = 1; 1082 /* Will be turned off only when NFSv4 Sessions are used */ 1083 rqstp->rq_usedeferral = 1; 1084 rqstp->rq_dropme = false; 1085 1086 /* Setup reply header */ 1087 rqstp->rq_xprt->xpt_ops->xpo_prep_reply_hdr(rqstp); 1088 1089 svc_putu32(resv, rqstp->rq_xid); 1090 1091 vers = svc_getnl(argv); 1092 1093 /* First words of reply: */ 1094 svc_putnl(resv, 1); /* REPLY */ 1095 1096 if (vers != 2) /* RPC version number */ 1097 goto err_bad_rpc; 1098 1099 /* Save position in case we later decide to reject: */ 1100 reply_statp = resv->iov_base + resv->iov_len; 1101 1102 svc_putnl(resv, 0); /* ACCEPT */ 1103 1104 rqstp->rq_prog = prog = svc_getnl(argv); /* program number */ 1105 rqstp->rq_vers = vers = svc_getnl(argv); /* version number */ 1106 rqstp->rq_proc = proc = svc_getnl(argv); /* procedure number */ 1107 1108 progp = serv->sv_program; 1109 1110 for (progp = serv->sv_program; progp; progp = progp->pg_next) 1111 if (prog == progp->pg_prog) 1112 break; 1113 1114 /* 1115 * Decode auth data, and add verifier to reply buffer. 1116 * We do this before anything else in order to get a decent 1117 * auth verifier. 1118 */ 1119 auth_res = svc_authenticate(rqstp, &auth_stat); 1120 /* Also give the program a chance to reject this call: */ 1121 if (auth_res == SVC_OK && progp) { 1122 auth_stat = rpc_autherr_badcred; 1123 auth_res = progp->pg_authenticate(rqstp); 1124 } 1125 switch (auth_res) { 1126 case SVC_OK: 1127 break; 1128 case SVC_GARBAGE: 1129 goto err_garbage; 1130 case SVC_SYSERR: 1131 rpc_stat = rpc_system_err; 1132 goto err_bad; 1133 case SVC_DENIED: 1134 goto err_bad_auth; 1135 case SVC_CLOSE: 1136 if (test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags)) 1137 svc_close_xprt(rqstp->rq_xprt); 1138 case SVC_DROP: 1139 goto dropit; 1140 case SVC_COMPLETE: 1141 goto sendit; 1142 } 1143 1144 if (progp == NULL) 1145 goto err_bad_prog; 1146 1147 if (vers >= progp->pg_nvers || 1148 !(versp = progp->pg_vers[vers])) 1149 goto err_bad_vers; 1150 1151 procp = versp->vs_proc + proc; 1152 if (proc >= versp->vs_nproc || !procp->pc_func) 1153 goto err_bad_proc; 1154 rqstp->rq_procinfo = procp; 1155 1156 /* Syntactic check complete */ 1157 serv->sv_stats->rpccnt++; 1158 1159 /* Build the reply header. */ 1160 statp = resv->iov_base +resv->iov_len; 1161 svc_putnl(resv, RPC_SUCCESS); 1162 1163 /* Bump per-procedure stats counter */ 1164 procp->pc_count++; 1165 1166 /* Initialize storage for argp and resp */ 1167 memset(rqstp->rq_argp, 0, procp->pc_argsize); 1168 memset(rqstp->rq_resp, 0, procp->pc_ressize); 1169 1170 /* un-reserve some of the out-queue now that we have a 1171 * better idea of reply size 1172 */ 1173 if (procp->pc_xdrressize) 1174 svc_reserve_auth(rqstp, procp->pc_xdrressize<<2); 1175 1176 /* Call the function that processes the request. */ 1177 if (!versp->vs_dispatch) { 1178 /* Decode arguments */ 1179 xdr = procp->pc_decode; 1180 if (xdr && !xdr(rqstp, argv->iov_base, rqstp->rq_argp)) 1181 goto err_garbage; 1182 1183 *statp = procp->pc_func(rqstp, rqstp->rq_argp, rqstp->rq_resp); 1184 1185 /* Encode reply */ 1186 if (rqstp->rq_dropme) { 1187 if (procp->pc_release) 1188 procp->pc_release(rqstp, NULL, rqstp->rq_resp); 1189 goto dropit; 1190 } 1191 if (*statp == rpc_success && 1192 (xdr = procp->pc_encode) && 1193 !xdr(rqstp, resv->iov_base+resv->iov_len, rqstp->rq_resp)) { 1194 dprintk("svc: failed to encode reply\n"); 1195 /* serv->sv_stats->rpcsystemerr++; */ 1196 *statp = rpc_system_err; 1197 } 1198 } else { 1199 dprintk("svc: calling dispatcher\n"); 1200 if (!versp->vs_dispatch(rqstp, statp)) { 1201 /* Release reply info */ 1202 if (procp->pc_release) 1203 procp->pc_release(rqstp, NULL, rqstp->rq_resp); 1204 goto dropit; 1205 } 1206 } 1207 1208 /* Check RPC status result */ 1209 if (*statp != rpc_success) 1210 resv->iov_len = ((void*)statp) - resv->iov_base + 4; 1211 1212 /* Release reply info */ 1213 if (procp->pc_release) 1214 procp->pc_release(rqstp, NULL, rqstp->rq_resp); 1215 1216 if (procp->pc_encode == NULL) 1217 goto dropit; 1218 1219 sendit: 1220 if (svc_authorise(rqstp)) 1221 goto dropit; 1222 return 1; /* Caller can now send it */ 1223 1224 dropit: 1225 svc_authorise(rqstp); /* doesn't hurt to call this twice */ 1226 dprintk("svc: svc_process dropit\n"); 1227 return 0; 1228 1229 err_short_len: 1230 svc_printk(rqstp, "short len %Zd, dropping request\n", 1231 argv->iov_len); 1232 1233 goto dropit; /* drop request */ 1234 1235 err_bad_rpc: 1236 serv->sv_stats->rpcbadfmt++; 1237 svc_putnl(resv, 1); /* REJECT */ 1238 svc_putnl(resv, 0); /* RPC_MISMATCH */ 1239 svc_putnl(resv, 2); /* Only RPCv2 supported */ 1240 svc_putnl(resv, 2); 1241 goto sendit; 1242 1243 err_bad_auth: 1244 dprintk("svc: authentication failed (%d)\n", ntohl(auth_stat)); 1245 serv->sv_stats->rpcbadauth++; 1246 /* Restore write pointer to location of accept status: */ 1247 xdr_ressize_check(rqstp, reply_statp); 1248 svc_putnl(resv, 1); /* REJECT */ 1249 svc_putnl(resv, 1); /* AUTH_ERROR */ 1250 svc_putnl(resv, ntohl(auth_stat)); /* status */ 1251 goto sendit; 1252 1253 err_bad_prog: 1254 dprintk("svc: unknown program %d\n", prog); 1255 serv->sv_stats->rpcbadfmt++; 1256 svc_putnl(resv, RPC_PROG_UNAVAIL); 1257 goto sendit; 1258 1259 err_bad_vers: 1260 svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n", 1261 vers, prog, progp->pg_name); 1262 1263 serv->sv_stats->rpcbadfmt++; 1264 svc_putnl(resv, RPC_PROG_MISMATCH); 1265 svc_putnl(resv, progp->pg_lovers); 1266 svc_putnl(resv, progp->pg_hivers); 1267 goto sendit; 1268 1269 err_bad_proc: 1270 svc_printk(rqstp, "unknown procedure (%d)\n", proc); 1271 1272 serv->sv_stats->rpcbadfmt++; 1273 svc_putnl(resv, RPC_PROC_UNAVAIL); 1274 goto sendit; 1275 1276 err_garbage: 1277 svc_printk(rqstp, "failed to decode args\n"); 1278 1279 rpc_stat = rpc_garbage_args; 1280 err_bad: 1281 serv->sv_stats->rpcbadfmt++; 1282 svc_putnl(resv, ntohl(rpc_stat)); 1283 goto sendit; 1284 } 1285 EXPORT_SYMBOL_GPL(svc_process); 1286 1287 /* 1288 * Process the RPC request. 1289 */ 1290 int 1291 svc_process(struct svc_rqst *rqstp) 1292 { 1293 struct kvec *argv = &rqstp->rq_arg.head[0]; 1294 struct kvec *resv = &rqstp->rq_res.head[0]; 1295 struct svc_serv *serv = rqstp->rq_server; 1296 u32 dir; 1297 1298 /* 1299 * Setup response xdr_buf. 1300 * Initially it has just one page 1301 */ 1302 rqstp->rq_resused = 1; 1303 resv->iov_base = page_address(rqstp->rq_respages[0]); 1304 resv->iov_len = 0; 1305 rqstp->rq_res.pages = rqstp->rq_respages + 1; 1306 rqstp->rq_res.len = 0; 1307 rqstp->rq_res.page_base = 0; 1308 rqstp->rq_res.page_len = 0; 1309 rqstp->rq_res.buflen = PAGE_SIZE; 1310 rqstp->rq_res.tail[0].iov_base = NULL; 1311 rqstp->rq_res.tail[0].iov_len = 0; 1312 1313 rqstp->rq_xid = svc_getu32(argv); 1314 1315 dir = svc_getnl(argv); 1316 if (dir != 0) { 1317 /* direction != CALL */ 1318 svc_printk(rqstp, "bad direction %d, dropping request\n", dir); 1319 serv->sv_stats->rpcbadfmt++; 1320 svc_drop(rqstp); 1321 return 0; 1322 } 1323 1324 /* Returns 1 for send, 0 for drop */ 1325 if (svc_process_common(rqstp, argv, resv)) 1326 return svc_send(rqstp); 1327 else { 1328 svc_drop(rqstp); 1329 return 0; 1330 } 1331 } 1332 1333 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 1334 /* 1335 * Process a backchannel RPC request that arrived over an existing 1336 * outbound connection 1337 */ 1338 int 1339 bc_svc_process(struct svc_serv *serv, struct rpc_rqst *req, 1340 struct svc_rqst *rqstp) 1341 { 1342 struct kvec *argv = &rqstp->rq_arg.head[0]; 1343 struct kvec *resv = &rqstp->rq_res.head[0]; 1344 1345 /* Build the svc_rqst used by the common processing routine */ 1346 rqstp->rq_xprt = serv->sv_bc_xprt; 1347 rqstp->rq_xid = req->rq_xid; 1348 rqstp->rq_prot = req->rq_xprt->prot; 1349 rqstp->rq_server = serv; 1350 1351 rqstp->rq_addrlen = sizeof(req->rq_xprt->addr); 1352 memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen); 1353 memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg)); 1354 memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res)); 1355 1356 /* reset result send buffer "put" position */ 1357 resv->iov_len = 0; 1358 1359 if (rqstp->rq_prot != IPPROTO_TCP) { 1360 printk(KERN_ERR "No support for Non-TCP transports!\n"); 1361 BUG(); 1362 } 1363 1364 /* 1365 * Skip the next two words because they've already been 1366 * processed in the trasport 1367 */ 1368 svc_getu32(argv); /* XID */ 1369 svc_getnl(argv); /* CALLDIR */ 1370 1371 /* Returns 1 for send, 0 for drop */ 1372 if (svc_process_common(rqstp, argv, resv)) { 1373 memcpy(&req->rq_snd_buf, &rqstp->rq_res, 1374 sizeof(req->rq_snd_buf)); 1375 return bc_send(req); 1376 } else { 1377 /* Nothing to do to drop request */ 1378 return 0; 1379 } 1380 } 1381 EXPORT_SYMBOL_GPL(bc_svc_process); 1382 #endif /* CONFIG_SUNRPC_BACKCHANNEL */ 1383 1384 /* 1385 * Return (transport-specific) limit on the rpc payload. 1386 */ 1387 u32 svc_max_payload(const struct svc_rqst *rqstp) 1388 { 1389 u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload; 1390 1391 if (rqstp->rq_server->sv_max_payload < max) 1392 max = rqstp->rq_server->sv_max_payload; 1393 return max; 1394 } 1395 EXPORT_SYMBOL_GPL(svc_max_payload); 1396