xref: /openbmc/linux/net/sunrpc/svc.c (revision 44ce0cd3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/svc.c
4  *
5  * High-level RPC service routines
6  *
7  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
8  *
9  * Multiple threads pools and NUMAisation
10  * Copyright (c) 2006 Silicon Graphics, Inc.
11  * by Greg Banks <gnb@melbourne.sgi.com>
12  */
13 
14 #include <linux/linkage.h>
15 #include <linux/sched/signal.h>
16 #include <linux/errno.h>
17 #include <linux/net.h>
18 #include <linux/in.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/module.h>
22 #include <linux/kthread.h>
23 #include <linux/slab.h>
24 
25 #include <linux/sunrpc/types.h>
26 #include <linux/sunrpc/xdr.h>
27 #include <linux/sunrpc/stats.h>
28 #include <linux/sunrpc/svcsock.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/sunrpc/bc_xprt.h>
31 
32 #include <trace/events/sunrpc.h>
33 
34 #define RPCDBG_FACILITY	RPCDBG_SVCDSP
35 
36 static void svc_unregister(const struct svc_serv *serv, struct net *net);
37 
38 #define svc_serv_is_pooled(serv)    ((serv)->sv_ops->svo_function)
39 
40 #define SVC_POOL_DEFAULT	SVC_POOL_GLOBAL
41 
42 /*
43  * Structure for mapping cpus to pools and vice versa.
44  * Setup once during sunrpc initialisation.
45  */
46 struct svc_pool_map svc_pool_map = {
47 	.mode = SVC_POOL_DEFAULT
48 };
49 EXPORT_SYMBOL_GPL(svc_pool_map);
50 
51 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */
52 
53 static int
54 param_set_pool_mode(const char *val, const struct kernel_param *kp)
55 {
56 	int *ip = (int *)kp->arg;
57 	struct svc_pool_map *m = &svc_pool_map;
58 	int err;
59 
60 	mutex_lock(&svc_pool_map_mutex);
61 
62 	err = -EBUSY;
63 	if (m->count)
64 		goto out;
65 
66 	err = 0;
67 	if (!strncmp(val, "auto", 4))
68 		*ip = SVC_POOL_AUTO;
69 	else if (!strncmp(val, "global", 6))
70 		*ip = SVC_POOL_GLOBAL;
71 	else if (!strncmp(val, "percpu", 6))
72 		*ip = SVC_POOL_PERCPU;
73 	else if (!strncmp(val, "pernode", 7))
74 		*ip = SVC_POOL_PERNODE;
75 	else
76 		err = -EINVAL;
77 
78 out:
79 	mutex_unlock(&svc_pool_map_mutex);
80 	return err;
81 }
82 
83 static int
84 param_get_pool_mode(char *buf, const struct kernel_param *kp)
85 {
86 	int *ip = (int *)kp->arg;
87 
88 	switch (*ip)
89 	{
90 	case SVC_POOL_AUTO:
91 		return strlcpy(buf, "auto", 20);
92 	case SVC_POOL_GLOBAL:
93 		return strlcpy(buf, "global", 20);
94 	case SVC_POOL_PERCPU:
95 		return strlcpy(buf, "percpu", 20);
96 	case SVC_POOL_PERNODE:
97 		return strlcpy(buf, "pernode", 20);
98 	default:
99 		return sprintf(buf, "%d", *ip);
100 	}
101 }
102 
103 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode,
104 		 &svc_pool_map.mode, 0644);
105 
106 /*
107  * Detect best pool mapping mode heuristically,
108  * according to the machine's topology.
109  */
110 static int
111 svc_pool_map_choose_mode(void)
112 {
113 	unsigned int node;
114 
115 	if (nr_online_nodes > 1) {
116 		/*
117 		 * Actually have multiple NUMA nodes,
118 		 * so split pools on NUMA node boundaries
119 		 */
120 		return SVC_POOL_PERNODE;
121 	}
122 
123 	node = first_online_node;
124 	if (nr_cpus_node(node) > 2) {
125 		/*
126 		 * Non-trivial SMP, or CONFIG_NUMA on
127 		 * non-NUMA hardware, e.g. with a generic
128 		 * x86_64 kernel on Xeons.  In this case we
129 		 * want to divide the pools on cpu boundaries.
130 		 */
131 		return SVC_POOL_PERCPU;
132 	}
133 
134 	/* default: one global pool */
135 	return SVC_POOL_GLOBAL;
136 }
137 
138 /*
139  * Allocate the to_pool[] and pool_to[] arrays.
140  * Returns 0 on success or an errno.
141  */
142 static int
143 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools)
144 {
145 	m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
146 	if (!m->to_pool)
147 		goto fail;
148 	m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
149 	if (!m->pool_to)
150 		goto fail_free;
151 
152 	return 0;
153 
154 fail_free:
155 	kfree(m->to_pool);
156 	m->to_pool = NULL;
157 fail:
158 	return -ENOMEM;
159 }
160 
161 /*
162  * Initialise the pool map for SVC_POOL_PERCPU mode.
163  * Returns number of pools or <0 on error.
164  */
165 static int
166 svc_pool_map_init_percpu(struct svc_pool_map *m)
167 {
168 	unsigned int maxpools = nr_cpu_ids;
169 	unsigned int pidx = 0;
170 	unsigned int cpu;
171 	int err;
172 
173 	err = svc_pool_map_alloc_arrays(m, maxpools);
174 	if (err)
175 		return err;
176 
177 	for_each_online_cpu(cpu) {
178 		BUG_ON(pidx >= maxpools);
179 		m->to_pool[cpu] = pidx;
180 		m->pool_to[pidx] = cpu;
181 		pidx++;
182 	}
183 	/* cpus brought online later all get mapped to pool0, sorry */
184 
185 	return pidx;
186 };
187 
188 
189 /*
190  * Initialise the pool map for SVC_POOL_PERNODE mode.
191  * Returns number of pools or <0 on error.
192  */
193 static int
194 svc_pool_map_init_pernode(struct svc_pool_map *m)
195 {
196 	unsigned int maxpools = nr_node_ids;
197 	unsigned int pidx = 0;
198 	unsigned int node;
199 	int err;
200 
201 	err = svc_pool_map_alloc_arrays(m, maxpools);
202 	if (err)
203 		return err;
204 
205 	for_each_node_with_cpus(node) {
206 		/* some architectures (e.g. SN2) have cpuless nodes */
207 		BUG_ON(pidx > maxpools);
208 		m->to_pool[node] = pidx;
209 		m->pool_to[pidx] = node;
210 		pidx++;
211 	}
212 	/* nodes brought online later all get mapped to pool0, sorry */
213 
214 	return pidx;
215 }
216 
217 
218 /*
219  * Add a reference to the global map of cpus to pools (and
220  * vice versa).  Initialise the map if we're the first user.
221  * Returns the number of pools.
222  */
223 unsigned int
224 svc_pool_map_get(void)
225 {
226 	struct svc_pool_map *m = &svc_pool_map;
227 	int npools = -1;
228 
229 	mutex_lock(&svc_pool_map_mutex);
230 
231 	if (m->count++) {
232 		mutex_unlock(&svc_pool_map_mutex);
233 		return m->npools;
234 	}
235 
236 	if (m->mode == SVC_POOL_AUTO)
237 		m->mode = svc_pool_map_choose_mode();
238 
239 	switch (m->mode) {
240 	case SVC_POOL_PERCPU:
241 		npools = svc_pool_map_init_percpu(m);
242 		break;
243 	case SVC_POOL_PERNODE:
244 		npools = svc_pool_map_init_pernode(m);
245 		break;
246 	}
247 
248 	if (npools < 0) {
249 		/* default, or memory allocation failure */
250 		npools = 1;
251 		m->mode = SVC_POOL_GLOBAL;
252 	}
253 	m->npools = npools;
254 
255 	mutex_unlock(&svc_pool_map_mutex);
256 	return m->npools;
257 }
258 EXPORT_SYMBOL_GPL(svc_pool_map_get);
259 
260 /*
261  * Drop a reference to the global map of cpus to pools.
262  * When the last reference is dropped, the map data is
263  * freed; this allows the sysadmin to change the pool
264  * mode using the pool_mode module option without
265  * rebooting or re-loading sunrpc.ko.
266  */
267 void
268 svc_pool_map_put(void)
269 {
270 	struct svc_pool_map *m = &svc_pool_map;
271 
272 	mutex_lock(&svc_pool_map_mutex);
273 
274 	if (!--m->count) {
275 		kfree(m->to_pool);
276 		m->to_pool = NULL;
277 		kfree(m->pool_to);
278 		m->pool_to = NULL;
279 		m->npools = 0;
280 	}
281 
282 	mutex_unlock(&svc_pool_map_mutex);
283 }
284 EXPORT_SYMBOL_GPL(svc_pool_map_put);
285 
286 static int svc_pool_map_get_node(unsigned int pidx)
287 {
288 	const struct svc_pool_map *m = &svc_pool_map;
289 
290 	if (m->count) {
291 		if (m->mode == SVC_POOL_PERCPU)
292 			return cpu_to_node(m->pool_to[pidx]);
293 		if (m->mode == SVC_POOL_PERNODE)
294 			return m->pool_to[pidx];
295 	}
296 	return NUMA_NO_NODE;
297 }
298 /*
299  * Set the given thread's cpus_allowed mask so that it
300  * will only run on cpus in the given pool.
301  */
302 static inline void
303 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx)
304 {
305 	struct svc_pool_map *m = &svc_pool_map;
306 	unsigned int node = m->pool_to[pidx];
307 
308 	/*
309 	 * The caller checks for sv_nrpools > 1, which
310 	 * implies that we've been initialized.
311 	 */
312 	WARN_ON_ONCE(m->count == 0);
313 	if (m->count == 0)
314 		return;
315 
316 	switch (m->mode) {
317 	case SVC_POOL_PERCPU:
318 	{
319 		set_cpus_allowed_ptr(task, cpumask_of(node));
320 		break;
321 	}
322 	case SVC_POOL_PERNODE:
323 	{
324 		set_cpus_allowed_ptr(task, cpumask_of_node(node));
325 		break;
326 	}
327 	}
328 }
329 
330 /*
331  * Use the mapping mode to choose a pool for a given CPU.
332  * Used when enqueueing an incoming RPC.  Always returns
333  * a non-NULL pool pointer.
334  */
335 struct svc_pool *
336 svc_pool_for_cpu(struct svc_serv *serv, int cpu)
337 {
338 	struct svc_pool_map *m = &svc_pool_map;
339 	unsigned int pidx = 0;
340 
341 	/*
342 	 * An uninitialised map happens in a pure client when
343 	 * lockd is brought up, so silently treat it the
344 	 * same as SVC_POOL_GLOBAL.
345 	 */
346 	if (svc_serv_is_pooled(serv)) {
347 		switch (m->mode) {
348 		case SVC_POOL_PERCPU:
349 			pidx = m->to_pool[cpu];
350 			break;
351 		case SVC_POOL_PERNODE:
352 			pidx = m->to_pool[cpu_to_node(cpu)];
353 			break;
354 		}
355 	}
356 	return &serv->sv_pools[pidx % serv->sv_nrpools];
357 }
358 
359 int svc_rpcb_setup(struct svc_serv *serv, struct net *net)
360 {
361 	int err;
362 
363 	err = rpcb_create_local(net);
364 	if (err)
365 		return err;
366 
367 	/* Remove any stale portmap registrations */
368 	svc_unregister(serv, net);
369 	return 0;
370 }
371 EXPORT_SYMBOL_GPL(svc_rpcb_setup);
372 
373 void svc_rpcb_cleanup(struct svc_serv *serv, struct net *net)
374 {
375 	svc_unregister(serv, net);
376 	rpcb_put_local(net);
377 }
378 EXPORT_SYMBOL_GPL(svc_rpcb_cleanup);
379 
380 static int svc_uses_rpcbind(struct svc_serv *serv)
381 {
382 	struct svc_program	*progp;
383 	unsigned int		i;
384 
385 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
386 		for (i = 0; i < progp->pg_nvers; i++) {
387 			if (progp->pg_vers[i] == NULL)
388 				continue;
389 			if (!progp->pg_vers[i]->vs_hidden)
390 				return 1;
391 		}
392 	}
393 
394 	return 0;
395 }
396 
397 int svc_bind(struct svc_serv *serv, struct net *net)
398 {
399 	if (!svc_uses_rpcbind(serv))
400 		return 0;
401 	return svc_rpcb_setup(serv, net);
402 }
403 EXPORT_SYMBOL_GPL(svc_bind);
404 
405 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
406 static void
407 __svc_init_bc(struct svc_serv *serv)
408 {
409 	INIT_LIST_HEAD(&serv->sv_cb_list);
410 	spin_lock_init(&serv->sv_cb_lock);
411 	init_waitqueue_head(&serv->sv_cb_waitq);
412 }
413 #else
414 static void
415 __svc_init_bc(struct svc_serv *serv)
416 {
417 }
418 #endif
419 
420 /*
421  * Create an RPC service
422  */
423 static struct svc_serv *
424 __svc_create(struct svc_program *prog, unsigned int bufsize, int npools,
425 	     const struct svc_serv_ops *ops)
426 {
427 	struct svc_serv	*serv;
428 	unsigned int vers;
429 	unsigned int xdrsize;
430 	unsigned int i;
431 
432 	if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL)))
433 		return NULL;
434 	serv->sv_name      = prog->pg_name;
435 	serv->sv_program   = prog;
436 	serv->sv_nrthreads = 1;
437 	serv->sv_stats     = prog->pg_stats;
438 	if (bufsize > RPCSVC_MAXPAYLOAD)
439 		bufsize = RPCSVC_MAXPAYLOAD;
440 	serv->sv_max_payload = bufsize? bufsize : 4096;
441 	serv->sv_max_mesg  = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE);
442 	serv->sv_ops = ops;
443 	xdrsize = 0;
444 	while (prog) {
445 		prog->pg_lovers = prog->pg_nvers-1;
446 		for (vers=0; vers<prog->pg_nvers ; vers++)
447 			if (prog->pg_vers[vers]) {
448 				prog->pg_hivers = vers;
449 				if (prog->pg_lovers > vers)
450 					prog->pg_lovers = vers;
451 				if (prog->pg_vers[vers]->vs_xdrsize > xdrsize)
452 					xdrsize = prog->pg_vers[vers]->vs_xdrsize;
453 			}
454 		prog = prog->pg_next;
455 	}
456 	serv->sv_xdrsize   = xdrsize;
457 	INIT_LIST_HEAD(&serv->sv_tempsocks);
458 	INIT_LIST_HEAD(&serv->sv_permsocks);
459 	timer_setup(&serv->sv_temptimer, NULL, 0);
460 	spin_lock_init(&serv->sv_lock);
461 
462 	__svc_init_bc(serv);
463 
464 	serv->sv_nrpools = npools;
465 	serv->sv_pools =
466 		kcalloc(serv->sv_nrpools, sizeof(struct svc_pool),
467 			GFP_KERNEL);
468 	if (!serv->sv_pools) {
469 		kfree(serv);
470 		return NULL;
471 	}
472 
473 	for (i = 0; i < serv->sv_nrpools; i++) {
474 		struct svc_pool *pool = &serv->sv_pools[i];
475 
476 		dprintk("svc: initialising pool %u for %s\n",
477 				i, serv->sv_name);
478 
479 		pool->sp_id = i;
480 		INIT_LIST_HEAD(&pool->sp_sockets);
481 		INIT_LIST_HEAD(&pool->sp_all_threads);
482 		spin_lock_init(&pool->sp_lock);
483 	}
484 
485 	return serv;
486 }
487 
488 struct svc_serv *
489 svc_create(struct svc_program *prog, unsigned int bufsize,
490 	   const struct svc_serv_ops *ops)
491 {
492 	return __svc_create(prog, bufsize, /*npools*/1, ops);
493 }
494 EXPORT_SYMBOL_GPL(svc_create);
495 
496 struct svc_serv *
497 svc_create_pooled(struct svc_program *prog, unsigned int bufsize,
498 		  const struct svc_serv_ops *ops)
499 {
500 	struct svc_serv *serv;
501 	unsigned int npools = svc_pool_map_get();
502 
503 	serv = __svc_create(prog, bufsize, npools, ops);
504 	if (!serv)
505 		goto out_err;
506 	return serv;
507 out_err:
508 	svc_pool_map_put();
509 	return NULL;
510 }
511 EXPORT_SYMBOL_GPL(svc_create_pooled);
512 
513 void svc_shutdown_net(struct svc_serv *serv, struct net *net)
514 {
515 	svc_close_net(serv, net);
516 
517 	if (serv->sv_ops->svo_shutdown)
518 		serv->sv_ops->svo_shutdown(serv, net);
519 }
520 EXPORT_SYMBOL_GPL(svc_shutdown_net);
521 
522 /*
523  * Destroy an RPC service. Should be called with appropriate locking to
524  * protect the sv_nrthreads, sv_permsocks and sv_tempsocks.
525  */
526 void
527 svc_destroy(struct svc_serv *serv)
528 {
529 	dprintk("svc: svc_destroy(%s, %d)\n",
530 				serv->sv_program->pg_name,
531 				serv->sv_nrthreads);
532 
533 	if (serv->sv_nrthreads) {
534 		if (--(serv->sv_nrthreads) != 0) {
535 			svc_sock_update_bufs(serv);
536 			return;
537 		}
538 	} else
539 		printk("svc_destroy: no threads for serv=%p!\n", serv);
540 
541 	del_timer_sync(&serv->sv_temptimer);
542 
543 	/*
544 	 * The last user is gone and thus all sockets have to be destroyed to
545 	 * the point. Check this.
546 	 */
547 	BUG_ON(!list_empty(&serv->sv_permsocks));
548 	BUG_ON(!list_empty(&serv->sv_tempsocks));
549 
550 	cache_clean_deferred(serv);
551 
552 	if (svc_serv_is_pooled(serv))
553 		svc_pool_map_put();
554 
555 	kfree(serv->sv_pools);
556 	kfree(serv);
557 }
558 EXPORT_SYMBOL_GPL(svc_destroy);
559 
560 /*
561  * Allocate an RPC server's buffer space.
562  * We allocate pages and place them in rq_argpages.
563  */
564 static int
565 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size, int node)
566 {
567 	unsigned int pages, arghi;
568 
569 	/* bc_xprt uses fore channel allocated buffers */
570 	if (svc_is_backchannel(rqstp))
571 		return 1;
572 
573 	pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply.
574 				       * We assume one is at most one page
575 				       */
576 	arghi = 0;
577 	WARN_ON_ONCE(pages > RPCSVC_MAXPAGES);
578 	if (pages > RPCSVC_MAXPAGES)
579 		pages = RPCSVC_MAXPAGES;
580 	while (pages) {
581 		struct page *p = alloc_pages_node(node, GFP_KERNEL, 0);
582 		if (!p)
583 			break;
584 		rqstp->rq_pages[arghi++] = p;
585 		pages--;
586 	}
587 	return pages == 0;
588 }
589 
590 /*
591  * Release an RPC server buffer
592  */
593 static void
594 svc_release_buffer(struct svc_rqst *rqstp)
595 {
596 	unsigned int i;
597 
598 	for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++)
599 		if (rqstp->rq_pages[i])
600 			put_page(rqstp->rq_pages[i]);
601 }
602 
603 struct svc_rqst *
604 svc_rqst_alloc(struct svc_serv *serv, struct svc_pool *pool, int node)
605 {
606 	struct svc_rqst	*rqstp;
607 
608 	rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node);
609 	if (!rqstp)
610 		return rqstp;
611 
612 	__set_bit(RQ_BUSY, &rqstp->rq_flags);
613 	spin_lock_init(&rqstp->rq_lock);
614 	rqstp->rq_server = serv;
615 	rqstp->rq_pool = pool;
616 
617 	rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
618 	if (!rqstp->rq_argp)
619 		goto out_enomem;
620 
621 	rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
622 	if (!rqstp->rq_resp)
623 		goto out_enomem;
624 
625 	if (!svc_init_buffer(rqstp, serv->sv_max_mesg, node))
626 		goto out_enomem;
627 
628 	return rqstp;
629 out_enomem:
630 	svc_rqst_free(rqstp);
631 	return NULL;
632 }
633 EXPORT_SYMBOL_GPL(svc_rqst_alloc);
634 
635 struct svc_rqst *
636 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node)
637 {
638 	struct svc_rqst	*rqstp;
639 
640 	rqstp = svc_rqst_alloc(serv, pool, node);
641 	if (!rqstp)
642 		return ERR_PTR(-ENOMEM);
643 
644 	serv->sv_nrthreads++;
645 	spin_lock_bh(&pool->sp_lock);
646 	pool->sp_nrthreads++;
647 	list_add_rcu(&rqstp->rq_all, &pool->sp_all_threads);
648 	spin_unlock_bh(&pool->sp_lock);
649 	return rqstp;
650 }
651 EXPORT_SYMBOL_GPL(svc_prepare_thread);
652 
653 /*
654  * Choose a pool in which to create a new thread, for svc_set_num_threads
655  */
656 static inline struct svc_pool *
657 choose_pool(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
658 {
659 	if (pool != NULL)
660 		return pool;
661 
662 	return &serv->sv_pools[(*state)++ % serv->sv_nrpools];
663 }
664 
665 /*
666  * Choose a thread to kill, for svc_set_num_threads
667  */
668 static inline struct task_struct *
669 choose_victim(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
670 {
671 	unsigned int i;
672 	struct task_struct *task = NULL;
673 
674 	if (pool != NULL) {
675 		spin_lock_bh(&pool->sp_lock);
676 	} else {
677 		/* choose a pool in round-robin fashion */
678 		for (i = 0; i < serv->sv_nrpools; i++) {
679 			pool = &serv->sv_pools[--(*state) % serv->sv_nrpools];
680 			spin_lock_bh(&pool->sp_lock);
681 			if (!list_empty(&pool->sp_all_threads))
682 				goto found_pool;
683 			spin_unlock_bh(&pool->sp_lock);
684 		}
685 		return NULL;
686 	}
687 
688 found_pool:
689 	if (!list_empty(&pool->sp_all_threads)) {
690 		struct svc_rqst *rqstp;
691 
692 		/*
693 		 * Remove from the pool->sp_all_threads list
694 		 * so we don't try to kill it again.
695 		 */
696 		rqstp = list_entry(pool->sp_all_threads.next, struct svc_rqst, rq_all);
697 		set_bit(RQ_VICTIM, &rqstp->rq_flags);
698 		list_del_rcu(&rqstp->rq_all);
699 		task = rqstp->rq_task;
700 	}
701 	spin_unlock_bh(&pool->sp_lock);
702 
703 	return task;
704 }
705 
706 /* create new threads */
707 static int
708 svc_start_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
709 {
710 	struct svc_rqst	*rqstp;
711 	struct task_struct *task;
712 	struct svc_pool *chosen_pool;
713 	unsigned int state = serv->sv_nrthreads-1;
714 	int node;
715 
716 	do {
717 		nrservs--;
718 		chosen_pool = choose_pool(serv, pool, &state);
719 
720 		node = svc_pool_map_get_node(chosen_pool->sp_id);
721 		rqstp = svc_prepare_thread(serv, chosen_pool, node);
722 		if (IS_ERR(rqstp))
723 			return PTR_ERR(rqstp);
724 
725 		__module_get(serv->sv_ops->svo_module);
726 		task = kthread_create_on_node(serv->sv_ops->svo_function, rqstp,
727 					      node, "%s", serv->sv_name);
728 		if (IS_ERR(task)) {
729 			module_put(serv->sv_ops->svo_module);
730 			svc_exit_thread(rqstp);
731 			return PTR_ERR(task);
732 		}
733 
734 		rqstp->rq_task = task;
735 		if (serv->sv_nrpools > 1)
736 			svc_pool_map_set_cpumask(task, chosen_pool->sp_id);
737 
738 		svc_sock_update_bufs(serv);
739 		wake_up_process(task);
740 	} while (nrservs > 0);
741 
742 	return 0;
743 }
744 
745 
746 /* destroy old threads */
747 static int
748 svc_signal_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
749 {
750 	struct task_struct *task;
751 	unsigned int state = serv->sv_nrthreads-1;
752 
753 	/* destroy old threads */
754 	do {
755 		task = choose_victim(serv, pool, &state);
756 		if (task == NULL)
757 			break;
758 		send_sig(SIGINT, task, 1);
759 		nrservs++;
760 	} while (nrservs < 0);
761 
762 	return 0;
763 }
764 
765 /*
766  * Create or destroy enough new threads to make the number
767  * of threads the given number.  If `pool' is non-NULL, applies
768  * only to threads in that pool, otherwise round-robins between
769  * all pools.  Caller must ensure that mutual exclusion between this and
770  * server startup or shutdown.
771  *
772  * Destroying threads relies on the service threads filling in
773  * rqstp->rq_task, which only the nfs ones do.  Assumes the serv
774  * has been created using svc_create_pooled().
775  *
776  * Based on code that used to be in nfsd_svc() but tweaked
777  * to be pool-aware.
778  */
779 int
780 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
781 {
782 	if (pool == NULL) {
783 		/* The -1 assumes caller has done a svc_get() */
784 		nrservs -= (serv->sv_nrthreads-1);
785 	} else {
786 		spin_lock_bh(&pool->sp_lock);
787 		nrservs -= pool->sp_nrthreads;
788 		spin_unlock_bh(&pool->sp_lock);
789 	}
790 
791 	if (nrservs > 0)
792 		return svc_start_kthreads(serv, pool, nrservs);
793 	if (nrservs < 0)
794 		return svc_signal_kthreads(serv, pool, nrservs);
795 	return 0;
796 }
797 EXPORT_SYMBOL_GPL(svc_set_num_threads);
798 
799 /* destroy old threads */
800 static int
801 svc_stop_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
802 {
803 	struct task_struct *task;
804 	unsigned int state = serv->sv_nrthreads-1;
805 
806 	/* destroy old threads */
807 	do {
808 		task = choose_victim(serv, pool, &state);
809 		if (task == NULL)
810 			break;
811 		kthread_stop(task);
812 		nrservs++;
813 	} while (nrservs < 0);
814 	return 0;
815 }
816 
817 int
818 svc_set_num_threads_sync(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
819 {
820 	if (pool == NULL) {
821 		/* The -1 assumes caller has done a svc_get() */
822 		nrservs -= (serv->sv_nrthreads-1);
823 	} else {
824 		spin_lock_bh(&pool->sp_lock);
825 		nrservs -= pool->sp_nrthreads;
826 		spin_unlock_bh(&pool->sp_lock);
827 	}
828 
829 	if (nrservs > 0)
830 		return svc_start_kthreads(serv, pool, nrservs);
831 	if (nrservs < 0)
832 		return svc_stop_kthreads(serv, pool, nrservs);
833 	return 0;
834 }
835 EXPORT_SYMBOL_GPL(svc_set_num_threads_sync);
836 
837 /*
838  * Called from a server thread as it's exiting. Caller must hold the "service
839  * mutex" for the service.
840  */
841 void
842 svc_rqst_free(struct svc_rqst *rqstp)
843 {
844 	svc_release_buffer(rqstp);
845 	kfree(rqstp->rq_resp);
846 	kfree(rqstp->rq_argp);
847 	kfree(rqstp->rq_auth_data);
848 	kfree_rcu(rqstp, rq_rcu_head);
849 }
850 EXPORT_SYMBOL_GPL(svc_rqst_free);
851 
852 void
853 svc_exit_thread(struct svc_rqst *rqstp)
854 {
855 	struct svc_serv	*serv = rqstp->rq_server;
856 	struct svc_pool	*pool = rqstp->rq_pool;
857 
858 	spin_lock_bh(&pool->sp_lock);
859 	pool->sp_nrthreads--;
860 	if (!test_and_set_bit(RQ_VICTIM, &rqstp->rq_flags))
861 		list_del_rcu(&rqstp->rq_all);
862 	spin_unlock_bh(&pool->sp_lock);
863 
864 	svc_rqst_free(rqstp);
865 
866 	/* Release the server */
867 	if (serv)
868 		svc_destroy(serv);
869 }
870 EXPORT_SYMBOL_GPL(svc_exit_thread);
871 
872 /*
873  * Register an "inet" protocol family netid with the local
874  * rpcbind daemon via an rpcbind v4 SET request.
875  *
876  * No netconfig infrastructure is available in the kernel, so
877  * we map IP_ protocol numbers to netids by hand.
878  *
879  * Returns zero on success; a negative errno value is returned
880  * if any error occurs.
881  */
882 static int __svc_rpcb_register4(struct net *net, const u32 program,
883 				const u32 version,
884 				const unsigned short protocol,
885 				const unsigned short port)
886 {
887 	const struct sockaddr_in sin = {
888 		.sin_family		= AF_INET,
889 		.sin_addr.s_addr	= htonl(INADDR_ANY),
890 		.sin_port		= htons(port),
891 	};
892 	const char *netid;
893 	int error;
894 
895 	switch (protocol) {
896 	case IPPROTO_UDP:
897 		netid = RPCBIND_NETID_UDP;
898 		break;
899 	case IPPROTO_TCP:
900 		netid = RPCBIND_NETID_TCP;
901 		break;
902 	default:
903 		return -ENOPROTOOPT;
904 	}
905 
906 	error = rpcb_v4_register(net, program, version,
907 					(const struct sockaddr *)&sin, netid);
908 
909 	/*
910 	 * User space didn't support rpcbind v4, so retry this
911 	 * registration request with the legacy rpcbind v2 protocol.
912 	 */
913 	if (error == -EPROTONOSUPPORT)
914 		error = rpcb_register(net, program, version, protocol, port);
915 
916 	return error;
917 }
918 
919 #if IS_ENABLED(CONFIG_IPV6)
920 /*
921  * Register an "inet6" protocol family netid with the local
922  * rpcbind daemon via an rpcbind v4 SET request.
923  *
924  * No netconfig infrastructure is available in the kernel, so
925  * we map IP_ protocol numbers to netids by hand.
926  *
927  * Returns zero on success; a negative errno value is returned
928  * if any error occurs.
929  */
930 static int __svc_rpcb_register6(struct net *net, const u32 program,
931 				const u32 version,
932 				const unsigned short protocol,
933 				const unsigned short port)
934 {
935 	const struct sockaddr_in6 sin6 = {
936 		.sin6_family		= AF_INET6,
937 		.sin6_addr		= IN6ADDR_ANY_INIT,
938 		.sin6_port		= htons(port),
939 	};
940 	const char *netid;
941 	int error;
942 
943 	switch (protocol) {
944 	case IPPROTO_UDP:
945 		netid = RPCBIND_NETID_UDP6;
946 		break;
947 	case IPPROTO_TCP:
948 		netid = RPCBIND_NETID_TCP6;
949 		break;
950 	default:
951 		return -ENOPROTOOPT;
952 	}
953 
954 	error = rpcb_v4_register(net, program, version,
955 					(const struct sockaddr *)&sin6, netid);
956 
957 	/*
958 	 * User space didn't support rpcbind version 4, so we won't
959 	 * use a PF_INET6 listener.
960 	 */
961 	if (error == -EPROTONOSUPPORT)
962 		error = -EAFNOSUPPORT;
963 
964 	return error;
965 }
966 #endif	/* IS_ENABLED(CONFIG_IPV6) */
967 
968 /*
969  * Register a kernel RPC service via rpcbind version 4.
970  *
971  * Returns zero on success; a negative errno value is returned
972  * if any error occurs.
973  */
974 static int __svc_register(struct net *net, const char *progname,
975 			  const u32 program, const u32 version,
976 			  const int family,
977 			  const unsigned short protocol,
978 			  const unsigned short port)
979 {
980 	int error = -EAFNOSUPPORT;
981 
982 	switch (family) {
983 	case PF_INET:
984 		error = __svc_rpcb_register4(net, program, version,
985 						protocol, port);
986 		break;
987 #if IS_ENABLED(CONFIG_IPV6)
988 	case PF_INET6:
989 		error = __svc_rpcb_register6(net, program, version,
990 						protocol, port);
991 #endif
992 	}
993 
994 	return error;
995 }
996 
997 int svc_rpcbind_set_version(struct net *net,
998 			    const struct svc_program *progp,
999 			    u32 version, int family,
1000 			    unsigned short proto,
1001 			    unsigned short port)
1002 {
1003 	dprintk("svc: svc_register(%sv%d, %s, %u, %u)\n",
1004 		progp->pg_name, version,
1005 		proto == IPPROTO_UDP?  "udp" : "tcp",
1006 		port, family);
1007 
1008 	return __svc_register(net, progp->pg_name, progp->pg_prog,
1009 				version, family, proto, port);
1010 
1011 }
1012 EXPORT_SYMBOL_GPL(svc_rpcbind_set_version);
1013 
1014 int svc_generic_rpcbind_set(struct net *net,
1015 			    const struct svc_program *progp,
1016 			    u32 version, int family,
1017 			    unsigned short proto,
1018 			    unsigned short port)
1019 {
1020 	const struct svc_version *vers = progp->pg_vers[version];
1021 	int error;
1022 
1023 	if (vers == NULL)
1024 		return 0;
1025 
1026 	if (vers->vs_hidden) {
1027 		dprintk("svc: svc_register(%sv%d, %s, %u, %u)"
1028 			" (but not telling portmap)\n",
1029 			progp->pg_name, version,
1030 			proto == IPPROTO_UDP?  "udp" : "tcp",
1031 			port, family);
1032 		return 0;
1033 	}
1034 
1035 	/*
1036 	 * Don't register a UDP port if we need congestion
1037 	 * control.
1038 	 */
1039 	if (vers->vs_need_cong_ctrl && proto == IPPROTO_UDP)
1040 		return 0;
1041 
1042 	error = svc_rpcbind_set_version(net, progp, version,
1043 					family, proto, port);
1044 
1045 	return (vers->vs_rpcb_optnl) ? 0 : error;
1046 }
1047 EXPORT_SYMBOL_GPL(svc_generic_rpcbind_set);
1048 
1049 /**
1050  * svc_register - register an RPC service with the local portmapper
1051  * @serv: svc_serv struct for the service to register
1052  * @net: net namespace for the service to register
1053  * @family: protocol family of service's listener socket
1054  * @proto: transport protocol number to advertise
1055  * @port: port to advertise
1056  *
1057  * Service is registered for any address in the passed-in protocol family
1058  */
1059 int svc_register(const struct svc_serv *serv, struct net *net,
1060 		 const int family, const unsigned short proto,
1061 		 const unsigned short port)
1062 {
1063 	struct svc_program	*progp;
1064 	unsigned int		i;
1065 	int			error = 0;
1066 
1067 	WARN_ON_ONCE(proto == 0 && port == 0);
1068 	if (proto == 0 && port == 0)
1069 		return -EINVAL;
1070 
1071 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
1072 		for (i = 0; i < progp->pg_nvers; i++) {
1073 
1074 			error = progp->pg_rpcbind_set(net, progp, i,
1075 					family, proto, port);
1076 			if (error < 0) {
1077 				printk(KERN_WARNING "svc: failed to register "
1078 					"%sv%u RPC service (errno %d).\n",
1079 					progp->pg_name, i, -error);
1080 				break;
1081 			}
1082 		}
1083 	}
1084 
1085 	return error;
1086 }
1087 
1088 /*
1089  * If user space is running rpcbind, it should take the v4 UNSET
1090  * and clear everything for this [program, version].  If user space
1091  * is running portmap, it will reject the v4 UNSET, but won't have
1092  * any "inet6" entries anyway.  So a PMAP_UNSET should be sufficient
1093  * in this case to clear all existing entries for [program, version].
1094  */
1095 static void __svc_unregister(struct net *net, const u32 program, const u32 version,
1096 			     const char *progname)
1097 {
1098 	int error;
1099 
1100 	error = rpcb_v4_register(net, program, version, NULL, "");
1101 
1102 	/*
1103 	 * User space didn't support rpcbind v4, so retry this
1104 	 * request with the legacy rpcbind v2 protocol.
1105 	 */
1106 	if (error == -EPROTONOSUPPORT)
1107 		error = rpcb_register(net, program, version, 0, 0);
1108 
1109 	dprintk("svc: %s(%sv%u), error %d\n",
1110 			__func__, progname, version, error);
1111 }
1112 
1113 /*
1114  * All netids, bind addresses and ports registered for [program, version]
1115  * are removed from the local rpcbind database (if the service is not
1116  * hidden) to make way for a new instance of the service.
1117  *
1118  * The result of unregistration is reported via dprintk for those who want
1119  * verification of the result, but is otherwise not important.
1120  */
1121 static void svc_unregister(const struct svc_serv *serv, struct net *net)
1122 {
1123 	struct svc_program *progp;
1124 	unsigned long flags;
1125 	unsigned int i;
1126 
1127 	clear_thread_flag(TIF_SIGPENDING);
1128 
1129 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
1130 		for (i = 0; i < progp->pg_nvers; i++) {
1131 			if (progp->pg_vers[i] == NULL)
1132 				continue;
1133 			if (progp->pg_vers[i]->vs_hidden)
1134 				continue;
1135 
1136 			dprintk("svc: attempting to unregister %sv%u\n",
1137 				progp->pg_name, i);
1138 			__svc_unregister(net, progp->pg_prog, i, progp->pg_name);
1139 		}
1140 	}
1141 
1142 	spin_lock_irqsave(&current->sighand->siglock, flags);
1143 	recalc_sigpending();
1144 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
1145 }
1146 
1147 /*
1148  * dprintk the given error with the address of the client that caused it.
1149  */
1150 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
1151 static __printf(2, 3)
1152 void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...)
1153 {
1154 	struct va_format vaf;
1155 	va_list args;
1156 	char 	buf[RPC_MAX_ADDRBUFLEN];
1157 
1158 	va_start(args, fmt);
1159 
1160 	vaf.fmt = fmt;
1161 	vaf.va = &args;
1162 
1163 	dprintk("svc: %s: %pV", svc_print_addr(rqstp, buf, sizeof(buf)), &vaf);
1164 
1165 	va_end(args);
1166 }
1167 #else
1168 static __printf(2,3) void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) {}
1169 #endif
1170 
1171 __be32
1172 svc_return_autherr(struct svc_rqst *rqstp, __be32 auth_err)
1173 {
1174 	set_bit(RQ_AUTHERR, &rqstp->rq_flags);
1175 	return auth_err;
1176 }
1177 EXPORT_SYMBOL_GPL(svc_return_autherr);
1178 
1179 static __be32
1180 svc_get_autherr(struct svc_rqst *rqstp, __be32 *statp)
1181 {
1182 	if (test_and_clear_bit(RQ_AUTHERR, &rqstp->rq_flags))
1183 		return *statp;
1184 	return rpc_auth_ok;
1185 }
1186 
1187 static int
1188 svc_generic_dispatch(struct svc_rqst *rqstp, __be32 *statp)
1189 {
1190 	struct kvec *argv = &rqstp->rq_arg.head[0];
1191 	struct kvec *resv = &rqstp->rq_res.head[0];
1192 	const struct svc_procedure *procp = rqstp->rq_procinfo;
1193 
1194 	/*
1195 	 * Decode arguments
1196 	 * XXX: why do we ignore the return value?
1197 	 */
1198 	if (procp->pc_decode &&
1199 	    !procp->pc_decode(rqstp, argv->iov_base)) {
1200 		*statp = rpc_garbage_args;
1201 		return 1;
1202 	}
1203 
1204 	*statp = procp->pc_func(rqstp);
1205 
1206 	if (*statp == rpc_drop_reply ||
1207 	    test_bit(RQ_DROPME, &rqstp->rq_flags))
1208 		return 0;
1209 
1210 	if (test_bit(RQ_AUTHERR, &rqstp->rq_flags))
1211 		return 1;
1212 
1213 	if (*statp != rpc_success)
1214 		return 1;
1215 
1216 	/* Encode reply */
1217 	if (procp->pc_encode &&
1218 	    !procp->pc_encode(rqstp, resv->iov_base + resv->iov_len)) {
1219 		dprintk("svc: failed to encode reply\n");
1220 		/* serv->sv_stats->rpcsystemerr++; */
1221 		*statp = rpc_system_err;
1222 	}
1223 	return 1;
1224 }
1225 
1226 __be32
1227 svc_generic_init_request(struct svc_rqst *rqstp,
1228 		const struct svc_program *progp,
1229 		struct svc_process_info *ret)
1230 {
1231 	const struct svc_version *versp = NULL;	/* compiler food */
1232 	const struct svc_procedure *procp = NULL;
1233 
1234 	if (rqstp->rq_vers >= progp->pg_nvers )
1235 		goto err_bad_vers;
1236 	  versp = progp->pg_vers[rqstp->rq_vers];
1237 	  if (!versp)
1238 		goto err_bad_vers;
1239 
1240 	/*
1241 	 * Some protocol versions (namely NFSv4) require some form of
1242 	 * congestion control.  (See RFC 7530 section 3.1 paragraph 2)
1243 	 * In other words, UDP is not allowed. We mark those when setting
1244 	 * up the svc_xprt, and verify that here.
1245 	 *
1246 	 * The spec is not very clear about what error should be returned
1247 	 * when someone tries to access a server that is listening on UDP
1248 	 * for lower versions. RPC_PROG_MISMATCH seems to be the closest
1249 	 * fit.
1250 	 */
1251 	if (versp->vs_need_cong_ctrl && rqstp->rq_xprt &&
1252 	    !test_bit(XPT_CONG_CTRL, &rqstp->rq_xprt->xpt_flags))
1253 		goto err_bad_vers;
1254 
1255 	if (rqstp->rq_proc >= versp->vs_nproc)
1256 		goto err_bad_proc;
1257 	rqstp->rq_procinfo = procp = &versp->vs_proc[rqstp->rq_proc];
1258 	if (!procp)
1259 		goto err_bad_proc;
1260 
1261 	/* Initialize storage for argp and resp */
1262 	memset(rqstp->rq_argp, 0, procp->pc_argsize);
1263 	memset(rqstp->rq_resp, 0, procp->pc_ressize);
1264 
1265 	/* Bump per-procedure stats counter */
1266 	versp->vs_count[rqstp->rq_proc]++;
1267 
1268 	ret->dispatch = versp->vs_dispatch;
1269 	return rpc_success;
1270 err_bad_vers:
1271 	ret->mismatch.lovers = progp->pg_lovers;
1272 	ret->mismatch.hivers = progp->pg_hivers;
1273 	return rpc_prog_mismatch;
1274 err_bad_proc:
1275 	return rpc_proc_unavail;
1276 }
1277 EXPORT_SYMBOL_GPL(svc_generic_init_request);
1278 
1279 /*
1280  * Common routine for processing the RPC request.
1281  */
1282 static int
1283 svc_process_common(struct svc_rqst *rqstp, struct kvec *argv, struct kvec *resv)
1284 {
1285 	struct svc_program	*progp;
1286 	const struct svc_procedure *procp = NULL;
1287 	struct svc_serv		*serv = rqstp->rq_server;
1288 	struct svc_process_info process;
1289 	__be32			*statp;
1290 	u32			prog, vers;
1291 	__be32			auth_stat, rpc_stat;
1292 	int			auth_res;
1293 	__be32			*reply_statp;
1294 
1295 	rpc_stat = rpc_success;
1296 
1297 	if (argv->iov_len < 6*4)
1298 		goto err_short_len;
1299 
1300 	/* Will be turned off by GSS integrity and privacy services */
1301 	set_bit(RQ_SPLICE_OK, &rqstp->rq_flags);
1302 	/* Will be turned off only when NFSv4 Sessions are used */
1303 	set_bit(RQ_USEDEFERRAL, &rqstp->rq_flags);
1304 	clear_bit(RQ_DROPME, &rqstp->rq_flags);
1305 
1306 	svc_putu32(resv, rqstp->rq_xid);
1307 
1308 	vers = svc_getnl(argv);
1309 
1310 	/* First words of reply: */
1311 	svc_putnl(resv, 1);		/* REPLY */
1312 
1313 	if (vers != 2)		/* RPC version number */
1314 		goto err_bad_rpc;
1315 
1316 	/* Save position in case we later decide to reject: */
1317 	reply_statp = resv->iov_base + resv->iov_len;
1318 
1319 	svc_putnl(resv, 0);		/* ACCEPT */
1320 
1321 	rqstp->rq_prog = prog = svc_getnl(argv);	/* program number */
1322 	rqstp->rq_vers = svc_getnl(argv);	/* version number */
1323 	rqstp->rq_proc = svc_getnl(argv);	/* procedure number */
1324 
1325 	for (progp = serv->sv_program; progp; progp = progp->pg_next)
1326 		if (prog == progp->pg_prog)
1327 			break;
1328 
1329 	/*
1330 	 * Decode auth data, and add verifier to reply buffer.
1331 	 * We do this before anything else in order to get a decent
1332 	 * auth verifier.
1333 	 */
1334 	auth_res = svc_authenticate(rqstp, &auth_stat);
1335 	/* Also give the program a chance to reject this call: */
1336 	if (auth_res == SVC_OK && progp) {
1337 		auth_stat = rpc_autherr_badcred;
1338 		auth_res = progp->pg_authenticate(rqstp);
1339 	}
1340 	switch (auth_res) {
1341 	case SVC_OK:
1342 		break;
1343 	case SVC_GARBAGE:
1344 		goto err_garbage;
1345 	case SVC_SYSERR:
1346 		rpc_stat = rpc_system_err;
1347 		goto err_bad;
1348 	case SVC_DENIED:
1349 		goto err_bad_auth;
1350 	case SVC_CLOSE:
1351 		goto close;
1352 	case SVC_DROP:
1353 		goto dropit;
1354 	case SVC_COMPLETE:
1355 		goto sendit;
1356 	}
1357 
1358 	if (progp == NULL)
1359 		goto err_bad_prog;
1360 
1361 	rpc_stat = progp->pg_init_request(rqstp, progp, &process);
1362 	switch (rpc_stat) {
1363 	case rpc_success:
1364 		break;
1365 	case rpc_prog_unavail:
1366 		goto err_bad_prog;
1367 	case rpc_prog_mismatch:
1368 		goto err_bad_vers;
1369 	case rpc_proc_unavail:
1370 		goto err_bad_proc;
1371 	}
1372 
1373 	procp = rqstp->rq_procinfo;
1374 	/* Should this check go into the dispatcher? */
1375 	if (!procp || !procp->pc_func)
1376 		goto err_bad_proc;
1377 
1378 	/* Syntactic check complete */
1379 	serv->sv_stats->rpccnt++;
1380 	trace_svc_process(rqstp, progp->pg_name);
1381 
1382 	/* Build the reply header. */
1383 	statp = resv->iov_base +resv->iov_len;
1384 	svc_putnl(resv, RPC_SUCCESS);
1385 
1386 	/* un-reserve some of the out-queue now that we have a
1387 	 * better idea of reply size
1388 	 */
1389 	if (procp->pc_xdrressize)
1390 		svc_reserve_auth(rqstp, procp->pc_xdrressize<<2);
1391 
1392 	/* Call the function that processes the request. */
1393 	if (!process.dispatch) {
1394 		if (!svc_generic_dispatch(rqstp, statp))
1395 			goto release_dropit;
1396 		if (*statp == rpc_garbage_args)
1397 			goto err_garbage;
1398 		auth_stat = svc_get_autherr(rqstp, statp);
1399 		if (auth_stat != rpc_auth_ok)
1400 			goto err_release_bad_auth;
1401 	} else {
1402 		dprintk("svc: calling dispatcher\n");
1403 		if (!process.dispatch(rqstp, statp))
1404 			goto release_dropit; /* Release reply info */
1405 	}
1406 
1407 	/* Check RPC status result */
1408 	if (*statp != rpc_success)
1409 		resv->iov_len = ((void*)statp)  - resv->iov_base + 4;
1410 
1411 	/* Release reply info */
1412 	if (procp->pc_release)
1413 		procp->pc_release(rqstp);
1414 
1415 	if (procp->pc_encode == NULL)
1416 		goto dropit;
1417 
1418  sendit:
1419 	if (svc_authorise(rqstp))
1420 		goto close;
1421 	return 1;		/* Caller can now send it */
1422 
1423 release_dropit:
1424 	if (procp->pc_release)
1425 		procp->pc_release(rqstp);
1426  dropit:
1427 	svc_authorise(rqstp);	/* doesn't hurt to call this twice */
1428 	dprintk("svc: svc_process dropit\n");
1429 	return 0;
1430 
1431  close:
1432 	if (rqstp->rq_xprt && test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags))
1433 		svc_close_xprt(rqstp->rq_xprt);
1434 	dprintk("svc: svc_process close\n");
1435 	return 0;
1436 
1437 err_short_len:
1438 	svc_printk(rqstp, "short len %zd, dropping request\n",
1439 			argv->iov_len);
1440 	goto close;
1441 
1442 err_bad_rpc:
1443 	serv->sv_stats->rpcbadfmt++;
1444 	svc_putnl(resv, 1);	/* REJECT */
1445 	svc_putnl(resv, 0);	/* RPC_MISMATCH */
1446 	svc_putnl(resv, 2);	/* Only RPCv2 supported */
1447 	svc_putnl(resv, 2);
1448 	goto sendit;
1449 
1450 err_release_bad_auth:
1451 	if (procp->pc_release)
1452 		procp->pc_release(rqstp);
1453 err_bad_auth:
1454 	dprintk("svc: authentication failed (%d)\n", ntohl(auth_stat));
1455 	serv->sv_stats->rpcbadauth++;
1456 	/* Restore write pointer to location of accept status: */
1457 	xdr_ressize_check(rqstp, reply_statp);
1458 	svc_putnl(resv, 1);	/* REJECT */
1459 	svc_putnl(resv, 1);	/* AUTH_ERROR */
1460 	svc_putnl(resv, ntohl(auth_stat));	/* status */
1461 	goto sendit;
1462 
1463 err_bad_prog:
1464 	dprintk("svc: unknown program %d\n", prog);
1465 	serv->sv_stats->rpcbadfmt++;
1466 	svc_putnl(resv, RPC_PROG_UNAVAIL);
1467 	goto sendit;
1468 
1469 err_bad_vers:
1470 	svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n",
1471 		       rqstp->rq_vers, rqstp->rq_prog, progp->pg_name);
1472 
1473 	serv->sv_stats->rpcbadfmt++;
1474 	svc_putnl(resv, RPC_PROG_MISMATCH);
1475 	svc_putnl(resv, process.mismatch.lovers);
1476 	svc_putnl(resv, process.mismatch.hivers);
1477 	goto sendit;
1478 
1479 err_bad_proc:
1480 	svc_printk(rqstp, "unknown procedure (%d)\n", rqstp->rq_proc);
1481 
1482 	serv->sv_stats->rpcbadfmt++;
1483 	svc_putnl(resv, RPC_PROC_UNAVAIL);
1484 	goto sendit;
1485 
1486 err_garbage:
1487 	svc_printk(rqstp, "failed to decode args\n");
1488 
1489 	rpc_stat = rpc_garbage_args;
1490 err_bad:
1491 	serv->sv_stats->rpcbadfmt++;
1492 	svc_putnl(resv, ntohl(rpc_stat));
1493 	goto sendit;
1494 }
1495 
1496 /*
1497  * Process the RPC request.
1498  */
1499 int
1500 svc_process(struct svc_rqst *rqstp)
1501 {
1502 	struct kvec		*argv = &rqstp->rq_arg.head[0];
1503 	struct kvec		*resv = &rqstp->rq_res.head[0];
1504 	struct svc_serv		*serv = rqstp->rq_server;
1505 	u32			dir;
1506 
1507 	/*
1508 	 * Setup response xdr_buf.
1509 	 * Initially it has just one page
1510 	 */
1511 	rqstp->rq_next_page = &rqstp->rq_respages[1];
1512 	resv->iov_base = page_address(rqstp->rq_respages[0]);
1513 	resv->iov_len = 0;
1514 	rqstp->rq_res.pages = rqstp->rq_respages + 1;
1515 	rqstp->rq_res.len = 0;
1516 	rqstp->rq_res.page_base = 0;
1517 	rqstp->rq_res.page_len = 0;
1518 	rqstp->rq_res.buflen = PAGE_SIZE;
1519 	rqstp->rq_res.tail[0].iov_base = NULL;
1520 	rqstp->rq_res.tail[0].iov_len = 0;
1521 
1522 	dir  = svc_getnl(argv);
1523 	if (dir != 0) {
1524 		/* direction != CALL */
1525 		svc_printk(rqstp, "bad direction %d, dropping request\n", dir);
1526 		serv->sv_stats->rpcbadfmt++;
1527 		goto out_drop;
1528 	}
1529 
1530 	/* Reserve space for the record marker */
1531 	if (rqstp->rq_prot == IPPROTO_TCP)
1532 		svc_putnl(resv, 0);
1533 
1534 	/* Returns 1 for send, 0 for drop */
1535 	if (likely(svc_process_common(rqstp, argv, resv)))
1536 		return svc_send(rqstp);
1537 
1538 out_drop:
1539 	svc_drop(rqstp);
1540 	return 0;
1541 }
1542 EXPORT_SYMBOL_GPL(svc_process);
1543 
1544 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1545 /*
1546  * Process a backchannel RPC request that arrived over an existing
1547  * outbound connection
1548  */
1549 int
1550 bc_svc_process(struct svc_serv *serv, struct rpc_rqst *req,
1551 	       struct svc_rqst *rqstp)
1552 {
1553 	struct kvec	*argv = &rqstp->rq_arg.head[0];
1554 	struct kvec	*resv = &rqstp->rq_res.head[0];
1555 	struct rpc_task *task;
1556 	int proc_error;
1557 	int error;
1558 
1559 	dprintk("svc: %s(%p)\n", __func__, req);
1560 
1561 	/* Build the svc_rqst used by the common processing routine */
1562 	rqstp->rq_xid = req->rq_xid;
1563 	rqstp->rq_prot = req->rq_xprt->prot;
1564 	rqstp->rq_server = serv;
1565 	rqstp->rq_bc_net = req->rq_xprt->xprt_net;
1566 
1567 	rqstp->rq_addrlen = sizeof(req->rq_xprt->addr);
1568 	memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen);
1569 	memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg));
1570 	memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res));
1571 
1572 	/* Adjust the argument buffer length */
1573 	rqstp->rq_arg.len = req->rq_private_buf.len;
1574 	if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) {
1575 		rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len;
1576 		rqstp->rq_arg.page_len = 0;
1577 	} else if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len +
1578 			rqstp->rq_arg.page_len)
1579 		rqstp->rq_arg.page_len = rqstp->rq_arg.len -
1580 			rqstp->rq_arg.head[0].iov_len;
1581 	else
1582 		rqstp->rq_arg.len = rqstp->rq_arg.head[0].iov_len +
1583 			rqstp->rq_arg.page_len;
1584 
1585 	/* reset result send buffer "put" position */
1586 	resv->iov_len = 0;
1587 
1588 	/*
1589 	 * Skip the next two words because they've already been
1590 	 * processed in the transport
1591 	 */
1592 	svc_getu32(argv);	/* XID */
1593 	svc_getnl(argv);	/* CALLDIR */
1594 
1595 	/* Parse and execute the bc call */
1596 	proc_error = svc_process_common(rqstp, argv, resv);
1597 
1598 	atomic_dec(&req->rq_xprt->bc_slot_count);
1599 	if (!proc_error) {
1600 		/* Processing error: drop the request */
1601 		xprt_free_bc_request(req);
1602 		error = -EINVAL;
1603 		goto out;
1604 	}
1605 	/* Finally, send the reply synchronously */
1606 	memcpy(&req->rq_snd_buf, &rqstp->rq_res, sizeof(req->rq_snd_buf));
1607 	task = rpc_run_bc_task(req);
1608 	if (IS_ERR(task)) {
1609 		error = PTR_ERR(task);
1610 		goto out;
1611 	}
1612 
1613 	WARN_ON_ONCE(atomic_read(&task->tk_count) != 1);
1614 	error = task->tk_status;
1615 	rpc_put_task(task);
1616 
1617 out:
1618 	dprintk("svc: %s(), error=%d\n", __func__, error);
1619 	return error;
1620 }
1621 EXPORT_SYMBOL_GPL(bc_svc_process);
1622 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
1623 
1624 /*
1625  * Return (transport-specific) limit on the rpc payload.
1626  */
1627 u32 svc_max_payload(const struct svc_rqst *rqstp)
1628 {
1629 	u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload;
1630 
1631 	if (rqstp->rq_server->sv_max_payload < max)
1632 		max = rqstp->rq_server->sv_max_payload;
1633 	return max;
1634 }
1635 EXPORT_SYMBOL_GPL(svc_max_payload);
1636 
1637 /**
1638  * svc_fill_write_vector - Construct data argument for VFS write call
1639  * @rqstp: svc_rqst to operate on
1640  * @pages: list of pages containing data payload
1641  * @first: buffer containing first section of write payload
1642  * @total: total number of bytes of write payload
1643  *
1644  * Fills in rqstp::rq_vec, and returns the number of elements.
1645  */
1646 unsigned int svc_fill_write_vector(struct svc_rqst *rqstp, struct page **pages,
1647 				   struct kvec *first, size_t total)
1648 {
1649 	struct kvec *vec = rqstp->rq_vec;
1650 	unsigned int i;
1651 
1652 	/* Some types of transport can present the write payload
1653 	 * entirely in rq_arg.pages. In this case, @first is empty.
1654 	 */
1655 	i = 0;
1656 	if (first->iov_len) {
1657 		vec[i].iov_base = first->iov_base;
1658 		vec[i].iov_len = min_t(size_t, total, first->iov_len);
1659 		total -= vec[i].iov_len;
1660 		++i;
1661 	}
1662 
1663 	while (total) {
1664 		vec[i].iov_base = page_address(*pages);
1665 		vec[i].iov_len = min_t(size_t, total, PAGE_SIZE);
1666 		total -= vec[i].iov_len;
1667 		++i;
1668 		++pages;
1669 	}
1670 
1671 	WARN_ON_ONCE(i > ARRAY_SIZE(rqstp->rq_vec));
1672 	return i;
1673 }
1674 EXPORT_SYMBOL_GPL(svc_fill_write_vector);
1675 
1676 /**
1677  * svc_fill_symlink_pathname - Construct pathname argument for VFS symlink call
1678  * @rqstp: svc_rqst to operate on
1679  * @first: buffer containing first section of pathname
1680  * @p: buffer containing remaining section of pathname
1681  * @total: total length of the pathname argument
1682  *
1683  * The VFS symlink API demands a NUL-terminated pathname in mapped memory.
1684  * Returns pointer to a NUL-terminated string, or an ERR_PTR. Caller must free
1685  * the returned string.
1686  */
1687 char *svc_fill_symlink_pathname(struct svc_rqst *rqstp, struct kvec *first,
1688 				void *p, size_t total)
1689 {
1690 	size_t len, remaining;
1691 	char *result, *dst;
1692 
1693 	result = kmalloc(total + 1, GFP_KERNEL);
1694 	if (!result)
1695 		return ERR_PTR(-ESERVERFAULT);
1696 
1697 	dst = result;
1698 	remaining = total;
1699 
1700 	len = min_t(size_t, total, first->iov_len);
1701 	if (len) {
1702 		memcpy(dst, first->iov_base, len);
1703 		dst += len;
1704 		remaining -= len;
1705 	}
1706 
1707 	if (remaining) {
1708 		len = min_t(size_t, remaining, PAGE_SIZE);
1709 		memcpy(dst, p, len);
1710 		dst += len;
1711 	}
1712 
1713 	*dst = '\0';
1714 
1715 	/* Sanity check: Linux doesn't allow the pathname argument to
1716 	 * contain a NUL byte.
1717 	 */
1718 	if (strlen(result) != total) {
1719 		kfree(result);
1720 		return ERR_PTR(-EINVAL);
1721 	}
1722 	return result;
1723 }
1724 EXPORT_SYMBOL_GPL(svc_fill_symlink_pathname);
1725