xref: /openbmc/linux/net/sunrpc/svc.c (revision 6a108a14)
1 /*
2  * linux/net/sunrpc/svc.c
3  *
4  * High-level RPC service routines
5  *
6  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
7  *
8  * Multiple threads pools and NUMAisation
9  * Copyright (c) 2006 Silicon Graphics, Inc.
10  * by Greg Banks <gnb@melbourne.sgi.com>
11  */
12 
13 #include <linux/linkage.h>
14 #include <linux/sched.h>
15 #include <linux/errno.h>
16 #include <linux/net.h>
17 #include <linux/in.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/module.h>
21 #include <linux/kthread.h>
22 #include <linux/slab.h>
23 
24 #include <linux/sunrpc/types.h>
25 #include <linux/sunrpc/xdr.h>
26 #include <linux/sunrpc/stats.h>
27 #include <linux/sunrpc/svcsock.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/sunrpc/bc_xprt.h>
30 
31 #define RPCDBG_FACILITY	RPCDBG_SVCDSP
32 
33 static void svc_unregister(const struct svc_serv *serv);
34 
35 #define svc_serv_is_pooled(serv)    ((serv)->sv_function)
36 
37 /*
38  * Mode for mapping cpus to pools.
39  */
40 enum {
41 	SVC_POOL_AUTO = -1,	/* choose one of the others */
42 	SVC_POOL_GLOBAL,	/* no mapping, just a single global pool
43 				 * (legacy & UP mode) */
44 	SVC_POOL_PERCPU,	/* one pool per cpu */
45 	SVC_POOL_PERNODE	/* one pool per numa node */
46 };
47 #define SVC_POOL_DEFAULT	SVC_POOL_GLOBAL
48 
49 /*
50  * Structure for mapping cpus to pools and vice versa.
51  * Setup once during sunrpc initialisation.
52  */
53 static struct svc_pool_map {
54 	int count;			/* How many svc_servs use us */
55 	int mode;			/* Note: int not enum to avoid
56 					 * warnings about "enumeration value
57 					 * not handled in switch" */
58 	unsigned int npools;
59 	unsigned int *pool_to;		/* maps pool id to cpu or node */
60 	unsigned int *to_pool;		/* maps cpu or node to pool id */
61 } svc_pool_map = {
62 	.count = 0,
63 	.mode = SVC_POOL_DEFAULT
64 };
65 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */
66 
67 static int
68 param_set_pool_mode(const char *val, struct kernel_param *kp)
69 {
70 	int *ip = (int *)kp->arg;
71 	struct svc_pool_map *m = &svc_pool_map;
72 	int err;
73 
74 	mutex_lock(&svc_pool_map_mutex);
75 
76 	err = -EBUSY;
77 	if (m->count)
78 		goto out;
79 
80 	err = 0;
81 	if (!strncmp(val, "auto", 4))
82 		*ip = SVC_POOL_AUTO;
83 	else if (!strncmp(val, "global", 6))
84 		*ip = SVC_POOL_GLOBAL;
85 	else if (!strncmp(val, "percpu", 6))
86 		*ip = SVC_POOL_PERCPU;
87 	else if (!strncmp(val, "pernode", 7))
88 		*ip = SVC_POOL_PERNODE;
89 	else
90 		err = -EINVAL;
91 
92 out:
93 	mutex_unlock(&svc_pool_map_mutex);
94 	return err;
95 }
96 
97 static int
98 param_get_pool_mode(char *buf, struct kernel_param *kp)
99 {
100 	int *ip = (int *)kp->arg;
101 
102 	switch (*ip)
103 	{
104 	case SVC_POOL_AUTO:
105 		return strlcpy(buf, "auto", 20);
106 	case SVC_POOL_GLOBAL:
107 		return strlcpy(buf, "global", 20);
108 	case SVC_POOL_PERCPU:
109 		return strlcpy(buf, "percpu", 20);
110 	case SVC_POOL_PERNODE:
111 		return strlcpy(buf, "pernode", 20);
112 	default:
113 		return sprintf(buf, "%d", *ip);
114 	}
115 }
116 
117 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode,
118 		 &svc_pool_map.mode, 0644);
119 
120 /*
121  * Detect best pool mapping mode heuristically,
122  * according to the machine's topology.
123  */
124 static int
125 svc_pool_map_choose_mode(void)
126 {
127 	unsigned int node;
128 
129 	if (nr_online_nodes > 1) {
130 		/*
131 		 * Actually have multiple NUMA nodes,
132 		 * so split pools on NUMA node boundaries
133 		 */
134 		return SVC_POOL_PERNODE;
135 	}
136 
137 	node = first_online_node;
138 	if (nr_cpus_node(node) > 2) {
139 		/*
140 		 * Non-trivial SMP, or CONFIG_NUMA on
141 		 * non-NUMA hardware, e.g. with a generic
142 		 * x86_64 kernel on Xeons.  In this case we
143 		 * want to divide the pools on cpu boundaries.
144 		 */
145 		return SVC_POOL_PERCPU;
146 	}
147 
148 	/* default: one global pool */
149 	return SVC_POOL_GLOBAL;
150 }
151 
152 /*
153  * Allocate the to_pool[] and pool_to[] arrays.
154  * Returns 0 on success or an errno.
155  */
156 static int
157 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools)
158 {
159 	m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
160 	if (!m->to_pool)
161 		goto fail;
162 	m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
163 	if (!m->pool_to)
164 		goto fail_free;
165 
166 	return 0;
167 
168 fail_free:
169 	kfree(m->to_pool);
170 fail:
171 	return -ENOMEM;
172 }
173 
174 /*
175  * Initialise the pool map for SVC_POOL_PERCPU mode.
176  * Returns number of pools or <0 on error.
177  */
178 static int
179 svc_pool_map_init_percpu(struct svc_pool_map *m)
180 {
181 	unsigned int maxpools = nr_cpu_ids;
182 	unsigned int pidx = 0;
183 	unsigned int cpu;
184 	int err;
185 
186 	err = svc_pool_map_alloc_arrays(m, maxpools);
187 	if (err)
188 		return err;
189 
190 	for_each_online_cpu(cpu) {
191 		BUG_ON(pidx > maxpools);
192 		m->to_pool[cpu] = pidx;
193 		m->pool_to[pidx] = cpu;
194 		pidx++;
195 	}
196 	/* cpus brought online later all get mapped to pool0, sorry */
197 
198 	return pidx;
199 };
200 
201 
202 /*
203  * Initialise the pool map for SVC_POOL_PERNODE mode.
204  * Returns number of pools or <0 on error.
205  */
206 static int
207 svc_pool_map_init_pernode(struct svc_pool_map *m)
208 {
209 	unsigned int maxpools = nr_node_ids;
210 	unsigned int pidx = 0;
211 	unsigned int node;
212 	int err;
213 
214 	err = svc_pool_map_alloc_arrays(m, maxpools);
215 	if (err)
216 		return err;
217 
218 	for_each_node_with_cpus(node) {
219 		/* some architectures (e.g. SN2) have cpuless nodes */
220 		BUG_ON(pidx > maxpools);
221 		m->to_pool[node] = pidx;
222 		m->pool_to[pidx] = node;
223 		pidx++;
224 	}
225 	/* nodes brought online later all get mapped to pool0, sorry */
226 
227 	return pidx;
228 }
229 
230 
231 /*
232  * Add a reference to the global map of cpus to pools (and
233  * vice versa).  Initialise the map if we're the first user.
234  * Returns the number of pools.
235  */
236 static unsigned int
237 svc_pool_map_get(void)
238 {
239 	struct svc_pool_map *m = &svc_pool_map;
240 	int npools = -1;
241 
242 	mutex_lock(&svc_pool_map_mutex);
243 
244 	if (m->count++) {
245 		mutex_unlock(&svc_pool_map_mutex);
246 		return m->npools;
247 	}
248 
249 	if (m->mode == SVC_POOL_AUTO)
250 		m->mode = svc_pool_map_choose_mode();
251 
252 	switch (m->mode) {
253 	case SVC_POOL_PERCPU:
254 		npools = svc_pool_map_init_percpu(m);
255 		break;
256 	case SVC_POOL_PERNODE:
257 		npools = svc_pool_map_init_pernode(m);
258 		break;
259 	}
260 
261 	if (npools < 0) {
262 		/* default, or memory allocation failure */
263 		npools = 1;
264 		m->mode = SVC_POOL_GLOBAL;
265 	}
266 	m->npools = npools;
267 
268 	mutex_unlock(&svc_pool_map_mutex);
269 	return m->npools;
270 }
271 
272 
273 /*
274  * Drop a reference to the global map of cpus to pools.
275  * When the last reference is dropped, the map data is
276  * freed; this allows the sysadmin to change the pool
277  * mode using the pool_mode module option without
278  * rebooting or re-loading sunrpc.ko.
279  */
280 static void
281 svc_pool_map_put(void)
282 {
283 	struct svc_pool_map *m = &svc_pool_map;
284 
285 	mutex_lock(&svc_pool_map_mutex);
286 
287 	if (!--m->count) {
288 		m->mode = SVC_POOL_DEFAULT;
289 		kfree(m->to_pool);
290 		kfree(m->pool_to);
291 		m->npools = 0;
292 	}
293 
294 	mutex_unlock(&svc_pool_map_mutex);
295 }
296 
297 
298 /*
299  * Set the given thread's cpus_allowed mask so that it
300  * will only run on cpus in the given pool.
301  */
302 static inline void
303 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx)
304 {
305 	struct svc_pool_map *m = &svc_pool_map;
306 	unsigned int node = m->pool_to[pidx];
307 
308 	/*
309 	 * The caller checks for sv_nrpools > 1, which
310 	 * implies that we've been initialized.
311 	 */
312 	BUG_ON(m->count == 0);
313 
314 	switch (m->mode) {
315 	case SVC_POOL_PERCPU:
316 	{
317 		set_cpus_allowed_ptr(task, cpumask_of(node));
318 		break;
319 	}
320 	case SVC_POOL_PERNODE:
321 	{
322 		set_cpus_allowed_ptr(task, cpumask_of_node(node));
323 		break;
324 	}
325 	}
326 }
327 
328 /*
329  * Use the mapping mode to choose a pool for a given CPU.
330  * Used when enqueueing an incoming RPC.  Always returns
331  * a non-NULL pool pointer.
332  */
333 struct svc_pool *
334 svc_pool_for_cpu(struct svc_serv *serv, int cpu)
335 {
336 	struct svc_pool_map *m = &svc_pool_map;
337 	unsigned int pidx = 0;
338 
339 	/*
340 	 * An uninitialised map happens in a pure client when
341 	 * lockd is brought up, so silently treat it the
342 	 * same as SVC_POOL_GLOBAL.
343 	 */
344 	if (svc_serv_is_pooled(serv)) {
345 		switch (m->mode) {
346 		case SVC_POOL_PERCPU:
347 			pidx = m->to_pool[cpu];
348 			break;
349 		case SVC_POOL_PERNODE:
350 			pidx = m->to_pool[cpu_to_node(cpu)];
351 			break;
352 		}
353 	}
354 	return &serv->sv_pools[pidx % serv->sv_nrpools];
355 }
356 
357 
358 /*
359  * Create an RPC service
360  */
361 static struct svc_serv *
362 __svc_create(struct svc_program *prog, unsigned int bufsize, int npools,
363 	     void (*shutdown)(struct svc_serv *serv))
364 {
365 	struct svc_serv	*serv;
366 	unsigned int vers;
367 	unsigned int xdrsize;
368 	unsigned int i;
369 
370 	if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL)))
371 		return NULL;
372 	serv->sv_name      = prog->pg_name;
373 	serv->sv_program   = prog;
374 	serv->sv_nrthreads = 1;
375 	serv->sv_stats     = prog->pg_stats;
376 	if (bufsize > RPCSVC_MAXPAYLOAD)
377 		bufsize = RPCSVC_MAXPAYLOAD;
378 	serv->sv_max_payload = bufsize? bufsize : 4096;
379 	serv->sv_max_mesg  = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE);
380 	serv->sv_shutdown  = shutdown;
381 	xdrsize = 0;
382 	while (prog) {
383 		prog->pg_lovers = prog->pg_nvers-1;
384 		for (vers=0; vers<prog->pg_nvers ; vers++)
385 			if (prog->pg_vers[vers]) {
386 				prog->pg_hivers = vers;
387 				if (prog->pg_lovers > vers)
388 					prog->pg_lovers = vers;
389 				if (prog->pg_vers[vers]->vs_xdrsize > xdrsize)
390 					xdrsize = prog->pg_vers[vers]->vs_xdrsize;
391 			}
392 		prog = prog->pg_next;
393 	}
394 	serv->sv_xdrsize   = xdrsize;
395 	INIT_LIST_HEAD(&serv->sv_tempsocks);
396 	INIT_LIST_HEAD(&serv->sv_permsocks);
397 	init_timer(&serv->sv_temptimer);
398 	spin_lock_init(&serv->sv_lock);
399 
400 	serv->sv_nrpools = npools;
401 	serv->sv_pools =
402 		kcalloc(serv->sv_nrpools, sizeof(struct svc_pool),
403 			GFP_KERNEL);
404 	if (!serv->sv_pools) {
405 		kfree(serv);
406 		return NULL;
407 	}
408 
409 	for (i = 0; i < serv->sv_nrpools; i++) {
410 		struct svc_pool *pool = &serv->sv_pools[i];
411 
412 		dprintk("svc: initialising pool %u for %s\n",
413 				i, serv->sv_name);
414 
415 		pool->sp_id = i;
416 		INIT_LIST_HEAD(&pool->sp_threads);
417 		INIT_LIST_HEAD(&pool->sp_sockets);
418 		INIT_LIST_HEAD(&pool->sp_all_threads);
419 		spin_lock_init(&pool->sp_lock);
420 	}
421 
422 	/* Remove any stale portmap registrations */
423 	svc_unregister(serv);
424 
425 	return serv;
426 }
427 
428 struct svc_serv *
429 svc_create(struct svc_program *prog, unsigned int bufsize,
430 	   void (*shutdown)(struct svc_serv *serv))
431 {
432 	return __svc_create(prog, bufsize, /*npools*/1, shutdown);
433 }
434 EXPORT_SYMBOL_GPL(svc_create);
435 
436 struct svc_serv *
437 svc_create_pooled(struct svc_program *prog, unsigned int bufsize,
438 		  void (*shutdown)(struct svc_serv *serv),
439 		  svc_thread_fn func, struct module *mod)
440 {
441 	struct svc_serv *serv;
442 	unsigned int npools = svc_pool_map_get();
443 
444 	serv = __svc_create(prog, bufsize, npools, shutdown);
445 
446 	if (serv != NULL) {
447 		serv->sv_function = func;
448 		serv->sv_module = mod;
449 	}
450 
451 	return serv;
452 }
453 EXPORT_SYMBOL_GPL(svc_create_pooled);
454 
455 /*
456  * Destroy an RPC service. Should be called with appropriate locking to
457  * protect the sv_nrthreads, sv_permsocks and sv_tempsocks.
458  */
459 void
460 svc_destroy(struct svc_serv *serv)
461 {
462 	dprintk("svc: svc_destroy(%s, %d)\n",
463 				serv->sv_program->pg_name,
464 				serv->sv_nrthreads);
465 
466 	if (serv->sv_nrthreads) {
467 		if (--(serv->sv_nrthreads) != 0) {
468 			svc_sock_update_bufs(serv);
469 			return;
470 		}
471 	} else
472 		printk("svc_destroy: no threads for serv=%p!\n", serv);
473 
474 	del_timer_sync(&serv->sv_temptimer);
475 
476 	svc_close_all(&serv->sv_tempsocks);
477 
478 	if (serv->sv_shutdown)
479 		serv->sv_shutdown(serv);
480 
481 	svc_close_all(&serv->sv_permsocks);
482 
483 	BUG_ON(!list_empty(&serv->sv_permsocks));
484 	BUG_ON(!list_empty(&serv->sv_tempsocks));
485 
486 	cache_clean_deferred(serv);
487 
488 	if (svc_serv_is_pooled(serv))
489 		svc_pool_map_put();
490 
491 	svc_unregister(serv);
492 	kfree(serv->sv_pools);
493 	kfree(serv);
494 }
495 EXPORT_SYMBOL_GPL(svc_destroy);
496 
497 /*
498  * Allocate an RPC server's buffer space.
499  * We allocate pages and place them in rq_argpages.
500  */
501 static int
502 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size)
503 {
504 	unsigned int pages, arghi;
505 
506 	/* bc_xprt uses fore channel allocated buffers */
507 	if (svc_is_backchannel(rqstp))
508 		return 1;
509 
510 	pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply.
511 				       * We assume one is at most one page
512 				       */
513 	arghi = 0;
514 	BUG_ON(pages > RPCSVC_MAXPAGES);
515 	while (pages) {
516 		struct page *p = alloc_page(GFP_KERNEL);
517 		if (!p)
518 			break;
519 		rqstp->rq_pages[arghi++] = p;
520 		pages--;
521 	}
522 	return pages == 0;
523 }
524 
525 /*
526  * Release an RPC server buffer
527  */
528 static void
529 svc_release_buffer(struct svc_rqst *rqstp)
530 {
531 	unsigned int i;
532 
533 	for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++)
534 		if (rqstp->rq_pages[i])
535 			put_page(rqstp->rq_pages[i]);
536 }
537 
538 struct svc_rqst *
539 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool)
540 {
541 	struct svc_rqst	*rqstp;
542 
543 	rqstp = kzalloc(sizeof(*rqstp), GFP_KERNEL);
544 	if (!rqstp)
545 		goto out_enomem;
546 
547 	init_waitqueue_head(&rqstp->rq_wait);
548 
549 	serv->sv_nrthreads++;
550 	spin_lock_bh(&pool->sp_lock);
551 	pool->sp_nrthreads++;
552 	list_add(&rqstp->rq_all, &pool->sp_all_threads);
553 	spin_unlock_bh(&pool->sp_lock);
554 	rqstp->rq_server = serv;
555 	rqstp->rq_pool = pool;
556 
557 	rqstp->rq_argp = kmalloc(serv->sv_xdrsize, GFP_KERNEL);
558 	if (!rqstp->rq_argp)
559 		goto out_thread;
560 
561 	rqstp->rq_resp = kmalloc(serv->sv_xdrsize, GFP_KERNEL);
562 	if (!rqstp->rq_resp)
563 		goto out_thread;
564 
565 	if (!svc_init_buffer(rqstp, serv->sv_max_mesg))
566 		goto out_thread;
567 
568 	return rqstp;
569 out_thread:
570 	svc_exit_thread(rqstp);
571 out_enomem:
572 	return ERR_PTR(-ENOMEM);
573 }
574 EXPORT_SYMBOL_GPL(svc_prepare_thread);
575 
576 /*
577  * Choose a pool in which to create a new thread, for svc_set_num_threads
578  */
579 static inline struct svc_pool *
580 choose_pool(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
581 {
582 	if (pool != NULL)
583 		return pool;
584 
585 	return &serv->sv_pools[(*state)++ % serv->sv_nrpools];
586 }
587 
588 /*
589  * Choose a thread to kill, for svc_set_num_threads
590  */
591 static inline struct task_struct *
592 choose_victim(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
593 {
594 	unsigned int i;
595 	struct task_struct *task = NULL;
596 
597 	if (pool != NULL) {
598 		spin_lock_bh(&pool->sp_lock);
599 	} else {
600 		/* choose a pool in round-robin fashion */
601 		for (i = 0; i < serv->sv_nrpools; i++) {
602 			pool = &serv->sv_pools[--(*state) % serv->sv_nrpools];
603 			spin_lock_bh(&pool->sp_lock);
604 			if (!list_empty(&pool->sp_all_threads))
605 				goto found_pool;
606 			spin_unlock_bh(&pool->sp_lock);
607 		}
608 		return NULL;
609 	}
610 
611 found_pool:
612 	if (!list_empty(&pool->sp_all_threads)) {
613 		struct svc_rqst *rqstp;
614 
615 		/*
616 		 * Remove from the pool->sp_all_threads list
617 		 * so we don't try to kill it again.
618 		 */
619 		rqstp = list_entry(pool->sp_all_threads.next, struct svc_rqst, rq_all);
620 		list_del_init(&rqstp->rq_all);
621 		task = rqstp->rq_task;
622 	}
623 	spin_unlock_bh(&pool->sp_lock);
624 
625 	return task;
626 }
627 
628 /*
629  * Create or destroy enough new threads to make the number
630  * of threads the given number.  If `pool' is non-NULL, applies
631  * only to threads in that pool, otherwise round-robins between
632  * all pools.  Must be called with a svc_get() reference and
633  * the BKL or another lock to protect access to svc_serv fields.
634  *
635  * Destroying threads relies on the service threads filling in
636  * rqstp->rq_task, which only the nfs ones do.  Assumes the serv
637  * has been created using svc_create_pooled().
638  *
639  * Based on code that used to be in nfsd_svc() but tweaked
640  * to be pool-aware.
641  */
642 int
643 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
644 {
645 	struct svc_rqst	*rqstp;
646 	struct task_struct *task;
647 	struct svc_pool *chosen_pool;
648 	int error = 0;
649 	unsigned int state = serv->sv_nrthreads-1;
650 
651 	if (pool == NULL) {
652 		/* The -1 assumes caller has done a svc_get() */
653 		nrservs -= (serv->sv_nrthreads-1);
654 	} else {
655 		spin_lock_bh(&pool->sp_lock);
656 		nrservs -= pool->sp_nrthreads;
657 		spin_unlock_bh(&pool->sp_lock);
658 	}
659 
660 	/* create new threads */
661 	while (nrservs > 0) {
662 		nrservs--;
663 		chosen_pool = choose_pool(serv, pool, &state);
664 
665 		rqstp = svc_prepare_thread(serv, chosen_pool);
666 		if (IS_ERR(rqstp)) {
667 			error = PTR_ERR(rqstp);
668 			break;
669 		}
670 
671 		__module_get(serv->sv_module);
672 		task = kthread_create(serv->sv_function, rqstp, serv->sv_name);
673 		if (IS_ERR(task)) {
674 			error = PTR_ERR(task);
675 			module_put(serv->sv_module);
676 			svc_exit_thread(rqstp);
677 			break;
678 		}
679 
680 		rqstp->rq_task = task;
681 		if (serv->sv_nrpools > 1)
682 			svc_pool_map_set_cpumask(task, chosen_pool->sp_id);
683 
684 		svc_sock_update_bufs(serv);
685 		wake_up_process(task);
686 	}
687 	/* destroy old threads */
688 	while (nrservs < 0 &&
689 	       (task = choose_victim(serv, pool, &state)) != NULL) {
690 		send_sig(SIGINT, task, 1);
691 		nrservs++;
692 	}
693 
694 	return error;
695 }
696 EXPORT_SYMBOL_GPL(svc_set_num_threads);
697 
698 /*
699  * Called from a server thread as it's exiting. Caller must hold the BKL or
700  * the "service mutex", whichever is appropriate for the service.
701  */
702 void
703 svc_exit_thread(struct svc_rqst *rqstp)
704 {
705 	struct svc_serv	*serv = rqstp->rq_server;
706 	struct svc_pool	*pool = rqstp->rq_pool;
707 
708 	svc_release_buffer(rqstp);
709 	kfree(rqstp->rq_resp);
710 	kfree(rqstp->rq_argp);
711 	kfree(rqstp->rq_auth_data);
712 
713 	spin_lock_bh(&pool->sp_lock);
714 	pool->sp_nrthreads--;
715 	list_del(&rqstp->rq_all);
716 	spin_unlock_bh(&pool->sp_lock);
717 
718 	kfree(rqstp);
719 
720 	/* Release the server */
721 	if (serv)
722 		svc_destroy(serv);
723 }
724 EXPORT_SYMBOL_GPL(svc_exit_thread);
725 
726 /*
727  * Register an "inet" protocol family netid with the local
728  * rpcbind daemon via an rpcbind v4 SET request.
729  *
730  * No netconfig infrastructure is available in the kernel, so
731  * we map IP_ protocol numbers to netids by hand.
732  *
733  * Returns zero on success; a negative errno value is returned
734  * if any error occurs.
735  */
736 static int __svc_rpcb_register4(const u32 program, const u32 version,
737 				const unsigned short protocol,
738 				const unsigned short port)
739 {
740 	const struct sockaddr_in sin = {
741 		.sin_family		= AF_INET,
742 		.sin_addr.s_addr	= htonl(INADDR_ANY),
743 		.sin_port		= htons(port),
744 	};
745 	const char *netid;
746 	int error;
747 
748 	switch (protocol) {
749 	case IPPROTO_UDP:
750 		netid = RPCBIND_NETID_UDP;
751 		break;
752 	case IPPROTO_TCP:
753 		netid = RPCBIND_NETID_TCP;
754 		break;
755 	default:
756 		return -ENOPROTOOPT;
757 	}
758 
759 	error = rpcb_v4_register(program, version,
760 					(const struct sockaddr *)&sin, netid);
761 
762 	/*
763 	 * User space didn't support rpcbind v4, so retry this
764 	 * registration request with the legacy rpcbind v2 protocol.
765 	 */
766 	if (error == -EPROTONOSUPPORT)
767 		error = rpcb_register(program, version, protocol, port);
768 
769 	return error;
770 }
771 
772 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
773 /*
774  * Register an "inet6" protocol family netid with the local
775  * rpcbind daemon via an rpcbind v4 SET request.
776  *
777  * No netconfig infrastructure is available in the kernel, so
778  * we map IP_ protocol numbers to netids by hand.
779  *
780  * Returns zero on success; a negative errno value is returned
781  * if any error occurs.
782  */
783 static int __svc_rpcb_register6(const u32 program, const u32 version,
784 				const unsigned short protocol,
785 				const unsigned short port)
786 {
787 	const struct sockaddr_in6 sin6 = {
788 		.sin6_family		= AF_INET6,
789 		.sin6_addr		= IN6ADDR_ANY_INIT,
790 		.sin6_port		= htons(port),
791 	};
792 	const char *netid;
793 	int error;
794 
795 	switch (protocol) {
796 	case IPPROTO_UDP:
797 		netid = RPCBIND_NETID_UDP6;
798 		break;
799 	case IPPROTO_TCP:
800 		netid = RPCBIND_NETID_TCP6;
801 		break;
802 	default:
803 		return -ENOPROTOOPT;
804 	}
805 
806 	error = rpcb_v4_register(program, version,
807 					(const struct sockaddr *)&sin6, netid);
808 
809 	/*
810 	 * User space didn't support rpcbind version 4, so we won't
811 	 * use a PF_INET6 listener.
812 	 */
813 	if (error == -EPROTONOSUPPORT)
814 		error = -EAFNOSUPPORT;
815 
816 	return error;
817 }
818 #endif	/* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
819 
820 /*
821  * Register a kernel RPC service via rpcbind version 4.
822  *
823  * Returns zero on success; a negative errno value is returned
824  * if any error occurs.
825  */
826 static int __svc_register(const char *progname,
827 			  const u32 program, const u32 version,
828 			  const int family,
829 			  const unsigned short protocol,
830 			  const unsigned short port)
831 {
832 	int error = -EAFNOSUPPORT;
833 
834 	switch (family) {
835 	case PF_INET:
836 		error = __svc_rpcb_register4(program, version,
837 						protocol, port);
838 		break;
839 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
840 	case PF_INET6:
841 		error = __svc_rpcb_register6(program, version,
842 						protocol, port);
843 #endif	/* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
844 	}
845 
846 	if (error < 0)
847 		printk(KERN_WARNING "svc: failed to register %sv%u RPC "
848 			"service (errno %d).\n", progname, version, -error);
849 	return error;
850 }
851 
852 /**
853  * svc_register - register an RPC service with the local portmapper
854  * @serv: svc_serv struct for the service to register
855  * @family: protocol family of service's listener socket
856  * @proto: transport protocol number to advertise
857  * @port: port to advertise
858  *
859  * Service is registered for any address in the passed-in protocol family
860  */
861 int svc_register(const struct svc_serv *serv, const int family,
862 		 const unsigned short proto, const unsigned short port)
863 {
864 	struct svc_program	*progp;
865 	unsigned int		i;
866 	int			error = 0;
867 
868 	BUG_ON(proto == 0 && port == 0);
869 
870 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
871 		for (i = 0; i < progp->pg_nvers; i++) {
872 			if (progp->pg_vers[i] == NULL)
873 				continue;
874 
875 			dprintk("svc: svc_register(%sv%d, %s, %u, %u)%s\n",
876 					progp->pg_name,
877 					i,
878 					proto == IPPROTO_UDP?  "udp" : "tcp",
879 					port,
880 					family,
881 					progp->pg_vers[i]->vs_hidden?
882 						" (but not telling portmap)" : "");
883 
884 			if (progp->pg_vers[i]->vs_hidden)
885 				continue;
886 
887 			error = __svc_register(progp->pg_name, progp->pg_prog,
888 						i, family, proto, port);
889 			if (error < 0)
890 				break;
891 		}
892 	}
893 
894 	return error;
895 }
896 
897 /*
898  * If user space is running rpcbind, it should take the v4 UNSET
899  * and clear everything for this [program, version].  If user space
900  * is running portmap, it will reject the v4 UNSET, but won't have
901  * any "inet6" entries anyway.  So a PMAP_UNSET should be sufficient
902  * in this case to clear all existing entries for [program, version].
903  */
904 static void __svc_unregister(const u32 program, const u32 version,
905 			     const char *progname)
906 {
907 	int error;
908 
909 	error = rpcb_v4_register(program, version, NULL, "");
910 
911 	/*
912 	 * User space didn't support rpcbind v4, so retry this
913 	 * request with the legacy rpcbind v2 protocol.
914 	 */
915 	if (error == -EPROTONOSUPPORT)
916 		error = rpcb_register(program, version, 0, 0);
917 
918 	dprintk("svc: %s(%sv%u), error %d\n",
919 			__func__, progname, version, error);
920 }
921 
922 /*
923  * All netids, bind addresses and ports registered for [program, version]
924  * are removed from the local rpcbind database (if the service is not
925  * hidden) to make way for a new instance of the service.
926  *
927  * The result of unregistration is reported via dprintk for those who want
928  * verification of the result, but is otherwise not important.
929  */
930 static void svc_unregister(const struct svc_serv *serv)
931 {
932 	struct svc_program *progp;
933 	unsigned long flags;
934 	unsigned int i;
935 
936 	clear_thread_flag(TIF_SIGPENDING);
937 
938 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
939 		for (i = 0; i < progp->pg_nvers; i++) {
940 			if (progp->pg_vers[i] == NULL)
941 				continue;
942 			if (progp->pg_vers[i]->vs_hidden)
943 				continue;
944 
945 			__svc_unregister(progp->pg_prog, i, progp->pg_name);
946 		}
947 	}
948 
949 	spin_lock_irqsave(&current->sighand->siglock, flags);
950 	recalc_sigpending();
951 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
952 }
953 
954 /*
955  * Printk the given error with the address of the client that caused it.
956  */
957 static int
958 __attribute__ ((format (printf, 2, 3)))
959 svc_printk(struct svc_rqst *rqstp, const char *fmt, ...)
960 {
961 	va_list args;
962 	int 	r;
963 	char 	buf[RPC_MAX_ADDRBUFLEN];
964 
965 	if (!net_ratelimit())
966 		return 0;
967 
968 	printk(KERN_WARNING "svc: %s: ",
969 		svc_print_addr(rqstp, buf, sizeof(buf)));
970 
971 	va_start(args, fmt);
972 	r = vprintk(fmt, args);
973 	va_end(args);
974 
975 	return r;
976 }
977 
978 /*
979  * Common routine for processing the RPC request.
980  */
981 static int
982 svc_process_common(struct svc_rqst *rqstp, struct kvec *argv, struct kvec *resv)
983 {
984 	struct svc_program	*progp;
985 	struct svc_version	*versp = NULL;	/* compiler food */
986 	struct svc_procedure	*procp = NULL;
987 	struct svc_serv		*serv = rqstp->rq_server;
988 	kxdrproc_t		xdr;
989 	__be32			*statp;
990 	u32			prog, vers, proc;
991 	__be32			auth_stat, rpc_stat;
992 	int			auth_res;
993 	__be32			*reply_statp;
994 
995 	rpc_stat = rpc_success;
996 
997 	if (argv->iov_len < 6*4)
998 		goto err_short_len;
999 
1000 	/* Will be turned off only in gss privacy case: */
1001 	rqstp->rq_splice_ok = 1;
1002 	/* Will be turned off only when NFSv4 Sessions are used */
1003 	rqstp->rq_usedeferral = 1;
1004 	rqstp->rq_dropme = false;
1005 
1006 	/* Setup reply header */
1007 	rqstp->rq_xprt->xpt_ops->xpo_prep_reply_hdr(rqstp);
1008 
1009 	svc_putu32(resv, rqstp->rq_xid);
1010 
1011 	vers = svc_getnl(argv);
1012 
1013 	/* First words of reply: */
1014 	svc_putnl(resv, 1);		/* REPLY */
1015 
1016 	if (vers != 2)		/* RPC version number */
1017 		goto err_bad_rpc;
1018 
1019 	/* Save position in case we later decide to reject: */
1020 	reply_statp = resv->iov_base + resv->iov_len;
1021 
1022 	svc_putnl(resv, 0);		/* ACCEPT */
1023 
1024 	rqstp->rq_prog = prog = svc_getnl(argv);	/* program number */
1025 	rqstp->rq_vers = vers = svc_getnl(argv);	/* version number */
1026 	rqstp->rq_proc = proc = svc_getnl(argv);	/* procedure number */
1027 
1028 	progp = serv->sv_program;
1029 
1030 	for (progp = serv->sv_program; progp; progp = progp->pg_next)
1031 		if (prog == progp->pg_prog)
1032 			break;
1033 
1034 	/*
1035 	 * Decode auth data, and add verifier to reply buffer.
1036 	 * We do this before anything else in order to get a decent
1037 	 * auth verifier.
1038 	 */
1039 	auth_res = svc_authenticate(rqstp, &auth_stat);
1040 	/* Also give the program a chance to reject this call: */
1041 	if (auth_res == SVC_OK && progp) {
1042 		auth_stat = rpc_autherr_badcred;
1043 		auth_res = progp->pg_authenticate(rqstp);
1044 	}
1045 	switch (auth_res) {
1046 	case SVC_OK:
1047 		break;
1048 	case SVC_GARBAGE:
1049 		goto err_garbage;
1050 	case SVC_SYSERR:
1051 		rpc_stat = rpc_system_err;
1052 		goto err_bad;
1053 	case SVC_DENIED:
1054 		goto err_bad_auth;
1055 	case SVC_CLOSE:
1056 		if (test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags))
1057 			svc_close_xprt(rqstp->rq_xprt);
1058 	case SVC_DROP:
1059 		goto dropit;
1060 	case SVC_COMPLETE:
1061 		goto sendit;
1062 	}
1063 
1064 	if (progp == NULL)
1065 		goto err_bad_prog;
1066 
1067 	if (vers >= progp->pg_nvers ||
1068 	  !(versp = progp->pg_vers[vers]))
1069 		goto err_bad_vers;
1070 
1071 	procp = versp->vs_proc + proc;
1072 	if (proc >= versp->vs_nproc || !procp->pc_func)
1073 		goto err_bad_proc;
1074 	rqstp->rq_procinfo = procp;
1075 
1076 	/* Syntactic check complete */
1077 	serv->sv_stats->rpccnt++;
1078 
1079 	/* Build the reply header. */
1080 	statp = resv->iov_base +resv->iov_len;
1081 	svc_putnl(resv, RPC_SUCCESS);
1082 
1083 	/* Bump per-procedure stats counter */
1084 	procp->pc_count++;
1085 
1086 	/* Initialize storage for argp and resp */
1087 	memset(rqstp->rq_argp, 0, procp->pc_argsize);
1088 	memset(rqstp->rq_resp, 0, procp->pc_ressize);
1089 
1090 	/* un-reserve some of the out-queue now that we have a
1091 	 * better idea of reply size
1092 	 */
1093 	if (procp->pc_xdrressize)
1094 		svc_reserve_auth(rqstp, procp->pc_xdrressize<<2);
1095 
1096 	/* Call the function that processes the request. */
1097 	if (!versp->vs_dispatch) {
1098 		/* Decode arguments */
1099 		xdr = procp->pc_decode;
1100 		if (xdr && !xdr(rqstp, argv->iov_base, rqstp->rq_argp))
1101 			goto err_garbage;
1102 
1103 		*statp = procp->pc_func(rqstp, rqstp->rq_argp, rqstp->rq_resp);
1104 
1105 		/* Encode reply */
1106 		if (rqstp->rq_dropme) {
1107 			if (procp->pc_release)
1108 				procp->pc_release(rqstp, NULL, rqstp->rq_resp);
1109 			goto dropit;
1110 		}
1111 		if (*statp == rpc_success &&
1112 		    (xdr = procp->pc_encode) &&
1113 		    !xdr(rqstp, resv->iov_base+resv->iov_len, rqstp->rq_resp)) {
1114 			dprintk("svc: failed to encode reply\n");
1115 			/* serv->sv_stats->rpcsystemerr++; */
1116 			*statp = rpc_system_err;
1117 		}
1118 	} else {
1119 		dprintk("svc: calling dispatcher\n");
1120 		if (!versp->vs_dispatch(rqstp, statp)) {
1121 			/* Release reply info */
1122 			if (procp->pc_release)
1123 				procp->pc_release(rqstp, NULL, rqstp->rq_resp);
1124 			goto dropit;
1125 		}
1126 	}
1127 
1128 	/* Check RPC status result */
1129 	if (*statp != rpc_success)
1130 		resv->iov_len = ((void*)statp)  - resv->iov_base + 4;
1131 
1132 	/* Release reply info */
1133 	if (procp->pc_release)
1134 		procp->pc_release(rqstp, NULL, rqstp->rq_resp);
1135 
1136 	if (procp->pc_encode == NULL)
1137 		goto dropit;
1138 
1139  sendit:
1140 	if (svc_authorise(rqstp))
1141 		goto dropit;
1142 	return 1;		/* Caller can now send it */
1143 
1144  dropit:
1145 	svc_authorise(rqstp);	/* doesn't hurt to call this twice */
1146 	dprintk("svc: svc_process dropit\n");
1147 	return 0;
1148 
1149 err_short_len:
1150 	svc_printk(rqstp, "short len %Zd, dropping request\n",
1151 			argv->iov_len);
1152 
1153 	goto dropit;			/* drop request */
1154 
1155 err_bad_rpc:
1156 	serv->sv_stats->rpcbadfmt++;
1157 	svc_putnl(resv, 1);	/* REJECT */
1158 	svc_putnl(resv, 0);	/* RPC_MISMATCH */
1159 	svc_putnl(resv, 2);	/* Only RPCv2 supported */
1160 	svc_putnl(resv, 2);
1161 	goto sendit;
1162 
1163 err_bad_auth:
1164 	dprintk("svc: authentication failed (%d)\n", ntohl(auth_stat));
1165 	serv->sv_stats->rpcbadauth++;
1166 	/* Restore write pointer to location of accept status: */
1167 	xdr_ressize_check(rqstp, reply_statp);
1168 	svc_putnl(resv, 1);	/* REJECT */
1169 	svc_putnl(resv, 1);	/* AUTH_ERROR */
1170 	svc_putnl(resv, ntohl(auth_stat));	/* status */
1171 	goto sendit;
1172 
1173 err_bad_prog:
1174 	dprintk("svc: unknown program %d\n", prog);
1175 	serv->sv_stats->rpcbadfmt++;
1176 	svc_putnl(resv, RPC_PROG_UNAVAIL);
1177 	goto sendit;
1178 
1179 err_bad_vers:
1180 	svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n",
1181 		       vers, prog, progp->pg_name);
1182 
1183 	serv->sv_stats->rpcbadfmt++;
1184 	svc_putnl(resv, RPC_PROG_MISMATCH);
1185 	svc_putnl(resv, progp->pg_lovers);
1186 	svc_putnl(resv, progp->pg_hivers);
1187 	goto sendit;
1188 
1189 err_bad_proc:
1190 	svc_printk(rqstp, "unknown procedure (%d)\n", proc);
1191 
1192 	serv->sv_stats->rpcbadfmt++;
1193 	svc_putnl(resv, RPC_PROC_UNAVAIL);
1194 	goto sendit;
1195 
1196 err_garbage:
1197 	svc_printk(rqstp, "failed to decode args\n");
1198 
1199 	rpc_stat = rpc_garbage_args;
1200 err_bad:
1201 	serv->sv_stats->rpcbadfmt++;
1202 	svc_putnl(resv, ntohl(rpc_stat));
1203 	goto sendit;
1204 }
1205 EXPORT_SYMBOL_GPL(svc_process);
1206 
1207 /*
1208  * Process the RPC request.
1209  */
1210 int
1211 svc_process(struct svc_rqst *rqstp)
1212 {
1213 	struct kvec		*argv = &rqstp->rq_arg.head[0];
1214 	struct kvec		*resv = &rqstp->rq_res.head[0];
1215 	struct svc_serv		*serv = rqstp->rq_server;
1216 	u32			dir;
1217 
1218 	/*
1219 	 * Setup response xdr_buf.
1220 	 * Initially it has just one page
1221 	 */
1222 	rqstp->rq_resused = 1;
1223 	resv->iov_base = page_address(rqstp->rq_respages[0]);
1224 	resv->iov_len = 0;
1225 	rqstp->rq_res.pages = rqstp->rq_respages + 1;
1226 	rqstp->rq_res.len = 0;
1227 	rqstp->rq_res.page_base = 0;
1228 	rqstp->rq_res.page_len = 0;
1229 	rqstp->rq_res.buflen = PAGE_SIZE;
1230 	rqstp->rq_res.tail[0].iov_base = NULL;
1231 	rqstp->rq_res.tail[0].iov_len = 0;
1232 
1233 	rqstp->rq_xid = svc_getu32(argv);
1234 
1235 	dir  = svc_getnl(argv);
1236 	if (dir != 0) {
1237 		/* direction != CALL */
1238 		svc_printk(rqstp, "bad direction %d, dropping request\n", dir);
1239 		serv->sv_stats->rpcbadfmt++;
1240 		svc_drop(rqstp);
1241 		return 0;
1242 	}
1243 
1244 	/* Returns 1 for send, 0 for drop */
1245 	if (svc_process_common(rqstp, argv, resv))
1246 		return svc_send(rqstp);
1247 	else {
1248 		svc_drop(rqstp);
1249 		return 0;
1250 	}
1251 }
1252 
1253 #if defined(CONFIG_NFS_V4_1)
1254 /*
1255  * Process a backchannel RPC request that arrived over an existing
1256  * outbound connection
1257  */
1258 int
1259 bc_svc_process(struct svc_serv *serv, struct rpc_rqst *req,
1260 	       struct svc_rqst *rqstp)
1261 {
1262 	struct kvec	*argv = &rqstp->rq_arg.head[0];
1263 	struct kvec	*resv = &rqstp->rq_res.head[0];
1264 
1265 	/* Build the svc_rqst used by the common processing routine */
1266 	rqstp->rq_xprt = serv->sv_bc_xprt;
1267 	rqstp->rq_xid = req->rq_xid;
1268 	rqstp->rq_prot = req->rq_xprt->prot;
1269 	rqstp->rq_server = serv;
1270 
1271 	rqstp->rq_addrlen = sizeof(req->rq_xprt->addr);
1272 	memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen);
1273 	memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg));
1274 	memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res));
1275 
1276 	/* reset result send buffer "put" position */
1277 	resv->iov_len = 0;
1278 
1279 	if (rqstp->rq_prot != IPPROTO_TCP) {
1280 		printk(KERN_ERR "No support for Non-TCP transports!\n");
1281 		BUG();
1282 	}
1283 
1284 	/*
1285 	 * Skip the next two words because they've already been
1286 	 * processed in the trasport
1287 	 */
1288 	svc_getu32(argv);	/* XID */
1289 	svc_getnl(argv);	/* CALLDIR */
1290 
1291 	/* Returns 1 for send, 0 for drop */
1292 	if (svc_process_common(rqstp, argv, resv)) {
1293 		memcpy(&req->rq_snd_buf, &rqstp->rq_res,
1294 						sizeof(req->rq_snd_buf));
1295 		return bc_send(req);
1296 	} else {
1297 		/* Nothing to do to drop request */
1298 		return 0;
1299 	}
1300 }
1301 EXPORT_SYMBOL(bc_svc_process);
1302 #endif /* CONFIG_NFS_V4_1 */
1303 
1304 /*
1305  * Return (transport-specific) limit on the rpc payload.
1306  */
1307 u32 svc_max_payload(const struct svc_rqst *rqstp)
1308 {
1309 	u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload;
1310 
1311 	if (rqstp->rq_server->sv_max_payload < max)
1312 		max = rqstp->rq_server->sv_max_payload;
1313 	return max;
1314 }
1315 EXPORT_SYMBOL_GPL(svc_max_payload);
1316