1 /* 2 * linux/net/sunrpc/svc.c 3 * 4 * High-level RPC service routines 5 * 6 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 7 * 8 * Multiple threads pools and NUMAisation 9 * Copyright (c) 2006 Silicon Graphics, Inc. 10 * by Greg Banks <gnb@melbourne.sgi.com> 11 */ 12 13 #include <linux/linkage.h> 14 #include <linux/sched/signal.h> 15 #include <linux/errno.h> 16 #include <linux/net.h> 17 #include <linux/in.h> 18 #include <linux/mm.h> 19 #include <linux/interrupt.h> 20 #include <linux/module.h> 21 #include <linux/kthread.h> 22 #include <linux/slab.h> 23 24 #include <linux/sunrpc/types.h> 25 #include <linux/sunrpc/xdr.h> 26 #include <linux/sunrpc/stats.h> 27 #include <linux/sunrpc/svcsock.h> 28 #include <linux/sunrpc/clnt.h> 29 #include <linux/sunrpc/bc_xprt.h> 30 31 #include <trace/events/sunrpc.h> 32 33 #define RPCDBG_FACILITY RPCDBG_SVCDSP 34 35 static void svc_unregister(const struct svc_serv *serv, struct net *net); 36 37 #define svc_serv_is_pooled(serv) ((serv)->sv_ops->svo_function) 38 39 #define SVC_POOL_DEFAULT SVC_POOL_GLOBAL 40 41 /* 42 * Structure for mapping cpus to pools and vice versa. 43 * Setup once during sunrpc initialisation. 44 */ 45 struct svc_pool_map svc_pool_map = { 46 .mode = SVC_POOL_DEFAULT 47 }; 48 EXPORT_SYMBOL_GPL(svc_pool_map); 49 50 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */ 51 52 static int 53 param_set_pool_mode(const char *val, const struct kernel_param *kp) 54 { 55 int *ip = (int *)kp->arg; 56 struct svc_pool_map *m = &svc_pool_map; 57 int err; 58 59 mutex_lock(&svc_pool_map_mutex); 60 61 err = -EBUSY; 62 if (m->count) 63 goto out; 64 65 err = 0; 66 if (!strncmp(val, "auto", 4)) 67 *ip = SVC_POOL_AUTO; 68 else if (!strncmp(val, "global", 6)) 69 *ip = SVC_POOL_GLOBAL; 70 else if (!strncmp(val, "percpu", 6)) 71 *ip = SVC_POOL_PERCPU; 72 else if (!strncmp(val, "pernode", 7)) 73 *ip = SVC_POOL_PERNODE; 74 else 75 err = -EINVAL; 76 77 out: 78 mutex_unlock(&svc_pool_map_mutex); 79 return err; 80 } 81 82 static int 83 param_get_pool_mode(char *buf, const struct kernel_param *kp) 84 { 85 int *ip = (int *)kp->arg; 86 87 switch (*ip) 88 { 89 case SVC_POOL_AUTO: 90 return strlcpy(buf, "auto", 20); 91 case SVC_POOL_GLOBAL: 92 return strlcpy(buf, "global", 20); 93 case SVC_POOL_PERCPU: 94 return strlcpy(buf, "percpu", 20); 95 case SVC_POOL_PERNODE: 96 return strlcpy(buf, "pernode", 20); 97 default: 98 return sprintf(buf, "%d", *ip); 99 } 100 } 101 102 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode, 103 &svc_pool_map.mode, 0644); 104 105 /* 106 * Detect best pool mapping mode heuristically, 107 * according to the machine's topology. 108 */ 109 static int 110 svc_pool_map_choose_mode(void) 111 { 112 unsigned int node; 113 114 if (nr_online_nodes > 1) { 115 /* 116 * Actually have multiple NUMA nodes, 117 * so split pools on NUMA node boundaries 118 */ 119 return SVC_POOL_PERNODE; 120 } 121 122 node = first_online_node; 123 if (nr_cpus_node(node) > 2) { 124 /* 125 * Non-trivial SMP, or CONFIG_NUMA on 126 * non-NUMA hardware, e.g. with a generic 127 * x86_64 kernel on Xeons. In this case we 128 * want to divide the pools on cpu boundaries. 129 */ 130 return SVC_POOL_PERCPU; 131 } 132 133 /* default: one global pool */ 134 return SVC_POOL_GLOBAL; 135 } 136 137 /* 138 * Allocate the to_pool[] and pool_to[] arrays. 139 * Returns 0 on success or an errno. 140 */ 141 static int 142 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools) 143 { 144 m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL); 145 if (!m->to_pool) 146 goto fail; 147 m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL); 148 if (!m->pool_to) 149 goto fail_free; 150 151 return 0; 152 153 fail_free: 154 kfree(m->to_pool); 155 m->to_pool = NULL; 156 fail: 157 return -ENOMEM; 158 } 159 160 /* 161 * Initialise the pool map for SVC_POOL_PERCPU mode. 162 * Returns number of pools or <0 on error. 163 */ 164 static int 165 svc_pool_map_init_percpu(struct svc_pool_map *m) 166 { 167 unsigned int maxpools = nr_cpu_ids; 168 unsigned int pidx = 0; 169 unsigned int cpu; 170 int err; 171 172 err = svc_pool_map_alloc_arrays(m, maxpools); 173 if (err) 174 return err; 175 176 for_each_online_cpu(cpu) { 177 BUG_ON(pidx >= maxpools); 178 m->to_pool[cpu] = pidx; 179 m->pool_to[pidx] = cpu; 180 pidx++; 181 } 182 /* cpus brought online later all get mapped to pool0, sorry */ 183 184 return pidx; 185 }; 186 187 188 /* 189 * Initialise the pool map for SVC_POOL_PERNODE mode. 190 * Returns number of pools or <0 on error. 191 */ 192 static int 193 svc_pool_map_init_pernode(struct svc_pool_map *m) 194 { 195 unsigned int maxpools = nr_node_ids; 196 unsigned int pidx = 0; 197 unsigned int node; 198 int err; 199 200 err = svc_pool_map_alloc_arrays(m, maxpools); 201 if (err) 202 return err; 203 204 for_each_node_with_cpus(node) { 205 /* some architectures (e.g. SN2) have cpuless nodes */ 206 BUG_ON(pidx > maxpools); 207 m->to_pool[node] = pidx; 208 m->pool_to[pidx] = node; 209 pidx++; 210 } 211 /* nodes brought online later all get mapped to pool0, sorry */ 212 213 return pidx; 214 } 215 216 217 /* 218 * Add a reference to the global map of cpus to pools (and 219 * vice versa). Initialise the map if we're the first user. 220 * Returns the number of pools. 221 */ 222 unsigned int 223 svc_pool_map_get(void) 224 { 225 struct svc_pool_map *m = &svc_pool_map; 226 int npools = -1; 227 228 mutex_lock(&svc_pool_map_mutex); 229 230 if (m->count++) { 231 mutex_unlock(&svc_pool_map_mutex); 232 return m->npools; 233 } 234 235 if (m->mode == SVC_POOL_AUTO) 236 m->mode = svc_pool_map_choose_mode(); 237 238 switch (m->mode) { 239 case SVC_POOL_PERCPU: 240 npools = svc_pool_map_init_percpu(m); 241 break; 242 case SVC_POOL_PERNODE: 243 npools = svc_pool_map_init_pernode(m); 244 break; 245 } 246 247 if (npools < 0) { 248 /* default, or memory allocation failure */ 249 npools = 1; 250 m->mode = SVC_POOL_GLOBAL; 251 } 252 m->npools = npools; 253 254 mutex_unlock(&svc_pool_map_mutex); 255 return m->npools; 256 } 257 EXPORT_SYMBOL_GPL(svc_pool_map_get); 258 259 /* 260 * Drop a reference to the global map of cpus to pools. 261 * When the last reference is dropped, the map data is 262 * freed; this allows the sysadmin to change the pool 263 * mode using the pool_mode module option without 264 * rebooting or re-loading sunrpc.ko. 265 */ 266 void 267 svc_pool_map_put(void) 268 { 269 struct svc_pool_map *m = &svc_pool_map; 270 271 mutex_lock(&svc_pool_map_mutex); 272 273 if (!--m->count) { 274 kfree(m->to_pool); 275 m->to_pool = NULL; 276 kfree(m->pool_to); 277 m->pool_to = NULL; 278 m->npools = 0; 279 } 280 281 mutex_unlock(&svc_pool_map_mutex); 282 } 283 EXPORT_SYMBOL_GPL(svc_pool_map_put); 284 285 static int svc_pool_map_get_node(unsigned int pidx) 286 { 287 const struct svc_pool_map *m = &svc_pool_map; 288 289 if (m->count) { 290 if (m->mode == SVC_POOL_PERCPU) 291 return cpu_to_node(m->pool_to[pidx]); 292 if (m->mode == SVC_POOL_PERNODE) 293 return m->pool_to[pidx]; 294 } 295 return NUMA_NO_NODE; 296 } 297 /* 298 * Set the given thread's cpus_allowed mask so that it 299 * will only run on cpus in the given pool. 300 */ 301 static inline void 302 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx) 303 { 304 struct svc_pool_map *m = &svc_pool_map; 305 unsigned int node = m->pool_to[pidx]; 306 307 /* 308 * The caller checks for sv_nrpools > 1, which 309 * implies that we've been initialized. 310 */ 311 WARN_ON_ONCE(m->count == 0); 312 if (m->count == 0) 313 return; 314 315 switch (m->mode) { 316 case SVC_POOL_PERCPU: 317 { 318 set_cpus_allowed_ptr(task, cpumask_of(node)); 319 break; 320 } 321 case SVC_POOL_PERNODE: 322 { 323 set_cpus_allowed_ptr(task, cpumask_of_node(node)); 324 break; 325 } 326 } 327 } 328 329 /* 330 * Use the mapping mode to choose a pool for a given CPU. 331 * Used when enqueueing an incoming RPC. Always returns 332 * a non-NULL pool pointer. 333 */ 334 struct svc_pool * 335 svc_pool_for_cpu(struct svc_serv *serv, int cpu) 336 { 337 struct svc_pool_map *m = &svc_pool_map; 338 unsigned int pidx = 0; 339 340 /* 341 * An uninitialised map happens in a pure client when 342 * lockd is brought up, so silently treat it the 343 * same as SVC_POOL_GLOBAL. 344 */ 345 if (svc_serv_is_pooled(serv)) { 346 switch (m->mode) { 347 case SVC_POOL_PERCPU: 348 pidx = m->to_pool[cpu]; 349 break; 350 case SVC_POOL_PERNODE: 351 pidx = m->to_pool[cpu_to_node(cpu)]; 352 break; 353 } 354 } 355 return &serv->sv_pools[pidx % serv->sv_nrpools]; 356 } 357 358 int svc_rpcb_setup(struct svc_serv *serv, struct net *net) 359 { 360 int err; 361 362 err = rpcb_create_local(net); 363 if (err) 364 return err; 365 366 /* Remove any stale portmap registrations */ 367 svc_unregister(serv, net); 368 return 0; 369 } 370 EXPORT_SYMBOL_GPL(svc_rpcb_setup); 371 372 void svc_rpcb_cleanup(struct svc_serv *serv, struct net *net) 373 { 374 svc_unregister(serv, net); 375 rpcb_put_local(net); 376 } 377 EXPORT_SYMBOL_GPL(svc_rpcb_cleanup); 378 379 static int svc_uses_rpcbind(struct svc_serv *serv) 380 { 381 struct svc_program *progp; 382 unsigned int i; 383 384 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 385 for (i = 0; i < progp->pg_nvers; i++) { 386 if (progp->pg_vers[i] == NULL) 387 continue; 388 if (!progp->pg_vers[i]->vs_hidden) 389 return 1; 390 } 391 } 392 393 return 0; 394 } 395 396 int svc_bind(struct svc_serv *serv, struct net *net) 397 { 398 if (!svc_uses_rpcbind(serv)) 399 return 0; 400 return svc_rpcb_setup(serv, net); 401 } 402 EXPORT_SYMBOL_GPL(svc_bind); 403 404 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 405 static void 406 __svc_init_bc(struct svc_serv *serv) 407 { 408 INIT_LIST_HEAD(&serv->sv_cb_list); 409 spin_lock_init(&serv->sv_cb_lock); 410 init_waitqueue_head(&serv->sv_cb_waitq); 411 } 412 #else 413 static void 414 __svc_init_bc(struct svc_serv *serv) 415 { 416 } 417 #endif 418 419 /* 420 * Create an RPC service 421 */ 422 static struct svc_serv * 423 __svc_create(struct svc_program *prog, unsigned int bufsize, int npools, 424 const struct svc_serv_ops *ops) 425 { 426 struct svc_serv *serv; 427 unsigned int vers; 428 unsigned int xdrsize; 429 unsigned int i; 430 431 if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL))) 432 return NULL; 433 serv->sv_name = prog->pg_name; 434 serv->sv_program = prog; 435 serv->sv_nrthreads = 1; 436 serv->sv_stats = prog->pg_stats; 437 if (bufsize > RPCSVC_MAXPAYLOAD) 438 bufsize = RPCSVC_MAXPAYLOAD; 439 serv->sv_max_payload = bufsize? bufsize : 4096; 440 serv->sv_max_mesg = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE); 441 serv->sv_ops = ops; 442 xdrsize = 0; 443 while (prog) { 444 prog->pg_lovers = prog->pg_nvers-1; 445 for (vers=0; vers<prog->pg_nvers ; vers++) 446 if (prog->pg_vers[vers]) { 447 prog->pg_hivers = vers; 448 if (prog->pg_lovers > vers) 449 prog->pg_lovers = vers; 450 if (prog->pg_vers[vers]->vs_xdrsize > xdrsize) 451 xdrsize = prog->pg_vers[vers]->vs_xdrsize; 452 } 453 prog = prog->pg_next; 454 } 455 serv->sv_xdrsize = xdrsize; 456 INIT_LIST_HEAD(&serv->sv_tempsocks); 457 INIT_LIST_HEAD(&serv->sv_permsocks); 458 timer_setup(&serv->sv_temptimer, NULL, 0); 459 spin_lock_init(&serv->sv_lock); 460 461 __svc_init_bc(serv); 462 463 serv->sv_nrpools = npools; 464 serv->sv_pools = 465 kcalloc(serv->sv_nrpools, sizeof(struct svc_pool), 466 GFP_KERNEL); 467 if (!serv->sv_pools) { 468 kfree(serv); 469 return NULL; 470 } 471 472 for (i = 0; i < serv->sv_nrpools; i++) { 473 struct svc_pool *pool = &serv->sv_pools[i]; 474 475 dprintk("svc: initialising pool %u for %s\n", 476 i, serv->sv_name); 477 478 pool->sp_id = i; 479 INIT_LIST_HEAD(&pool->sp_sockets); 480 INIT_LIST_HEAD(&pool->sp_all_threads); 481 spin_lock_init(&pool->sp_lock); 482 } 483 484 return serv; 485 } 486 487 struct svc_serv * 488 svc_create(struct svc_program *prog, unsigned int bufsize, 489 const struct svc_serv_ops *ops) 490 { 491 return __svc_create(prog, bufsize, /*npools*/1, ops); 492 } 493 EXPORT_SYMBOL_GPL(svc_create); 494 495 struct svc_serv * 496 svc_create_pooled(struct svc_program *prog, unsigned int bufsize, 497 const struct svc_serv_ops *ops) 498 { 499 struct svc_serv *serv; 500 unsigned int npools = svc_pool_map_get(); 501 502 serv = __svc_create(prog, bufsize, npools, ops); 503 if (!serv) 504 goto out_err; 505 return serv; 506 out_err: 507 svc_pool_map_put(); 508 return NULL; 509 } 510 EXPORT_SYMBOL_GPL(svc_create_pooled); 511 512 void svc_shutdown_net(struct svc_serv *serv, struct net *net) 513 { 514 svc_close_net(serv, net); 515 516 if (serv->sv_ops->svo_shutdown) 517 serv->sv_ops->svo_shutdown(serv, net); 518 } 519 EXPORT_SYMBOL_GPL(svc_shutdown_net); 520 521 /* 522 * Destroy an RPC service. Should be called with appropriate locking to 523 * protect the sv_nrthreads, sv_permsocks and sv_tempsocks. 524 */ 525 void 526 svc_destroy(struct svc_serv *serv) 527 { 528 dprintk("svc: svc_destroy(%s, %d)\n", 529 serv->sv_program->pg_name, 530 serv->sv_nrthreads); 531 532 if (serv->sv_nrthreads) { 533 if (--(serv->sv_nrthreads) != 0) { 534 svc_sock_update_bufs(serv); 535 return; 536 } 537 } else 538 printk("svc_destroy: no threads for serv=%p!\n", serv); 539 540 del_timer_sync(&serv->sv_temptimer); 541 542 /* 543 * The last user is gone and thus all sockets have to be destroyed to 544 * the point. Check this. 545 */ 546 BUG_ON(!list_empty(&serv->sv_permsocks)); 547 BUG_ON(!list_empty(&serv->sv_tempsocks)); 548 549 cache_clean_deferred(serv); 550 551 if (svc_serv_is_pooled(serv)) 552 svc_pool_map_put(); 553 554 kfree(serv->sv_pools); 555 kfree(serv); 556 } 557 EXPORT_SYMBOL_GPL(svc_destroy); 558 559 /* 560 * Allocate an RPC server's buffer space. 561 * We allocate pages and place them in rq_argpages. 562 */ 563 static int 564 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size, int node) 565 { 566 unsigned int pages, arghi; 567 568 /* bc_xprt uses fore channel allocated buffers */ 569 if (svc_is_backchannel(rqstp)) 570 return 1; 571 572 pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply. 573 * We assume one is at most one page 574 */ 575 arghi = 0; 576 WARN_ON_ONCE(pages > RPCSVC_MAXPAGES); 577 if (pages > RPCSVC_MAXPAGES) 578 pages = RPCSVC_MAXPAGES; 579 while (pages) { 580 struct page *p = alloc_pages_node(node, GFP_KERNEL, 0); 581 if (!p) 582 break; 583 rqstp->rq_pages[arghi++] = p; 584 pages--; 585 } 586 return pages == 0; 587 } 588 589 /* 590 * Release an RPC server buffer 591 */ 592 static void 593 svc_release_buffer(struct svc_rqst *rqstp) 594 { 595 unsigned int i; 596 597 for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++) 598 if (rqstp->rq_pages[i]) 599 put_page(rqstp->rq_pages[i]); 600 } 601 602 struct svc_rqst * 603 svc_rqst_alloc(struct svc_serv *serv, struct svc_pool *pool, int node) 604 { 605 struct svc_rqst *rqstp; 606 607 rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node); 608 if (!rqstp) 609 return rqstp; 610 611 __set_bit(RQ_BUSY, &rqstp->rq_flags); 612 spin_lock_init(&rqstp->rq_lock); 613 rqstp->rq_server = serv; 614 rqstp->rq_pool = pool; 615 616 rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node); 617 if (!rqstp->rq_argp) 618 goto out_enomem; 619 620 rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node); 621 if (!rqstp->rq_resp) 622 goto out_enomem; 623 624 if (!svc_init_buffer(rqstp, serv->sv_max_mesg, node)) 625 goto out_enomem; 626 627 return rqstp; 628 out_enomem: 629 svc_rqst_free(rqstp); 630 return NULL; 631 } 632 EXPORT_SYMBOL_GPL(svc_rqst_alloc); 633 634 struct svc_rqst * 635 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node) 636 { 637 struct svc_rqst *rqstp; 638 639 rqstp = svc_rqst_alloc(serv, pool, node); 640 if (!rqstp) 641 return ERR_PTR(-ENOMEM); 642 643 serv->sv_nrthreads++; 644 spin_lock_bh(&pool->sp_lock); 645 pool->sp_nrthreads++; 646 list_add_rcu(&rqstp->rq_all, &pool->sp_all_threads); 647 spin_unlock_bh(&pool->sp_lock); 648 return rqstp; 649 } 650 EXPORT_SYMBOL_GPL(svc_prepare_thread); 651 652 /* 653 * Choose a pool in which to create a new thread, for svc_set_num_threads 654 */ 655 static inline struct svc_pool * 656 choose_pool(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state) 657 { 658 if (pool != NULL) 659 return pool; 660 661 return &serv->sv_pools[(*state)++ % serv->sv_nrpools]; 662 } 663 664 /* 665 * Choose a thread to kill, for svc_set_num_threads 666 */ 667 static inline struct task_struct * 668 choose_victim(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state) 669 { 670 unsigned int i; 671 struct task_struct *task = NULL; 672 673 if (pool != NULL) { 674 spin_lock_bh(&pool->sp_lock); 675 } else { 676 /* choose a pool in round-robin fashion */ 677 for (i = 0; i < serv->sv_nrpools; i++) { 678 pool = &serv->sv_pools[--(*state) % serv->sv_nrpools]; 679 spin_lock_bh(&pool->sp_lock); 680 if (!list_empty(&pool->sp_all_threads)) 681 goto found_pool; 682 spin_unlock_bh(&pool->sp_lock); 683 } 684 return NULL; 685 } 686 687 found_pool: 688 if (!list_empty(&pool->sp_all_threads)) { 689 struct svc_rqst *rqstp; 690 691 /* 692 * Remove from the pool->sp_all_threads list 693 * so we don't try to kill it again. 694 */ 695 rqstp = list_entry(pool->sp_all_threads.next, struct svc_rqst, rq_all); 696 set_bit(RQ_VICTIM, &rqstp->rq_flags); 697 list_del_rcu(&rqstp->rq_all); 698 task = rqstp->rq_task; 699 } 700 spin_unlock_bh(&pool->sp_lock); 701 702 return task; 703 } 704 705 /* create new threads */ 706 static int 707 svc_start_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs) 708 { 709 struct svc_rqst *rqstp; 710 struct task_struct *task; 711 struct svc_pool *chosen_pool; 712 unsigned int state = serv->sv_nrthreads-1; 713 int node; 714 715 do { 716 nrservs--; 717 chosen_pool = choose_pool(serv, pool, &state); 718 719 node = svc_pool_map_get_node(chosen_pool->sp_id); 720 rqstp = svc_prepare_thread(serv, chosen_pool, node); 721 if (IS_ERR(rqstp)) 722 return PTR_ERR(rqstp); 723 724 __module_get(serv->sv_ops->svo_module); 725 task = kthread_create_on_node(serv->sv_ops->svo_function, rqstp, 726 node, "%s", serv->sv_name); 727 if (IS_ERR(task)) { 728 module_put(serv->sv_ops->svo_module); 729 svc_exit_thread(rqstp); 730 return PTR_ERR(task); 731 } 732 733 rqstp->rq_task = task; 734 if (serv->sv_nrpools > 1) 735 svc_pool_map_set_cpumask(task, chosen_pool->sp_id); 736 737 svc_sock_update_bufs(serv); 738 wake_up_process(task); 739 } while (nrservs > 0); 740 741 return 0; 742 } 743 744 745 /* destroy old threads */ 746 static int 747 svc_signal_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs) 748 { 749 struct task_struct *task; 750 unsigned int state = serv->sv_nrthreads-1; 751 752 /* destroy old threads */ 753 do { 754 task = choose_victim(serv, pool, &state); 755 if (task == NULL) 756 break; 757 send_sig(SIGINT, task, 1); 758 nrservs++; 759 } while (nrservs < 0); 760 761 return 0; 762 } 763 764 /* 765 * Create or destroy enough new threads to make the number 766 * of threads the given number. If `pool' is non-NULL, applies 767 * only to threads in that pool, otherwise round-robins between 768 * all pools. Caller must ensure that mutual exclusion between this and 769 * server startup or shutdown. 770 * 771 * Destroying threads relies on the service threads filling in 772 * rqstp->rq_task, which only the nfs ones do. Assumes the serv 773 * has been created using svc_create_pooled(). 774 * 775 * Based on code that used to be in nfsd_svc() but tweaked 776 * to be pool-aware. 777 */ 778 int 779 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs) 780 { 781 if (pool == NULL) { 782 /* The -1 assumes caller has done a svc_get() */ 783 nrservs -= (serv->sv_nrthreads-1); 784 } else { 785 spin_lock_bh(&pool->sp_lock); 786 nrservs -= pool->sp_nrthreads; 787 spin_unlock_bh(&pool->sp_lock); 788 } 789 790 if (nrservs > 0) 791 return svc_start_kthreads(serv, pool, nrservs); 792 if (nrservs < 0) 793 return svc_signal_kthreads(serv, pool, nrservs); 794 return 0; 795 } 796 EXPORT_SYMBOL_GPL(svc_set_num_threads); 797 798 /* destroy old threads */ 799 static int 800 svc_stop_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs) 801 { 802 struct task_struct *task; 803 unsigned int state = serv->sv_nrthreads-1; 804 805 /* destroy old threads */ 806 do { 807 task = choose_victim(serv, pool, &state); 808 if (task == NULL) 809 break; 810 kthread_stop(task); 811 nrservs++; 812 } while (nrservs < 0); 813 return 0; 814 } 815 816 int 817 svc_set_num_threads_sync(struct svc_serv *serv, struct svc_pool *pool, int nrservs) 818 { 819 if (pool == NULL) { 820 /* The -1 assumes caller has done a svc_get() */ 821 nrservs -= (serv->sv_nrthreads-1); 822 } else { 823 spin_lock_bh(&pool->sp_lock); 824 nrservs -= pool->sp_nrthreads; 825 spin_unlock_bh(&pool->sp_lock); 826 } 827 828 if (nrservs > 0) 829 return svc_start_kthreads(serv, pool, nrservs); 830 if (nrservs < 0) 831 return svc_stop_kthreads(serv, pool, nrservs); 832 return 0; 833 } 834 EXPORT_SYMBOL_GPL(svc_set_num_threads_sync); 835 836 /* 837 * Called from a server thread as it's exiting. Caller must hold the "service 838 * mutex" for the service. 839 */ 840 void 841 svc_rqst_free(struct svc_rqst *rqstp) 842 { 843 svc_release_buffer(rqstp); 844 kfree(rqstp->rq_resp); 845 kfree(rqstp->rq_argp); 846 kfree(rqstp->rq_auth_data); 847 kfree_rcu(rqstp, rq_rcu_head); 848 } 849 EXPORT_SYMBOL_GPL(svc_rqst_free); 850 851 void 852 svc_exit_thread(struct svc_rqst *rqstp) 853 { 854 struct svc_serv *serv = rqstp->rq_server; 855 struct svc_pool *pool = rqstp->rq_pool; 856 857 spin_lock_bh(&pool->sp_lock); 858 pool->sp_nrthreads--; 859 if (!test_and_set_bit(RQ_VICTIM, &rqstp->rq_flags)) 860 list_del_rcu(&rqstp->rq_all); 861 spin_unlock_bh(&pool->sp_lock); 862 863 svc_rqst_free(rqstp); 864 865 /* Release the server */ 866 if (serv) 867 svc_destroy(serv); 868 } 869 EXPORT_SYMBOL_GPL(svc_exit_thread); 870 871 /* 872 * Register an "inet" protocol family netid with the local 873 * rpcbind daemon via an rpcbind v4 SET request. 874 * 875 * No netconfig infrastructure is available in the kernel, so 876 * we map IP_ protocol numbers to netids by hand. 877 * 878 * Returns zero on success; a negative errno value is returned 879 * if any error occurs. 880 */ 881 static int __svc_rpcb_register4(struct net *net, const u32 program, 882 const u32 version, 883 const unsigned short protocol, 884 const unsigned short port) 885 { 886 const struct sockaddr_in sin = { 887 .sin_family = AF_INET, 888 .sin_addr.s_addr = htonl(INADDR_ANY), 889 .sin_port = htons(port), 890 }; 891 const char *netid; 892 int error; 893 894 switch (protocol) { 895 case IPPROTO_UDP: 896 netid = RPCBIND_NETID_UDP; 897 break; 898 case IPPROTO_TCP: 899 netid = RPCBIND_NETID_TCP; 900 break; 901 default: 902 return -ENOPROTOOPT; 903 } 904 905 error = rpcb_v4_register(net, program, version, 906 (const struct sockaddr *)&sin, netid); 907 908 /* 909 * User space didn't support rpcbind v4, so retry this 910 * registration request with the legacy rpcbind v2 protocol. 911 */ 912 if (error == -EPROTONOSUPPORT) 913 error = rpcb_register(net, program, version, protocol, port); 914 915 return error; 916 } 917 918 #if IS_ENABLED(CONFIG_IPV6) 919 /* 920 * Register an "inet6" protocol family netid with the local 921 * rpcbind daemon via an rpcbind v4 SET request. 922 * 923 * No netconfig infrastructure is available in the kernel, so 924 * we map IP_ protocol numbers to netids by hand. 925 * 926 * Returns zero on success; a negative errno value is returned 927 * if any error occurs. 928 */ 929 static int __svc_rpcb_register6(struct net *net, const u32 program, 930 const u32 version, 931 const unsigned short protocol, 932 const unsigned short port) 933 { 934 const struct sockaddr_in6 sin6 = { 935 .sin6_family = AF_INET6, 936 .sin6_addr = IN6ADDR_ANY_INIT, 937 .sin6_port = htons(port), 938 }; 939 const char *netid; 940 int error; 941 942 switch (protocol) { 943 case IPPROTO_UDP: 944 netid = RPCBIND_NETID_UDP6; 945 break; 946 case IPPROTO_TCP: 947 netid = RPCBIND_NETID_TCP6; 948 break; 949 default: 950 return -ENOPROTOOPT; 951 } 952 953 error = rpcb_v4_register(net, program, version, 954 (const struct sockaddr *)&sin6, netid); 955 956 /* 957 * User space didn't support rpcbind version 4, so we won't 958 * use a PF_INET6 listener. 959 */ 960 if (error == -EPROTONOSUPPORT) 961 error = -EAFNOSUPPORT; 962 963 return error; 964 } 965 #endif /* IS_ENABLED(CONFIG_IPV6) */ 966 967 /* 968 * Register a kernel RPC service via rpcbind version 4. 969 * 970 * Returns zero on success; a negative errno value is returned 971 * if any error occurs. 972 */ 973 static int __svc_register(struct net *net, const char *progname, 974 const u32 program, const u32 version, 975 const int family, 976 const unsigned short protocol, 977 const unsigned short port) 978 { 979 int error = -EAFNOSUPPORT; 980 981 switch (family) { 982 case PF_INET: 983 error = __svc_rpcb_register4(net, program, version, 984 protocol, port); 985 break; 986 #if IS_ENABLED(CONFIG_IPV6) 987 case PF_INET6: 988 error = __svc_rpcb_register6(net, program, version, 989 protocol, port); 990 #endif 991 } 992 993 return error; 994 } 995 996 /** 997 * svc_register - register an RPC service with the local portmapper 998 * @serv: svc_serv struct for the service to register 999 * @net: net namespace for the service to register 1000 * @family: protocol family of service's listener socket 1001 * @proto: transport protocol number to advertise 1002 * @port: port to advertise 1003 * 1004 * Service is registered for any address in the passed-in protocol family 1005 */ 1006 int svc_register(const struct svc_serv *serv, struct net *net, 1007 const int family, const unsigned short proto, 1008 const unsigned short port) 1009 { 1010 struct svc_program *progp; 1011 const struct svc_version *vers; 1012 unsigned int i; 1013 int error = 0; 1014 1015 WARN_ON_ONCE(proto == 0 && port == 0); 1016 if (proto == 0 && port == 0) 1017 return -EINVAL; 1018 1019 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 1020 for (i = 0; i < progp->pg_nvers; i++) { 1021 vers = progp->pg_vers[i]; 1022 if (vers == NULL) 1023 continue; 1024 1025 dprintk("svc: svc_register(%sv%d, %s, %u, %u)%s\n", 1026 progp->pg_name, 1027 i, 1028 proto == IPPROTO_UDP? "udp" : "tcp", 1029 port, 1030 family, 1031 vers->vs_hidden ? 1032 " (but not telling portmap)" : ""); 1033 1034 if (vers->vs_hidden) 1035 continue; 1036 1037 /* 1038 * Don't register a UDP port if we need congestion 1039 * control. 1040 */ 1041 if (vers->vs_need_cong_ctrl && proto == IPPROTO_UDP) 1042 continue; 1043 1044 error = __svc_register(net, progp->pg_name, progp->pg_prog, 1045 i, family, proto, port); 1046 1047 if (vers->vs_rpcb_optnl) { 1048 error = 0; 1049 continue; 1050 } 1051 1052 if (error < 0) { 1053 printk(KERN_WARNING "svc: failed to register " 1054 "%sv%u RPC service (errno %d).\n", 1055 progp->pg_name, i, -error); 1056 break; 1057 } 1058 } 1059 } 1060 1061 return error; 1062 } 1063 1064 /* 1065 * If user space is running rpcbind, it should take the v4 UNSET 1066 * and clear everything for this [program, version]. If user space 1067 * is running portmap, it will reject the v4 UNSET, but won't have 1068 * any "inet6" entries anyway. So a PMAP_UNSET should be sufficient 1069 * in this case to clear all existing entries for [program, version]. 1070 */ 1071 static void __svc_unregister(struct net *net, const u32 program, const u32 version, 1072 const char *progname) 1073 { 1074 int error; 1075 1076 error = rpcb_v4_register(net, program, version, NULL, ""); 1077 1078 /* 1079 * User space didn't support rpcbind v4, so retry this 1080 * request with the legacy rpcbind v2 protocol. 1081 */ 1082 if (error == -EPROTONOSUPPORT) 1083 error = rpcb_register(net, program, version, 0, 0); 1084 1085 dprintk("svc: %s(%sv%u), error %d\n", 1086 __func__, progname, version, error); 1087 } 1088 1089 /* 1090 * All netids, bind addresses and ports registered for [program, version] 1091 * are removed from the local rpcbind database (if the service is not 1092 * hidden) to make way for a new instance of the service. 1093 * 1094 * The result of unregistration is reported via dprintk for those who want 1095 * verification of the result, but is otherwise not important. 1096 */ 1097 static void svc_unregister(const struct svc_serv *serv, struct net *net) 1098 { 1099 struct svc_program *progp; 1100 unsigned long flags; 1101 unsigned int i; 1102 1103 clear_thread_flag(TIF_SIGPENDING); 1104 1105 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 1106 for (i = 0; i < progp->pg_nvers; i++) { 1107 if (progp->pg_vers[i] == NULL) 1108 continue; 1109 if (progp->pg_vers[i]->vs_hidden) 1110 continue; 1111 1112 dprintk("svc: attempting to unregister %sv%u\n", 1113 progp->pg_name, i); 1114 __svc_unregister(net, progp->pg_prog, i, progp->pg_name); 1115 } 1116 } 1117 1118 spin_lock_irqsave(¤t->sighand->siglock, flags); 1119 recalc_sigpending(); 1120 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 1121 } 1122 1123 /* 1124 * dprintk the given error with the address of the client that caused it. 1125 */ 1126 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 1127 static __printf(2, 3) 1128 void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) 1129 { 1130 struct va_format vaf; 1131 va_list args; 1132 char buf[RPC_MAX_ADDRBUFLEN]; 1133 1134 va_start(args, fmt); 1135 1136 vaf.fmt = fmt; 1137 vaf.va = &args; 1138 1139 dprintk("svc: %s: %pV", svc_print_addr(rqstp, buf, sizeof(buf)), &vaf); 1140 1141 va_end(args); 1142 } 1143 #else 1144 static __printf(2,3) void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) {} 1145 #endif 1146 1147 /* 1148 * Setup response header for TCP, it has a 4B record length field. 1149 */ 1150 static void svc_tcp_prep_reply_hdr(struct svc_rqst *rqstp) 1151 { 1152 struct kvec *resv = &rqstp->rq_res.head[0]; 1153 1154 /* tcp needs a space for the record length... */ 1155 svc_putnl(resv, 0); 1156 } 1157 1158 /* 1159 * Common routine for processing the RPC request. 1160 */ 1161 static int 1162 svc_process_common(struct svc_rqst *rqstp, struct kvec *argv, struct kvec *resv) 1163 { 1164 struct svc_program *progp; 1165 const struct svc_version *versp = NULL; /* compiler food */ 1166 const struct svc_procedure *procp = NULL; 1167 struct svc_serv *serv = rqstp->rq_server; 1168 __be32 *statp; 1169 u32 prog, vers, proc; 1170 __be32 auth_stat, rpc_stat; 1171 int auth_res; 1172 __be32 *reply_statp; 1173 1174 rpc_stat = rpc_success; 1175 1176 if (argv->iov_len < 6*4) 1177 goto err_short_len; 1178 1179 /* Will be turned off by GSS integrity and privacy services */ 1180 set_bit(RQ_SPLICE_OK, &rqstp->rq_flags); 1181 /* Will be turned off only when NFSv4 Sessions are used */ 1182 set_bit(RQ_USEDEFERRAL, &rqstp->rq_flags); 1183 clear_bit(RQ_DROPME, &rqstp->rq_flags); 1184 1185 /* Setup reply header */ 1186 if (rqstp->rq_prot == IPPROTO_TCP) 1187 svc_tcp_prep_reply_hdr(rqstp); 1188 1189 svc_putu32(resv, rqstp->rq_xid); 1190 1191 vers = svc_getnl(argv); 1192 1193 /* First words of reply: */ 1194 svc_putnl(resv, 1); /* REPLY */ 1195 1196 if (vers != 2) /* RPC version number */ 1197 goto err_bad_rpc; 1198 1199 /* Save position in case we later decide to reject: */ 1200 reply_statp = resv->iov_base + resv->iov_len; 1201 1202 svc_putnl(resv, 0); /* ACCEPT */ 1203 1204 rqstp->rq_prog = prog = svc_getnl(argv); /* program number */ 1205 rqstp->rq_vers = vers = svc_getnl(argv); /* version number */ 1206 rqstp->rq_proc = proc = svc_getnl(argv); /* procedure number */ 1207 1208 for (progp = serv->sv_program; progp; progp = progp->pg_next) 1209 if (prog == progp->pg_prog) 1210 break; 1211 1212 /* 1213 * Decode auth data, and add verifier to reply buffer. 1214 * We do this before anything else in order to get a decent 1215 * auth verifier. 1216 */ 1217 auth_res = svc_authenticate(rqstp, &auth_stat); 1218 /* Also give the program a chance to reject this call: */ 1219 if (auth_res == SVC_OK && progp) { 1220 auth_stat = rpc_autherr_badcred; 1221 auth_res = progp->pg_authenticate(rqstp); 1222 } 1223 switch (auth_res) { 1224 case SVC_OK: 1225 break; 1226 case SVC_GARBAGE: 1227 goto err_garbage; 1228 case SVC_SYSERR: 1229 rpc_stat = rpc_system_err; 1230 goto err_bad; 1231 case SVC_DENIED: 1232 goto err_bad_auth; 1233 case SVC_CLOSE: 1234 goto close; 1235 case SVC_DROP: 1236 goto dropit; 1237 case SVC_COMPLETE: 1238 goto sendit; 1239 } 1240 1241 if (progp == NULL) 1242 goto err_bad_prog; 1243 1244 if (vers >= progp->pg_nvers || 1245 !(versp = progp->pg_vers[vers])) 1246 goto err_bad_vers; 1247 1248 /* 1249 * Some protocol versions (namely NFSv4) require some form of 1250 * congestion control. (See RFC 7530 section 3.1 paragraph 2) 1251 * In other words, UDP is not allowed. We mark those when setting 1252 * up the svc_xprt, and verify that here. 1253 * 1254 * The spec is not very clear about what error should be returned 1255 * when someone tries to access a server that is listening on UDP 1256 * for lower versions. RPC_PROG_MISMATCH seems to be the closest 1257 * fit. 1258 */ 1259 if (versp->vs_need_cong_ctrl && rqstp->rq_xprt && 1260 !test_bit(XPT_CONG_CTRL, &rqstp->rq_xprt->xpt_flags)) 1261 goto err_bad_vers; 1262 1263 procp = versp->vs_proc + proc; 1264 if (proc >= versp->vs_nproc || !procp->pc_func) 1265 goto err_bad_proc; 1266 rqstp->rq_procinfo = procp; 1267 1268 /* Syntactic check complete */ 1269 serv->sv_stats->rpccnt++; 1270 trace_svc_process(rqstp, progp->pg_name); 1271 1272 /* Build the reply header. */ 1273 statp = resv->iov_base +resv->iov_len; 1274 svc_putnl(resv, RPC_SUCCESS); 1275 1276 /* Bump per-procedure stats counter */ 1277 versp->vs_count[proc]++; 1278 1279 /* Initialize storage for argp and resp */ 1280 memset(rqstp->rq_argp, 0, procp->pc_argsize); 1281 memset(rqstp->rq_resp, 0, procp->pc_ressize); 1282 1283 /* un-reserve some of the out-queue now that we have a 1284 * better idea of reply size 1285 */ 1286 if (procp->pc_xdrressize) 1287 svc_reserve_auth(rqstp, procp->pc_xdrressize<<2); 1288 1289 /* Call the function that processes the request. */ 1290 if (!versp->vs_dispatch) { 1291 /* 1292 * Decode arguments 1293 * XXX: why do we ignore the return value? 1294 */ 1295 if (procp->pc_decode && 1296 !procp->pc_decode(rqstp, argv->iov_base)) 1297 goto err_garbage; 1298 1299 *statp = procp->pc_func(rqstp); 1300 1301 /* Encode reply */ 1302 if (*statp == rpc_drop_reply || 1303 test_bit(RQ_DROPME, &rqstp->rq_flags)) { 1304 if (procp->pc_release) 1305 procp->pc_release(rqstp); 1306 goto dropit; 1307 } 1308 if (*statp == rpc_autherr_badcred) { 1309 if (procp->pc_release) 1310 procp->pc_release(rqstp); 1311 goto err_bad_auth; 1312 } 1313 if (*statp == rpc_success && procp->pc_encode && 1314 !procp->pc_encode(rqstp, resv->iov_base + resv->iov_len)) { 1315 dprintk("svc: failed to encode reply\n"); 1316 /* serv->sv_stats->rpcsystemerr++; */ 1317 *statp = rpc_system_err; 1318 } 1319 } else { 1320 dprintk("svc: calling dispatcher\n"); 1321 if (!versp->vs_dispatch(rqstp, statp)) { 1322 /* Release reply info */ 1323 if (procp->pc_release) 1324 procp->pc_release(rqstp); 1325 goto dropit; 1326 } 1327 } 1328 1329 /* Check RPC status result */ 1330 if (*statp != rpc_success) 1331 resv->iov_len = ((void*)statp) - resv->iov_base + 4; 1332 1333 /* Release reply info */ 1334 if (procp->pc_release) 1335 procp->pc_release(rqstp); 1336 1337 if (procp->pc_encode == NULL) 1338 goto dropit; 1339 1340 sendit: 1341 if (svc_authorise(rqstp)) 1342 goto close; 1343 return 1; /* Caller can now send it */ 1344 1345 dropit: 1346 svc_authorise(rqstp); /* doesn't hurt to call this twice */ 1347 dprintk("svc: svc_process dropit\n"); 1348 return 0; 1349 1350 close: 1351 if (rqstp->rq_xprt && test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags)) 1352 svc_close_xprt(rqstp->rq_xprt); 1353 dprintk("svc: svc_process close\n"); 1354 return 0; 1355 1356 err_short_len: 1357 svc_printk(rqstp, "short len %zd, dropping request\n", 1358 argv->iov_len); 1359 goto close; 1360 1361 err_bad_rpc: 1362 serv->sv_stats->rpcbadfmt++; 1363 svc_putnl(resv, 1); /* REJECT */ 1364 svc_putnl(resv, 0); /* RPC_MISMATCH */ 1365 svc_putnl(resv, 2); /* Only RPCv2 supported */ 1366 svc_putnl(resv, 2); 1367 goto sendit; 1368 1369 err_bad_auth: 1370 dprintk("svc: authentication failed (%d)\n", ntohl(auth_stat)); 1371 serv->sv_stats->rpcbadauth++; 1372 /* Restore write pointer to location of accept status: */ 1373 xdr_ressize_check(rqstp, reply_statp); 1374 svc_putnl(resv, 1); /* REJECT */ 1375 svc_putnl(resv, 1); /* AUTH_ERROR */ 1376 svc_putnl(resv, ntohl(auth_stat)); /* status */ 1377 goto sendit; 1378 1379 err_bad_prog: 1380 dprintk("svc: unknown program %d\n", prog); 1381 serv->sv_stats->rpcbadfmt++; 1382 svc_putnl(resv, RPC_PROG_UNAVAIL); 1383 goto sendit; 1384 1385 err_bad_vers: 1386 svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n", 1387 vers, prog, progp->pg_name); 1388 1389 serv->sv_stats->rpcbadfmt++; 1390 svc_putnl(resv, RPC_PROG_MISMATCH); 1391 svc_putnl(resv, progp->pg_lovers); 1392 svc_putnl(resv, progp->pg_hivers); 1393 goto sendit; 1394 1395 err_bad_proc: 1396 svc_printk(rqstp, "unknown procedure (%d)\n", proc); 1397 1398 serv->sv_stats->rpcbadfmt++; 1399 svc_putnl(resv, RPC_PROC_UNAVAIL); 1400 goto sendit; 1401 1402 err_garbage: 1403 svc_printk(rqstp, "failed to decode args\n"); 1404 1405 rpc_stat = rpc_garbage_args; 1406 err_bad: 1407 serv->sv_stats->rpcbadfmt++; 1408 svc_putnl(resv, ntohl(rpc_stat)); 1409 goto sendit; 1410 } 1411 1412 /* 1413 * Process the RPC request. 1414 */ 1415 int 1416 svc_process(struct svc_rqst *rqstp) 1417 { 1418 struct kvec *argv = &rqstp->rq_arg.head[0]; 1419 struct kvec *resv = &rqstp->rq_res.head[0]; 1420 struct svc_serv *serv = rqstp->rq_server; 1421 u32 dir; 1422 1423 /* 1424 * Setup response xdr_buf. 1425 * Initially it has just one page 1426 */ 1427 rqstp->rq_next_page = &rqstp->rq_respages[1]; 1428 resv->iov_base = page_address(rqstp->rq_respages[0]); 1429 resv->iov_len = 0; 1430 rqstp->rq_res.pages = rqstp->rq_respages + 1; 1431 rqstp->rq_res.len = 0; 1432 rqstp->rq_res.page_base = 0; 1433 rqstp->rq_res.page_len = 0; 1434 rqstp->rq_res.buflen = PAGE_SIZE; 1435 rqstp->rq_res.tail[0].iov_base = NULL; 1436 rqstp->rq_res.tail[0].iov_len = 0; 1437 1438 dir = svc_getnl(argv); 1439 if (dir != 0) { 1440 /* direction != CALL */ 1441 svc_printk(rqstp, "bad direction %d, dropping request\n", dir); 1442 serv->sv_stats->rpcbadfmt++; 1443 goto out_drop; 1444 } 1445 1446 /* Returns 1 for send, 0 for drop */ 1447 if (likely(svc_process_common(rqstp, argv, resv))) 1448 return svc_send(rqstp); 1449 1450 out_drop: 1451 svc_drop(rqstp); 1452 return 0; 1453 } 1454 EXPORT_SYMBOL_GPL(svc_process); 1455 1456 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 1457 /* 1458 * Process a backchannel RPC request that arrived over an existing 1459 * outbound connection 1460 */ 1461 int 1462 bc_svc_process(struct svc_serv *serv, struct rpc_rqst *req, 1463 struct svc_rqst *rqstp) 1464 { 1465 struct kvec *argv = &rqstp->rq_arg.head[0]; 1466 struct kvec *resv = &rqstp->rq_res.head[0]; 1467 struct rpc_task *task; 1468 int proc_error; 1469 int error; 1470 1471 dprintk("svc: %s(%p)\n", __func__, req); 1472 1473 /* Build the svc_rqst used by the common processing routine */ 1474 rqstp->rq_xid = req->rq_xid; 1475 rqstp->rq_prot = req->rq_xprt->prot; 1476 rqstp->rq_server = serv; 1477 rqstp->rq_bc_net = req->rq_xprt->xprt_net; 1478 1479 rqstp->rq_addrlen = sizeof(req->rq_xprt->addr); 1480 memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen); 1481 memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg)); 1482 memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res)); 1483 1484 /* Adjust the argument buffer length */ 1485 rqstp->rq_arg.len = req->rq_private_buf.len; 1486 if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) { 1487 rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len; 1488 rqstp->rq_arg.page_len = 0; 1489 } else if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len + 1490 rqstp->rq_arg.page_len) 1491 rqstp->rq_arg.page_len = rqstp->rq_arg.len - 1492 rqstp->rq_arg.head[0].iov_len; 1493 else 1494 rqstp->rq_arg.len = rqstp->rq_arg.head[0].iov_len + 1495 rqstp->rq_arg.page_len; 1496 1497 /* reset result send buffer "put" position */ 1498 resv->iov_len = 0; 1499 1500 /* 1501 * Skip the next two words because they've already been 1502 * processed in the transport 1503 */ 1504 svc_getu32(argv); /* XID */ 1505 svc_getnl(argv); /* CALLDIR */ 1506 1507 /* Parse and execute the bc call */ 1508 proc_error = svc_process_common(rqstp, argv, resv); 1509 1510 atomic_inc(&req->rq_xprt->bc_free_slots); 1511 if (!proc_error) { 1512 /* Processing error: drop the request */ 1513 xprt_free_bc_request(req); 1514 error = -EINVAL; 1515 goto out; 1516 } 1517 /* Finally, send the reply synchronously */ 1518 memcpy(&req->rq_snd_buf, &rqstp->rq_res, sizeof(req->rq_snd_buf)); 1519 task = rpc_run_bc_task(req); 1520 if (IS_ERR(task)) { 1521 error = PTR_ERR(task); 1522 goto out; 1523 } 1524 1525 WARN_ON_ONCE(atomic_read(&task->tk_count) != 1); 1526 error = task->tk_status; 1527 rpc_put_task(task); 1528 1529 out: 1530 dprintk("svc: %s(), error=%d\n", __func__, error); 1531 return error; 1532 } 1533 EXPORT_SYMBOL_GPL(bc_svc_process); 1534 #endif /* CONFIG_SUNRPC_BACKCHANNEL */ 1535 1536 /* 1537 * Return (transport-specific) limit on the rpc payload. 1538 */ 1539 u32 svc_max_payload(const struct svc_rqst *rqstp) 1540 { 1541 u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload; 1542 1543 if (rqstp->rq_server->sv_max_payload < max) 1544 max = rqstp->rq_server->sv_max_payload; 1545 return max; 1546 } 1547 EXPORT_SYMBOL_GPL(svc_max_payload); 1548 1549 /** 1550 * svc_fill_write_vector - Construct data argument for VFS write call 1551 * @rqstp: svc_rqst to operate on 1552 * @pages: list of pages containing data payload 1553 * @first: buffer containing first section of write payload 1554 * @total: total number of bytes of write payload 1555 * 1556 * Fills in rqstp::rq_vec, and returns the number of elements. 1557 */ 1558 unsigned int svc_fill_write_vector(struct svc_rqst *rqstp, struct page **pages, 1559 struct kvec *first, size_t total) 1560 { 1561 struct kvec *vec = rqstp->rq_vec; 1562 unsigned int i; 1563 1564 /* Some types of transport can present the write payload 1565 * entirely in rq_arg.pages. In this case, @first is empty. 1566 */ 1567 i = 0; 1568 if (first->iov_len) { 1569 vec[i].iov_base = first->iov_base; 1570 vec[i].iov_len = min_t(size_t, total, first->iov_len); 1571 total -= vec[i].iov_len; 1572 ++i; 1573 } 1574 1575 while (total) { 1576 vec[i].iov_base = page_address(*pages); 1577 vec[i].iov_len = min_t(size_t, total, PAGE_SIZE); 1578 total -= vec[i].iov_len; 1579 ++i; 1580 ++pages; 1581 } 1582 1583 WARN_ON_ONCE(i > ARRAY_SIZE(rqstp->rq_vec)); 1584 return i; 1585 } 1586 EXPORT_SYMBOL_GPL(svc_fill_write_vector); 1587 1588 /** 1589 * svc_fill_symlink_pathname - Construct pathname argument for VFS symlink call 1590 * @rqstp: svc_rqst to operate on 1591 * @first: buffer containing first section of pathname 1592 * @p: buffer containing remaining section of pathname 1593 * @total: total length of the pathname argument 1594 * 1595 * The VFS symlink API demands a NUL-terminated pathname in mapped memory. 1596 * Returns pointer to a NUL-terminated string, or an ERR_PTR. Caller must free 1597 * the returned string. 1598 */ 1599 char *svc_fill_symlink_pathname(struct svc_rqst *rqstp, struct kvec *first, 1600 void *p, size_t total) 1601 { 1602 size_t len, remaining; 1603 char *result, *dst; 1604 1605 result = kmalloc(total + 1, GFP_KERNEL); 1606 if (!result) 1607 return ERR_PTR(-ESERVERFAULT); 1608 1609 dst = result; 1610 remaining = total; 1611 1612 len = min_t(size_t, total, first->iov_len); 1613 if (len) { 1614 memcpy(dst, first->iov_base, len); 1615 dst += len; 1616 remaining -= len; 1617 } 1618 1619 if (remaining) { 1620 len = min_t(size_t, remaining, PAGE_SIZE); 1621 memcpy(dst, p, len); 1622 dst += len; 1623 } 1624 1625 *dst = '\0'; 1626 1627 /* Sanity check: Linux doesn't allow the pathname argument to 1628 * contain a NUL byte. 1629 */ 1630 if (strlen(result) != total) { 1631 kfree(result); 1632 return ERR_PTR(-EINVAL); 1633 } 1634 return result; 1635 } 1636 EXPORT_SYMBOL_GPL(svc_fill_symlink_pathname); 1637