xref: /openbmc/linux/net/sunrpc/svc.c (revision 82003e04)
1 /*
2  * linux/net/sunrpc/svc.c
3  *
4  * High-level RPC service routines
5  *
6  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
7  *
8  * Multiple threads pools and NUMAisation
9  * Copyright (c) 2006 Silicon Graphics, Inc.
10  * by Greg Banks <gnb@melbourne.sgi.com>
11  */
12 
13 #include <linux/linkage.h>
14 #include <linux/sched.h>
15 #include <linux/errno.h>
16 #include <linux/net.h>
17 #include <linux/in.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/module.h>
21 #include <linux/kthread.h>
22 #include <linux/slab.h>
23 
24 #include <linux/sunrpc/types.h>
25 #include <linux/sunrpc/xdr.h>
26 #include <linux/sunrpc/stats.h>
27 #include <linux/sunrpc/svcsock.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/sunrpc/bc_xprt.h>
30 
31 #include <trace/events/sunrpc.h>
32 
33 #define RPCDBG_FACILITY	RPCDBG_SVCDSP
34 
35 static void svc_unregister(const struct svc_serv *serv, struct net *net);
36 
37 #define svc_serv_is_pooled(serv)    ((serv)->sv_ops->svo_function)
38 
39 #define SVC_POOL_DEFAULT	SVC_POOL_GLOBAL
40 
41 /*
42  * Structure for mapping cpus to pools and vice versa.
43  * Setup once during sunrpc initialisation.
44  */
45 struct svc_pool_map svc_pool_map = {
46 	.mode = SVC_POOL_DEFAULT
47 };
48 EXPORT_SYMBOL_GPL(svc_pool_map);
49 
50 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */
51 
52 static int
53 param_set_pool_mode(const char *val, struct kernel_param *kp)
54 {
55 	int *ip = (int *)kp->arg;
56 	struct svc_pool_map *m = &svc_pool_map;
57 	int err;
58 
59 	mutex_lock(&svc_pool_map_mutex);
60 
61 	err = -EBUSY;
62 	if (m->count)
63 		goto out;
64 
65 	err = 0;
66 	if (!strncmp(val, "auto", 4))
67 		*ip = SVC_POOL_AUTO;
68 	else if (!strncmp(val, "global", 6))
69 		*ip = SVC_POOL_GLOBAL;
70 	else if (!strncmp(val, "percpu", 6))
71 		*ip = SVC_POOL_PERCPU;
72 	else if (!strncmp(val, "pernode", 7))
73 		*ip = SVC_POOL_PERNODE;
74 	else
75 		err = -EINVAL;
76 
77 out:
78 	mutex_unlock(&svc_pool_map_mutex);
79 	return err;
80 }
81 
82 static int
83 param_get_pool_mode(char *buf, struct kernel_param *kp)
84 {
85 	int *ip = (int *)kp->arg;
86 
87 	switch (*ip)
88 	{
89 	case SVC_POOL_AUTO:
90 		return strlcpy(buf, "auto", 20);
91 	case SVC_POOL_GLOBAL:
92 		return strlcpy(buf, "global", 20);
93 	case SVC_POOL_PERCPU:
94 		return strlcpy(buf, "percpu", 20);
95 	case SVC_POOL_PERNODE:
96 		return strlcpy(buf, "pernode", 20);
97 	default:
98 		return sprintf(buf, "%d", *ip);
99 	}
100 }
101 
102 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode,
103 		 &svc_pool_map.mode, 0644);
104 
105 /*
106  * Detect best pool mapping mode heuristically,
107  * according to the machine's topology.
108  */
109 static int
110 svc_pool_map_choose_mode(void)
111 {
112 	unsigned int node;
113 
114 	if (nr_online_nodes > 1) {
115 		/*
116 		 * Actually have multiple NUMA nodes,
117 		 * so split pools on NUMA node boundaries
118 		 */
119 		return SVC_POOL_PERNODE;
120 	}
121 
122 	node = first_online_node;
123 	if (nr_cpus_node(node) > 2) {
124 		/*
125 		 * Non-trivial SMP, or CONFIG_NUMA on
126 		 * non-NUMA hardware, e.g. with a generic
127 		 * x86_64 kernel on Xeons.  In this case we
128 		 * want to divide the pools on cpu boundaries.
129 		 */
130 		return SVC_POOL_PERCPU;
131 	}
132 
133 	/* default: one global pool */
134 	return SVC_POOL_GLOBAL;
135 }
136 
137 /*
138  * Allocate the to_pool[] and pool_to[] arrays.
139  * Returns 0 on success or an errno.
140  */
141 static int
142 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools)
143 {
144 	m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
145 	if (!m->to_pool)
146 		goto fail;
147 	m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
148 	if (!m->pool_to)
149 		goto fail_free;
150 
151 	return 0;
152 
153 fail_free:
154 	kfree(m->to_pool);
155 	m->to_pool = NULL;
156 fail:
157 	return -ENOMEM;
158 }
159 
160 /*
161  * Initialise the pool map for SVC_POOL_PERCPU mode.
162  * Returns number of pools or <0 on error.
163  */
164 static int
165 svc_pool_map_init_percpu(struct svc_pool_map *m)
166 {
167 	unsigned int maxpools = nr_cpu_ids;
168 	unsigned int pidx = 0;
169 	unsigned int cpu;
170 	int err;
171 
172 	err = svc_pool_map_alloc_arrays(m, maxpools);
173 	if (err)
174 		return err;
175 
176 	for_each_online_cpu(cpu) {
177 		BUG_ON(pidx >= maxpools);
178 		m->to_pool[cpu] = pidx;
179 		m->pool_to[pidx] = cpu;
180 		pidx++;
181 	}
182 	/* cpus brought online later all get mapped to pool0, sorry */
183 
184 	return pidx;
185 };
186 
187 
188 /*
189  * Initialise the pool map for SVC_POOL_PERNODE mode.
190  * Returns number of pools or <0 on error.
191  */
192 static int
193 svc_pool_map_init_pernode(struct svc_pool_map *m)
194 {
195 	unsigned int maxpools = nr_node_ids;
196 	unsigned int pidx = 0;
197 	unsigned int node;
198 	int err;
199 
200 	err = svc_pool_map_alloc_arrays(m, maxpools);
201 	if (err)
202 		return err;
203 
204 	for_each_node_with_cpus(node) {
205 		/* some architectures (e.g. SN2) have cpuless nodes */
206 		BUG_ON(pidx > maxpools);
207 		m->to_pool[node] = pidx;
208 		m->pool_to[pidx] = node;
209 		pidx++;
210 	}
211 	/* nodes brought online later all get mapped to pool0, sorry */
212 
213 	return pidx;
214 }
215 
216 
217 /*
218  * Add a reference to the global map of cpus to pools (and
219  * vice versa).  Initialise the map if we're the first user.
220  * Returns the number of pools.
221  */
222 unsigned int
223 svc_pool_map_get(void)
224 {
225 	struct svc_pool_map *m = &svc_pool_map;
226 	int npools = -1;
227 
228 	mutex_lock(&svc_pool_map_mutex);
229 
230 	if (m->count++) {
231 		mutex_unlock(&svc_pool_map_mutex);
232 		return m->npools;
233 	}
234 
235 	if (m->mode == SVC_POOL_AUTO)
236 		m->mode = svc_pool_map_choose_mode();
237 
238 	switch (m->mode) {
239 	case SVC_POOL_PERCPU:
240 		npools = svc_pool_map_init_percpu(m);
241 		break;
242 	case SVC_POOL_PERNODE:
243 		npools = svc_pool_map_init_pernode(m);
244 		break;
245 	}
246 
247 	if (npools < 0) {
248 		/* default, or memory allocation failure */
249 		npools = 1;
250 		m->mode = SVC_POOL_GLOBAL;
251 	}
252 	m->npools = npools;
253 
254 	mutex_unlock(&svc_pool_map_mutex);
255 	return m->npools;
256 }
257 EXPORT_SYMBOL_GPL(svc_pool_map_get);
258 
259 /*
260  * Drop a reference to the global map of cpus to pools.
261  * When the last reference is dropped, the map data is
262  * freed; this allows the sysadmin to change the pool
263  * mode using the pool_mode module option without
264  * rebooting or re-loading sunrpc.ko.
265  */
266 void
267 svc_pool_map_put(void)
268 {
269 	struct svc_pool_map *m = &svc_pool_map;
270 
271 	mutex_lock(&svc_pool_map_mutex);
272 
273 	if (!--m->count) {
274 		kfree(m->to_pool);
275 		m->to_pool = NULL;
276 		kfree(m->pool_to);
277 		m->pool_to = NULL;
278 		m->npools = 0;
279 	}
280 
281 	mutex_unlock(&svc_pool_map_mutex);
282 }
283 EXPORT_SYMBOL_GPL(svc_pool_map_put);
284 
285 static int svc_pool_map_get_node(unsigned int pidx)
286 {
287 	const struct svc_pool_map *m = &svc_pool_map;
288 
289 	if (m->count) {
290 		if (m->mode == SVC_POOL_PERCPU)
291 			return cpu_to_node(m->pool_to[pidx]);
292 		if (m->mode == SVC_POOL_PERNODE)
293 			return m->pool_to[pidx];
294 	}
295 	return NUMA_NO_NODE;
296 }
297 /*
298  * Set the given thread's cpus_allowed mask so that it
299  * will only run on cpus in the given pool.
300  */
301 static inline void
302 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx)
303 {
304 	struct svc_pool_map *m = &svc_pool_map;
305 	unsigned int node = m->pool_to[pidx];
306 
307 	/*
308 	 * The caller checks for sv_nrpools > 1, which
309 	 * implies that we've been initialized.
310 	 */
311 	WARN_ON_ONCE(m->count == 0);
312 	if (m->count == 0)
313 		return;
314 
315 	switch (m->mode) {
316 	case SVC_POOL_PERCPU:
317 	{
318 		set_cpus_allowed_ptr(task, cpumask_of(node));
319 		break;
320 	}
321 	case SVC_POOL_PERNODE:
322 	{
323 		set_cpus_allowed_ptr(task, cpumask_of_node(node));
324 		break;
325 	}
326 	}
327 }
328 
329 /*
330  * Use the mapping mode to choose a pool for a given CPU.
331  * Used when enqueueing an incoming RPC.  Always returns
332  * a non-NULL pool pointer.
333  */
334 struct svc_pool *
335 svc_pool_for_cpu(struct svc_serv *serv, int cpu)
336 {
337 	struct svc_pool_map *m = &svc_pool_map;
338 	unsigned int pidx = 0;
339 
340 	/*
341 	 * An uninitialised map happens in a pure client when
342 	 * lockd is brought up, so silently treat it the
343 	 * same as SVC_POOL_GLOBAL.
344 	 */
345 	if (svc_serv_is_pooled(serv)) {
346 		switch (m->mode) {
347 		case SVC_POOL_PERCPU:
348 			pidx = m->to_pool[cpu];
349 			break;
350 		case SVC_POOL_PERNODE:
351 			pidx = m->to_pool[cpu_to_node(cpu)];
352 			break;
353 		}
354 	}
355 	return &serv->sv_pools[pidx % serv->sv_nrpools];
356 }
357 
358 int svc_rpcb_setup(struct svc_serv *serv, struct net *net)
359 {
360 	int err;
361 
362 	err = rpcb_create_local(net);
363 	if (err)
364 		return err;
365 
366 	/* Remove any stale portmap registrations */
367 	svc_unregister(serv, net);
368 	return 0;
369 }
370 EXPORT_SYMBOL_GPL(svc_rpcb_setup);
371 
372 void svc_rpcb_cleanup(struct svc_serv *serv, struct net *net)
373 {
374 	svc_unregister(serv, net);
375 	rpcb_put_local(net);
376 }
377 EXPORT_SYMBOL_GPL(svc_rpcb_cleanup);
378 
379 static int svc_uses_rpcbind(struct svc_serv *serv)
380 {
381 	struct svc_program	*progp;
382 	unsigned int		i;
383 
384 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
385 		for (i = 0; i < progp->pg_nvers; i++) {
386 			if (progp->pg_vers[i] == NULL)
387 				continue;
388 			if (progp->pg_vers[i]->vs_hidden == 0)
389 				return 1;
390 		}
391 	}
392 
393 	return 0;
394 }
395 
396 int svc_bind(struct svc_serv *serv, struct net *net)
397 {
398 	if (!svc_uses_rpcbind(serv))
399 		return 0;
400 	return svc_rpcb_setup(serv, net);
401 }
402 EXPORT_SYMBOL_GPL(svc_bind);
403 
404 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
405 static void
406 __svc_init_bc(struct svc_serv *serv)
407 {
408 	INIT_LIST_HEAD(&serv->sv_cb_list);
409 	spin_lock_init(&serv->sv_cb_lock);
410 	init_waitqueue_head(&serv->sv_cb_waitq);
411 }
412 #else
413 static void
414 __svc_init_bc(struct svc_serv *serv)
415 {
416 }
417 #endif
418 
419 /*
420  * Create an RPC service
421  */
422 static struct svc_serv *
423 __svc_create(struct svc_program *prog, unsigned int bufsize, int npools,
424 	     struct svc_serv_ops *ops)
425 {
426 	struct svc_serv	*serv;
427 	unsigned int vers;
428 	unsigned int xdrsize;
429 	unsigned int i;
430 
431 	if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL)))
432 		return NULL;
433 	serv->sv_name      = prog->pg_name;
434 	serv->sv_program   = prog;
435 	serv->sv_nrthreads = 1;
436 	serv->sv_stats     = prog->pg_stats;
437 	if (bufsize > RPCSVC_MAXPAYLOAD)
438 		bufsize = RPCSVC_MAXPAYLOAD;
439 	serv->sv_max_payload = bufsize? bufsize : 4096;
440 	serv->sv_max_mesg  = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE);
441 	serv->sv_ops = ops;
442 	xdrsize = 0;
443 	while (prog) {
444 		prog->pg_lovers = prog->pg_nvers-1;
445 		for (vers=0; vers<prog->pg_nvers ; vers++)
446 			if (prog->pg_vers[vers]) {
447 				prog->pg_hivers = vers;
448 				if (prog->pg_lovers > vers)
449 					prog->pg_lovers = vers;
450 				if (prog->pg_vers[vers]->vs_xdrsize > xdrsize)
451 					xdrsize = prog->pg_vers[vers]->vs_xdrsize;
452 			}
453 		prog = prog->pg_next;
454 	}
455 	serv->sv_xdrsize   = xdrsize;
456 	INIT_LIST_HEAD(&serv->sv_tempsocks);
457 	INIT_LIST_HEAD(&serv->sv_permsocks);
458 	init_timer(&serv->sv_temptimer);
459 	spin_lock_init(&serv->sv_lock);
460 
461 	__svc_init_bc(serv);
462 
463 	serv->sv_nrpools = npools;
464 	serv->sv_pools =
465 		kcalloc(serv->sv_nrpools, sizeof(struct svc_pool),
466 			GFP_KERNEL);
467 	if (!serv->sv_pools) {
468 		kfree(serv);
469 		return NULL;
470 	}
471 
472 	for (i = 0; i < serv->sv_nrpools; i++) {
473 		struct svc_pool *pool = &serv->sv_pools[i];
474 
475 		dprintk("svc: initialising pool %u for %s\n",
476 				i, serv->sv_name);
477 
478 		pool->sp_id = i;
479 		INIT_LIST_HEAD(&pool->sp_sockets);
480 		INIT_LIST_HEAD(&pool->sp_all_threads);
481 		spin_lock_init(&pool->sp_lock);
482 	}
483 
484 	return serv;
485 }
486 
487 struct svc_serv *
488 svc_create(struct svc_program *prog, unsigned int bufsize,
489 	   struct svc_serv_ops *ops)
490 {
491 	return __svc_create(prog, bufsize, /*npools*/1, ops);
492 }
493 EXPORT_SYMBOL_GPL(svc_create);
494 
495 struct svc_serv *
496 svc_create_pooled(struct svc_program *prog, unsigned int bufsize,
497 		  struct svc_serv_ops *ops)
498 {
499 	struct svc_serv *serv;
500 	unsigned int npools = svc_pool_map_get();
501 
502 	serv = __svc_create(prog, bufsize, npools, ops);
503 	if (!serv)
504 		goto out_err;
505 	return serv;
506 out_err:
507 	svc_pool_map_put();
508 	return NULL;
509 }
510 EXPORT_SYMBOL_GPL(svc_create_pooled);
511 
512 void svc_shutdown_net(struct svc_serv *serv, struct net *net)
513 {
514 	svc_close_net(serv, net);
515 
516 	if (serv->sv_ops->svo_shutdown)
517 		serv->sv_ops->svo_shutdown(serv, net);
518 }
519 EXPORT_SYMBOL_GPL(svc_shutdown_net);
520 
521 /*
522  * Destroy an RPC service. Should be called with appropriate locking to
523  * protect the sv_nrthreads, sv_permsocks and sv_tempsocks.
524  */
525 void
526 svc_destroy(struct svc_serv *serv)
527 {
528 	dprintk("svc: svc_destroy(%s, %d)\n",
529 				serv->sv_program->pg_name,
530 				serv->sv_nrthreads);
531 
532 	if (serv->sv_nrthreads) {
533 		if (--(serv->sv_nrthreads) != 0) {
534 			svc_sock_update_bufs(serv);
535 			return;
536 		}
537 	} else
538 		printk("svc_destroy: no threads for serv=%p!\n", serv);
539 
540 	del_timer_sync(&serv->sv_temptimer);
541 
542 	/*
543 	 * The last user is gone and thus all sockets have to be destroyed to
544 	 * the point. Check this.
545 	 */
546 	BUG_ON(!list_empty(&serv->sv_permsocks));
547 	BUG_ON(!list_empty(&serv->sv_tempsocks));
548 
549 	cache_clean_deferred(serv);
550 
551 	if (svc_serv_is_pooled(serv))
552 		svc_pool_map_put();
553 
554 	kfree(serv->sv_pools);
555 	kfree(serv);
556 }
557 EXPORT_SYMBOL_GPL(svc_destroy);
558 
559 /*
560  * Allocate an RPC server's buffer space.
561  * We allocate pages and place them in rq_argpages.
562  */
563 static int
564 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size, int node)
565 {
566 	unsigned int pages, arghi;
567 
568 	/* bc_xprt uses fore channel allocated buffers */
569 	if (svc_is_backchannel(rqstp))
570 		return 1;
571 
572 	pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply.
573 				       * We assume one is at most one page
574 				       */
575 	arghi = 0;
576 	WARN_ON_ONCE(pages > RPCSVC_MAXPAGES);
577 	if (pages > RPCSVC_MAXPAGES)
578 		pages = RPCSVC_MAXPAGES;
579 	while (pages) {
580 		struct page *p = alloc_pages_node(node, GFP_KERNEL, 0);
581 		if (!p)
582 			break;
583 		rqstp->rq_pages[arghi++] = p;
584 		pages--;
585 	}
586 	return pages == 0;
587 }
588 
589 /*
590  * Release an RPC server buffer
591  */
592 static void
593 svc_release_buffer(struct svc_rqst *rqstp)
594 {
595 	unsigned int i;
596 
597 	for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++)
598 		if (rqstp->rq_pages[i])
599 			put_page(rqstp->rq_pages[i]);
600 }
601 
602 struct svc_rqst *
603 svc_rqst_alloc(struct svc_serv *serv, struct svc_pool *pool, int node)
604 {
605 	struct svc_rqst	*rqstp;
606 
607 	rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node);
608 	if (!rqstp)
609 		return rqstp;
610 
611 	__set_bit(RQ_BUSY, &rqstp->rq_flags);
612 	spin_lock_init(&rqstp->rq_lock);
613 	rqstp->rq_server = serv;
614 	rqstp->rq_pool = pool;
615 
616 	rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
617 	if (!rqstp->rq_argp)
618 		goto out_enomem;
619 
620 	rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
621 	if (!rqstp->rq_resp)
622 		goto out_enomem;
623 
624 	if (!svc_init_buffer(rqstp, serv->sv_max_mesg, node))
625 		goto out_enomem;
626 
627 	return rqstp;
628 out_enomem:
629 	svc_rqst_free(rqstp);
630 	return NULL;
631 }
632 EXPORT_SYMBOL_GPL(svc_rqst_alloc);
633 
634 struct svc_rqst *
635 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node)
636 {
637 	struct svc_rqst	*rqstp;
638 
639 	rqstp = svc_rqst_alloc(serv, pool, node);
640 	if (!rqstp)
641 		return ERR_PTR(-ENOMEM);
642 
643 	serv->sv_nrthreads++;
644 	spin_lock_bh(&pool->sp_lock);
645 	pool->sp_nrthreads++;
646 	list_add_rcu(&rqstp->rq_all, &pool->sp_all_threads);
647 	spin_unlock_bh(&pool->sp_lock);
648 	return rqstp;
649 }
650 EXPORT_SYMBOL_GPL(svc_prepare_thread);
651 
652 /*
653  * Choose a pool in which to create a new thread, for svc_set_num_threads
654  */
655 static inline struct svc_pool *
656 choose_pool(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
657 {
658 	if (pool != NULL)
659 		return pool;
660 
661 	return &serv->sv_pools[(*state)++ % serv->sv_nrpools];
662 }
663 
664 /*
665  * Choose a thread to kill, for svc_set_num_threads
666  */
667 static inline struct task_struct *
668 choose_victim(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
669 {
670 	unsigned int i;
671 	struct task_struct *task = NULL;
672 
673 	if (pool != NULL) {
674 		spin_lock_bh(&pool->sp_lock);
675 	} else {
676 		/* choose a pool in round-robin fashion */
677 		for (i = 0; i < serv->sv_nrpools; i++) {
678 			pool = &serv->sv_pools[--(*state) % serv->sv_nrpools];
679 			spin_lock_bh(&pool->sp_lock);
680 			if (!list_empty(&pool->sp_all_threads))
681 				goto found_pool;
682 			spin_unlock_bh(&pool->sp_lock);
683 		}
684 		return NULL;
685 	}
686 
687 found_pool:
688 	if (!list_empty(&pool->sp_all_threads)) {
689 		struct svc_rqst *rqstp;
690 
691 		/*
692 		 * Remove from the pool->sp_all_threads list
693 		 * so we don't try to kill it again.
694 		 */
695 		rqstp = list_entry(pool->sp_all_threads.next, struct svc_rqst, rq_all);
696 		set_bit(RQ_VICTIM, &rqstp->rq_flags);
697 		list_del_rcu(&rqstp->rq_all);
698 		task = rqstp->rq_task;
699 	}
700 	spin_unlock_bh(&pool->sp_lock);
701 
702 	return task;
703 }
704 
705 /*
706  * Create or destroy enough new threads to make the number
707  * of threads the given number.  If `pool' is non-NULL, applies
708  * only to threads in that pool, otherwise round-robins between
709  * all pools.  Caller must ensure that mutual exclusion between this and
710  * server startup or shutdown.
711  *
712  * Destroying threads relies on the service threads filling in
713  * rqstp->rq_task, which only the nfs ones do.  Assumes the serv
714  * has been created using svc_create_pooled().
715  *
716  * Based on code that used to be in nfsd_svc() but tweaked
717  * to be pool-aware.
718  */
719 int
720 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
721 {
722 	struct svc_rqst	*rqstp;
723 	struct task_struct *task;
724 	struct svc_pool *chosen_pool;
725 	int error = 0;
726 	unsigned int state = serv->sv_nrthreads-1;
727 	int node;
728 
729 	if (pool == NULL) {
730 		/* The -1 assumes caller has done a svc_get() */
731 		nrservs -= (serv->sv_nrthreads-1);
732 	} else {
733 		spin_lock_bh(&pool->sp_lock);
734 		nrservs -= pool->sp_nrthreads;
735 		spin_unlock_bh(&pool->sp_lock);
736 	}
737 
738 	/* create new threads */
739 	while (nrservs > 0) {
740 		nrservs--;
741 		chosen_pool = choose_pool(serv, pool, &state);
742 
743 		node = svc_pool_map_get_node(chosen_pool->sp_id);
744 		rqstp = svc_prepare_thread(serv, chosen_pool, node);
745 		if (IS_ERR(rqstp)) {
746 			error = PTR_ERR(rqstp);
747 			break;
748 		}
749 
750 		__module_get(serv->sv_ops->svo_module);
751 		task = kthread_create_on_node(serv->sv_ops->svo_function, rqstp,
752 					      node, "%s", serv->sv_name);
753 		if (IS_ERR(task)) {
754 			error = PTR_ERR(task);
755 			module_put(serv->sv_ops->svo_module);
756 			svc_exit_thread(rqstp);
757 			break;
758 		}
759 
760 		rqstp->rq_task = task;
761 		if (serv->sv_nrpools > 1)
762 			svc_pool_map_set_cpumask(task, chosen_pool->sp_id);
763 
764 		svc_sock_update_bufs(serv);
765 		wake_up_process(task);
766 	}
767 	/* destroy old threads */
768 	while (nrservs < 0 &&
769 	       (task = choose_victim(serv, pool, &state)) != NULL) {
770 		send_sig(SIGINT, task, 1);
771 		nrservs++;
772 	}
773 
774 	return error;
775 }
776 EXPORT_SYMBOL_GPL(svc_set_num_threads);
777 
778 /*
779  * Called from a server thread as it's exiting. Caller must hold the "service
780  * mutex" for the service.
781  */
782 void
783 svc_rqst_free(struct svc_rqst *rqstp)
784 {
785 	svc_release_buffer(rqstp);
786 	kfree(rqstp->rq_resp);
787 	kfree(rqstp->rq_argp);
788 	kfree(rqstp->rq_auth_data);
789 	kfree_rcu(rqstp, rq_rcu_head);
790 }
791 EXPORT_SYMBOL_GPL(svc_rqst_free);
792 
793 void
794 svc_exit_thread(struct svc_rqst *rqstp)
795 {
796 	struct svc_serv	*serv = rqstp->rq_server;
797 	struct svc_pool	*pool = rqstp->rq_pool;
798 
799 	spin_lock_bh(&pool->sp_lock);
800 	pool->sp_nrthreads--;
801 	if (!test_and_set_bit(RQ_VICTIM, &rqstp->rq_flags))
802 		list_del_rcu(&rqstp->rq_all);
803 	spin_unlock_bh(&pool->sp_lock);
804 
805 	svc_rqst_free(rqstp);
806 
807 	/* Release the server */
808 	if (serv)
809 		svc_destroy(serv);
810 }
811 EXPORT_SYMBOL_GPL(svc_exit_thread);
812 
813 /*
814  * Register an "inet" protocol family netid with the local
815  * rpcbind daemon via an rpcbind v4 SET request.
816  *
817  * No netconfig infrastructure is available in the kernel, so
818  * we map IP_ protocol numbers to netids by hand.
819  *
820  * Returns zero on success; a negative errno value is returned
821  * if any error occurs.
822  */
823 static int __svc_rpcb_register4(struct net *net, const u32 program,
824 				const u32 version,
825 				const unsigned short protocol,
826 				const unsigned short port)
827 {
828 	const struct sockaddr_in sin = {
829 		.sin_family		= AF_INET,
830 		.sin_addr.s_addr	= htonl(INADDR_ANY),
831 		.sin_port		= htons(port),
832 	};
833 	const char *netid;
834 	int error;
835 
836 	switch (protocol) {
837 	case IPPROTO_UDP:
838 		netid = RPCBIND_NETID_UDP;
839 		break;
840 	case IPPROTO_TCP:
841 		netid = RPCBIND_NETID_TCP;
842 		break;
843 	default:
844 		return -ENOPROTOOPT;
845 	}
846 
847 	error = rpcb_v4_register(net, program, version,
848 					(const struct sockaddr *)&sin, netid);
849 
850 	/*
851 	 * User space didn't support rpcbind v4, so retry this
852 	 * registration request with the legacy rpcbind v2 protocol.
853 	 */
854 	if (error == -EPROTONOSUPPORT)
855 		error = rpcb_register(net, program, version, protocol, port);
856 
857 	return error;
858 }
859 
860 #if IS_ENABLED(CONFIG_IPV6)
861 /*
862  * Register an "inet6" protocol family netid with the local
863  * rpcbind daemon via an rpcbind v4 SET request.
864  *
865  * No netconfig infrastructure is available in the kernel, so
866  * we map IP_ protocol numbers to netids by hand.
867  *
868  * Returns zero on success; a negative errno value is returned
869  * if any error occurs.
870  */
871 static int __svc_rpcb_register6(struct net *net, const u32 program,
872 				const u32 version,
873 				const unsigned short protocol,
874 				const unsigned short port)
875 {
876 	const struct sockaddr_in6 sin6 = {
877 		.sin6_family		= AF_INET6,
878 		.sin6_addr		= IN6ADDR_ANY_INIT,
879 		.sin6_port		= htons(port),
880 	};
881 	const char *netid;
882 	int error;
883 
884 	switch (protocol) {
885 	case IPPROTO_UDP:
886 		netid = RPCBIND_NETID_UDP6;
887 		break;
888 	case IPPROTO_TCP:
889 		netid = RPCBIND_NETID_TCP6;
890 		break;
891 	default:
892 		return -ENOPROTOOPT;
893 	}
894 
895 	error = rpcb_v4_register(net, program, version,
896 					(const struct sockaddr *)&sin6, netid);
897 
898 	/*
899 	 * User space didn't support rpcbind version 4, so we won't
900 	 * use a PF_INET6 listener.
901 	 */
902 	if (error == -EPROTONOSUPPORT)
903 		error = -EAFNOSUPPORT;
904 
905 	return error;
906 }
907 #endif	/* IS_ENABLED(CONFIG_IPV6) */
908 
909 /*
910  * Register a kernel RPC service via rpcbind version 4.
911  *
912  * Returns zero on success; a negative errno value is returned
913  * if any error occurs.
914  */
915 static int __svc_register(struct net *net, const char *progname,
916 			  const u32 program, const u32 version,
917 			  const int family,
918 			  const unsigned short protocol,
919 			  const unsigned short port)
920 {
921 	int error = -EAFNOSUPPORT;
922 
923 	switch (family) {
924 	case PF_INET:
925 		error = __svc_rpcb_register4(net, program, version,
926 						protocol, port);
927 		break;
928 #if IS_ENABLED(CONFIG_IPV6)
929 	case PF_INET6:
930 		error = __svc_rpcb_register6(net, program, version,
931 						protocol, port);
932 #endif
933 	}
934 
935 	return error;
936 }
937 
938 /**
939  * svc_register - register an RPC service with the local portmapper
940  * @serv: svc_serv struct for the service to register
941  * @net: net namespace for the service to register
942  * @family: protocol family of service's listener socket
943  * @proto: transport protocol number to advertise
944  * @port: port to advertise
945  *
946  * Service is registered for any address in the passed-in protocol family
947  */
948 int svc_register(const struct svc_serv *serv, struct net *net,
949 		 const int family, const unsigned short proto,
950 		 const unsigned short port)
951 {
952 	struct svc_program	*progp;
953 	struct svc_version	*vers;
954 	unsigned int		i;
955 	int			error = 0;
956 
957 	WARN_ON_ONCE(proto == 0 && port == 0);
958 	if (proto == 0 && port == 0)
959 		return -EINVAL;
960 
961 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
962 		for (i = 0; i < progp->pg_nvers; i++) {
963 			vers = progp->pg_vers[i];
964 			if (vers == NULL)
965 				continue;
966 
967 			dprintk("svc: svc_register(%sv%d, %s, %u, %u)%s\n",
968 					progp->pg_name,
969 					i,
970 					proto == IPPROTO_UDP?  "udp" : "tcp",
971 					port,
972 					family,
973 					vers->vs_hidden ?
974 					" (but not telling portmap)" : "");
975 
976 			if (vers->vs_hidden)
977 				continue;
978 
979 			error = __svc_register(net, progp->pg_name, progp->pg_prog,
980 						i, family, proto, port);
981 
982 			if (vers->vs_rpcb_optnl) {
983 				error = 0;
984 				continue;
985 			}
986 
987 			if (error < 0) {
988 				printk(KERN_WARNING "svc: failed to register "
989 					"%sv%u RPC service (errno %d).\n",
990 					progp->pg_name, i, -error);
991 				break;
992 			}
993 		}
994 	}
995 
996 	return error;
997 }
998 
999 /*
1000  * If user space is running rpcbind, it should take the v4 UNSET
1001  * and clear everything for this [program, version].  If user space
1002  * is running portmap, it will reject the v4 UNSET, but won't have
1003  * any "inet6" entries anyway.  So a PMAP_UNSET should be sufficient
1004  * in this case to clear all existing entries for [program, version].
1005  */
1006 static void __svc_unregister(struct net *net, const u32 program, const u32 version,
1007 			     const char *progname)
1008 {
1009 	int error;
1010 
1011 	error = rpcb_v4_register(net, program, version, NULL, "");
1012 
1013 	/*
1014 	 * User space didn't support rpcbind v4, so retry this
1015 	 * request with the legacy rpcbind v2 protocol.
1016 	 */
1017 	if (error == -EPROTONOSUPPORT)
1018 		error = rpcb_register(net, program, version, 0, 0);
1019 
1020 	dprintk("svc: %s(%sv%u), error %d\n",
1021 			__func__, progname, version, error);
1022 }
1023 
1024 /*
1025  * All netids, bind addresses and ports registered for [program, version]
1026  * are removed from the local rpcbind database (if the service is not
1027  * hidden) to make way for a new instance of the service.
1028  *
1029  * The result of unregistration is reported via dprintk for those who want
1030  * verification of the result, but is otherwise not important.
1031  */
1032 static void svc_unregister(const struct svc_serv *serv, struct net *net)
1033 {
1034 	struct svc_program *progp;
1035 	unsigned long flags;
1036 	unsigned int i;
1037 
1038 	clear_thread_flag(TIF_SIGPENDING);
1039 
1040 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
1041 		for (i = 0; i < progp->pg_nvers; i++) {
1042 			if (progp->pg_vers[i] == NULL)
1043 				continue;
1044 			if (progp->pg_vers[i]->vs_hidden)
1045 				continue;
1046 
1047 			dprintk("svc: attempting to unregister %sv%u\n",
1048 				progp->pg_name, i);
1049 			__svc_unregister(net, progp->pg_prog, i, progp->pg_name);
1050 		}
1051 	}
1052 
1053 	spin_lock_irqsave(&current->sighand->siglock, flags);
1054 	recalc_sigpending();
1055 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
1056 }
1057 
1058 /*
1059  * dprintk the given error with the address of the client that caused it.
1060  */
1061 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
1062 static __printf(2, 3)
1063 void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...)
1064 {
1065 	struct va_format vaf;
1066 	va_list args;
1067 	char 	buf[RPC_MAX_ADDRBUFLEN];
1068 
1069 	va_start(args, fmt);
1070 
1071 	vaf.fmt = fmt;
1072 	vaf.va = &args;
1073 
1074 	dprintk("svc: %s: %pV", svc_print_addr(rqstp, buf, sizeof(buf)), &vaf);
1075 
1076 	va_end(args);
1077 }
1078 #else
1079 static __printf(2,3) void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) {}
1080 #endif
1081 
1082 /*
1083  * Common routine for processing the RPC request.
1084  */
1085 static int
1086 svc_process_common(struct svc_rqst *rqstp, struct kvec *argv, struct kvec *resv)
1087 {
1088 	struct svc_program	*progp;
1089 	struct svc_version	*versp = NULL;	/* compiler food */
1090 	struct svc_procedure	*procp = NULL;
1091 	struct svc_serv		*serv = rqstp->rq_server;
1092 	kxdrproc_t		xdr;
1093 	__be32			*statp;
1094 	u32			prog, vers, proc;
1095 	__be32			auth_stat, rpc_stat;
1096 	int			auth_res;
1097 	__be32			*reply_statp;
1098 
1099 	rpc_stat = rpc_success;
1100 
1101 	if (argv->iov_len < 6*4)
1102 		goto err_short_len;
1103 
1104 	/* Will be turned off only in gss privacy case: */
1105 	set_bit(RQ_SPLICE_OK, &rqstp->rq_flags);
1106 	/* Will be turned off only when NFSv4 Sessions are used */
1107 	set_bit(RQ_USEDEFERRAL, &rqstp->rq_flags);
1108 	clear_bit(RQ_DROPME, &rqstp->rq_flags);
1109 
1110 	/* Setup reply header */
1111 	rqstp->rq_xprt->xpt_ops->xpo_prep_reply_hdr(rqstp);
1112 
1113 	svc_putu32(resv, rqstp->rq_xid);
1114 
1115 	vers = svc_getnl(argv);
1116 
1117 	/* First words of reply: */
1118 	svc_putnl(resv, 1);		/* REPLY */
1119 
1120 	if (vers != 2)		/* RPC version number */
1121 		goto err_bad_rpc;
1122 
1123 	/* Save position in case we later decide to reject: */
1124 	reply_statp = resv->iov_base + resv->iov_len;
1125 
1126 	svc_putnl(resv, 0);		/* ACCEPT */
1127 
1128 	rqstp->rq_prog = prog = svc_getnl(argv);	/* program number */
1129 	rqstp->rq_vers = vers = svc_getnl(argv);	/* version number */
1130 	rqstp->rq_proc = proc = svc_getnl(argv);	/* procedure number */
1131 
1132 	for (progp = serv->sv_program; progp; progp = progp->pg_next)
1133 		if (prog == progp->pg_prog)
1134 			break;
1135 
1136 	/*
1137 	 * Decode auth data, and add verifier to reply buffer.
1138 	 * We do this before anything else in order to get a decent
1139 	 * auth verifier.
1140 	 */
1141 	auth_res = svc_authenticate(rqstp, &auth_stat);
1142 	/* Also give the program a chance to reject this call: */
1143 	if (auth_res == SVC_OK && progp) {
1144 		auth_stat = rpc_autherr_badcred;
1145 		auth_res = progp->pg_authenticate(rqstp);
1146 	}
1147 	switch (auth_res) {
1148 	case SVC_OK:
1149 		break;
1150 	case SVC_GARBAGE:
1151 		goto err_garbage;
1152 	case SVC_SYSERR:
1153 		rpc_stat = rpc_system_err;
1154 		goto err_bad;
1155 	case SVC_DENIED:
1156 		goto err_bad_auth;
1157 	case SVC_CLOSE:
1158 		if (test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags))
1159 			svc_close_xprt(rqstp->rq_xprt);
1160 	case SVC_DROP:
1161 		goto dropit;
1162 	case SVC_COMPLETE:
1163 		goto sendit;
1164 	}
1165 
1166 	if (progp == NULL)
1167 		goto err_bad_prog;
1168 
1169 	if (vers >= progp->pg_nvers ||
1170 	  !(versp = progp->pg_vers[vers]))
1171 		goto err_bad_vers;
1172 
1173 	procp = versp->vs_proc + proc;
1174 	if (proc >= versp->vs_nproc || !procp->pc_func)
1175 		goto err_bad_proc;
1176 	rqstp->rq_procinfo = procp;
1177 
1178 	/* Syntactic check complete */
1179 	serv->sv_stats->rpccnt++;
1180 
1181 	/* Build the reply header. */
1182 	statp = resv->iov_base +resv->iov_len;
1183 	svc_putnl(resv, RPC_SUCCESS);
1184 
1185 	/* Bump per-procedure stats counter */
1186 	procp->pc_count++;
1187 
1188 	/* Initialize storage for argp and resp */
1189 	memset(rqstp->rq_argp, 0, procp->pc_argsize);
1190 	memset(rqstp->rq_resp, 0, procp->pc_ressize);
1191 
1192 	/* un-reserve some of the out-queue now that we have a
1193 	 * better idea of reply size
1194 	 */
1195 	if (procp->pc_xdrressize)
1196 		svc_reserve_auth(rqstp, procp->pc_xdrressize<<2);
1197 
1198 	/* Call the function that processes the request. */
1199 	if (!versp->vs_dispatch) {
1200 		/* Decode arguments */
1201 		xdr = procp->pc_decode;
1202 		if (xdr && !xdr(rqstp, argv->iov_base, rqstp->rq_argp))
1203 			goto err_garbage;
1204 
1205 		*statp = procp->pc_func(rqstp, rqstp->rq_argp, rqstp->rq_resp);
1206 
1207 		/* Encode reply */
1208 		if (*statp == rpc_drop_reply ||
1209 		    test_bit(RQ_DROPME, &rqstp->rq_flags)) {
1210 			if (procp->pc_release)
1211 				procp->pc_release(rqstp, NULL, rqstp->rq_resp);
1212 			goto dropit;
1213 		}
1214 		if (*statp == rpc_autherr_badcred) {
1215 			if (procp->pc_release)
1216 				procp->pc_release(rqstp, NULL, rqstp->rq_resp);
1217 			goto err_bad_auth;
1218 		}
1219 		if (*statp == rpc_success &&
1220 		    (xdr = procp->pc_encode) &&
1221 		    !xdr(rqstp, resv->iov_base+resv->iov_len, rqstp->rq_resp)) {
1222 			dprintk("svc: failed to encode reply\n");
1223 			/* serv->sv_stats->rpcsystemerr++; */
1224 			*statp = rpc_system_err;
1225 		}
1226 	} else {
1227 		dprintk("svc: calling dispatcher\n");
1228 		if (!versp->vs_dispatch(rqstp, statp)) {
1229 			/* Release reply info */
1230 			if (procp->pc_release)
1231 				procp->pc_release(rqstp, NULL, rqstp->rq_resp);
1232 			goto dropit;
1233 		}
1234 	}
1235 
1236 	/* Check RPC status result */
1237 	if (*statp != rpc_success)
1238 		resv->iov_len = ((void*)statp)  - resv->iov_base + 4;
1239 
1240 	/* Release reply info */
1241 	if (procp->pc_release)
1242 		procp->pc_release(rqstp, NULL, rqstp->rq_resp);
1243 
1244 	if (procp->pc_encode == NULL)
1245 		goto dropit;
1246 
1247  sendit:
1248 	if (svc_authorise(rqstp))
1249 		goto dropit;
1250 	return 1;		/* Caller can now send it */
1251 
1252  dropit:
1253 	svc_authorise(rqstp);	/* doesn't hurt to call this twice */
1254 	dprintk("svc: svc_process dropit\n");
1255 	return 0;
1256 
1257 err_short_len:
1258 	svc_printk(rqstp, "short len %Zd, dropping request\n",
1259 			argv->iov_len);
1260 
1261 	goto dropit;			/* drop request */
1262 
1263 err_bad_rpc:
1264 	serv->sv_stats->rpcbadfmt++;
1265 	svc_putnl(resv, 1);	/* REJECT */
1266 	svc_putnl(resv, 0);	/* RPC_MISMATCH */
1267 	svc_putnl(resv, 2);	/* Only RPCv2 supported */
1268 	svc_putnl(resv, 2);
1269 	goto sendit;
1270 
1271 err_bad_auth:
1272 	dprintk("svc: authentication failed (%d)\n", ntohl(auth_stat));
1273 	serv->sv_stats->rpcbadauth++;
1274 	/* Restore write pointer to location of accept status: */
1275 	xdr_ressize_check(rqstp, reply_statp);
1276 	svc_putnl(resv, 1);	/* REJECT */
1277 	svc_putnl(resv, 1);	/* AUTH_ERROR */
1278 	svc_putnl(resv, ntohl(auth_stat));	/* status */
1279 	goto sendit;
1280 
1281 err_bad_prog:
1282 	dprintk("svc: unknown program %d\n", prog);
1283 	serv->sv_stats->rpcbadfmt++;
1284 	svc_putnl(resv, RPC_PROG_UNAVAIL);
1285 	goto sendit;
1286 
1287 err_bad_vers:
1288 	svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n",
1289 		       vers, prog, progp->pg_name);
1290 
1291 	serv->sv_stats->rpcbadfmt++;
1292 	svc_putnl(resv, RPC_PROG_MISMATCH);
1293 	svc_putnl(resv, progp->pg_lovers);
1294 	svc_putnl(resv, progp->pg_hivers);
1295 	goto sendit;
1296 
1297 err_bad_proc:
1298 	svc_printk(rqstp, "unknown procedure (%d)\n", proc);
1299 
1300 	serv->sv_stats->rpcbadfmt++;
1301 	svc_putnl(resv, RPC_PROC_UNAVAIL);
1302 	goto sendit;
1303 
1304 err_garbage:
1305 	svc_printk(rqstp, "failed to decode args\n");
1306 
1307 	rpc_stat = rpc_garbage_args;
1308 err_bad:
1309 	serv->sv_stats->rpcbadfmt++;
1310 	svc_putnl(resv, ntohl(rpc_stat));
1311 	goto sendit;
1312 }
1313 
1314 /*
1315  * Process the RPC request.
1316  */
1317 int
1318 svc_process(struct svc_rqst *rqstp)
1319 {
1320 	struct kvec		*argv = &rqstp->rq_arg.head[0];
1321 	struct kvec		*resv = &rqstp->rq_res.head[0];
1322 	struct svc_serv		*serv = rqstp->rq_server;
1323 	u32			dir;
1324 
1325 	/*
1326 	 * Setup response xdr_buf.
1327 	 * Initially it has just one page
1328 	 */
1329 	rqstp->rq_next_page = &rqstp->rq_respages[1];
1330 	resv->iov_base = page_address(rqstp->rq_respages[0]);
1331 	resv->iov_len = 0;
1332 	rqstp->rq_res.pages = rqstp->rq_respages + 1;
1333 	rqstp->rq_res.len = 0;
1334 	rqstp->rq_res.page_base = 0;
1335 	rqstp->rq_res.page_len = 0;
1336 	rqstp->rq_res.buflen = PAGE_SIZE;
1337 	rqstp->rq_res.tail[0].iov_base = NULL;
1338 	rqstp->rq_res.tail[0].iov_len = 0;
1339 
1340 	dir  = svc_getnl(argv);
1341 	if (dir != 0) {
1342 		/* direction != CALL */
1343 		svc_printk(rqstp, "bad direction %d, dropping request\n", dir);
1344 		serv->sv_stats->rpcbadfmt++;
1345 		goto out_drop;
1346 	}
1347 
1348 	/* Returns 1 for send, 0 for drop */
1349 	if (likely(svc_process_common(rqstp, argv, resv))) {
1350 		int ret = svc_send(rqstp);
1351 
1352 		trace_svc_process(rqstp, ret);
1353 		return ret;
1354 	}
1355 out_drop:
1356 	trace_svc_process(rqstp, 0);
1357 	svc_drop(rqstp);
1358 	return 0;
1359 }
1360 EXPORT_SYMBOL_GPL(svc_process);
1361 
1362 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1363 /*
1364  * Process a backchannel RPC request that arrived over an existing
1365  * outbound connection
1366  */
1367 int
1368 bc_svc_process(struct svc_serv *serv, struct rpc_rqst *req,
1369 	       struct svc_rqst *rqstp)
1370 {
1371 	struct kvec	*argv = &rqstp->rq_arg.head[0];
1372 	struct kvec	*resv = &rqstp->rq_res.head[0];
1373 	struct rpc_task *task;
1374 	int proc_error;
1375 	int error;
1376 
1377 	dprintk("svc: %s(%p)\n", __func__, req);
1378 
1379 	/* Build the svc_rqst used by the common processing routine */
1380 	rqstp->rq_xprt = serv->sv_bc_xprt;
1381 	rqstp->rq_xid = req->rq_xid;
1382 	rqstp->rq_prot = req->rq_xprt->prot;
1383 	rqstp->rq_server = serv;
1384 
1385 	rqstp->rq_addrlen = sizeof(req->rq_xprt->addr);
1386 	memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen);
1387 	memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg));
1388 	memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res));
1389 
1390 	/* Adjust the argument buffer length */
1391 	rqstp->rq_arg.len = req->rq_private_buf.len;
1392 	if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) {
1393 		rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len;
1394 		rqstp->rq_arg.page_len = 0;
1395 	} else if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len +
1396 			rqstp->rq_arg.page_len)
1397 		rqstp->rq_arg.page_len = rqstp->rq_arg.len -
1398 			rqstp->rq_arg.head[0].iov_len;
1399 	else
1400 		rqstp->rq_arg.len = rqstp->rq_arg.head[0].iov_len +
1401 			rqstp->rq_arg.page_len;
1402 
1403 	/* reset result send buffer "put" position */
1404 	resv->iov_len = 0;
1405 
1406 	/*
1407 	 * Skip the next two words because they've already been
1408 	 * processed in the transport
1409 	 */
1410 	svc_getu32(argv);	/* XID */
1411 	svc_getnl(argv);	/* CALLDIR */
1412 
1413 	/* Parse and execute the bc call */
1414 	proc_error = svc_process_common(rqstp, argv, resv);
1415 
1416 	atomic_inc(&req->rq_xprt->bc_free_slots);
1417 	if (!proc_error) {
1418 		/* Processing error: drop the request */
1419 		xprt_free_bc_request(req);
1420 		return 0;
1421 	}
1422 
1423 	/* Finally, send the reply synchronously */
1424 	memcpy(&req->rq_snd_buf, &rqstp->rq_res, sizeof(req->rq_snd_buf));
1425 	task = rpc_run_bc_task(req);
1426 	if (IS_ERR(task)) {
1427 		error = PTR_ERR(task);
1428 		goto out;
1429 	}
1430 
1431 	WARN_ON_ONCE(atomic_read(&task->tk_count) != 1);
1432 	error = task->tk_status;
1433 	rpc_put_task(task);
1434 
1435 out:
1436 	dprintk("svc: %s(), error=%d\n", __func__, error);
1437 	return error;
1438 }
1439 EXPORT_SYMBOL_GPL(bc_svc_process);
1440 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
1441 
1442 /*
1443  * Return (transport-specific) limit on the rpc payload.
1444  */
1445 u32 svc_max_payload(const struct svc_rqst *rqstp)
1446 {
1447 	u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload;
1448 
1449 	if (rqstp->rq_server->sv_max_payload < max)
1450 		max = rqstp->rq_server->sv_max_payload;
1451 	return max;
1452 }
1453 EXPORT_SYMBOL_GPL(svc_max_payload);
1454