xref: /openbmc/linux/net/sunrpc/svc.c (revision 63dc02bd)
1 /*
2  * linux/net/sunrpc/svc.c
3  *
4  * High-level RPC service routines
5  *
6  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
7  *
8  * Multiple threads pools and NUMAisation
9  * Copyright (c) 2006 Silicon Graphics, Inc.
10  * by Greg Banks <gnb@melbourne.sgi.com>
11  */
12 
13 #include <linux/linkage.h>
14 #include <linux/sched.h>
15 #include <linux/errno.h>
16 #include <linux/net.h>
17 #include <linux/in.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/module.h>
21 #include <linux/kthread.h>
22 #include <linux/slab.h>
23 #include <linux/nsproxy.h>
24 
25 #include <linux/sunrpc/types.h>
26 #include <linux/sunrpc/xdr.h>
27 #include <linux/sunrpc/stats.h>
28 #include <linux/sunrpc/svcsock.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/sunrpc/bc_xprt.h>
31 
32 #define RPCDBG_FACILITY	RPCDBG_SVCDSP
33 
34 static void svc_unregister(const struct svc_serv *serv, struct net *net);
35 
36 #define svc_serv_is_pooled(serv)    ((serv)->sv_function)
37 
38 /*
39  * Mode for mapping cpus to pools.
40  */
41 enum {
42 	SVC_POOL_AUTO = -1,	/* choose one of the others */
43 	SVC_POOL_GLOBAL,	/* no mapping, just a single global pool
44 				 * (legacy & UP mode) */
45 	SVC_POOL_PERCPU,	/* one pool per cpu */
46 	SVC_POOL_PERNODE	/* one pool per numa node */
47 };
48 #define SVC_POOL_DEFAULT	SVC_POOL_GLOBAL
49 
50 /*
51  * Structure for mapping cpus to pools and vice versa.
52  * Setup once during sunrpc initialisation.
53  */
54 static struct svc_pool_map {
55 	int count;			/* How many svc_servs use us */
56 	int mode;			/* Note: int not enum to avoid
57 					 * warnings about "enumeration value
58 					 * not handled in switch" */
59 	unsigned int npools;
60 	unsigned int *pool_to;		/* maps pool id to cpu or node */
61 	unsigned int *to_pool;		/* maps cpu or node to pool id */
62 } svc_pool_map = {
63 	.count = 0,
64 	.mode = SVC_POOL_DEFAULT
65 };
66 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */
67 
68 static int
69 param_set_pool_mode(const char *val, struct kernel_param *kp)
70 {
71 	int *ip = (int *)kp->arg;
72 	struct svc_pool_map *m = &svc_pool_map;
73 	int err;
74 
75 	mutex_lock(&svc_pool_map_mutex);
76 
77 	err = -EBUSY;
78 	if (m->count)
79 		goto out;
80 
81 	err = 0;
82 	if (!strncmp(val, "auto", 4))
83 		*ip = SVC_POOL_AUTO;
84 	else if (!strncmp(val, "global", 6))
85 		*ip = SVC_POOL_GLOBAL;
86 	else if (!strncmp(val, "percpu", 6))
87 		*ip = SVC_POOL_PERCPU;
88 	else if (!strncmp(val, "pernode", 7))
89 		*ip = SVC_POOL_PERNODE;
90 	else
91 		err = -EINVAL;
92 
93 out:
94 	mutex_unlock(&svc_pool_map_mutex);
95 	return err;
96 }
97 
98 static int
99 param_get_pool_mode(char *buf, struct kernel_param *kp)
100 {
101 	int *ip = (int *)kp->arg;
102 
103 	switch (*ip)
104 	{
105 	case SVC_POOL_AUTO:
106 		return strlcpy(buf, "auto", 20);
107 	case SVC_POOL_GLOBAL:
108 		return strlcpy(buf, "global", 20);
109 	case SVC_POOL_PERCPU:
110 		return strlcpy(buf, "percpu", 20);
111 	case SVC_POOL_PERNODE:
112 		return strlcpy(buf, "pernode", 20);
113 	default:
114 		return sprintf(buf, "%d", *ip);
115 	}
116 }
117 
118 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode,
119 		 &svc_pool_map.mode, 0644);
120 
121 /*
122  * Detect best pool mapping mode heuristically,
123  * according to the machine's topology.
124  */
125 static int
126 svc_pool_map_choose_mode(void)
127 {
128 	unsigned int node;
129 
130 	if (nr_online_nodes > 1) {
131 		/*
132 		 * Actually have multiple NUMA nodes,
133 		 * so split pools on NUMA node boundaries
134 		 */
135 		return SVC_POOL_PERNODE;
136 	}
137 
138 	node = first_online_node;
139 	if (nr_cpus_node(node) > 2) {
140 		/*
141 		 * Non-trivial SMP, or CONFIG_NUMA on
142 		 * non-NUMA hardware, e.g. with a generic
143 		 * x86_64 kernel on Xeons.  In this case we
144 		 * want to divide the pools on cpu boundaries.
145 		 */
146 		return SVC_POOL_PERCPU;
147 	}
148 
149 	/* default: one global pool */
150 	return SVC_POOL_GLOBAL;
151 }
152 
153 /*
154  * Allocate the to_pool[] and pool_to[] arrays.
155  * Returns 0 on success or an errno.
156  */
157 static int
158 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools)
159 {
160 	m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
161 	if (!m->to_pool)
162 		goto fail;
163 	m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
164 	if (!m->pool_to)
165 		goto fail_free;
166 
167 	return 0;
168 
169 fail_free:
170 	kfree(m->to_pool);
171 	m->to_pool = NULL;
172 fail:
173 	return -ENOMEM;
174 }
175 
176 /*
177  * Initialise the pool map for SVC_POOL_PERCPU mode.
178  * Returns number of pools or <0 on error.
179  */
180 static int
181 svc_pool_map_init_percpu(struct svc_pool_map *m)
182 {
183 	unsigned int maxpools = nr_cpu_ids;
184 	unsigned int pidx = 0;
185 	unsigned int cpu;
186 	int err;
187 
188 	err = svc_pool_map_alloc_arrays(m, maxpools);
189 	if (err)
190 		return err;
191 
192 	for_each_online_cpu(cpu) {
193 		BUG_ON(pidx > maxpools);
194 		m->to_pool[cpu] = pidx;
195 		m->pool_to[pidx] = cpu;
196 		pidx++;
197 	}
198 	/* cpus brought online later all get mapped to pool0, sorry */
199 
200 	return pidx;
201 };
202 
203 
204 /*
205  * Initialise the pool map for SVC_POOL_PERNODE mode.
206  * Returns number of pools or <0 on error.
207  */
208 static int
209 svc_pool_map_init_pernode(struct svc_pool_map *m)
210 {
211 	unsigned int maxpools = nr_node_ids;
212 	unsigned int pidx = 0;
213 	unsigned int node;
214 	int err;
215 
216 	err = svc_pool_map_alloc_arrays(m, maxpools);
217 	if (err)
218 		return err;
219 
220 	for_each_node_with_cpus(node) {
221 		/* some architectures (e.g. SN2) have cpuless nodes */
222 		BUG_ON(pidx > maxpools);
223 		m->to_pool[node] = pidx;
224 		m->pool_to[pidx] = node;
225 		pidx++;
226 	}
227 	/* nodes brought online later all get mapped to pool0, sorry */
228 
229 	return pidx;
230 }
231 
232 
233 /*
234  * Add a reference to the global map of cpus to pools (and
235  * vice versa).  Initialise the map if we're the first user.
236  * Returns the number of pools.
237  */
238 static unsigned int
239 svc_pool_map_get(void)
240 {
241 	struct svc_pool_map *m = &svc_pool_map;
242 	int npools = -1;
243 
244 	mutex_lock(&svc_pool_map_mutex);
245 
246 	if (m->count++) {
247 		mutex_unlock(&svc_pool_map_mutex);
248 		return m->npools;
249 	}
250 
251 	if (m->mode == SVC_POOL_AUTO)
252 		m->mode = svc_pool_map_choose_mode();
253 
254 	switch (m->mode) {
255 	case SVC_POOL_PERCPU:
256 		npools = svc_pool_map_init_percpu(m);
257 		break;
258 	case SVC_POOL_PERNODE:
259 		npools = svc_pool_map_init_pernode(m);
260 		break;
261 	}
262 
263 	if (npools < 0) {
264 		/* default, or memory allocation failure */
265 		npools = 1;
266 		m->mode = SVC_POOL_GLOBAL;
267 	}
268 	m->npools = npools;
269 
270 	mutex_unlock(&svc_pool_map_mutex);
271 	return m->npools;
272 }
273 
274 
275 /*
276  * Drop a reference to the global map of cpus to pools.
277  * When the last reference is dropped, the map data is
278  * freed; this allows the sysadmin to change the pool
279  * mode using the pool_mode module option without
280  * rebooting or re-loading sunrpc.ko.
281  */
282 static void
283 svc_pool_map_put(void)
284 {
285 	struct svc_pool_map *m = &svc_pool_map;
286 
287 	mutex_lock(&svc_pool_map_mutex);
288 
289 	if (!--m->count) {
290 		kfree(m->to_pool);
291 		m->to_pool = NULL;
292 		kfree(m->pool_to);
293 		m->pool_to = NULL;
294 		m->npools = 0;
295 	}
296 
297 	mutex_unlock(&svc_pool_map_mutex);
298 }
299 
300 
301 static int svc_pool_map_get_node(unsigned int pidx)
302 {
303 	const struct svc_pool_map *m = &svc_pool_map;
304 
305 	if (m->count) {
306 		if (m->mode == SVC_POOL_PERCPU)
307 			return cpu_to_node(m->pool_to[pidx]);
308 		if (m->mode == SVC_POOL_PERNODE)
309 			return m->pool_to[pidx];
310 	}
311 	return NUMA_NO_NODE;
312 }
313 /*
314  * Set the given thread's cpus_allowed mask so that it
315  * will only run on cpus in the given pool.
316  */
317 static inline void
318 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx)
319 {
320 	struct svc_pool_map *m = &svc_pool_map;
321 	unsigned int node = m->pool_to[pidx];
322 
323 	/*
324 	 * The caller checks for sv_nrpools > 1, which
325 	 * implies that we've been initialized.
326 	 */
327 	BUG_ON(m->count == 0);
328 
329 	switch (m->mode) {
330 	case SVC_POOL_PERCPU:
331 	{
332 		set_cpus_allowed_ptr(task, cpumask_of(node));
333 		break;
334 	}
335 	case SVC_POOL_PERNODE:
336 	{
337 		set_cpus_allowed_ptr(task, cpumask_of_node(node));
338 		break;
339 	}
340 	}
341 }
342 
343 /*
344  * Use the mapping mode to choose a pool for a given CPU.
345  * Used when enqueueing an incoming RPC.  Always returns
346  * a non-NULL pool pointer.
347  */
348 struct svc_pool *
349 svc_pool_for_cpu(struct svc_serv *serv, int cpu)
350 {
351 	struct svc_pool_map *m = &svc_pool_map;
352 	unsigned int pidx = 0;
353 
354 	/*
355 	 * An uninitialised map happens in a pure client when
356 	 * lockd is brought up, so silently treat it the
357 	 * same as SVC_POOL_GLOBAL.
358 	 */
359 	if (svc_serv_is_pooled(serv)) {
360 		switch (m->mode) {
361 		case SVC_POOL_PERCPU:
362 			pidx = m->to_pool[cpu];
363 			break;
364 		case SVC_POOL_PERNODE:
365 			pidx = m->to_pool[cpu_to_node(cpu)];
366 			break;
367 		}
368 	}
369 	return &serv->sv_pools[pidx % serv->sv_nrpools];
370 }
371 
372 int svc_rpcb_setup(struct svc_serv *serv, struct net *net)
373 {
374 	int err;
375 
376 	err = rpcb_create_local(net);
377 	if (err)
378 		return err;
379 
380 	/* Remove any stale portmap registrations */
381 	svc_unregister(serv, net);
382 	return 0;
383 }
384 EXPORT_SYMBOL_GPL(svc_rpcb_setup);
385 
386 void svc_rpcb_cleanup(struct svc_serv *serv, struct net *net)
387 {
388 	svc_unregister(serv, net);
389 	rpcb_put_local(net);
390 }
391 EXPORT_SYMBOL_GPL(svc_rpcb_cleanup);
392 
393 static int svc_uses_rpcbind(struct svc_serv *serv)
394 {
395 	struct svc_program	*progp;
396 	unsigned int		i;
397 
398 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
399 		for (i = 0; i < progp->pg_nvers; i++) {
400 			if (progp->pg_vers[i] == NULL)
401 				continue;
402 			if (progp->pg_vers[i]->vs_hidden == 0)
403 				return 1;
404 		}
405 	}
406 
407 	return 0;
408 }
409 
410 /*
411  * Create an RPC service
412  */
413 static struct svc_serv *
414 __svc_create(struct svc_program *prog, unsigned int bufsize, int npools,
415 	     void (*shutdown)(struct svc_serv *serv, struct net *net))
416 {
417 	struct svc_serv	*serv;
418 	unsigned int vers;
419 	unsigned int xdrsize;
420 	unsigned int i;
421 
422 	if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL)))
423 		return NULL;
424 	serv->sv_name      = prog->pg_name;
425 	serv->sv_program   = prog;
426 	serv->sv_nrthreads = 1;
427 	serv->sv_stats     = prog->pg_stats;
428 	if (bufsize > RPCSVC_MAXPAYLOAD)
429 		bufsize = RPCSVC_MAXPAYLOAD;
430 	serv->sv_max_payload = bufsize? bufsize : 4096;
431 	serv->sv_max_mesg  = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE);
432 	serv->sv_shutdown  = shutdown;
433 	xdrsize = 0;
434 	while (prog) {
435 		prog->pg_lovers = prog->pg_nvers-1;
436 		for (vers=0; vers<prog->pg_nvers ; vers++)
437 			if (prog->pg_vers[vers]) {
438 				prog->pg_hivers = vers;
439 				if (prog->pg_lovers > vers)
440 					prog->pg_lovers = vers;
441 				if (prog->pg_vers[vers]->vs_xdrsize > xdrsize)
442 					xdrsize = prog->pg_vers[vers]->vs_xdrsize;
443 			}
444 		prog = prog->pg_next;
445 	}
446 	serv->sv_xdrsize   = xdrsize;
447 	INIT_LIST_HEAD(&serv->sv_tempsocks);
448 	INIT_LIST_HEAD(&serv->sv_permsocks);
449 	init_timer(&serv->sv_temptimer);
450 	spin_lock_init(&serv->sv_lock);
451 
452 	serv->sv_nrpools = npools;
453 	serv->sv_pools =
454 		kcalloc(serv->sv_nrpools, sizeof(struct svc_pool),
455 			GFP_KERNEL);
456 	if (!serv->sv_pools) {
457 		kfree(serv);
458 		return NULL;
459 	}
460 
461 	for (i = 0; i < serv->sv_nrpools; i++) {
462 		struct svc_pool *pool = &serv->sv_pools[i];
463 
464 		dprintk("svc: initialising pool %u for %s\n",
465 				i, serv->sv_name);
466 
467 		pool->sp_id = i;
468 		INIT_LIST_HEAD(&pool->sp_threads);
469 		INIT_LIST_HEAD(&pool->sp_sockets);
470 		INIT_LIST_HEAD(&pool->sp_all_threads);
471 		spin_lock_init(&pool->sp_lock);
472 	}
473 
474 	if (svc_uses_rpcbind(serv)) {
475 		if (svc_rpcb_setup(serv, current->nsproxy->net_ns) < 0) {
476 			kfree(serv->sv_pools);
477 			kfree(serv);
478 			return NULL;
479 		}
480 		if (!serv->sv_shutdown)
481 			serv->sv_shutdown = svc_rpcb_cleanup;
482 	}
483 
484 	return serv;
485 }
486 
487 struct svc_serv *
488 svc_create(struct svc_program *prog, unsigned int bufsize,
489 	   void (*shutdown)(struct svc_serv *serv, struct net *net))
490 {
491 	return __svc_create(prog, bufsize, /*npools*/1, shutdown);
492 }
493 EXPORT_SYMBOL_GPL(svc_create);
494 
495 struct svc_serv *
496 svc_create_pooled(struct svc_program *prog, unsigned int bufsize,
497 		  void (*shutdown)(struct svc_serv *serv, struct net *net),
498 		  svc_thread_fn func, struct module *mod)
499 {
500 	struct svc_serv *serv;
501 	unsigned int npools = svc_pool_map_get();
502 
503 	serv = __svc_create(prog, bufsize, npools, shutdown);
504 
505 	if (serv != NULL) {
506 		serv->sv_function = func;
507 		serv->sv_module = mod;
508 	}
509 
510 	return serv;
511 }
512 EXPORT_SYMBOL_GPL(svc_create_pooled);
513 
514 void svc_shutdown_net(struct svc_serv *serv, struct net *net)
515 {
516 	/*
517 	 * The set of xprts (contained in the sv_tempsocks and
518 	 * sv_permsocks lists) is now constant, since it is modified
519 	 * only by accepting new sockets (done by service threads in
520 	 * svc_recv) or aging old ones (done by sv_temptimer), or
521 	 * configuration changes (excluded by whatever locking the
522 	 * caller is using--nfsd_mutex in the case of nfsd).  So it's
523 	 * safe to traverse those lists and shut everything down:
524 	 */
525 	svc_close_net(serv, net);
526 
527 	if (serv->sv_shutdown)
528 		serv->sv_shutdown(serv, net);
529 }
530 EXPORT_SYMBOL_GPL(svc_shutdown_net);
531 
532 /*
533  * Destroy an RPC service. Should be called with appropriate locking to
534  * protect the sv_nrthreads, sv_permsocks and sv_tempsocks.
535  */
536 void
537 svc_destroy(struct svc_serv *serv)
538 {
539 	struct net *net = current->nsproxy->net_ns;
540 
541 	dprintk("svc: svc_destroy(%s, %d)\n",
542 				serv->sv_program->pg_name,
543 				serv->sv_nrthreads);
544 
545 	if (serv->sv_nrthreads) {
546 		if (--(serv->sv_nrthreads) != 0) {
547 			svc_sock_update_bufs(serv);
548 			return;
549 		}
550 	} else
551 		printk("svc_destroy: no threads for serv=%p!\n", serv);
552 
553 	del_timer_sync(&serv->sv_temptimer);
554 
555 	svc_shutdown_net(serv, net);
556 
557 	/*
558 	 * The last user is gone and thus all sockets have to be destroyed to
559 	 * the point. Check this.
560 	 */
561 	BUG_ON(!list_empty(&serv->sv_permsocks));
562 	BUG_ON(!list_empty(&serv->sv_tempsocks));
563 
564 	cache_clean_deferred(serv);
565 
566 	if (svc_serv_is_pooled(serv))
567 		svc_pool_map_put();
568 
569 	kfree(serv->sv_pools);
570 	kfree(serv);
571 }
572 EXPORT_SYMBOL_GPL(svc_destroy);
573 
574 /*
575  * Allocate an RPC server's buffer space.
576  * We allocate pages and place them in rq_argpages.
577  */
578 static int
579 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size, int node)
580 {
581 	unsigned int pages, arghi;
582 
583 	/* bc_xprt uses fore channel allocated buffers */
584 	if (svc_is_backchannel(rqstp))
585 		return 1;
586 
587 	pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply.
588 				       * We assume one is at most one page
589 				       */
590 	arghi = 0;
591 	BUG_ON(pages > RPCSVC_MAXPAGES);
592 	while (pages) {
593 		struct page *p = alloc_pages_node(node, GFP_KERNEL, 0);
594 		if (!p)
595 			break;
596 		rqstp->rq_pages[arghi++] = p;
597 		pages--;
598 	}
599 	return pages == 0;
600 }
601 
602 /*
603  * Release an RPC server buffer
604  */
605 static void
606 svc_release_buffer(struct svc_rqst *rqstp)
607 {
608 	unsigned int i;
609 
610 	for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++)
611 		if (rqstp->rq_pages[i])
612 			put_page(rqstp->rq_pages[i]);
613 }
614 
615 struct svc_rqst *
616 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node)
617 {
618 	struct svc_rqst	*rqstp;
619 
620 	rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node);
621 	if (!rqstp)
622 		goto out_enomem;
623 
624 	init_waitqueue_head(&rqstp->rq_wait);
625 
626 	serv->sv_nrthreads++;
627 	spin_lock_bh(&pool->sp_lock);
628 	pool->sp_nrthreads++;
629 	list_add(&rqstp->rq_all, &pool->sp_all_threads);
630 	spin_unlock_bh(&pool->sp_lock);
631 	rqstp->rq_server = serv;
632 	rqstp->rq_pool = pool;
633 
634 	rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
635 	if (!rqstp->rq_argp)
636 		goto out_thread;
637 
638 	rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
639 	if (!rqstp->rq_resp)
640 		goto out_thread;
641 
642 	if (!svc_init_buffer(rqstp, serv->sv_max_mesg, node))
643 		goto out_thread;
644 
645 	return rqstp;
646 out_thread:
647 	svc_exit_thread(rqstp);
648 out_enomem:
649 	return ERR_PTR(-ENOMEM);
650 }
651 EXPORT_SYMBOL_GPL(svc_prepare_thread);
652 
653 /*
654  * Choose a pool in which to create a new thread, for svc_set_num_threads
655  */
656 static inline struct svc_pool *
657 choose_pool(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
658 {
659 	if (pool != NULL)
660 		return pool;
661 
662 	return &serv->sv_pools[(*state)++ % serv->sv_nrpools];
663 }
664 
665 /*
666  * Choose a thread to kill, for svc_set_num_threads
667  */
668 static inline struct task_struct *
669 choose_victim(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
670 {
671 	unsigned int i;
672 	struct task_struct *task = NULL;
673 
674 	if (pool != NULL) {
675 		spin_lock_bh(&pool->sp_lock);
676 	} else {
677 		/* choose a pool in round-robin fashion */
678 		for (i = 0; i < serv->sv_nrpools; i++) {
679 			pool = &serv->sv_pools[--(*state) % serv->sv_nrpools];
680 			spin_lock_bh(&pool->sp_lock);
681 			if (!list_empty(&pool->sp_all_threads))
682 				goto found_pool;
683 			spin_unlock_bh(&pool->sp_lock);
684 		}
685 		return NULL;
686 	}
687 
688 found_pool:
689 	if (!list_empty(&pool->sp_all_threads)) {
690 		struct svc_rqst *rqstp;
691 
692 		/*
693 		 * Remove from the pool->sp_all_threads list
694 		 * so we don't try to kill it again.
695 		 */
696 		rqstp = list_entry(pool->sp_all_threads.next, struct svc_rqst, rq_all);
697 		list_del_init(&rqstp->rq_all);
698 		task = rqstp->rq_task;
699 	}
700 	spin_unlock_bh(&pool->sp_lock);
701 
702 	return task;
703 }
704 
705 /*
706  * Create or destroy enough new threads to make the number
707  * of threads the given number.  If `pool' is non-NULL, applies
708  * only to threads in that pool, otherwise round-robins between
709  * all pools.  Caller must ensure that mutual exclusion between this and
710  * server startup or shutdown.
711  *
712  * Destroying threads relies on the service threads filling in
713  * rqstp->rq_task, which only the nfs ones do.  Assumes the serv
714  * has been created using svc_create_pooled().
715  *
716  * Based on code that used to be in nfsd_svc() but tweaked
717  * to be pool-aware.
718  */
719 int
720 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
721 {
722 	struct svc_rqst	*rqstp;
723 	struct task_struct *task;
724 	struct svc_pool *chosen_pool;
725 	int error = 0;
726 	unsigned int state = serv->sv_nrthreads-1;
727 	int node;
728 
729 	if (pool == NULL) {
730 		/* The -1 assumes caller has done a svc_get() */
731 		nrservs -= (serv->sv_nrthreads-1);
732 	} else {
733 		spin_lock_bh(&pool->sp_lock);
734 		nrservs -= pool->sp_nrthreads;
735 		spin_unlock_bh(&pool->sp_lock);
736 	}
737 
738 	/* create new threads */
739 	while (nrservs > 0) {
740 		nrservs--;
741 		chosen_pool = choose_pool(serv, pool, &state);
742 
743 		node = svc_pool_map_get_node(chosen_pool->sp_id);
744 		rqstp = svc_prepare_thread(serv, chosen_pool, node);
745 		if (IS_ERR(rqstp)) {
746 			error = PTR_ERR(rqstp);
747 			break;
748 		}
749 
750 		__module_get(serv->sv_module);
751 		task = kthread_create_on_node(serv->sv_function, rqstp,
752 					      node, serv->sv_name);
753 		if (IS_ERR(task)) {
754 			error = PTR_ERR(task);
755 			module_put(serv->sv_module);
756 			svc_exit_thread(rqstp);
757 			break;
758 		}
759 
760 		rqstp->rq_task = task;
761 		if (serv->sv_nrpools > 1)
762 			svc_pool_map_set_cpumask(task, chosen_pool->sp_id);
763 
764 		svc_sock_update_bufs(serv);
765 		wake_up_process(task);
766 	}
767 	/* destroy old threads */
768 	while (nrservs < 0 &&
769 	       (task = choose_victim(serv, pool, &state)) != NULL) {
770 		send_sig(SIGINT, task, 1);
771 		nrservs++;
772 	}
773 
774 	return error;
775 }
776 EXPORT_SYMBOL_GPL(svc_set_num_threads);
777 
778 /*
779  * Called from a server thread as it's exiting. Caller must hold the BKL or
780  * the "service mutex", whichever is appropriate for the service.
781  */
782 void
783 svc_exit_thread(struct svc_rqst *rqstp)
784 {
785 	struct svc_serv	*serv = rqstp->rq_server;
786 	struct svc_pool	*pool = rqstp->rq_pool;
787 
788 	svc_release_buffer(rqstp);
789 	kfree(rqstp->rq_resp);
790 	kfree(rqstp->rq_argp);
791 	kfree(rqstp->rq_auth_data);
792 
793 	spin_lock_bh(&pool->sp_lock);
794 	pool->sp_nrthreads--;
795 	list_del(&rqstp->rq_all);
796 	spin_unlock_bh(&pool->sp_lock);
797 
798 	kfree(rqstp);
799 
800 	/* Release the server */
801 	if (serv)
802 		svc_destroy(serv);
803 }
804 EXPORT_SYMBOL_GPL(svc_exit_thread);
805 
806 /*
807  * Register an "inet" protocol family netid with the local
808  * rpcbind daemon via an rpcbind v4 SET request.
809  *
810  * No netconfig infrastructure is available in the kernel, so
811  * we map IP_ protocol numbers to netids by hand.
812  *
813  * Returns zero on success; a negative errno value is returned
814  * if any error occurs.
815  */
816 static int __svc_rpcb_register4(struct net *net, const u32 program,
817 				const u32 version,
818 				const unsigned short protocol,
819 				const unsigned short port)
820 {
821 	const struct sockaddr_in sin = {
822 		.sin_family		= AF_INET,
823 		.sin_addr.s_addr	= htonl(INADDR_ANY),
824 		.sin_port		= htons(port),
825 	};
826 	const char *netid;
827 	int error;
828 
829 	switch (protocol) {
830 	case IPPROTO_UDP:
831 		netid = RPCBIND_NETID_UDP;
832 		break;
833 	case IPPROTO_TCP:
834 		netid = RPCBIND_NETID_TCP;
835 		break;
836 	default:
837 		return -ENOPROTOOPT;
838 	}
839 
840 	error = rpcb_v4_register(net, program, version,
841 					(const struct sockaddr *)&sin, netid);
842 
843 	/*
844 	 * User space didn't support rpcbind v4, so retry this
845 	 * registration request with the legacy rpcbind v2 protocol.
846 	 */
847 	if (error == -EPROTONOSUPPORT)
848 		error = rpcb_register(net, program, version, protocol, port);
849 
850 	return error;
851 }
852 
853 #if IS_ENABLED(CONFIG_IPV6)
854 /*
855  * Register an "inet6" protocol family netid with the local
856  * rpcbind daemon via an rpcbind v4 SET request.
857  *
858  * No netconfig infrastructure is available in the kernel, so
859  * we map IP_ protocol numbers to netids by hand.
860  *
861  * Returns zero on success; a negative errno value is returned
862  * if any error occurs.
863  */
864 static int __svc_rpcb_register6(struct net *net, const u32 program,
865 				const u32 version,
866 				const unsigned short protocol,
867 				const unsigned short port)
868 {
869 	const struct sockaddr_in6 sin6 = {
870 		.sin6_family		= AF_INET6,
871 		.sin6_addr		= IN6ADDR_ANY_INIT,
872 		.sin6_port		= htons(port),
873 	};
874 	const char *netid;
875 	int error;
876 
877 	switch (protocol) {
878 	case IPPROTO_UDP:
879 		netid = RPCBIND_NETID_UDP6;
880 		break;
881 	case IPPROTO_TCP:
882 		netid = RPCBIND_NETID_TCP6;
883 		break;
884 	default:
885 		return -ENOPROTOOPT;
886 	}
887 
888 	error = rpcb_v4_register(net, program, version,
889 					(const struct sockaddr *)&sin6, netid);
890 
891 	/*
892 	 * User space didn't support rpcbind version 4, so we won't
893 	 * use a PF_INET6 listener.
894 	 */
895 	if (error == -EPROTONOSUPPORT)
896 		error = -EAFNOSUPPORT;
897 
898 	return error;
899 }
900 #endif	/* IS_ENABLED(CONFIG_IPV6) */
901 
902 /*
903  * Register a kernel RPC service via rpcbind version 4.
904  *
905  * Returns zero on success; a negative errno value is returned
906  * if any error occurs.
907  */
908 static int __svc_register(struct net *net, const char *progname,
909 			  const u32 program, const u32 version,
910 			  const int family,
911 			  const unsigned short protocol,
912 			  const unsigned short port)
913 {
914 	int error = -EAFNOSUPPORT;
915 
916 	switch (family) {
917 	case PF_INET:
918 		error = __svc_rpcb_register4(net, program, version,
919 						protocol, port);
920 		break;
921 #if IS_ENABLED(CONFIG_IPV6)
922 	case PF_INET6:
923 		error = __svc_rpcb_register6(net, program, version,
924 						protocol, port);
925 #endif
926 	}
927 
928 	if (error < 0)
929 		printk(KERN_WARNING "svc: failed to register %sv%u RPC "
930 			"service (errno %d).\n", progname, version, -error);
931 	return error;
932 }
933 
934 /**
935  * svc_register - register an RPC service with the local portmapper
936  * @serv: svc_serv struct for the service to register
937  * @net: net namespace for the service to register
938  * @family: protocol family of service's listener socket
939  * @proto: transport protocol number to advertise
940  * @port: port to advertise
941  *
942  * Service is registered for any address in the passed-in protocol family
943  */
944 int svc_register(const struct svc_serv *serv, struct net *net,
945 		 const int family, const unsigned short proto,
946 		 const unsigned short port)
947 {
948 	struct svc_program	*progp;
949 	unsigned int		i;
950 	int			error = 0;
951 
952 	BUG_ON(proto == 0 && port == 0);
953 
954 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
955 		for (i = 0; i < progp->pg_nvers; i++) {
956 			if (progp->pg_vers[i] == NULL)
957 				continue;
958 
959 			dprintk("svc: svc_register(%sv%d, %s, %u, %u)%s\n",
960 					progp->pg_name,
961 					i,
962 					proto == IPPROTO_UDP?  "udp" : "tcp",
963 					port,
964 					family,
965 					progp->pg_vers[i]->vs_hidden?
966 						" (but not telling portmap)" : "");
967 
968 			if (progp->pg_vers[i]->vs_hidden)
969 				continue;
970 
971 			error = __svc_register(net, progp->pg_name, progp->pg_prog,
972 						i, family, proto, port);
973 			if (error < 0)
974 				break;
975 		}
976 	}
977 
978 	return error;
979 }
980 
981 /*
982  * If user space is running rpcbind, it should take the v4 UNSET
983  * and clear everything for this [program, version].  If user space
984  * is running portmap, it will reject the v4 UNSET, but won't have
985  * any "inet6" entries anyway.  So a PMAP_UNSET should be sufficient
986  * in this case to clear all existing entries for [program, version].
987  */
988 static void __svc_unregister(struct net *net, const u32 program, const u32 version,
989 			     const char *progname)
990 {
991 	int error;
992 
993 	error = rpcb_v4_register(net, program, version, NULL, "");
994 
995 	/*
996 	 * User space didn't support rpcbind v4, so retry this
997 	 * request with the legacy rpcbind v2 protocol.
998 	 */
999 	if (error == -EPROTONOSUPPORT)
1000 		error = rpcb_register(net, program, version, 0, 0);
1001 
1002 	dprintk("svc: %s(%sv%u), error %d\n",
1003 			__func__, progname, version, error);
1004 }
1005 
1006 /*
1007  * All netids, bind addresses and ports registered for [program, version]
1008  * are removed from the local rpcbind database (if the service is not
1009  * hidden) to make way for a new instance of the service.
1010  *
1011  * The result of unregistration is reported via dprintk for those who want
1012  * verification of the result, but is otherwise not important.
1013  */
1014 static void svc_unregister(const struct svc_serv *serv, struct net *net)
1015 {
1016 	struct svc_program *progp;
1017 	unsigned long flags;
1018 	unsigned int i;
1019 
1020 	clear_thread_flag(TIF_SIGPENDING);
1021 
1022 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
1023 		for (i = 0; i < progp->pg_nvers; i++) {
1024 			if (progp->pg_vers[i] == NULL)
1025 				continue;
1026 			if (progp->pg_vers[i]->vs_hidden)
1027 				continue;
1028 
1029 			dprintk("svc: attempting to unregister %sv%u\n",
1030 				progp->pg_name, i);
1031 			__svc_unregister(net, progp->pg_prog, i, progp->pg_name);
1032 		}
1033 	}
1034 
1035 	spin_lock_irqsave(&current->sighand->siglock, flags);
1036 	recalc_sigpending();
1037 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
1038 }
1039 
1040 /*
1041  * Printk the given error with the address of the client that caused it.
1042  */
1043 static __printf(2, 3)
1044 int svc_printk(struct svc_rqst *rqstp, const char *fmt, ...)
1045 {
1046 	va_list args;
1047 	int 	r;
1048 	char 	buf[RPC_MAX_ADDRBUFLEN];
1049 
1050 	if (!net_ratelimit())
1051 		return 0;
1052 
1053 	printk(KERN_WARNING "svc: %s: ",
1054 		svc_print_addr(rqstp, buf, sizeof(buf)));
1055 
1056 	va_start(args, fmt);
1057 	r = vprintk(fmt, args);
1058 	va_end(args);
1059 
1060 	return r;
1061 }
1062 
1063 /*
1064  * Common routine for processing the RPC request.
1065  */
1066 static int
1067 svc_process_common(struct svc_rqst *rqstp, struct kvec *argv, struct kvec *resv)
1068 {
1069 	struct svc_program	*progp;
1070 	struct svc_version	*versp = NULL;	/* compiler food */
1071 	struct svc_procedure	*procp = NULL;
1072 	struct svc_serv		*serv = rqstp->rq_server;
1073 	kxdrproc_t		xdr;
1074 	__be32			*statp;
1075 	u32			prog, vers, proc;
1076 	__be32			auth_stat, rpc_stat;
1077 	int			auth_res;
1078 	__be32			*reply_statp;
1079 
1080 	rpc_stat = rpc_success;
1081 
1082 	if (argv->iov_len < 6*4)
1083 		goto err_short_len;
1084 
1085 	/* Will be turned off only in gss privacy case: */
1086 	rqstp->rq_splice_ok = 1;
1087 	/* Will be turned off only when NFSv4 Sessions are used */
1088 	rqstp->rq_usedeferral = 1;
1089 	rqstp->rq_dropme = false;
1090 
1091 	/* Setup reply header */
1092 	rqstp->rq_xprt->xpt_ops->xpo_prep_reply_hdr(rqstp);
1093 
1094 	svc_putu32(resv, rqstp->rq_xid);
1095 
1096 	vers = svc_getnl(argv);
1097 
1098 	/* First words of reply: */
1099 	svc_putnl(resv, 1);		/* REPLY */
1100 
1101 	if (vers != 2)		/* RPC version number */
1102 		goto err_bad_rpc;
1103 
1104 	/* Save position in case we later decide to reject: */
1105 	reply_statp = resv->iov_base + resv->iov_len;
1106 
1107 	svc_putnl(resv, 0);		/* ACCEPT */
1108 
1109 	rqstp->rq_prog = prog = svc_getnl(argv);	/* program number */
1110 	rqstp->rq_vers = vers = svc_getnl(argv);	/* version number */
1111 	rqstp->rq_proc = proc = svc_getnl(argv);	/* procedure number */
1112 
1113 	progp = serv->sv_program;
1114 
1115 	for (progp = serv->sv_program; progp; progp = progp->pg_next)
1116 		if (prog == progp->pg_prog)
1117 			break;
1118 
1119 	/*
1120 	 * Decode auth data, and add verifier to reply buffer.
1121 	 * We do this before anything else in order to get a decent
1122 	 * auth verifier.
1123 	 */
1124 	auth_res = svc_authenticate(rqstp, &auth_stat);
1125 	/* Also give the program a chance to reject this call: */
1126 	if (auth_res == SVC_OK && progp) {
1127 		auth_stat = rpc_autherr_badcred;
1128 		auth_res = progp->pg_authenticate(rqstp);
1129 	}
1130 	switch (auth_res) {
1131 	case SVC_OK:
1132 		break;
1133 	case SVC_GARBAGE:
1134 		goto err_garbage;
1135 	case SVC_SYSERR:
1136 		rpc_stat = rpc_system_err;
1137 		goto err_bad;
1138 	case SVC_DENIED:
1139 		goto err_bad_auth;
1140 	case SVC_CLOSE:
1141 		if (test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags))
1142 			svc_close_xprt(rqstp->rq_xprt);
1143 	case SVC_DROP:
1144 		goto dropit;
1145 	case SVC_COMPLETE:
1146 		goto sendit;
1147 	}
1148 
1149 	if (progp == NULL)
1150 		goto err_bad_prog;
1151 
1152 	if (vers >= progp->pg_nvers ||
1153 	  !(versp = progp->pg_vers[vers]))
1154 		goto err_bad_vers;
1155 
1156 	procp = versp->vs_proc + proc;
1157 	if (proc >= versp->vs_nproc || !procp->pc_func)
1158 		goto err_bad_proc;
1159 	rqstp->rq_procinfo = procp;
1160 
1161 	/* Syntactic check complete */
1162 	serv->sv_stats->rpccnt++;
1163 
1164 	/* Build the reply header. */
1165 	statp = resv->iov_base +resv->iov_len;
1166 	svc_putnl(resv, RPC_SUCCESS);
1167 
1168 	/* Bump per-procedure stats counter */
1169 	procp->pc_count++;
1170 
1171 	/* Initialize storage for argp and resp */
1172 	memset(rqstp->rq_argp, 0, procp->pc_argsize);
1173 	memset(rqstp->rq_resp, 0, procp->pc_ressize);
1174 
1175 	/* un-reserve some of the out-queue now that we have a
1176 	 * better idea of reply size
1177 	 */
1178 	if (procp->pc_xdrressize)
1179 		svc_reserve_auth(rqstp, procp->pc_xdrressize<<2);
1180 
1181 	/* Call the function that processes the request. */
1182 	if (!versp->vs_dispatch) {
1183 		/* Decode arguments */
1184 		xdr = procp->pc_decode;
1185 		if (xdr && !xdr(rqstp, argv->iov_base, rqstp->rq_argp))
1186 			goto err_garbage;
1187 
1188 		*statp = procp->pc_func(rqstp, rqstp->rq_argp, rqstp->rq_resp);
1189 
1190 		/* Encode reply */
1191 		if (rqstp->rq_dropme) {
1192 			if (procp->pc_release)
1193 				procp->pc_release(rqstp, NULL, rqstp->rq_resp);
1194 			goto dropit;
1195 		}
1196 		if (*statp == rpc_success &&
1197 		    (xdr = procp->pc_encode) &&
1198 		    !xdr(rqstp, resv->iov_base+resv->iov_len, rqstp->rq_resp)) {
1199 			dprintk("svc: failed to encode reply\n");
1200 			/* serv->sv_stats->rpcsystemerr++; */
1201 			*statp = rpc_system_err;
1202 		}
1203 	} else {
1204 		dprintk("svc: calling dispatcher\n");
1205 		if (!versp->vs_dispatch(rqstp, statp)) {
1206 			/* Release reply info */
1207 			if (procp->pc_release)
1208 				procp->pc_release(rqstp, NULL, rqstp->rq_resp);
1209 			goto dropit;
1210 		}
1211 	}
1212 
1213 	/* Check RPC status result */
1214 	if (*statp != rpc_success)
1215 		resv->iov_len = ((void*)statp)  - resv->iov_base + 4;
1216 
1217 	/* Release reply info */
1218 	if (procp->pc_release)
1219 		procp->pc_release(rqstp, NULL, rqstp->rq_resp);
1220 
1221 	if (procp->pc_encode == NULL)
1222 		goto dropit;
1223 
1224  sendit:
1225 	if (svc_authorise(rqstp))
1226 		goto dropit;
1227 	return 1;		/* Caller can now send it */
1228 
1229  dropit:
1230 	svc_authorise(rqstp);	/* doesn't hurt to call this twice */
1231 	dprintk("svc: svc_process dropit\n");
1232 	return 0;
1233 
1234 err_short_len:
1235 	svc_printk(rqstp, "short len %Zd, dropping request\n",
1236 			argv->iov_len);
1237 
1238 	goto dropit;			/* drop request */
1239 
1240 err_bad_rpc:
1241 	serv->sv_stats->rpcbadfmt++;
1242 	svc_putnl(resv, 1);	/* REJECT */
1243 	svc_putnl(resv, 0);	/* RPC_MISMATCH */
1244 	svc_putnl(resv, 2);	/* Only RPCv2 supported */
1245 	svc_putnl(resv, 2);
1246 	goto sendit;
1247 
1248 err_bad_auth:
1249 	dprintk("svc: authentication failed (%d)\n", ntohl(auth_stat));
1250 	serv->sv_stats->rpcbadauth++;
1251 	/* Restore write pointer to location of accept status: */
1252 	xdr_ressize_check(rqstp, reply_statp);
1253 	svc_putnl(resv, 1);	/* REJECT */
1254 	svc_putnl(resv, 1);	/* AUTH_ERROR */
1255 	svc_putnl(resv, ntohl(auth_stat));	/* status */
1256 	goto sendit;
1257 
1258 err_bad_prog:
1259 	dprintk("svc: unknown program %d\n", prog);
1260 	serv->sv_stats->rpcbadfmt++;
1261 	svc_putnl(resv, RPC_PROG_UNAVAIL);
1262 	goto sendit;
1263 
1264 err_bad_vers:
1265 	svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n",
1266 		       vers, prog, progp->pg_name);
1267 
1268 	serv->sv_stats->rpcbadfmt++;
1269 	svc_putnl(resv, RPC_PROG_MISMATCH);
1270 	svc_putnl(resv, progp->pg_lovers);
1271 	svc_putnl(resv, progp->pg_hivers);
1272 	goto sendit;
1273 
1274 err_bad_proc:
1275 	svc_printk(rqstp, "unknown procedure (%d)\n", proc);
1276 
1277 	serv->sv_stats->rpcbadfmt++;
1278 	svc_putnl(resv, RPC_PROC_UNAVAIL);
1279 	goto sendit;
1280 
1281 err_garbage:
1282 	svc_printk(rqstp, "failed to decode args\n");
1283 
1284 	rpc_stat = rpc_garbage_args;
1285 err_bad:
1286 	serv->sv_stats->rpcbadfmt++;
1287 	svc_putnl(resv, ntohl(rpc_stat));
1288 	goto sendit;
1289 }
1290 EXPORT_SYMBOL_GPL(svc_process);
1291 
1292 /*
1293  * Process the RPC request.
1294  */
1295 int
1296 svc_process(struct svc_rqst *rqstp)
1297 {
1298 	struct kvec		*argv = &rqstp->rq_arg.head[0];
1299 	struct kvec		*resv = &rqstp->rq_res.head[0];
1300 	struct svc_serv		*serv = rqstp->rq_server;
1301 	u32			dir;
1302 
1303 	/*
1304 	 * Setup response xdr_buf.
1305 	 * Initially it has just one page
1306 	 */
1307 	rqstp->rq_resused = 1;
1308 	resv->iov_base = page_address(rqstp->rq_respages[0]);
1309 	resv->iov_len = 0;
1310 	rqstp->rq_res.pages = rqstp->rq_respages + 1;
1311 	rqstp->rq_res.len = 0;
1312 	rqstp->rq_res.page_base = 0;
1313 	rqstp->rq_res.page_len = 0;
1314 	rqstp->rq_res.buflen = PAGE_SIZE;
1315 	rqstp->rq_res.tail[0].iov_base = NULL;
1316 	rqstp->rq_res.tail[0].iov_len = 0;
1317 
1318 	rqstp->rq_xid = svc_getu32(argv);
1319 
1320 	dir  = svc_getnl(argv);
1321 	if (dir != 0) {
1322 		/* direction != CALL */
1323 		svc_printk(rqstp, "bad direction %d, dropping request\n", dir);
1324 		serv->sv_stats->rpcbadfmt++;
1325 		svc_drop(rqstp);
1326 		return 0;
1327 	}
1328 
1329 	/* Returns 1 for send, 0 for drop */
1330 	if (svc_process_common(rqstp, argv, resv))
1331 		return svc_send(rqstp);
1332 	else {
1333 		svc_drop(rqstp);
1334 		return 0;
1335 	}
1336 }
1337 
1338 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1339 /*
1340  * Process a backchannel RPC request that arrived over an existing
1341  * outbound connection
1342  */
1343 int
1344 bc_svc_process(struct svc_serv *serv, struct rpc_rqst *req,
1345 	       struct svc_rqst *rqstp)
1346 {
1347 	struct kvec	*argv = &rqstp->rq_arg.head[0];
1348 	struct kvec	*resv = &rqstp->rq_res.head[0];
1349 
1350 	/* Build the svc_rqst used by the common processing routine */
1351 	rqstp->rq_xprt = serv->sv_bc_xprt;
1352 	rqstp->rq_xid = req->rq_xid;
1353 	rqstp->rq_prot = req->rq_xprt->prot;
1354 	rqstp->rq_server = serv;
1355 
1356 	rqstp->rq_addrlen = sizeof(req->rq_xprt->addr);
1357 	memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen);
1358 	memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg));
1359 	memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res));
1360 
1361 	/* reset result send buffer "put" position */
1362 	resv->iov_len = 0;
1363 
1364 	if (rqstp->rq_prot != IPPROTO_TCP) {
1365 		printk(KERN_ERR "No support for Non-TCP transports!\n");
1366 		BUG();
1367 	}
1368 
1369 	/*
1370 	 * Skip the next two words because they've already been
1371 	 * processed in the trasport
1372 	 */
1373 	svc_getu32(argv);	/* XID */
1374 	svc_getnl(argv);	/* CALLDIR */
1375 
1376 	/* Returns 1 for send, 0 for drop */
1377 	if (svc_process_common(rqstp, argv, resv)) {
1378 		memcpy(&req->rq_snd_buf, &rqstp->rq_res,
1379 						sizeof(req->rq_snd_buf));
1380 		return bc_send(req);
1381 	} else {
1382 		/* Nothing to do to drop request */
1383 		return 0;
1384 	}
1385 }
1386 EXPORT_SYMBOL_GPL(bc_svc_process);
1387 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
1388 
1389 /*
1390  * Return (transport-specific) limit on the rpc payload.
1391  */
1392 u32 svc_max_payload(const struct svc_rqst *rqstp)
1393 {
1394 	u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload;
1395 
1396 	if (rqstp->rq_server->sv_max_payload < max)
1397 		max = rqstp->rq_server->sv_max_payload;
1398 	return max;
1399 }
1400 EXPORT_SYMBOL_GPL(svc_max_payload);
1401