xref: /openbmc/linux/net/sunrpc/svc.c (revision 6aeadf78)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/svc.c
4  *
5  * High-level RPC service routines
6  *
7  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
8  *
9  * Multiple threads pools and NUMAisation
10  * Copyright (c) 2006 Silicon Graphics, Inc.
11  * by Greg Banks <gnb@melbourne.sgi.com>
12  */
13 
14 #include <linux/linkage.h>
15 #include <linux/sched/signal.h>
16 #include <linux/errno.h>
17 #include <linux/net.h>
18 #include <linux/in.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/module.h>
22 #include <linux/kthread.h>
23 #include <linux/slab.h>
24 
25 #include <linux/sunrpc/types.h>
26 #include <linux/sunrpc/xdr.h>
27 #include <linux/sunrpc/stats.h>
28 #include <linux/sunrpc/svcsock.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/sunrpc/bc_xprt.h>
31 
32 #include <trace/events/sunrpc.h>
33 
34 #include "fail.h"
35 
36 #define RPCDBG_FACILITY	RPCDBG_SVCDSP
37 
38 static void svc_unregister(const struct svc_serv *serv, struct net *net);
39 
40 #define SVC_POOL_DEFAULT	SVC_POOL_GLOBAL
41 
42 /*
43  * Mode for mapping cpus to pools.
44  */
45 enum {
46 	SVC_POOL_AUTO = -1,	/* choose one of the others */
47 	SVC_POOL_GLOBAL,	/* no mapping, just a single global pool
48 				 * (legacy & UP mode) */
49 	SVC_POOL_PERCPU,	/* one pool per cpu */
50 	SVC_POOL_PERNODE	/* one pool per numa node */
51 };
52 
53 /*
54  * Structure for mapping cpus to pools and vice versa.
55  * Setup once during sunrpc initialisation.
56  */
57 
58 struct svc_pool_map {
59 	int count;			/* How many svc_servs use us */
60 	int mode;			/* Note: int not enum to avoid
61 					 * warnings about "enumeration value
62 					 * not handled in switch" */
63 	unsigned int npools;
64 	unsigned int *pool_to;		/* maps pool id to cpu or node */
65 	unsigned int *to_pool;		/* maps cpu or node to pool id */
66 };
67 
68 static struct svc_pool_map svc_pool_map = {
69 	.mode = SVC_POOL_DEFAULT
70 };
71 
72 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */
73 
74 static int
75 param_set_pool_mode(const char *val, const struct kernel_param *kp)
76 {
77 	int *ip = (int *)kp->arg;
78 	struct svc_pool_map *m = &svc_pool_map;
79 	int err;
80 
81 	mutex_lock(&svc_pool_map_mutex);
82 
83 	err = -EBUSY;
84 	if (m->count)
85 		goto out;
86 
87 	err = 0;
88 	if (!strncmp(val, "auto", 4))
89 		*ip = SVC_POOL_AUTO;
90 	else if (!strncmp(val, "global", 6))
91 		*ip = SVC_POOL_GLOBAL;
92 	else if (!strncmp(val, "percpu", 6))
93 		*ip = SVC_POOL_PERCPU;
94 	else if (!strncmp(val, "pernode", 7))
95 		*ip = SVC_POOL_PERNODE;
96 	else
97 		err = -EINVAL;
98 
99 out:
100 	mutex_unlock(&svc_pool_map_mutex);
101 	return err;
102 }
103 
104 static int
105 param_get_pool_mode(char *buf, const struct kernel_param *kp)
106 {
107 	int *ip = (int *)kp->arg;
108 
109 	switch (*ip)
110 	{
111 	case SVC_POOL_AUTO:
112 		return sysfs_emit(buf, "auto\n");
113 	case SVC_POOL_GLOBAL:
114 		return sysfs_emit(buf, "global\n");
115 	case SVC_POOL_PERCPU:
116 		return sysfs_emit(buf, "percpu\n");
117 	case SVC_POOL_PERNODE:
118 		return sysfs_emit(buf, "pernode\n");
119 	default:
120 		return sysfs_emit(buf, "%d\n", *ip);
121 	}
122 }
123 
124 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode,
125 		 &svc_pool_map.mode, 0644);
126 
127 /*
128  * Detect best pool mapping mode heuristically,
129  * according to the machine's topology.
130  */
131 static int
132 svc_pool_map_choose_mode(void)
133 {
134 	unsigned int node;
135 
136 	if (nr_online_nodes > 1) {
137 		/*
138 		 * Actually have multiple NUMA nodes,
139 		 * so split pools on NUMA node boundaries
140 		 */
141 		return SVC_POOL_PERNODE;
142 	}
143 
144 	node = first_online_node;
145 	if (nr_cpus_node(node) > 2) {
146 		/*
147 		 * Non-trivial SMP, or CONFIG_NUMA on
148 		 * non-NUMA hardware, e.g. with a generic
149 		 * x86_64 kernel on Xeons.  In this case we
150 		 * want to divide the pools on cpu boundaries.
151 		 */
152 		return SVC_POOL_PERCPU;
153 	}
154 
155 	/* default: one global pool */
156 	return SVC_POOL_GLOBAL;
157 }
158 
159 /*
160  * Allocate the to_pool[] and pool_to[] arrays.
161  * Returns 0 on success or an errno.
162  */
163 static int
164 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools)
165 {
166 	m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
167 	if (!m->to_pool)
168 		goto fail;
169 	m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
170 	if (!m->pool_to)
171 		goto fail_free;
172 
173 	return 0;
174 
175 fail_free:
176 	kfree(m->to_pool);
177 	m->to_pool = NULL;
178 fail:
179 	return -ENOMEM;
180 }
181 
182 /*
183  * Initialise the pool map for SVC_POOL_PERCPU mode.
184  * Returns number of pools or <0 on error.
185  */
186 static int
187 svc_pool_map_init_percpu(struct svc_pool_map *m)
188 {
189 	unsigned int maxpools = nr_cpu_ids;
190 	unsigned int pidx = 0;
191 	unsigned int cpu;
192 	int err;
193 
194 	err = svc_pool_map_alloc_arrays(m, maxpools);
195 	if (err)
196 		return err;
197 
198 	for_each_online_cpu(cpu) {
199 		BUG_ON(pidx >= maxpools);
200 		m->to_pool[cpu] = pidx;
201 		m->pool_to[pidx] = cpu;
202 		pidx++;
203 	}
204 	/* cpus brought online later all get mapped to pool0, sorry */
205 
206 	return pidx;
207 };
208 
209 
210 /*
211  * Initialise the pool map for SVC_POOL_PERNODE mode.
212  * Returns number of pools or <0 on error.
213  */
214 static int
215 svc_pool_map_init_pernode(struct svc_pool_map *m)
216 {
217 	unsigned int maxpools = nr_node_ids;
218 	unsigned int pidx = 0;
219 	unsigned int node;
220 	int err;
221 
222 	err = svc_pool_map_alloc_arrays(m, maxpools);
223 	if (err)
224 		return err;
225 
226 	for_each_node_with_cpus(node) {
227 		/* some architectures (e.g. SN2) have cpuless nodes */
228 		BUG_ON(pidx > maxpools);
229 		m->to_pool[node] = pidx;
230 		m->pool_to[pidx] = node;
231 		pidx++;
232 	}
233 	/* nodes brought online later all get mapped to pool0, sorry */
234 
235 	return pidx;
236 }
237 
238 
239 /*
240  * Add a reference to the global map of cpus to pools (and
241  * vice versa) if pools are in use.
242  * Initialise the map if we're the first user.
243  * Returns the number of pools. If this is '1', no reference
244  * was taken.
245  */
246 static unsigned int
247 svc_pool_map_get(void)
248 {
249 	struct svc_pool_map *m = &svc_pool_map;
250 	int npools = -1;
251 
252 	mutex_lock(&svc_pool_map_mutex);
253 
254 	if (m->count++) {
255 		mutex_unlock(&svc_pool_map_mutex);
256 		WARN_ON_ONCE(m->npools <= 1);
257 		return m->npools;
258 	}
259 
260 	if (m->mode == SVC_POOL_AUTO)
261 		m->mode = svc_pool_map_choose_mode();
262 
263 	switch (m->mode) {
264 	case SVC_POOL_PERCPU:
265 		npools = svc_pool_map_init_percpu(m);
266 		break;
267 	case SVC_POOL_PERNODE:
268 		npools = svc_pool_map_init_pernode(m);
269 		break;
270 	}
271 
272 	if (npools <= 0) {
273 		/* default, or memory allocation failure */
274 		npools = 1;
275 		m->mode = SVC_POOL_GLOBAL;
276 	}
277 	m->npools = npools;
278 
279 	if (npools == 1)
280 		/* service is unpooled, so doesn't hold a reference */
281 		m->count--;
282 
283 	mutex_unlock(&svc_pool_map_mutex);
284 	return npools;
285 }
286 
287 /*
288  * Drop a reference to the global map of cpus to pools, if
289  * pools were in use, i.e. if npools > 1.
290  * When the last reference is dropped, the map data is
291  * freed; this allows the sysadmin to change the pool
292  * mode using the pool_mode module option without
293  * rebooting or re-loading sunrpc.ko.
294  */
295 static void
296 svc_pool_map_put(int npools)
297 {
298 	struct svc_pool_map *m = &svc_pool_map;
299 
300 	if (npools <= 1)
301 		return;
302 	mutex_lock(&svc_pool_map_mutex);
303 
304 	if (!--m->count) {
305 		kfree(m->to_pool);
306 		m->to_pool = NULL;
307 		kfree(m->pool_to);
308 		m->pool_to = NULL;
309 		m->npools = 0;
310 	}
311 
312 	mutex_unlock(&svc_pool_map_mutex);
313 }
314 
315 static int svc_pool_map_get_node(unsigned int pidx)
316 {
317 	const struct svc_pool_map *m = &svc_pool_map;
318 
319 	if (m->count) {
320 		if (m->mode == SVC_POOL_PERCPU)
321 			return cpu_to_node(m->pool_to[pidx]);
322 		if (m->mode == SVC_POOL_PERNODE)
323 			return m->pool_to[pidx];
324 	}
325 	return NUMA_NO_NODE;
326 }
327 /*
328  * Set the given thread's cpus_allowed mask so that it
329  * will only run on cpus in the given pool.
330  */
331 static inline void
332 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx)
333 {
334 	struct svc_pool_map *m = &svc_pool_map;
335 	unsigned int node = m->pool_to[pidx];
336 
337 	/*
338 	 * The caller checks for sv_nrpools > 1, which
339 	 * implies that we've been initialized.
340 	 */
341 	WARN_ON_ONCE(m->count == 0);
342 	if (m->count == 0)
343 		return;
344 
345 	switch (m->mode) {
346 	case SVC_POOL_PERCPU:
347 	{
348 		set_cpus_allowed_ptr(task, cpumask_of(node));
349 		break;
350 	}
351 	case SVC_POOL_PERNODE:
352 	{
353 		set_cpus_allowed_ptr(task, cpumask_of_node(node));
354 		break;
355 	}
356 	}
357 }
358 
359 /**
360  * svc_pool_for_cpu - Select pool to run a thread on this cpu
361  * @serv: An RPC service
362  *
363  * Use the active CPU and the svc_pool_map's mode setting to
364  * select the svc thread pool to use. Once initialized, the
365  * svc_pool_map does not change.
366  *
367  * Return value:
368  *   A pointer to an svc_pool
369  */
370 struct svc_pool *svc_pool_for_cpu(struct svc_serv *serv)
371 {
372 	struct svc_pool_map *m = &svc_pool_map;
373 	int cpu = raw_smp_processor_id();
374 	unsigned int pidx = 0;
375 
376 	if (serv->sv_nrpools <= 1)
377 		return serv->sv_pools;
378 
379 	switch (m->mode) {
380 	case SVC_POOL_PERCPU:
381 		pidx = m->to_pool[cpu];
382 		break;
383 	case SVC_POOL_PERNODE:
384 		pidx = m->to_pool[cpu_to_node(cpu)];
385 		break;
386 	}
387 
388 	return &serv->sv_pools[pidx % serv->sv_nrpools];
389 }
390 
391 int svc_rpcb_setup(struct svc_serv *serv, struct net *net)
392 {
393 	int err;
394 
395 	err = rpcb_create_local(net);
396 	if (err)
397 		return err;
398 
399 	/* Remove any stale portmap registrations */
400 	svc_unregister(serv, net);
401 	return 0;
402 }
403 EXPORT_SYMBOL_GPL(svc_rpcb_setup);
404 
405 void svc_rpcb_cleanup(struct svc_serv *serv, struct net *net)
406 {
407 	svc_unregister(serv, net);
408 	rpcb_put_local(net);
409 }
410 EXPORT_SYMBOL_GPL(svc_rpcb_cleanup);
411 
412 static int svc_uses_rpcbind(struct svc_serv *serv)
413 {
414 	struct svc_program	*progp;
415 	unsigned int		i;
416 
417 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
418 		for (i = 0; i < progp->pg_nvers; i++) {
419 			if (progp->pg_vers[i] == NULL)
420 				continue;
421 			if (!progp->pg_vers[i]->vs_hidden)
422 				return 1;
423 		}
424 	}
425 
426 	return 0;
427 }
428 
429 int svc_bind(struct svc_serv *serv, struct net *net)
430 {
431 	if (!svc_uses_rpcbind(serv))
432 		return 0;
433 	return svc_rpcb_setup(serv, net);
434 }
435 EXPORT_SYMBOL_GPL(svc_bind);
436 
437 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
438 static void
439 __svc_init_bc(struct svc_serv *serv)
440 {
441 	INIT_LIST_HEAD(&serv->sv_cb_list);
442 	spin_lock_init(&serv->sv_cb_lock);
443 	init_waitqueue_head(&serv->sv_cb_waitq);
444 }
445 #else
446 static void
447 __svc_init_bc(struct svc_serv *serv)
448 {
449 }
450 #endif
451 
452 /*
453  * Create an RPC service
454  */
455 static struct svc_serv *
456 __svc_create(struct svc_program *prog, unsigned int bufsize, int npools,
457 	     int (*threadfn)(void *data))
458 {
459 	struct svc_serv	*serv;
460 	unsigned int vers;
461 	unsigned int xdrsize;
462 	unsigned int i;
463 
464 	if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL)))
465 		return NULL;
466 	serv->sv_name      = prog->pg_name;
467 	serv->sv_program   = prog;
468 	kref_init(&serv->sv_refcnt);
469 	serv->sv_stats     = prog->pg_stats;
470 	if (bufsize > RPCSVC_MAXPAYLOAD)
471 		bufsize = RPCSVC_MAXPAYLOAD;
472 	serv->sv_max_payload = bufsize? bufsize : 4096;
473 	serv->sv_max_mesg  = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE);
474 	serv->sv_threadfn = threadfn;
475 	xdrsize = 0;
476 	while (prog) {
477 		prog->pg_lovers = prog->pg_nvers-1;
478 		for (vers=0; vers<prog->pg_nvers ; vers++)
479 			if (prog->pg_vers[vers]) {
480 				prog->pg_hivers = vers;
481 				if (prog->pg_lovers > vers)
482 					prog->pg_lovers = vers;
483 				if (prog->pg_vers[vers]->vs_xdrsize > xdrsize)
484 					xdrsize = prog->pg_vers[vers]->vs_xdrsize;
485 			}
486 		prog = prog->pg_next;
487 	}
488 	serv->sv_xdrsize   = xdrsize;
489 	INIT_LIST_HEAD(&serv->sv_tempsocks);
490 	INIT_LIST_HEAD(&serv->sv_permsocks);
491 	timer_setup(&serv->sv_temptimer, NULL, 0);
492 	spin_lock_init(&serv->sv_lock);
493 
494 	__svc_init_bc(serv);
495 
496 	serv->sv_nrpools = npools;
497 	serv->sv_pools =
498 		kcalloc(serv->sv_nrpools, sizeof(struct svc_pool),
499 			GFP_KERNEL);
500 	if (!serv->sv_pools) {
501 		kfree(serv);
502 		return NULL;
503 	}
504 
505 	for (i = 0; i < serv->sv_nrpools; i++) {
506 		struct svc_pool *pool = &serv->sv_pools[i];
507 
508 		dprintk("svc: initialising pool %u for %s\n",
509 				i, serv->sv_name);
510 
511 		pool->sp_id = i;
512 		INIT_LIST_HEAD(&pool->sp_sockets);
513 		INIT_LIST_HEAD(&pool->sp_all_threads);
514 		spin_lock_init(&pool->sp_lock);
515 
516 		percpu_counter_init(&pool->sp_sockets_queued, 0, GFP_KERNEL);
517 		percpu_counter_init(&pool->sp_threads_woken, 0, GFP_KERNEL);
518 		percpu_counter_init(&pool->sp_threads_timedout, 0, GFP_KERNEL);
519 	}
520 
521 	return serv;
522 }
523 
524 /**
525  * svc_create - Create an RPC service
526  * @prog: the RPC program the new service will handle
527  * @bufsize: maximum message size for @prog
528  * @threadfn: a function to service RPC requests for @prog
529  *
530  * Returns an instantiated struct svc_serv object or NULL.
531  */
532 struct svc_serv *svc_create(struct svc_program *prog, unsigned int bufsize,
533 			    int (*threadfn)(void *data))
534 {
535 	return __svc_create(prog, bufsize, 1, threadfn);
536 }
537 EXPORT_SYMBOL_GPL(svc_create);
538 
539 /**
540  * svc_create_pooled - Create an RPC service with pooled threads
541  * @prog: the RPC program the new service will handle
542  * @bufsize: maximum message size for @prog
543  * @threadfn: a function to service RPC requests for @prog
544  *
545  * Returns an instantiated struct svc_serv object or NULL.
546  */
547 struct svc_serv *svc_create_pooled(struct svc_program *prog,
548 				   unsigned int bufsize,
549 				   int (*threadfn)(void *data))
550 {
551 	struct svc_serv *serv;
552 	unsigned int npools = svc_pool_map_get();
553 
554 	serv = __svc_create(prog, bufsize, npools, threadfn);
555 	if (!serv)
556 		goto out_err;
557 	return serv;
558 out_err:
559 	svc_pool_map_put(npools);
560 	return NULL;
561 }
562 EXPORT_SYMBOL_GPL(svc_create_pooled);
563 
564 /*
565  * Destroy an RPC service. Should be called with appropriate locking to
566  * protect sv_permsocks and sv_tempsocks.
567  */
568 void
569 svc_destroy(struct kref *ref)
570 {
571 	struct svc_serv *serv = container_of(ref, struct svc_serv, sv_refcnt);
572 	unsigned int i;
573 
574 	dprintk("svc: svc_destroy(%s)\n", serv->sv_program->pg_name);
575 	timer_shutdown_sync(&serv->sv_temptimer);
576 
577 	/*
578 	 * The last user is gone and thus all sockets have to be destroyed to
579 	 * the point. Check this.
580 	 */
581 	BUG_ON(!list_empty(&serv->sv_permsocks));
582 	BUG_ON(!list_empty(&serv->sv_tempsocks));
583 
584 	cache_clean_deferred(serv);
585 
586 	svc_pool_map_put(serv->sv_nrpools);
587 
588 	for (i = 0; i < serv->sv_nrpools; i++) {
589 		struct svc_pool *pool = &serv->sv_pools[i];
590 
591 		percpu_counter_destroy(&pool->sp_sockets_queued);
592 		percpu_counter_destroy(&pool->sp_threads_woken);
593 		percpu_counter_destroy(&pool->sp_threads_timedout);
594 	}
595 	kfree(serv->sv_pools);
596 	kfree(serv);
597 }
598 EXPORT_SYMBOL_GPL(svc_destroy);
599 
600 static bool
601 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size, int node)
602 {
603 	unsigned long pages, ret;
604 
605 	/* bc_xprt uses fore channel allocated buffers */
606 	if (svc_is_backchannel(rqstp))
607 		return true;
608 
609 	pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply.
610 				       * We assume one is at most one page
611 				       */
612 	WARN_ON_ONCE(pages > RPCSVC_MAXPAGES);
613 	if (pages > RPCSVC_MAXPAGES)
614 		pages = RPCSVC_MAXPAGES;
615 
616 	ret = alloc_pages_bulk_array_node(GFP_KERNEL, node, pages,
617 					  rqstp->rq_pages);
618 	return ret == pages;
619 }
620 
621 /*
622  * Release an RPC server buffer
623  */
624 static void
625 svc_release_buffer(struct svc_rqst *rqstp)
626 {
627 	unsigned int i;
628 
629 	for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++)
630 		if (rqstp->rq_pages[i])
631 			put_page(rqstp->rq_pages[i]);
632 }
633 
634 struct svc_rqst *
635 svc_rqst_alloc(struct svc_serv *serv, struct svc_pool *pool, int node)
636 {
637 	struct svc_rqst	*rqstp;
638 
639 	rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node);
640 	if (!rqstp)
641 		return rqstp;
642 
643 	pagevec_init(&rqstp->rq_pvec);
644 
645 	__set_bit(RQ_BUSY, &rqstp->rq_flags);
646 	rqstp->rq_server = serv;
647 	rqstp->rq_pool = pool;
648 
649 	rqstp->rq_scratch_page = alloc_pages_node(node, GFP_KERNEL, 0);
650 	if (!rqstp->rq_scratch_page)
651 		goto out_enomem;
652 
653 	rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
654 	if (!rqstp->rq_argp)
655 		goto out_enomem;
656 
657 	rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
658 	if (!rqstp->rq_resp)
659 		goto out_enomem;
660 
661 	if (!svc_init_buffer(rqstp, serv->sv_max_mesg, node))
662 		goto out_enomem;
663 
664 	return rqstp;
665 out_enomem:
666 	svc_rqst_free(rqstp);
667 	return NULL;
668 }
669 EXPORT_SYMBOL_GPL(svc_rqst_alloc);
670 
671 static struct svc_rqst *
672 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node)
673 {
674 	struct svc_rqst	*rqstp;
675 
676 	rqstp = svc_rqst_alloc(serv, pool, node);
677 	if (!rqstp)
678 		return ERR_PTR(-ENOMEM);
679 
680 	svc_get(serv);
681 	spin_lock_bh(&serv->sv_lock);
682 	serv->sv_nrthreads += 1;
683 	spin_unlock_bh(&serv->sv_lock);
684 
685 	spin_lock_bh(&pool->sp_lock);
686 	pool->sp_nrthreads++;
687 	list_add_rcu(&rqstp->rq_all, &pool->sp_all_threads);
688 	spin_unlock_bh(&pool->sp_lock);
689 	return rqstp;
690 }
691 
692 /*
693  * Choose a pool in which to create a new thread, for svc_set_num_threads
694  */
695 static inline struct svc_pool *
696 choose_pool(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
697 {
698 	if (pool != NULL)
699 		return pool;
700 
701 	return &serv->sv_pools[(*state)++ % serv->sv_nrpools];
702 }
703 
704 /*
705  * Choose a thread to kill, for svc_set_num_threads
706  */
707 static inline struct task_struct *
708 choose_victim(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
709 {
710 	unsigned int i;
711 	struct task_struct *task = NULL;
712 
713 	if (pool != NULL) {
714 		spin_lock_bh(&pool->sp_lock);
715 	} else {
716 		/* choose a pool in round-robin fashion */
717 		for (i = 0; i < serv->sv_nrpools; i++) {
718 			pool = &serv->sv_pools[--(*state) % serv->sv_nrpools];
719 			spin_lock_bh(&pool->sp_lock);
720 			if (!list_empty(&pool->sp_all_threads))
721 				goto found_pool;
722 			spin_unlock_bh(&pool->sp_lock);
723 		}
724 		return NULL;
725 	}
726 
727 found_pool:
728 	if (!list_empty(&pool->sp_all_threads)) {
729 		struct svc_rqst *rqstp;
730 
731 		/*
732 		 * Remove from the pool->sp_all_threads list
733 		 * so we don't try to kill it again.
734 		 */
735 		rqstp = list_entry(pool->sp_all_threads.next, struct svc_rqst, rq_all);
736 		set_bit(RQ_VICTIM, &rqstp->rq_flags);
737 		list_del_rcu(&rqstp->rq_all);
738 		task = rqstp->rq_task;
739 	}
740 	spin_unlock_bh(&pool->sp_lock);
741 
742 	return task;
743 }
744 
745 /* create new threads */
746 static int
747 svc_start_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
748 {
749 	struct svc_rqst	*rqstp;
750 	struct task_struct *task;
751 	struct svc_pool *chosen_pool;
752 	unsigned int state = serv->sv_nrthreads-1;
753 	int node;
754 
755 	do {
756 		nrservs--;
757 		chosen_pool = choose_pool(serv, pool, &state);
758 
759 		node = svc_pool_map_get_node(chosen_pool->sp_id);
760 		rqstp = svc_prepare_thread(serv, chosen_pool, node);
761 		if (IS_ERR(rqstp))
762 			return PTR_ERR(rqstp);
763 
764 		task = kthread_create_on_node(serv->sv_threadfn, rqstp,
765 					      node, "%s", serv->sv_name);
766 		if (IS_ERR(task)) {
767 			svc_exit_thread(rqstp);
768 			return PTR_ERR(task);
769 		}
770 
771 		rqstp->rq_task = task;
772 		if (serv->sv_nrpools > 1)
773 			svc_pool_map_set_cpumask(task, chosen_pool->sp_id);
774 
775 		svc_sock_update_bufs(serv);
776 		wake_up_process(task);
777 	} while (nrservs > 0);
778 
779 	return 0;
780 }
781 
782 /*
783  * Create or destroy enough new threads to make the number
784  * of threads the given number.  If `pool' is non-NULL, applies
785  * only to threads in that pool, otherwise round-robins between
786  * all pools.  Caller must ensure that mutual exclusion between this and
787  * server startup or shutdown.
788  */
789 
790 /* destroy old threads */
791 static int
792 svc_stop_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
793 {
794 	struct svc_rqst	*rqstp;
795 	struct task_struct *task;
796 	unsigned int state = serv->sv_nrthreads-1;
797 
798 	/* destroy old threads */
799 	do {
800 		task = choose_victim(serv, pool, &state);
801 		if (task == NULL)
802 			break;
803 		rqstp = kthread_data(task);
804 		/* Did we lose a race to svo_function threadfn? */
805 		if (kthread_stop(task) == -EINTR)
806 			svc_exit_thread(rqstp);
807 		nrservs++;
808 	} while (nrservs < 0);
809 	return 0;
810 }
811 
812 int
813 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
814 {
815 	if (pool == NULL) {
816 		nrservs -= serv->sv_nrthreads;
817 	} else {
818 		spin_lock_bh(&pool->sp_lock);
819 		nrservs -= pool->sp_nrthreads;
820 		spin_unlock_bh(&pool->sp_lock);
821 	}
822 
823 	if (nrservs > 0)
824 		return svc_start_kthreads(serv, pool, nrservs);
825 	if (nrservs < 0)
826 		return svc_stop_kthreads(serv, pool, nrservs);
827 	return 0;
828 }
829 EXPORT_SYMBOL_GPL(svc_set_num_threads);
830 
831 /**
832  * svc_rqst_replace_page - Replace one page in rq_pages[]
833  * @rqstp: svc_rqst with pages to replace
834  * @page: replacement page
835  *
836  * When replacing a page in rq_pages, batch the release of the
837  * replaced pages to avoid hammering the page allocator.
838  *
839  * Return values:
840  *   %true: page replaced
841  *   %false: array bounds checking failed
842  */
843 bool svc_rqst_replace_page(struct svc_rqst *rqstp, struct page *page)
844 {
845 	struct page **begin = rqstp->rq_pages;
846 	struct page **end = &rqstp->rq_pages[RPCSVC_MAXPAGES];
847 
848 	if (unlikely(rqstp->rq_next_page < begin || rqstp->rq_next_page > end)) {
849 		trace_svc_replace_page_err(rqstp);
850 		return false;
851 	}
852 
853 	if (*rqstp->rq_next_page) {
854 		if (!pagevec_space(&rqstp->rq_pvec))
855 			__pagevec_release(&rqstp->rq_pvec);
856 		pagevec_add(&rqstp->rq_pvec, *rqstp->rq_next_page);
857 	}
858 
859 	get_page(page);
860 	*(rqstp->rq_next_page++) = page;
861 	return true;
862 }
863 EXPORT_SYMBOL_GPL(svc_rqst_replace_page);
864 
865 /**
866  * svc_rqst_release_pages - Release Reply buffer pages
867  * @rqstp: RPC transaction context
868  *
869  * Release response pages that might still be in flight after
870  * svc_send, and any spliced filesystem-owned pages.
871  */
872 void svc_rqst_release_pages(struct svc_rqst *rqstp)
873 {
874 	int i, count = rqstp->rq_next_page - rqstp->rq_respages;
875 
876 	if (count) {
877 		release_pages(rqstp->rq_respages, count);
878 		for (i = 0; i < count; i++)
879 			rqstp->rq_respages[i] = NULL;
880 	}
881 }
882 
883 /*
884  * Called from a server thread as it's exiting. Caller must hold the "service
885  * mutex" for the service.
886  */
887 void
888 svc_rqst_free(struct svc_rqst *rqstp)
889 {
890 	pagevec_release(&rqstp->rq_pvec);
891 	svc_release_buffer(rqstp);
892 	if (rqstp->rq_scratch_page)
893 		put_page(rqstp->rq_scratch_page);
894 	kfree(rqstp->rq_resp);
895 	kfree(rqstp->rq_argp);
896 	kfree(rqstp->rq_auth_data);
897 	kfree_rcu(rqstp, rq_rcu_head);
898 }
899 EXPORT_SYMBOL_GPL(svc_rqst_free);
900 
901 void
902 svc_exit_thread(struct svc_rqst *rqstp)
903 {
904 	struct svc_serv	*serv = rqstp->rq_server;
905 	struct svc_pool	*pool = rqstp->rq_pool;
906 
907 	spin_lock_bh(&pool->sp_lock);
908 	pool->sp_nrthreads--;
909 	if (!test_and_set_bit(RQ_VICTIM, &rqstp->rq_flags))
910 		list_del_rcu(&rqstp->rq_all);
911 	spin_unlock_bh(&pool->sp_lock);
912 
913 	spin_lock_bh(&serv->sv_lock);
914 	serv->sv_nrthreads -= 1;
915 	spin_unlock_bh(&serv->sv_lock);
916 	svc_sock_update_bufs(serv);
917 
918 	svc_rqst_free(rqstp);
919 
920 	svc_put(serv);
921 }
922 EXPORT_SYMBOL_GPL(svc_exit_thread);
923 
924 /*
925  * Register an "inet" protocol family netid with the local
926  * rpcbind daemon via an rpcbind v4 SET request.
927  *
928  * No netconfig infrastructure is available in the kernel, so
929  * we map IP_ protocol numbers to netids by hand.
930  *
931  * Returns zero on success; a negative errno value is returned
932  * if any error occurs.
933  */
934 static int __svc_rpcb_register4(struct net *net, const u32 program,
935 				const u32 version,
936 				const unsigned short protocol,
937 				const unsigned short port)
938 {
939 	const struct sockaddr_in sin = {
940 		.sin_family		= AF_INET,
941 		.sin_addr.s_addr	= htonl(INADDR_ANY),
942 		.sin_port		= htons(port),
943 	};
944 	const char *netid;
945 	int error;
946 
947 	switch (protocol) {
948 	case IPPROTO_UDP:
949 		netid = RPCBIND_NETID_UDP;
950 		break;
951 	case IPPROTO_TCP:
952 		netid = RPCBIND_NETID_TCP;
953 		break;
954 	default:
955 		return -ENOPROTOOPT;
956 	}
957 
958 	error = rpcb_v4_register(net, program, version,
959 					(const struct sockaddr *)&sin, netid);
960 
961 	/*
962 	 * User space didn't support rpcbind v4, so retry this
963 	 * registration request with the legacy rpcbind v2 protocol.
964 	 */
965 	if (error == -EPROTONOSUPPORT)
966 		error = rpcb_register(net, program, version, protocol, port);
967 
968 	return error;
969 }
970 
971 #if IS_ENABLED(CONFIG_IPV6)
972 /*
973  * Register an "inet6" protocol family netid with the local
974  * rpcbind daemon via an rpcbind v4 SET request.
975  *
976  * No netconfig infrastructure is available in the kernel, so
977  * we map IP_ protocol numbers to netids by hand.
978  *
979  * Returns zero on success; a negative errno value is returned
980  * if any error occurs.
981  */
982 static int __svc_rpcb_register6(struct net *net, const u32 program,
983 				const u32 version,
984 				const unsigned short protocol,
985 				const unsigned short port)
986 {
987 	const struct sockaddr_in6 sin6 = {
988 		.sin6_family		= AF_INET6,
989 		.sin6_addr		= IN6ADDR_ANY_INIT,
990 		.sin6_port		= htons(port),
991 	};
992 	const char *netid;
993 	int error;
994 
995 	switch (protocol) {
996 	case IPPROTO_UDP:
997 		netid = RPCBIND_NETID_UDP6;
998 		break;
999 	case IPPROTO_TCP:
1000 		netid = RPCBIND_NETID_TCP6;
1001 		break;
1002 	default:
1003 		return -ENOPROTOOPT;
1004 	}
1005 
1006 	error = rpcb_v4_register(net, program, version,
1007 					(const struct sockaddr *)&sin6, netid);
1008 
1009 	/*
1010 	 * User space didn't support rpcbind version 4, so we won't
1011 	 * use a PF_INET6 listener.
1012 	 */
1013 	if (error == -EPROTONOSUPPORT)
1014 		error = -EAFNOSUPPORT;
1015 
1016 	return error;
1017 }
1018 #endif	/* IS_ENABLED(CONFIG_IPV6) */
1019 
1020 /*
1021  * Register a kernel RPC service via rpcbind version 4.
1022  *
1023  * Returns zero on success; a negative errno value is returned
1024  * if any error occurs.
1025  */
1026 static int __svc_register(struct net *net, const char *progname,
1027 			  const u32 program, const u32 version,
1028 			  const int family,
1029 			  const unsigned short protocol,
1030 			  const unsigned short port)
1031 {
1032 	int error = -EAFNOSUPPORT;
1033 
1034 	switch (family) {
1035 	case PF_INET:
1036 		error = __svc_rpcb_register4(net, program, version,
1037 						protocol, port);
1038 		break;
1039 #if IS_ENABLED(CONFIG_IPV6)
1040 	case PF_INET6:
1041 		error = __svc_rpcb_register6(net, program, version,
1042 						protocol, port);
1043 #endif
1044 	}
1045 
1046 	trace_svc_register(progname, version, family, protocol, port, error);
1047 	return error;
1048 }
1049 
1050 int svc_rpcbind_set_version(struct net *net,
1051 			    const struct svc_program *progp,
1052 			    u32 version, int family,
1053 			    unsigned short proto,
1054 			    unsigned short port)
1055 {
1056 	return __svc_register(net, progp->pg_name, progp->pg_prog,
1057 				version, family, proto, port);
1058 
1059 }
1060 EXPORT_SYMBOL_GPL(svc_rpcbind_set_version);
1061 
1062 int svc_generic_rpcbind_set(struct net *net,
1063 			    const struct svc_program *progp,
1064 			    u32 version, int family,
1065 			    unsigned short proto,
1066 			    unsigned short port)
1067 {
1068 	const struct svc_version *vers = progp->pg_vers[version];
1069 	int error;
1070 
1071 	if (vers == NULL)
1072 		return 0;
1073 
1074 	if (vers->vs_hidden) {
1075 		trace_svc_noregister(progp->pg_name, version, proto,
1076 				     port, family, 0);
1077 		return 0;
1078 	}
1079 
1080 	/*
1081 	 * Don't register a UDP port if we need congestion
1082 	 * control.
1083 	 */
1084 	if (vers->vs_need_cong_ctrl && proto == IPPROTO_UDP)
1085 		return 0;
1086 
1087 	error = svc_rpcbind_set_version(net, progp, version,
1088 					family, proto, port);
1089 
1090 	return (vers->vs_rpcb_optnl) ? 0 : error;
1091 }
1092 EXPORT_SYMBOL_GPL(svc_generic_rpcbind_set);
1093 
1094 /**
1095  * svc_register - register an RPC service with the local portmapper
1096  * @serv: svc_serv struct for the service to register
1097  * @net: net namespace for the service to register
1098  * @family: protocol family of service's listener socket
1099  * @proto: transport protocol number to advertise
1100  * @port: port to advertise
1101  *
1102  * Service is registered for any address in the passed-in protocol family
1103  */
1104 int svc_register(const struct svc_serv *serv, struct net *net,
1105 		 const int family, const unsigned short proto,
1106 		 const unsigned short port)
1107 {
1108 	struct svc_program	*progp;
1109 	unsigned int		i;
1110 	int			error = 0;
1111 
1112 	WARN_ON_ONCE(proto == 0 && port == 0);
1113 	if (proto == 0 && port == 0)
1114 		return -EINVAL;
1115 
1116 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
1117 		for (i = 0; i < progp->pg_nvers; i++) {
1118 
1119 			error = progp->pg_rpcbind_set(net, progp, i,
1120 					family, proto, port);
1121 			if (error < 0) {
1122 				printk(KERN_WARNING "svc: failed to register "
1123 					"%sv%u RPC service (errno %d).\n",
1124 					progp->pg_name, i, -error);
1125 				break;
1126 			}
1127 		}
1128 	}
1129 
1130 	return error;
1131 }
1132 
1133 /*
1134  * If user space is running rpcbind, it should take the v4 UNSET
1135  * and clear everything for this [program, version].  If user space
1136  * is running portmap, it will reject the v4 UNSET, but won't have
1137  * any "inet6" entries anyway.  So a PMAP_UNSET should be sufficient
1138  * in this case to clear all existing entries for [program, version].
1139  */
1140 static void __svc_unregister(struct net *net, const u32 program, const u32 version,
1141 			     const char *progname)
1142 {
1143 	int error;
1144 
1145 	error = rpcb_v4_register(net, program, version, NULL, "");
1146 
1147 	/*
1148 	 * User space didn't support rpcbind v4, so retry this
1149 	 * request with the legacy rpcbind v2 protocol.
1150 	 */
1151 	if (error == -EPROTONOSUPPORT)
1152 		error = rpcb_register(net, program, version, 0, 0);
1153 
1154 	trace_svc_unregister(progname, version, error);
1155 }
1156 
1157 /*
1158  * All netids, bind addresses and ports registered for [program, version]
1159  * are removed from the local rpcbind database (if the service is not
1160  * hidden) to make way for a new instance of the service.
1161  *
1162  * The result of unregistration is reported via dprintk for those who want
1163  * verification of the result, but is otherwise not important.
1164  */
1165 static void svc_unregister(const struct svc_serv *serv, struct net *net)
1166 {
1167 	struct sighand_struct *sighand;
1168 	struct svc_program *progp;
1169 	unsigned long flags;
1170 	unsigned int i;
1171 
1172 	clear_thread_flag(TIF_SIGPENDING);
1173 
1174 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
1175 		for (i = 0; i < progp->pg_nvers; i++) {
1176 			if (progp->pg_vers[i] == NULL)
1177 				continue;
1178 			if (progp->pg_vers[i]->vs_hidden)
1179 				continue;
1180 			__svc_unregister(net, progp->pg_prog, i, progp->pg_name);
1181 		}
1182 	}
1183 
1184 	rcu_read_lock();
1185 	sighand = rcu_dereference(current->sighand);
1186 	spin_lock_irqsave(&sighand->siglock, flags);
1187 	recalc_sigpending();
1188 	spin_unlock_irqrestore(&sighand->siglock, flags);
1189 	rcu_read_unlock();
1190 }
1191 
1192 /*
1193  * dprintk the given error with the address of the client that caused it.
1194  */
1195 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
1196 static __printf(2, 3)
1197 void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...)
1198 {
1199 	struct va_format vaf;
1200 	va_list args;
1201 	char 	buf[RPC_MAX_ADDRBUFLEN];
1202 
1203 	va_start(args, fmt);
1204 
1205 	vaf.fmt = fmt;
1206 	vaf.va = &args;
1207 
1208 	dprintk("svc: %s: %pV", svc_print_addr(rqstp, buf, sizeof(buf)), &vaf);
1209 
1210 	va_end(args);
1211 }
1212 #else
1213 static __printf(2,3) void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) {}
1214 #endif
1215 
1216 __be32
1217 svc_generic_init_request(struct svc_rqst *rqstp,
1218 		const struct svc_program *progp,
1219 		struct svc_process_info *ret)
1220 {
1221 	const struct svc_version *versp = NULL;	/* compiler food */
1222 	const struct svc_procedure *procp = NULL;
1223 
1224 	if (rqstp->rq_vers >= progp->pg_nvers )
1225 		goto err_bad_vers;
1226 	versp = progp->pg_vers[rqstp->rq_vers];
1227 	if (!versp)
1228 		goto err_bad_vers;
1229 
1230 	/*
1231 	 * Some protocol versions (namely NFSv4) require some form of
1232 	 * congestion control.  (See RFC 7530 section 3.1 paragraph 2)
1233 	 * In other words, UDP is not allowed. We mark those when setting
1234 	 * up the svc_xprt, and verify that here.
1235 	 *
1236 	 * The spec is not very clear about what error should be returned
1237 	 * when someone tries to access a server that is listening on UDP
1238 	 * for lower versions. RPC_PROG_MISMATCH seems to be the closest
1239 	 * fit.
1240 	 */
1241 	if (versp->vs_need_cong_ctrl && rqstp->rq_xprt &&
1242 	    !test_bit(XPT_CONG_CTRL, &rqstp->rq_xprt->xpt_flags))
1243 		goto err_bad_vers;
1244 
1245 	if (rqstp->rq_proc >= versp->vs_nproc)
1246 		goto err_bad_proc;
1247 	rqstp->rq_procinfo = procp = &versp->vs_proc[rqstp->rq_proc];
1248 	if (!procp)
1249 		goto err_bad_proc;
1250 
1251 	/* Initialize storage for argp and resp */
1252 	memset(rqstp->rq_argp, 0, procp->pc_argzero);
1253 	memset(rqstp->rq_resp, 0, procp->pc_ressize);
1254 
1255 	/* Bump per-procedure stats counter */
1256 	this_cpu_inc(versp->vs_count[rqstp->rq_proc]);
1257 
1258 	ret->dispatch = versp->vs_dispatch;
1259 	return rpc_success;
1260 err_bad_vers:
1261 	ret->mismatch.lovers = progp->pg_lovers;
1262 	ret->mismatch.hivers = progp->pg_hivers;
1263 	return rpc_prog_mismatch;
1264 err_bad_proc:
1265 	return rpc_proc_unavail;
1266 }
1267 EXPORT_SYMBOL_GPL(svc_generic_init_request);
1268 
1269 /*
1270  * Common routine for processing the RPC request.
1271  */
1272 static int
1273 svc_process_common(struct svc_rqst *rqstp)
1274 {
1275 	struct xdr_stream	*xdr = &rqstp->rq_res_stream;
1276 	struct svc_program	*progp;
1277 	const struct svc_procedure *procp = NULL;
1278 	struct svc_serv		*serv = rqstp->rq_server;
1279 	struct svc_process_info process;
1280 	int			auth_res, rc;
1281 	unsigned int		aoffset;
1282 	__be32			*p;
1283 
1284 	/* Will be turned off by GSS integrity and privacy services */
1285 	set_bit(RQ_SPLICE_OK, &rqstp->rq_flags);
1286 	/* Will be turned off only when NFSv4 Sessions are used */
1287 	set_bit(RQ_USEDEFERRAL, &rqstp->rq_flags);
1288 	clear_bit(RQ_DROPME, &rqstp->rq_flags);
1289 
1290 	/* Construct the first words of the reply: */
1291 	svcxdr_init_encode(rqstp);
1292 	xdr_stream_encode_be32(xdr, rqstp->rq_xid);
1293 	xdr_stream_encode_be32(xdr, rpc_reply);
1294 
1295 	p = xdr_inline_decode(&rqstp->rq_arg_stream, XDR_UNIT * 4);
1296 	if (unlikely(!p))
1297 		goto err_short_len;
1298 	if (*p++ != cpu_to_be32(RPC_VERSION))
1299 		goto err_bad_rpc;
1300 
1301 	xdr_stream_encode_be32(xdr, rpc_msg_accepted);
1302 
1303 	rqstp->rq_prog = be32_to_cpup(p++);
1304 	rqstp->rq_vers = be32_to_cpup(p++);
1305 	rqstp->rq_proc = be32_to_cpup(p);
1306 
1307 	for (progp = serv->sv_program; progp; progp = progp->pg_next)
1308 		if (rqstp->rq_prog == progp->pg_prog)
1309 			break;
1310 
1311 	/*
1312 	 * Decode auth data, and add verifier to reply buffer.
1313 	 * We do this before anything else in order to get a decent
1314 	 * auth verifier.
1315 	 */
1316 	auth_res = svc_authenticate(rqstp);
1317 	/* Also give the program a chance to reject this call: */
1318 	if (auth_res == SVC_OK && progp)
1319 		auth_res = progp->pg_authenticate(rqstp);
1320 	trace_svc_authenticate(rqstp, auth_res);
1321 	switch (auth_res) {
1322 	case SVC_OK:
1323 		break;
1324 	case SVC_GARBAGE:
1325 		goto err_garbage_args;
1326 	case SVC_SYSERR:
1327 		goto err_system_err;
1328 	case SVC_DENIED:
1329 		goto err_bad_auth;
1330 	case SVC_CLOSE:
1331 		goto close;
1332 	case SVC_DROP:
1333 		goto dropit;
1334 	case SVC_COMPLETE:
1335 		goto sendit;
1336 	}
1337 
1338 	if (progp == NULL)
1339 		goto err_bad_prog;
1340 
1341 	switch (progp->pg_init_request(rqstp, progp, &process)) {
1342 	case rpc_success:
1343 		break;
1344 	case rpc_prog_unavail:
1345 		goto err_bad_prog;
1346 	case rpc_prog_mismatch:
1347 		goto err_bad_vers;
1348 	case rpc_proc_unavail:
1349 		goto err_bad_proc;
1350 	}
1351 
1352 	procp = rqstp->rq_procinfo;
1353 	/* Should this check go into the dispatcher? */
1354 	if (!procp || !procp->pc_func)
1355 		goto err_bad_proc;
1356 
1357 	/* Syntactic check complete */
1358 	serv->sv_stats->rpccnt++;
1359 	trace_svc_process(rqstp, progp->pg_name);
1360 
1361 	aoffset = xdr_stream_pos(xdr);
1362 
1363 	/* un-reserve some of the out-queue now that we have a
1364 	 * better idea of reply size
1365 	 */
1366 	if (procp->pc_xdrressize)
1367 		svc_reserve_auth(rqstp, procp->pc_xdrressize<<2);
1368 
1369 	/* Call the function that processes the request. */
1370 	rc = process.dispatch(rqstp);
1371 	if (procp->pc_release)
1372 		procp->pc_release(rqstp);
1373 	if (!rc)
1374 		goto dropit;
1375 	if (rqstp->rq_auth_stat != rpc_auth_ok)
1376 		goto err_bad_auth;
1377 
1378 	if (*rqstp->rq_accept_statp != rpc_success)
1379 		xdr_truncate_encode(xdr, aoffset);
1380 
1381 	if (procp->pc_encode == NULL)
1382 		goto dropit;
1383 
1384  sendit:
1385 	if (svc_authorise(rqstp))
1386 		goto close_xprt;
1387 	return 1;		/* Caller can now send it */
1388 
1389  dropit:
1390 	svc_authorise(rqstp);	/* doesn't hurt to call this twice */
1391 	dprintk("svc: svc_process dropit\n");
1392 	return 0;
1393 
1394  close:
1395 	svc_authorise(rqstp);
1396 close_xprt:
1397 	if (rqstp->rq_xprt && test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags))
1398 		svc_xprt_close(rqstp->rq_xprt);
1399 	dprintk("svc: svc_process close\n");
1400 	return 0;
1401 
1402 err_short_len:
1403 	svc_printk(rqstp, "short len %u, dropping request\n",
1404 		   rqstp->rq_arg.len);
1405 	goto close_xprt;
1406 
1407 err_bad_rpc:
1408 	serv->sv_stats->rpcbadfmt++;
1409 	xdr_stream_encode_u32(xdr, RPC_MSG_DENIED);
1410 	xdr_stream_encode_u32(xdr, RPC_MISMATCH);
1411 	/* Only RPCv2 supported */
1412 	xdr_stream_encode_u32(xdr, RPC_VERSION);
1413 	xdr_stream_encode_u32(xdr, RPC_VERSION);
1414 	return 1;	/* don't wrap */
1415 
1416 err_bad_auth:
1417 	dprintk("svc: authentication failed (%d)\n",
1418 		be32_to_cpu(rqstp->rq_auth_stat));
1419 	serv->sv_stats->rpcbadauth++;
1420 	/* Restore write pointer to location of reply status: */
1421 	xdr_truncate_encode(xdr, XDR_UNIT * 2);
1422 	xdr_stream_encode_u32(xdr, RPC_MSG_DENIED);
1423 	xdr_stream_encode_u32(xdr, RPC_AUTH_ERROR);
1424 	xdr_stream_encode_be32(xdr, rqstp->rq_auth_stat);
1425 	goto sendit;
1426 
1427 err_bad_prog:
1428 	dprintk("svc: unknown program %d\n", rqstp->rq_prog);
1429 	serv->sv_stats->rpcbadfmt++;
1430 	*rqstp->rq_accept_statp = rpc_prog_unavail;
1431 	goto sendit;
1432 
1433 err_bad_vers:
1434 	svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n",
1435 		       rqstp->rq_vers, rqstp->rq_prog, progp->pg_name);
1436 
1437 	serv->sv_stats->rpcbadfmt++;
1438 	*rqstp->rq_accept_statp = rpc_prog_mismatch;
1439 
1440 	/*
1441 	 * svc_authenticate() has already added the verifier and
1442 	 * advanced the stream just past rq_accept_statp.
1443 	 */
1444 	xdr_stream_encode_u32(xdr, process.mismatch.lovers);
1445 	xdr_stream_encode_u32(xdr, process.mismatch.hivers);
1446 	goto sendit;
1447 
1448 err_bad_proc:
1449 	svc_printk(rqstp, "unknown procedure (%d)\n", rqstp->rq_proc);
1450 
1451 	serv->sv_stats->rpcbadfmt++;
1452 	*rqstp->rq_accept_statp = rpc_proc_unavail;
1453 	goto sendit;
1454 
1455 err_garbage_args:
1456 	svc_printk(rqstp, "failed to decode RPC header\n");
1457 
1458 	serv->sv_stats->rpcbadfmt++;
1459 	*rqstp->rq_accept_statp = rpc_garbage_args;
1460 	goto sendit;
1461 
1462 err_system_err:
1463 	serv->sv_stats->rpcbadfmt++;
1464 	*rqstp->rq_accept_statp = rpc_system_err;
1465 	goto sendit;
1466 }
1467 
1468 /**
1469  * svc_process - Execute one RPC transaction
1470  * @rqstp: RPC transaction context
1471  *
1472  */
1473 void svc_process(struct svc_rqst *rqstp)
1474 {
1475 	struct kvec		*resv = &rqstp->rq_res.head[0];
1476 	__be32 *p;
1477 
1478 #if IS_ENABLED(CONFIG_FAIL_SUNRPC)
1479 	if (!fail_sunrpc.ignore_server_disconnect &&
1480 	    should_fail(&fail_sunrpc.attr, 1))
1481 		svc_xprt_deferred_close(rqstp->rq_xprt);
1482 #endif
1483 
1484 	/*
1485 	 * Setup response xdr_buf.
1486 	 * Initially it has just one page
1487 	 */
1488 	rqstp->rq_next_page = &rqstp->rq_respages[1];
1489 	resv->iov_base = page_address(rqstp->rq_respages[0]);
1490 	resv->iov_len = 0;
1491 	rqstp->rq_res.pages = rqstp->rq_next_page;
1492 	rqstp->rq_res.len = 0;
1493 	rqstp->rq_res.page_base = 0;
1494 	rqstp->rq_res.page_len = 0;
1495 	rqstp->rq_res.buflen = PAGE_SIZE;
1496 	rqstp->rq_res.tail[0].iov_base = NULL;
1497 	rqstp->rq_res.tail[0].iov_len = 0;
1498 
1499 	svcxdr_init_decode(rqstp);
1500 	p = xdr_inline_decode(&rqstp->rq_arg_stream, XDR_UNIT * 2);
1501 	if (unlikely(!p))
1502 		goto out_drop;
1503 	rqstp->rq_xid = *p++;
1504 	if (unlikely(*p != rpc_call))
1505 		goto out_baddir;
1506 
1507 	if (!svc_process_common(rqstp))
1508 		goto out_drop;
1509 	svc_send(rqstp);
1510 	return;
1511 
1512 out_baddir:
1513 	svc_printk(rqstp, "bad direction 0x%08x, dropping request\n",
1514 		   be32_to_cpu(*p));
1515 	rqstp->rq_server->sv_stats->rpcbadfmt++;
1516 out_drop:
1517 	svc_drop(rqstp);
1518 }
1519 EXPORT_SYMBOL_GPL(svc_process);
1520 
1521 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1522 /*
1523  * Process a backchannel RPC request that arrived over an existing
1524  * outbound connection
1525  */
1526 int
1527 bc_svc_process(struct svc_serv *serv, struct rpc_rqst *req,
1528 	       struct svc_rqst *rqstp)
1529 {
1530 	struct rpc_task *task;
1531 	int proc_error;
1532 	int error;
1533 
1534 	dprintk("svc: %s(%p)\n", __func__, req);
1535 
1536 	/* Build the svc_rqst used by the common processing routine */
1537 	rqstp->rq_xid = req->rq_xid;
1538 	rqstp->rq_prot = req->rq_xprt->prot;
1539 	rqstp->rq_server = serv;
1540 	rqstp->rq_bc_net = req->rq_xprt->xprt_net;
1541 
1542 	rqstp->rq_addrlen = sizeof(req->rq_xprt->addr);
1543 	memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen);
1544 	memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg));
1545 	memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res));
1546 
1547 	/* Adjust the argument buffer length */
1548 	rqstp->rq_arg.len = req->rq_private_buf.len;
1549 	if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) {
1550 		rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len;
1551 		rqstp->rq_arg.page_len = 0;
1552 	} else if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len +
1553 			rqstp->rq_arg.page_len)
1554 		rqstp->rq_arg.page_len = rqstp->rq_arg.len -
1555 			rqstp->rq_arg.head[0].iov_len;
1556 	else
1557 		rqstp->rq_arg.len = rqstp->rq_arg.head[0].iov_len +
1558 			rqstp->rq_arg.page_len;
1559 
1560 	/* Reset the response buffer */
1561 	rqstp->rq_res.head[0].iov_len = 0;
1562 
1563 	/*
1564 	 * Skip the XID and calldir fields because they've already
1565 	 * been processed by the caller.
1566 	 */
1567 	svcxdr_init_decode(rqstp);
1568 	if (!xdr_inline_decode(&rqstp->rq_arg_stream, XDR_UNIT * 2)) {
1569 		error = -EINVAL;
1570 		goto out;
1571 	}
1572 
1573 	/* Parse and execute the bc call */
1574 	proc_error = svc_process_common(rqstp);
1575 
1576 	atomic_dec(&req->rq_xprt->bc_slot_count);
1577 	if (!proc_error) {
1578 		/* Processing error: drop the request */
1579 		xprt_free_bc_request(req);
1580 		error = -EINVAL;
1581 		goto out;
1582 	}
1583 	/* Finally, send the reply synchronously */
1584 	memcpy(&req->rq_snd_buf, &rqstp->rq_res, sizeof(req->rq_snd_buf));
1585 	task = rpc_run_bc_task(req);
1586 	if (IS_ERR(task)) {
1587 		error = PTR_ERR(task);
1588 		goto out;
1589 	}
1590 
1591 	WARN_ON_ONCE(atomic_read(&task->tk_count) != 1);
1592 	error = task->tk_status;
1593 	rpc_put_task(task);
1594 
1595 out:
1596 	dprintk("svc: %s(), error=%d\n", __func__, error);
1597 	return error;
1598 }
1599 EXPORT_SYMBOL_GPL(bc_svc_process);
1600 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
1601 
1602 /**
1603  * svc_max_payload - Return transport-specific limit on the RPC payload
1604  * @rqstp: RPC transaction context
1605  *
1606  * Returns the maximum number of payload bytes the current transport
1607  * allows.
1608  */
1609 u32 svc_max_payload(const struct svc_rqst *rqstp)
1610 {
1611 	u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload;
1612 
1613 	if (rqstp->rq_server->sv_max_payload < max)
1614 		max = rqstp->rq_server->sv_max_payload;
1615 	return max;
1616 }
1617 EXPORT_SYMBOL_GPL(svc_max_payload);
1618 
1619 /**
1620  * svc_proc_name - Return RPC procedure name in string form
1621  * @rqstp: svc_rqst to operate on
1622  *
1623  * Return value:
1624  *   Pointer to a NUL-terminated string
1625  */
1626 const char *svc_proc_name(const struct svc_rqst *rqstp)
1627 {
1628 	if (rqstp && rqstp->rq_procinfo)
1629 		return rqstp->rq_procinfo->pc_name;
1630 	return "unknown";
1631 }
1632 
1633 
1634 /**
1635  * svc_encode_result_payload - mark a range of bytes as a result payload
1636  * @rqstp: svc_rqst to operate on
1637  * @offset: payload's byte offset in rqstp->rq_res
1638  * @length: size of payload, in bytes
1639  *
1640  * Returns zero on success, or a negative errno if a permanent
1641  * error occurred.
1642  */
1643 int svc_encode_result_payload(struct svc_rqst *rqstp, unsigned int offset,
1644 			      unsigned int length)
1645 {
1646 	return rqstp->rq_xprt->xpt_ops->xpo_result_payload(rqstp, offset,
1647 							   length);
1648 }
1649 EXPORT_SYMBOL_GPL(svc_encode_result_payload);
1650 
1651 /**
1652  * svc_fill_write_vector - Construct data argument for VFS write call
1653  * @rqstp: svc_rqst to operate on
1654  * @payload: xdr_buf containing only the write data payload
1655  *
1656  * Fills in rqstp::rq_vec, and returns the number of elements.
1657  */
1658 unsigned int svc_fill_write_vector(struct svc_rqst *rqstp,
1659 				   struct xdr_buf *payload)
1660 {
1661 	struct page **pages = payload->pages;
1662 	struct kvec *first = payload->head;
1663 	struct kvec *vec = rqstp->rq_vec;
1664 	size_t total = payload->len;
1665 	unsigned int i;
1666 
1667 	/* Some types of transport can present the write payload
1668 	 * entirely in rq_arg.pages. In this case, @first is empty.
1669 	 */
1670 	i = 0;
1671 	if (first->iov_len) {
1672 		vec[i].iov_base = first->iov_base;
1673 		vec[i].iov_len = min_t(size_t, total, first->iov_len);
1674 		total -= vec[i].iov_len;
1675 		++i;
1676 	}
1677 
1678 	while (total) {
1679 		vec[i].iov_base = page_address(*pages);
1680 		vec[i].iov_len = min_t(size_t, total, PAGE_SIZE);
1681 		total -= vec[i].iov_len;
1682 		++i;
1683 		++pages;
1684 	}
1685 
1686 	WARN_ON_ONCE(i > ARRAY_SIZE(rqstp->rq_vec));
1687 	return i;
1688 }
1689 EXPORT_SYMBOL_GPL(svc_fill_write_vector);
1690 
1691 /**
1692  * svc_fill_symlink_pathname - Construct pathname argument for VFS symlink call
1693  * @rqstp: svc_rqst to operate on
1694  * @first: buffer containing first section of pathname
1695  * @p: buffer containing remaining section of pathname
1696  * @total: total length of the pathname argument
1697  *
1698  * The VFS symlink API demands a NUL-terminated pathname in mapped memory.
1699  * Returns pointer to a NUL-terminated string, or an ERR_PTR. Caller must free
1700  * the returned string.
1701  */
1702 char *svc_fill_symlink_pathname(struct svc_rqst *rqstp, struct kvec *first,
1703 				void *p, size_t total)
1704 {
1705 	size_t len, remaining;
1706 	char *result, *dst;
1707 
1708 	result = kmalloc(total + 1, GFP_KERNEL);
1709 	if (!result)
1710 		return ERR_PTR(-ESERVERFAULT);
1711 
1712 	dst = result;
1713 	remaining = total;
1714 
1715 	len = min_t(size_t, total, first->iov_len);
1716 	if (len) {
1717 		memcpy(dst, first->iov_base, len);
1718 		dst += len;
1719 		remaining -= len;
1720 	}
1721 
1722 	if (remaining) {
1723 		len = min_t(size_t, remaining, PAGE_SIZE);
1724 		memcpy(dst, p, len);
1725 		dst += len;
1726 	}
1727 
1728 	*dst = '\0';
1729 
1730 	/* Sanity check: Linux doesn't allow the pathname argument to
1731 	 * contain a NUL byte.
1732 	 */
1733 	if (strlen(result) != total) {
1734 		kfree(result);
1735 		return ERR_PTR(-EINVAL);
1736 	}
1737 	return result;
1738 }
1739 EXPORT_SYMBOL_GPL(svc_fill_symlink_pathname);
1740