1 /* 2 * linux/net/sunrpc/svc.c 3 * 4 * High-level RPC service routines 5 * 6 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 7 * 8 * Multiple threads pools and NUMAisation 9 * Copyright (c) 2006 Silicon Graphics, Inc. 10 * by Greg Banks <gnb@melbourne.sgi.com> 11 */ 12 13 #include <linux/linkage.h> 14 #include <linux/sched.h> 15 #include <linux/errno.h> 16 #include <linux/net.h> 17 #include <linux/in.h> 18 #include <linux/mm.h> 19 #include <linux/interrupt.h> 20 #include <linux/module.h> 21 #include <linux/kthread.h> 22 #include <linux/slab.h> 23 24 #include <linux/sunrpc/types.h> 25 #include <linux/sunrpc/xdr.h> 26 #include <linux/sunrpc/stats.h> 27 #include <linux/sunrpc/svcsock.h> 28 #include <linux/sunrpc/clnt.h> 29 #include <linux/sunrpc/bc_xprt.h> 30 31 #define RPCDBG_FACILITY RPCDBG_SVCDSP 32 33 static void svc_unregister(const struct svc_serv *serv, struct net *net); 34 35 #define svc_serv_is_pooled(serv) ((serv)->sv_function) 36 37 /* 38 * Mode for mapping cpus to pools. 39 */ 40 enum { 41 SVC_POOL_AUTO = -1, /* choose one of the others */ 42 SVC_POOL_GLOBAL, /* no mapping, just a single global pool 43 * (legacy & UP mode) */ 44 SVC_POOL_PERCPU, /* one pool per cpu */ 45 SVC_POOL_PERNODE /* one pool per numa node */ 46 }; 47 #define SVC_POOL_DEFAULT SVC_POOL_GLOBAL 48 49 /* 50 * Structure for mapping cpus to pools and vice versa. 51 * Setup once during sunrpc initialisation. 52 */ 53 static struct svc_pool_map { 54 int count; /* How many svc_servs use us */ 55 int mode; /* Note: int not enum to avoid 56 * warnings about "enumeration value 57 * not handled in switch" */ 58 unsigned int npools; 59 unsigned int *pool_to; /* maps pool id to cpu or node */ 60 unsigned int *to_pool; /* maps cpu or node to pool id */ 61 } svc_pool_map = { 62 .count = 0, 63 .mode = SVC_POOL_DEFAULT 64 }; 65 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */ 66 67 static int 68 param_set_pool_mode(const char *val, struct kernel_param *kp) 69 { 70 int *ip = (int *)kp->arg; 71 struct svc_pool_map *m = &svc_pool_map; 72 int err; 73 74 mutex_lock(&svc_pool_map_mutex); 75 76 err = -EBUSY; 77 if (m->count) 78 goto out; 79 80 err = 0; 81 if (!strncmp(val, "auto", 4)) 82 *ip = SVC_POOL_AUTO; 83 else if (!strncmp(val, "global", 6)) 84 *ip = SVC_POOL_GLOBAL; 85 else if (!strncmp(val, "percpu", 6)) 86 *ip = SVC_POOL_PERCPU; 87 else if (!strncmp(val, "pernode", 7)) 88 *ip = SVC_POOL_PERNODE; 89 else 90 err = -EINVAL; 91 92 out: 93 mutex_unlock(&svc_pool_map_mutex); 94 return err; 95 } 96 97 static int 98 param_get_pool_mode(char *buf, struct kernel_param *kp) 99 { 100 int *ip = (int *)kp->arg; 101 102 switch (*ip) 103 { 104 case SVC_POOL_AUTO: 105 return strlcpy(buf, "auto", 20); 106 case SVC_POOL_GLOBAL: 107 return strlcpy(buf, "global", 20); 108 case SVC_POOL_PERCPU: 109 return strlcpy(buf, "percpu", 20); 110 case SVC_POOL_PERNODE: 111 return strlcpy(buf, "pernode", 20); 112 default: 113 return sprintf(buf, "%d", *ip); 114 } 115 } 116 117 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode, 118 &svc_pool_map.mode, 0644); 119 120 /* 121 * Detect best pool mapping mode heuristically, 122 * according to the machine's topology. 123 */ 124 static int 125 svc_pool_map_choose_mode(void) 126 { 127 unsigned int node; 128 129 if (nr_online_nodes > 1) { 130 /* 131 * Actually have multiple NUMA nodes, 132 * so split pools on NUMA node boundaries 133 */ 134 return SVC_POOL_PERNODE; 135 } 136 137 node = first_online_node; 138 if (nr_cpus_node(node) > 2) { 139 /* 140 * Non-trivial SMP, or CONFIG_NUMA on 141 * non-NUMA hardware, e.g. with a generic 142 * x86_64 kernel on Xeons. In this case we 143 * want to divide the pools on cpu boundaries. 144 */ 145 return SVC_POOL_PERCPU; 146 } 147 148 /* default: one global pool */ 149 return SVC_POOL_GLOBAL; 150 } 151 152 /* 153 * Allocate the to_pool[] and pool_to[] arrays. 154 * Returns 0 on success or an errno. 155 */ 156 static int 157 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools) 158 { 159 m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL); 160 if (!m->to_pool) 161 goto fail; 162 m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL); 163 if (!m->pool_to) 164 goto fail_free; 165 166 return 0; 167 168 fail_free: 169 kfree(m->to_pool); 170 m->to_pool = NULL; 171 fail: 172 return -ENOMEM; 173 } 174 175 /* 176 * Initialise the pool map for SVC_POOL_PERCPU mode. 177 * Returns number of pools or <0 on error. 178 */ 179 static int 180 svc_pool_map_init_percpu(struct svc_pool_map *m) 181 { 182 unsigned int maxpools = nr_cpu_ids; 183 unsigned int pidx = 0; 184 unsigned int cpu; 185 int err; 186 187 err = svc_pool_map_alloc_arrays(m, maxpools); 188 if (err) 189 return err; 190 191 for_each_online_cpu(cpu) { 192 BUG_ON(pidx > maxpools); 193 m->to_pool[cpu] = pidx; 194 m->pool_to[pidx] = cpu; 195 pidx++; 196 } 197 /* cpus brought online later all get mapped to pool0, sorry */ 198 199 return pidx; 200 }; 201 202 203 /* 204 * Initialise the pool map for SVC_POOL_PERNODE mode. 205 * Returns number of pools or <0 on error. 206 */ 207 static int 208 svc_pool_map_init_pernode(struct svc_pool_map *m) 209 { 210 unsigned int maxpools = nr_node_ids; 211 unsigned int pidx = 0; 212 unsigned int node; 213 int err; 214 215 err = svc_pool_map_alloc_arrays(m, maxpools); 216 if (err) 217 return err; 218 219 for_each_node_with_cpus(node) { 220 /* some architectures (e.g. SN2) have cpuless nodes */ 221 BUG_ON(pidx > maxpools); 222 m->to_pool[node] = pidx; 223 m->pool_to[pidx] = node; 224 pidx++; 225 } 226 /* nodes brought online later all get mapped to pool0, sorry */ 227 228 return pidx; 229 } 230 231 232 /* 233 * Add a reference to the global map of cpus to pools (and 234 * vice versa). Initialise the map if we're the first user. 235 * Returns the number of pools. 236 */ 237 static unsigned int 238 svc_pool_map_get(void) 239 { 240 struct svc_pool_map *m = &svc_pool_map; 241 int npools = -1; 242 243 mutex_lock(&svc_pool_map_mutex); 244 245 if (m->count++) { 246 mutex_unlock(&svc_pool_map_mutex); 247 return m->npools; 248 } 249 250 if (m->mode == SVC_POOL_AUTO) 251 m->mode = svc_pool_map_choose_mode(); 252 253 switch (m->mode) { 254 case SVC_POOL_PERCPU: 255 npools = svc_pool_map_init_percpu(m); 256 break; 257 case SVC_POOL_PERNODE: 258 npools = svc_pool_map_init_pernode(m); 259 break; 260 } 261 262 if (npools < 0) { 263 /* default, or memory allocation failure */ 264 npools = 1; 265 m->mode = SVC_POOL_GLOBAL; 266 } 267 m->npools = npools; 268 269 mutex_unlock(&svc_pool_map_mutex); 270 return m->npools; 271 } 272 273 274 /* 275 * Drop a reference to the global map of cpus to pools. 276 * When the last reference is dropped, the map data is 277 * freed; this allows the sysadmin to change the pool 278 * mode using the pool_mode module option without 279 * rebooting or re-loading sunrpc.ko. 280 */ 281 static void 282 svc_pool_map_put(void) 283 { 284 struct svc_pool_map *m = &svc_pool_map; 285 286 mutex_lock(&svc_pool_map_mutex); 287 288 if (!--m->count) { 289 kfree(m->to_pool); 290 m->to_pool = NULL; 291 kfree(m->pool_to); 292 m->pool_to = NULL; 293 m->npools = 0; 294 } 295 296 mutex_unlock(&svc_pool_map_mutex); 297 } 298 299 300 static int svc_pool_map_get_node(unsigned int pidx) 301 { 302 const struct svc_pool_map *m = &svc_pool_map; 303 304 if (m->count) { 305 if (m->mode == SVC_POOL_PERCPU) 306 return cpu_to_node(m->pool_to[pidx]); 307 if (m->mode == SVC_POOL_PERNODE) 308 return m->pool_to[pidx]; 309 } 310 return NUMA_NO_NODE; 311 } 312 /* 313 * Set the given thread's cpus_allowed mask so that it 314 * will only run on cpus in the given pool. 315 */ 316 static inline void 317 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx) 318 { 319 struct svc_pool_map *m = &svc_pool_map; 320 unsigned int node = m->pool_to[pidx]; 321 322 /* 323 * The caller checks for sv_nrpools > 1, which 324 * implies that we've been initialized. 325 */ 326 WARN_ON_ONCE(m->count == 0); 327 if (m->count == 0) 328 return; 329 330 switch (m->mode) { 331 case SVC_POOL_PERCPU: 332 { 333 set_cpus_allowed_ptr(task, cpumask_of(node)); 334 break; 335 } 336 case SVC_POOL_PERNODE: 337 { 338 set_cpus_allowed_ptr(task, cpumask_of_node(node)); 339 break; 340 } 341 } 342 } 343 344 /* 345 * Use the mapping mode to choose a pool for a given CPU. 346 * Used when enqueueing an incoming RPC. Always returns 347 * a non-NULL pool pointer. 348 */ 349 struct svc_pool * 350 svc_pool_for_cpu(struct svc_serv *serv, int cpu) 351 { 352 struct svc_pool_map *m = &svc_pool_map; 353 unsigned int pidx = 0; 354 355 /* 356 * An uninitialised map happens in a pure client when 357 * lockd is brought up, so silently treat it the 358 * same as SVC_POOL_GLOBAL. 359 */ 360 if (svc_serv_is_pooled(serv)) { 361 switch (m->mode) { 362 case SVC_POOL_PERCPU: 363 pidx = m->to_pool[cpu]; 364 break; 365 case SVC_POOL_PERNODE: 366 pidx = m->to_pool[cpu_to_node(cpu)]; 367 break; 368 } 369 } 370 return &serv->sv_pools[pidx % serv->sv_nrpools]; 371 } 372 373 int svc_rpcb_setup(struct svc_serv *serv, struct net *net) 374 { 375 int err; 376 377 err = rpcb_create_local(net); 378 if (err) 379 return err; 380 381 /* Remove any stale portmap registrations */ 382 svc_unregister(serv, net); 383 return 0; 384 } 385 EXPORT_SYMBOL_GPL(svc_rpcb_setup); 386 387 void svc_rpcb_cleanup(struct svc_serv *serv, struct net *net) 388 { 389 svc_unregister(serv, net); 390 rpcb_put_local(net); 391 } 392 EXPORT_SYMBOL_GPL(svc_rpcb_cleanup); 393 394 static int svc_uses_rpcbind(struct svc_serv *serv) 395 { 396 struct svc_program *progp; 397 unsigned int i; 398 399 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 400 for (i = 0; i < progp->pg_nvers; i++) { 401 if (progp->pg_vers[i] == NULL) 402 continue; 403 if (progp->pg_vers[i]->vs_hidden == 0) 404 return 1; 405 } 406 } 407 408 return 0; 409 } 410 411 int svc_bind(struct svc_serv *serv, struct net *net) 412 { 413 if (!svc_uses_rpcbind(serv)) 414 return 0; 415 return svc_rpcb_setup(serv, net); 416 } 417 EXPORT_SYMBOL_GPL(svc_bind); 418 419 /* 420 * Create an RPC service 421 */ 422 static struct svc_serv * 423 __svc_create(struct svc_program *prog, unsigned int bufsize, int npools, 424 void (*shutdown)(struct svc_serv *serv, struct net *net)) 425 { 426 struct svc_serv *serv; 427 unsigned int vers; 428 unsigned int xdrsize; 429 unsigned int i; 430 431 if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL))) 432 return NULL; 433 serv->sv_name = prog->pg_name; 434 serv->sv_program = prog; 435 serv->sv_nrthreads = 1; 436 serv->sv_stats = prog->pg_stats; 437 if (bufsize > RPCSVC_MAXPAYLOAD) 438 bufsize = RPCSVC_MAXPAYLOAD; 439 serv->sv_max_payload = bufsize? bufsize : 4096; 440 serv->sv_max_mesg = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE); 441 serv->sv_shutdown = shutdown; 442 xdrsize = 0; 443 while (prog) { 444 prog->pg_lovers = prog->pg_nvers-1; 445 for (vers=0; vers<prog->pg_nvers ; vers++) 446 if (prog->pg_vers[vers]) { 447 prog->pg_hivers = vers; 448 if (prog->pg_lovers > vers) 449 prog->pg_lovers = vers; 450 if (prog->pg_vers[vers]->vs_xdrsize > xdrsize) 451 xdrsize = prog->pg_vers[vers]->vs_xdrsize; 452 } 453 prog = prog->pg_next; 454 } 455 serv->sv_xdrsize = xdrsize; 456 INIT_LIST_HEAD(&serv->sv_tempsocks); 457 INIT_LIST_HEAD(&serv->sv_permsocks); 458 init_timer(&serv->sv_temptimer); 459 spin_lock_init(&serv->sv_lock); 460 461 serv->sv_nrpools = npools; 462 serv->sv_pools = 463 kcalloc(serv->sv_nrpools, sizeof(struct svc_pool), 464 GFP_KERNEL); 465 if (!serv->sv_pools) { 466 kfree(serv); 467 return NULL; 468 } 469 470 for (i = 0; i < serv->sv_nrpools; i++) { 471 struct svc_pool *pool = &serv->sv_pools[i]; 472 473 dprintk("svc: initialising pool %u for %s\n", 474 i, serv->sv_name); 475 476 pool->sp_id = i; 477 INIT_LIST_HEAD(&pool->sp_threads); 478 INIT_LIST_HEAD(&pool->sp_sockets); 479 INIT_LIST_HEAD(&pool->sp_all_threads); 480 spin_lock_init(&pool->sp_lock); 481 } 482 483 if (svc_uses_rpcbind(serv) && (!serv->sv_shutdown)) 484 serv->sv_shutdown = svc_rpcb_cleanup; 485 486 return serv; 487 } 488 489 struct svc_serv * 490 svc_create(struct svc_program *prog, unsigned int bufsize, 491 void (*shutdown)(struct svc_serv *serv, struct net *net)) 492 { 493 return __svc_create(prog, bufsize, /*npools*/1, shutdown); 494 } 495 EXPORT_SYMBOL_GPL(svc_create); 496 497 struct svc_serv * 498 svc_create_pooled(struct svc_program *prog, unsigned int bufsize, 499 void (*shutdown)(struct svc_serv *serv, struct net *net), 500 svc_thread_fn func, struct module *mod) 501 { 502 struct svc_serv *serv; 503 unsigned int npools = svc_pool_map_get(); 504 505 serv = __svc_create(prog, bufsize, npools, shutdown); 506 507 if (serv != NULL) { 508 serv->sv_function = func; 509 serv->sv_module = mod; 510 } 511 512 return serv; 513 } 514 EXPORT_SYMBOL_GPL(svc_create_pooled); 515 516 void svc_shutdown_net(struct svc_serv *serv, struct net *net) 517 { 518 svc_close_net(serv, net); 519 520 if (serv->sv_shutdown) 521 serv->sv_shutdown(serv, net); 522 } 523 EXPORT_SYMBOL_GPL(svc_shutdown_net); 524 525 /* 526 * Destroy an RPC service. Should be called with appropriate locking to 527 * protect the sv_nrthreads, sv_permsocks and sv_tempsocks. 528 */ 529 void 530 svc_destroy(struct svc_serv *serv) 531 { 532 dprintk("svc: svc_destroy(%s, %d)\n", 533 serv->sv_program->pg_name, 534 serv->sv_nrthreads); 535 536 if (serv->sv_nrthreads) { 537 if (--(serv->sv_nrthreads) != 0) { 538 svc_sock_update_bufs(serv); 539 return; 540 } 541 } else 542 printk("svc_destroy: no threads for serv=%p!\n", serv); 543 544 del_timer_sync(&serv->sv_temptimer); 545 546 /* 547 * The last user is gone and thus all sockets have to be destroyed to 548 * the point. Check this. 549 */ 550 BUG_ON(!list_empty(&serv->sv_permsocks)); 551 BUG_ON(!list_empty(&serv->sv_tempsocks)); 552 553 cache_clean_deferred(serv); 554 555 if (svc_serv_is_pooled(serv)) 556 svc_pool_map_put(); 557 558 kfree(serv->sv_pools); 559 kfree(serv); 560 } 561 EXPORT_SYMBOL_GPL(svc_destroy); 562 563 /* 564 * Allocate an RPC server's buffer space. 565 * We allocate pages and place them in rq_argpages. 566 */ 567 static int 568 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size, int node) 569 { 570 unsigned int pages, arghi; 571 572 /* bc_xprt uses fore channel allocated buffers */ 573 if (svc_is_backchannel(rqstp)) 574 return 1; 575 576 pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply. 577 * We assume one is at most one page 578 */ 579 arghi = 0; 580 WARN_ON_ONCE(pages > RPCSVC_MAXPAGES); 581 if (pages > RPCSVC_MAXPAGES) 582 pages = RPCSVC_MAXPAGES; 583 while (pages) { 584 struct page *p = alloc_pages_node(node, GFP_KERNEL, 0); 585 if (!p) 586 break; 587 rqstp->rq_pages[arghi++] = p; 588 pages--; 589 } 590 return pages == 0; 591 } 592 593 /* 594 * Release an RPC server buffer 595 */ 596 static void 597 svc_release_buffer(struct svc_rqst *rqstp) 598 { 599 unsigned int i; 600 601 for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++) 602 if (rqstp->rq_pages[i]) 603 put_page(rqstp->rq_pages[i]); 604 } 605 606 struct svc_rqst * 607 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node) 608 { 609 struct svc_rqst *rqstp; 610 611 rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node); 612 if (!rqstp) 613 goto out_enomem; 614 615 serv->sv_nrthreads++; 616 spin_lock_bh(&pool->sp_lock); 617 pool->sp_nrthreads++; 618 list_add(&rqstp->rq_all, &pool->sp_all_threads); 619 spin_unlock_bh(&pool->sp_lock); 620 rqstp->rq_server = serv; 621 rqstp->rq_pool = pool; 622 623 rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node); 624 if (!rqstp->rq_argp) 625 goto out_thread; 626 627 rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node); 628 if (!rqstp->rq_resp) 629 goto out_thread; 630 631 if (!svc_init_buffer(rqstp, serv->sv_max_mesg, node)) 632 goto out_thread; 633 634 return rqstp; 635 out_thread: 636 svc_exit_thread(rqstp); 637 out_enomem: 638 return ERR_PTR(-ENOMEM); 639 } 640 EXPORT_SYMBOL_GPL(svc_prepare_thread); 641 642 /* 643 * Choose a pool in which to create a new thread, for svc_set_num_threads 644 */ 645 static inline struct svc_pool * 646 choose_pool(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state) 647 { 648 if (pool != NULL) 649 return pool; 650 651 return &serv->sv_pools[(*state)++ % serv->sv_nrpools]; 652 } 653 654 /* 655 * Choose a thread to kill, for svc_set_num_threads 656 */ 657 static inline struct task_struct * 658 choose_victim(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state) 659 { 660 unsigned int i; 661 struct task_struct *task = NULL; 662 663 if (pool != NULL) { 664 spin_lock_bh(&pool->sp_lock); 665 } else { 666 /* choose a pool in round-robin fashion */ 667 for (i = 0; i < serv->sv_nrpools; i++) { 668 pool = &serv->sv_pools[--(*state) % serv->sv_nrpools]; 669 spin_lock_bh(&pool->sp_lock); 670 if (!list_empty(&pool->sp_all_threads)) 671 goto found_pool; 672 spin_unlock_bh(&pool->sp_lock); 673 } 674 return NULL; 675 } 676 677 found_pool: 678 if (!list_empty(&pool->sp_all_threads)) { 679 struct svc_rqst *rqstp; 680 681 /* 682 * Remove from the pool->sp_all_threads list 683 * so we don't try to kill it again. 684 */ 685 rqstp = list_entry(pool->sp_all_threads.next, struct svc_rqst, rq_all); 686 list_del_init(&rqstp->rq_all); 687 task = rqstp->rq_task; 688 } 689 spin_unlock_bh(&pool->sp_lock); 690 691 return task; 692 } 693 694 /* 695 * Create or destroy enough new threads to make the number 696 * of threads the given number. If `pool' is non-NULL, applies 697 * only to threads in that pool, otherwise round-robins between 698 * all pools. Caller must ensure that mutual exclusion between this and 699 * server startup or shutdown. 700 * 701 * Destroying threads relies on the service threads filling in 702 * rqstp->rq_task, which only the nfs ones do. Assumes the serv 703 * has been created using svc_create_pooled(). 704 * 705 * Based on code that used to be in nfsd_svc() but tweaked 706 * to be pool-aware. 707 */ 708 int 709 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs) 710 { 711 struct svc_rqst *rqstp; 712 struct task_struct *task; 713 struct svc_pool *chosen_pool; 714 int error = 0; 715 unsigned int state = serv->sv_nrthreads-1; 716 int node; 717 718 if (pool == NULL) { 719 /* The -1 assumes caller has done a svc_get() */ 720 nrservs -= (serv->sv_nrthreads-1); 721 } else { 722 spin_lock_bh(&pool->sp_lock); 723 nrservs -= pool->sp_nrthreads; 724 spin_unlock_bh(&pool->sp_lock); 725 } 726 727 /* create new threads */ 728 while (nrservs > 0) { 729 nrservs--; 730 chosen_pool = choose_pool(serv, pool, &state); 731 732 node = svc_pool_map_get_node(chosen_pool->sp_id); 733 rqstp = svc_prepare_thread(serv, chosen_pool, node); 734 if (IS_ERR(rqstp)) { 735 error = PTR_ERR(rqstp); 736 break; 737 } 738 739 __module_get(serv->sv_module); 740 task = kthread_create_on_node(serv->sv_function, rqstp, 741 node, "%s", serv->sv_name); 742 if (IS_ERR(task)) { 743 error = PTR_ERR(task); 744 module_put(serv->sv_module); 745 svc_exit_thread(rqstp); 746 break; 747 } 748 749 rqstp->rq_task = task; 750 if (serv->sv_nrpools > 1) 751 svc_pool_map_set_cpumask(task, chosen_pool->sp_id); 752 753 svc_sock_update_bufs(serv); 754 wake_up_process(task); 755 } 756 /* destroy old threads */ 757 while (nrservs < 0 && 758 (task = choose_victim(serv, pool, &state)) != NULL) { 759 send_sig(SIGINT, task, 1); 760 nrservs++; 761 } 762 763 return error; 764 } 765 EXPORT_SYMBOL_GPL(svc_set_num_threads); 766 767 /* 768 * Called from a server thread as it's exiting. Caller must hold the BKL or 769 * the "service mutex", whichever is appropriate for the service. 770 */ 771 void 772 svc_exit_thread(struct svc_rqst *rqstp) 773 { 774 struct svc_serv *serv = rqstp->rq_server; 775 struct svc_pool *pool = rqstp->rq_pool; 776 777 svc_release_buffer(rqstp); 778 kfree(rqstp->rq_resp); 779 kfree(rqstp->rq_argp); 780 kfree(rqstp->rq_auth_data); 781 782 spin_lock_bh(&pool->sp_lock); 783 pool->sp_nrthreads--; 784 list_del(&rqstp->rq_all); 785 spin_unlock_bh(&pool->sp_lock); 786 787 kfree(rqstp); 788 789 /* Release the server */ 790 if (serv) 791 svc_destroy(serv); 792 } 793 EXPORT_SYMBOL_GPL(svc_exit_thread); 794 795 /* 796 * Register an "inet" protocol family netid with the local 797 * rpcbind daemon via an rpcbind v4 SET request. 798 * 799 * No netconfig infrastructure is available in the kernel, so 800 * we map IP_ protocol numbers to netids by hand. 801 * 802 * Returns zero on success; a negative errno value is returned 803 * if any error occurs. 804 */ 805 static int __svc_rpcb_register4(struct net *net, const u32 program, 806 const u32 version, 807 const unsigned short protocol, 808 const unsigned short port) 809 { 810 const struct sockaddr_in sin = { 811 .sin_family = AF_INET, 812 .sin_addr.s_addr = htonl(INADDR_ANY), 813 .sin_port = htons(port), 814 }; 815 const char *netid; 816 int error; 817 818 switch (protocol) { 819 case IPPROTO_UDP: 820 netid = RPCBIND_NETID_UDP; 821 break; 822 case IPPROTO_TCP: 823 netid = RPCBIND_NETID_TCP; 824 break; 825 default: 826 return -ENOPROTOOPT; 827 } 828 829 error = rpcb_v4_register(net, program, version, 830 (const struct sockaddr *)&sin, netid); 831 832 /* 833 * User space didn't support rpcbind v4, so retry this 834 * registration request with the legacy rpcbind v2 protocol. 835 */ 836 if (error == -EPROTONOSUPPORT) 837 error = rpcb_register(net, program, version, protocol, port); 838 839 return error; 840 } 841 842 #if IS_ENABLED(CONFIG_IPV6) 843 /* 844 * Register an "inet6" protocol family netid with the local 845 * rpcbind daemon via an rpcbind v4 SET request. 846 * 847 * No netconfig infrastructure is available in the kernel, so 848 * we map IP_ protocol numbers to netids by hand. 849 * 850 * Returns zero on success; a negative errno value is returned 851 * if any error occurs. 852 */ 853 static int __svc_rpcb_register6(struct net *net, const u32 program, 854 const u32 version, 855 const unsigned short protocol, 856 const unsigned short port) 857 { 858 const struct sockaddr_in6 sin6 = { 859 .sin6_family = AF_INET6, 860 .sin6_addr = IN6ADDR_ANY_INIT, 861 .sin6_port = htons(port), 862 }; 863 const char *netid; 864 int error; 865 866 switch (protocol) { 867 case IPPROTO_UDP: 868 netid = RPCBIND_NETID_UDP6; 869 break; 870 case IPPROTO_TCP: 871 netid = RPCBIND_NETID_TCP6; 872 break; 873 default: 874 return -ENOPROTOOPT; 875 } 876 877 error = rpcb_v4_register(net, program, version, 878 (const struct sockaddr *)&sin6, netid); 879 880 /* 881 * User space didn't support rpcbind version 4, so we won't 882 * use a PF_INET6 listener. 883 */ 884 if (error == -EPROTONOSUPPORT) 885 error = -EAFNOSUPPORT; 886 887 return error; 888 } 889 #endif /* IS_ENABLED(CONFIG_IPV6) */ 890 891 /* 892 * Register a kernel RPC service via rpcbind version 4. 893 * 894 * Returns zero on success; a negative errno value is returned 895 * if any error occurs. 896 */ 897 static int __svc_register(struct net *net, const char *progname, 898 const u32 program, const u32 version, 899 const int family, 900 const unsigned short protocol, 901 const unsigned short port) 902 { 903 int error = -EAFNOSUPPORT; 904 905 switch (family) { 906 case PF_INET: 907 error = __svc_rpcb_register4(net, program, version, 908 protocol, port); 909 break; 910 #if IS_ENABLED(CONFIG_IPV6) 911 case PF_INET6: 912 error = __svc_rpcb_register6(net, program, version, 913 protocol, port); 914 #endif 915 } 916 917 return error; 918 } 919 920 /** 921 * svc_register - register an RPC service with the local portmapper 922 * @serv: svc_serv struct for the service to register 923 * @net: net namespace for the service to register 924 * @family: protocol family of service's listener socket 925 * @proto: transport protocol number to advertise 926 * @port: port to advertise 927 * 928 * Service is registered for any address in the passed-in protocol family 929 */ 930 int svc_register(const struct svc_serv *serv, struct net *net, 931 const int family, const unsigned short proto, 932 const unsigned short port) 933 { 934 struct svc_program *progp; 935 struct svc_version *vers; 936 unsigned int i; 937 int error = 0; 938 939 WARN_ON_ONCE(proto == 0 && port == 0); 940 if (proto == 0 && port == 0) 941 return -EINVAL; 942 943 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 944 for (i = 0; i < progp->pg_nvers; i++) { 945 vers = progp->pg_vers[i]; 946 if (vers == NULL) 947 continue; 948 949 dprintk("svc: svc_register(%sv%d, %s, %u, %u)%s\n", 950 progp->pg_name, 951 i, 952 proto == IPPROTO_UDP? "udp" : "tcp", 953 port, 954 family, 955 vers->vs_hidden ? 956 " (but not telling portmap)" : ""); 957 958 if (vers->vs_hidden) 959 continue; 960 961 error = __svc_register(net, progp->pg_name, progp->pg_prog, 962 i, family, proto, port); 963 964 if (vers->vs_rpcb_optnl) { 965 error = 0; 966 continue; 967 } 968 969 if (error < 0) { 970 printk(KERN_WARNING "svc: failed to register " 971 "%sv%u RPC service (errno %d).\n", 972 progp->pg_name, i, -error); 973 break; 974 } 975 } 976 } 977 978 return error; 979 } 980 981 /* 982 * If user space is running rpcbind, it should take the v4 UNSET 983 * and clear everything for this [program, version]. If user space 984 * is running portmap, it will reject the v4 UNSET, but won't have 985 * any "inet6" entries anyway. So a PMAP_UNSET should be sufficient 986 * in this case to clear all existing entries for [program, version]. 987 */ 988 static void __svc_unregister(struct net *net, const u32 program, const u32 version, 989 const char *progname) 990 { 991 int error; 992 993 error = rpcb_v4_register(net, program, version, NULL, ""); 994 995 /* 996 * User space didn't support rpcbind v4, so retry this 997 * request with the legacy rpcbind v2 protocol. 998 */ 999 if (error == -EPROTONOSUPPORT) 1000 error = rpcb_register(net, program, version, 0, 0); 1001 1002 dprintk("svc: %s(%sv%u), error %d\n", 1003 __func__, progname, version, error); 1004 } 1005 1006 /* 1007 * All netids, bind addresses and ports registered for [program, version] 1008 * are removed from the local rpcbind database (if the service is not 1009 * hidden) to make way for a new instance of the service. 1010 * 1011 * The result of unregistration is reported via dprintk for those who want 1012 * verification of the result, but is otherwise not important. 1013 */ 1014 static void svc_unregister(const struct svc_serv *serv, struct net *net) 1015 { 1016 struct svc_program *progp; 1017 unsigned long flags; 1018 unsigned int i; 1019 1020 clear_thread_flag(TIF_SIGPENDING); 1021 1022 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 1023 for (i = 0; i < progp->pg_nvers; i++) { 1024 if (progp->pg_vers[i] == NULL) 1025 continue; 1026 if (progp->pg_vers[i]->vs_hidden) 1027 continue; 1028 1029 dprintk("svc: attempting to unregister %sv%u\n", 1030 progp->pg_name, i); 1031 __svc_unregister(net, progp->pg_prog, i, progp->pg_name); 1032 } 1033 } 1034 1035 spin_lock_irqsave(¤t->sighand->siglock, flags); 1036 recalc_sigpending(); 1037 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 1038 } 1039 1040 /* 1041 * dprintk the given error with the address of the client that caused it. 1042 */ 1043 #ifdef RPC_DEBUG 1044 static __printf(2, 3) 1045 void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) 1046 { 1047 struct va_format vaf; 1048 va_list args; 1049 char buf[RPC_MAX_ADDRBUFLEN]; 1050 1051 va_start(args, fmt); 1052 1053 vaf.fmt = fmt; 1054 vaf.va = &args; 1055 1056 dprintk("svc: %s: %pV", svc_print_addr(rqstp, buf, sizeof(buf)), &vaf); 1057 1058 va_end(args); 1059 } 1060 #else 1061 static __printf(2,3) void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) {} 1062 #endif 1063 1064 /* 1065 * Common routine for processing the RPC request. 1066 */ 1067 static int 1068 svc_process_common(struct svc_rqst *rqstp, struct kvec *argv, struct kvec *resv) 1069 { 1070 struct svc_program *progp; 1071 struct svc_version *versp = NULL; /* compiler food */ 1072 struct svc_procedure *procp = NULL; 1073 struct svc_serv *serv = rqstp->rq_server; 1074 kxdrproc_t xdr; 1075 __be32 *statp; 1076 u32 prog, vers, proc; 1077 __be32 auth_stat, rpc_stat; 1078 int auth_res; 1079 __be32 *reply_statp; 1080 1081 rpc_stat = rpc_success; 1082 1083 if (argv->iov_len < 6*4) 1084 goto err_short_len; 1085 1086 /* Will be turned off only in gss privacy case: */ 1087 rqstp->rq_splice_ok = true; 1088 /* Will be turned off only when NFSv4 Sessions are used */ 1089 rqstp->rq_usedeferral = true; 1090 rqstp->rq_dropme = false; 1091 1092 /* Setup reply header */ 1093 rqstp->rq_xprt->xpt_ops->xpo_prep_reply_hdr(rqstp); 1094 1095 svc_putu32(resv, rqstp->rq_xid); 1096 1097 vers = svc_getnl(argv); 1098 1099 /* First words of reply: */ 1100 svc_putnl(resv, 1); /* REPLY */ 1101 1102 if (vers != 2) /* RPC version number */ 1103 goto err_bad_rpc; 1104 1105 /* Save position in case we later decide to reject: */ 1106 reply_statp = resv->iov_base + resv->iov_len; 1107 1108 svc_putnl(resv, 0); /* ACCEPT */ 1109 1110 rqstp->rq_prog = prog = svc_getnl(argv); /* program number */ 1111 rqstp->rq_vers = vers = svc_getnl(argv); /* version number */ 1112 rqstp->rq_proc = proc = svc_getnl(argv); /* procedure number */ 1113 1114 for (progp = serv->sv_program; progp; progp = progp->pg_next) 1115 if (prog == progp->pg_prog) 1116 break; 1117 1118 /* 1119 * Decode auth data, and add verifier to reply buffer. 1120 * We do this before anything else in order to get a decent 1121 * auth verifier. 1122 */ 1123 auth_res = svc_authenticate(rqstp, &auth_stat); 1124 /* Also give the program a chance to reject this call: */ 1125 if (auth_res == SVC_OK && progp) { 1126 auth_stat = rpc_autherr_badcred; 1127 auth_res = progp->pg_authenticate(rqstp); 1128 } 1129 switch (auth_res) { 1130 case SVC_OK: 1131 break; 1132 case SVC_GARBAGE: 1133 goto err_garbage; 1134 case SVC_SYSERR: 1135 rpc_stat = rpc_system_err; 1136 goto err_bad; 1137 case SVC_DENIED: 1138 goto err_bad_auth; 1139 case SVC_CLOSE: 1140 if (test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags)) 1141 svc_close_xprt(rqstp->rq_xprt); 1142 case SVC_DROP: 1143 goto dropit; 1144 case SVC_COMPLETE: 1145 goto sendit; 1146 } 1147 1148 if (progp == NULL) 1149 goto err_bad_prog; 1150 1151 if (vers >= progp->pg_nvers || 1152 !(versp = progp->pg_vers[vers])) 1153 goto err_bad_vers; 1154 1155 procp = versp->vs_proc + proc; 1156 if (proc >= versp->vs_nproc || !procp->pc_func) 1157 goto err_bad_proc; 1158 rqstp->rq_procinfo = procp; 1159 1160 /* Syntactic check complete */ 1161 serv->sv_stats->rpccnt++; 1162 1163 /* Build the reply header. */ 1164 statp = resv->iov_base +resv->iov_len; 1165 svc_putnl(resv, RPC_SUCCESS); 1166 1167 /* Bump per-procedure stats counter */ 1168 procp->pc_count++; 1169 1170 /* Initialize storage for argp and resp */ 1171 memset(rqstp->rq_argp, 0, procp->pc_argsize); 1172 memset(rqstp->rq_resp, 0, procp->pc_ressize); 1173 1174 /* un-reserve some of the out-queue now that we have a 1175 * better idea of reply size 1176 */ 1177 if (procp->pc_xdrressize) 1178 svc_reserve_auth(rqstp, procp->pc_xdrressize<<2); 1179 1180 /* Call the function that processes the request. */ 1181 if (!versp->vs_dispatch) { 1182 /* Decode arguments */ 1183 xdr = procp->pc_decode; 1184 if (xdr && !xdr(rqstp, argv->iov_base, rqstp->rq_argp)) 1185 goto err_garbage; 1186 1187 *statp = procp->pc_func(rqstp, rqstp->rq_argp, rqstp->rq_resp); 1188 1189 /* Encode reply */ 1190 if (rqstp->rq_dropme) { 1191 if (procp->pc_release) 1192 procp->pc_release(rqstp, NULL, rqstp->rq_resp); 1193 goto dropit; 1194 } 1195 if (*statp == rpc_success && 1196 (xdr = procp->pc_encode) && 1197 !xdr(rqstp, resv->iov_base+resv->iov_len, rqstp->rq_resp)) { 1198 dprintk("svc: failed to encode reply\n"); 1199 /* serv->sv_stats->rpcsystemerr++; */ 1200 *statp = rpc_system_err; 1201 } 1202 } else { 1203 dprintk("svc: calling dispatcher\n"); 1204 if (!versp->vs_dispatch(rqstp, statp)) { 1205 /* Release reply info */ 1206 if (procp->pc_release) 1207 procp->pc_release(rqstp, NULL, rqstp->rq_resp); 1208 goto dropit; 1209 } 1210 } 1211 1212 /* Check RPC status result */ 1213 if (*statp != rpc_success) 1214 resv->iov_len = ((void*)statp) - resv->iov_base + 4; 1215 1216 /* Release reply info */ 1217 if (procp->pc_release) 1218 procp->pc_release(rqstp, NULL, rqstp->rq_resp); 1219 1220 if (procp->pc_encode == NULL) 1221 goto dropit; 1222 1223 sendit: 1224 if (svc_authorise(rqstp)) 1225 goto dropit; 1226 return 1; /* Caller can now send it */ 1227 1228 dropit: 1229 svc_authorise(rqstp); /* doesn't hurt to call this twice */ 1230 dprintk("svc: svc_process dropit\n"); 1231 return 0; 1232 1233 err_short_len: 1234 svc_printk(rqstp, "short len %Zd, dropping request\n", 1235 argv->iov_len); 1236 1237 goto dropit; /* drop request */ 1238 1239 err_bad_rpc: 1240 serv->sv_stats->rpcbadfmt++; 1241 svc_putnl(resv, 1); /* REJECT */ 1242 svc_putnl(resv, 0); /* RPC_MISMATCH */ 1243 svc_putnl(resv, 2); /* Only RPCv2 supported */ 1244 svc_putnl(resv, 2); 1245 goto sendit; 1246 1247 err_bad_auth: 1248 dprintk("svc: authentication failed (%d)\n", ntohl(auth_stat)); 1249 serv->sv_stats->rpcbadauth++; 1250 /* Restore write pointer to location of accept status: */ 1251 xdr_ressize_check(rqstp, reply_statp); 1252 svc_putnl(resv, 1); /* REJECT */ 1253 svc_putnl(resv, 1); /* AUTH_ERROR */ 1254 svc_putnl(resv, ntohl(auth_stat)); /* status */ 1255 goto sendit; 1256 1257 err_bad_prog: 1258 dprintk("svc: unknown program %d\n", prog); 1259 serv->sv_stats->rpcbadfmt++; 1260 svc_putnl(resv, RPC_PROG_UNAVAIL); 1261 goto sendit; 1262 1263 err_bad_vers: 1264 svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n", 1265 vers, prog, progp->pg_name); 1266 1267 serv->sv_stats->rpcbadfmt++; 1268 svc_putnl(resv, RPC_PROG_MISMATCH); 1269 svc_putnl(resv, progp->pg_lovers); 1270 svc_putnl(resv, progp->pg_hivers); 1271 goto sendit; 1272 1273 err_bad_proc: 1274 svc_printk(rqstp, "unknown procedure (%d)\n", proc); 1275 1276 serv->sv_stats->rpcbadfmt++; 1277 svc_putnl(resv, RPC_PROC_UNAVAIL); 1278 goto sendit; 1279 1280 err_garbage: 1281 svc_printk(rqstp, "failed to decode args\n"); 1282 1283 rpc_stat = rpc_garbage_args; 1284 err_bad: 1285 serv->sv_stats->rpcbadfmt++; 1286 svc_putnl(resv, ntohl(rpc_stat)); 1287 goto sendit; 1288 } 1289 EXPORT_SYMBOL_GPL(svc_process); 1290 1291 /* 1292 * Process the RPC request. 1293 */ 1294 int 1295 svc_process(struct svc_rqst *rqstp) 1296 { 1297 struct kvec *argv = &rqstp->rq_arg.head[0]; 1298 struct kvec *resv = &rqstp->rq_res.head[0]; 1299 struct svc_serv *serv = rqstp->rq_server; 1300 u32 dir; 1301 1302 /* 1303 * Setup response xdr_buf. 1304 * Initially it has just one page 1305 */ 1306 rqstp->rq_next_page = &rqstp->rq_respages[1]; 1307 resv->iov_base = page_address(rqstp->rq_respages[0]); 1308 resv->iov_len = 0; 1309 rqstp->rq_res.pages = rqstp->rq_respages + 1; 1310 rqstp->rq_res.len = 0; 1311 rqstp->rq_res.page_base = 0; 1312 rqstp->rq_res.page_len = 0; 1313 rqstp->rq_res.buflen = PAGE_SIZE; 1314 rqstp->rq_res.tail[0].iov_base = NULL; 1315 rqstp->rq_res.tail[0].iov_len = 0; 1316 1317 rqstp->rq_xid = svc_getu32(argv); 1318 1319 dir = svc_getnl(argv); 1320 if (dir != 0) { 1321 /* direction != CALL */ 1322 svc_printk(rqstp, "bad direction %d, dropping request\n", dir); 1323 serv->sv_stats->rpcbadfmt++; 1324 svc_drop(rqstp); 1325 return 0; 1326 } 1327 1328 /* Returns 1 for send, 0 for drop */ 1329 if (svc_process_common(rqstp, argv, resv)) 1330 return svc_send(rqstp); 1331 else { 1332 svc_drop(rqstp); 1333 return 0; 1334 } 1335 } 1336 1337 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 1338 /* 1339 * Process a backchannel RPC request that arrived over an existing 1340 * outbound connection 1341 */ 1342 int 1343 bc_svc_process(struct svc_serv *serv, struct rpc_rqst *req, 1344 struct svc_rqst *rqstp) 1345 { 1346 struct kvec *argv = &rqstp->rq_arg.head[0]; 1347 struct kvec *resv = &rqstp->rq_res.head[0]; 1348 1349 /* Build the svc_rqst used by the common processing routine */ 1350 rqstp->rq_xprt = serv->sv_bc_xprt; 1351 rqstp->rq_xid = req->rq_xid; 1352 rqstp->rq_prot = req->rq_xprt->prot; 1353 rqstp->rq_server = serv; 1354 1355 rqstp->rq_addrlen = sizeof(req->rq_xprt->addr); 1356 memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen); 1357 memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg)); 1358 memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res)); 1359 1360 /* reset result send buffer "put" position */ 1361 resv->iov_len = 0; 1362 1363 if (rqstp->rq_prot != IPPROTO_TCP) { 1364 printk(KERN_ERR "No support for Non-TCP transports!\n"); 1365 BUG(); 1366 } 1367 1368 /* 1369 * Skip the next two words because they've already been 1370 * processed in the trasport 1371 */ 1372 svc_getu32(argv); /* XID */ 1373 svc_getnl(argv); /* CALLDIR */ 1374 1375 /* Returns 1 for send, 0 for drop */ 1376 if (svc_process_common(rqstp, argv, resv)) { 1377 memcpy(&req->rq_snd_buf, &rqstp->rq_res, 1378 sizeof(req->rq_snd_buf)); 1379 return bc_send(req); 1380 } else { 1381 /* drop request */ 1382 xprt_free_bc_request(req); 1383 return 0; 1384 } 1385 } 1386 EXPORT_SYMBOL_GPL(bc_svc_process); 1387 #endif /* CONFIG_SUNRPC_BACKCHANNEL */ 1388 1389 /* 1390 * Return (transport-specific) limit on the rpc payload. 1391 */ 1392 u32 svc_max_payload(const struct svc_rqst *rqstp) 1393 { 1394 u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload; 1395 1396 if (rqstp->rq_server->sv_max_payload < max) 1397 max = rqstp->rq_server->sv_max_payload; 1398 return max; 1399 } 1400 EXPORT_SYMBOL_GPL(svc_max_payload); 1401