xref: /openbmc/linux/net/sunrpc/svc.c (revision 37185b33)
1 /*
2  * linux/net/sunrpc/svc.c
3  *
4  * High-level RPC service routines
5  *
6  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
7  *
8  * Multiple threads pools and NUMAisation
9  * Copyright (c) 2006 Silicon Graphics, Inc.
10  * by Greg Banks <gnb@melbourne.sgi.com>
11  */
12 
13 #include <linux/linkage.h>
14 #include <linux/sched.h>
15 #include <linux/errno.h>
16 #include <linux/net.h>
17 #include <linux/in.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/module.h>
21 #include <linux/kthread.h>
22 #include <linux/slab.h>
23 #include <linux/nsproxy.h>
24 
25 #include <linux/sunrpc/types.h>
26 #include <linux/sunrpc/xdr.h>
27 #include <linux/sunrpc/stats.h>
28 #include <linux/sunrpc/svcsock.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/sunrpc/bc_xprt.h>
31 
32 #define RPCDBG_FACILITY	RPCDBG_SVCDSP
33 
34 static void svc_unregister(const struct svc_serv *serv, struct net *net);
35 
36 #define svc_serv_is_pooled(serv)    ((serv)->sv_function)
37 
38 /*
39  * Mode for mapping cpus to pools.
40  */
41 enum {
42 	SVC_POOL_AUTO = -1,	/* choose one of the others */
43 	SVC_POOL_GLOBAL,	/* no mapping, just a single global pool
44 				 * (legacy & UP mode) */
45 	SVC_POOL_PERCPU,	/* one pool per cpu */
46 	SVC_POOL_PERNODE	/* one pool per numa node */
47 };
48 #define SVC_POOL_DEFAULT	SVC_POOL_GLOBAL
49 
50 /*
51  * Structure for mapping cpus to pools and vice versa.
52  * Setup once during sunrpc initialisation.
53  */
54 static struct svc_pool_map {
55 	int count;			/* How many svc_servs use us */
56 	int mode;			/* Note: int not enum to avoid
57 					 * warnings about "enumeration value
58 					 * not handled in switch" */
59 	unsigned int npools;
60 	unsigned int *pool_to;		/* maps pool id to cpu or node */
61 	unsigned int *to_pool;		/* maps cpu or node to pool id */
62 } svc_pool_map = {
63 	.count = 0,
64 	.mode = SVC_POOL_DEFAULT
65 };
66 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */
67 
68 static int
69 param_set_pool_mode(const char *val, struct kernel_param *kp)
70 {
71 	int *ip = (int *)kp->arg;
72 	struct svc_pool_map *m = &svc_pool_map;
73 	int err;
74 
75 	mutex_lock(&svc_pool_map_mutex);
76 
77 	err = -EBUSY;
78 	if (m->count)
79 		goto out;
80 
81 	err = 0;
82 	if (!strncmp(val, "auto", 4))
83 		*ip = SVC_POOL_AUTO;
84 	else if (!strncmp(val, "global", 6))
85 		*ip = SVC_POOL_GLOBAL;
86 	else if (!strncmp(val, "percpu", 6))
87 		*ip = SVC_POOL_PERCPU;
88 	else if (!strncmp(val, "pernode", 7))
89 		*ip = SVC_POOL_PERNODE;
90 	else
91 		err = -EINVAL;
92 
93 out:
94 	mutex_unlock(&svc_pool_map_mutex);
95 	return err;
96 }
97 
98 static int
99 param_get_pool_mode(char *buf, struct kernel_param *kp)
100 {
101 	int *ip = (int *)kp->arg;
102 
103 	switch (*ip)
104 	{
105 	case SVC_POOL_AUTO:
106 		return strlcpy(buf, "auto", 20);
107 	case SVC_POOL_GLOBAL:
108 		return strlcpy(buf, "global", 20);
109 	case SVC_POOL_PERCPU:
110 		return strlcpy(buf, "percpu", 20);
111 	case SVC_POOL_PERNODE:
112 		return strlcpy(buf, "pernode", 20);
113 	default:
114 		return sprintf(buf, "%d", *ip);
115 	}
116 }
117 
118 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode,
119 		 &svc_pool_map.mode, 0644);
120 
121 /*
122  * Detect best pool mapping mode heuristically,
123  * according to the machine's topology.
124  */
125 static int
126 svc_pool_map_choose_mode(void)
127 {
128 	unsigned int node;
129 
130 	if (nr_online_nodes > 1) {
131 		/*
132 		 * Actually have multiple NUMA nodes,
133 		 * so split pools on NUMA node boundaries
134 		 */
135 		return SVC_POOL_PERNODE;
136 	}
137 
138 	node = first_online_node;
139 	if (nr_cpus_node(node) > 2) {
140 		/*
141 		 * Non-trivial SMP, or CONFIG_NUMA on
142 		 * non-NUMA hardware, e.g. with a generic
143 		 * x86_64 kernel on Xeons.  In this case we
144 		 * want to divide the pools on cpu boundaries.
145 		 */
146 		return SVC_POOL_PERCPU;
147 	}
148 
149 	/* default: one global pool */
150 	return SVC_POOL_GLOBAL;
151 }
152 
153 /*
154  * Allocate the to_pool[] and pool_to[] arrays.
155  * Returns 0 on success or an errno.
156  */
157 static int
158 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools)
159 {
160 	m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
161 	if (!m->to_pool)
162 		goto fail;
163 	m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
164 	if (!m->pool_to)
165 		goto fail_free;
166 
167 	return 0;
168 
169 fail_free:
170 	kfree(m->to_pool);
171 	m->to_pool = NULL;
172 fail:
173 	return -ENOMEM;
174 }
175 
176 /*
177  * Initialise the pool map for SVC_POOL_PERCPU mode.
178  * Returns number of pools or <0 on error.
179  */
180 static int
181 svc_pool_map_init_percpu(struct svc_pool_map *m)
182 {
183 	unsigned int maxpools = nr_cpu_ids;
184 	unsigned int pidx = 0;
185 	unsigned int cpu;
186 	int err;
187 
188 	err = svc_pool_map_alloc_arrays(m, maxpools);
189 	if (err)
190 		return err;
191 
192 	for_each_online_cpu(cpu) {
193 		BUG_ON(pidx > maxpools);
194 		m->to_pool[cpu] = pidx;
195 		m->pool_to[pidx] = cpu;
196 		pidx++;
197 	}
198 	/* cpus brought online later all get mapped to pool0, sorry */
199 
200 	return pidx;
201 };
202 
203 
204 /*
205  * Initialise the pool map for SVC_POOL_PERNODE mode.
206  * Returns number of pools or <0 on error.
207  */
208 static int
209 svc_pool_map_init_pernode(struct svc_pool_map *m)
210 {
211 	unsigned int maxpools = nr_node_ids;
212 	unsigned int pidx = 0;
213 	unsigned int node;
214 	int err;
215 
216 	err = svc_pool_map_alloc_arrays(m, maxpools);
217 	if (err)
218 		return err;
219 
220 	for_each_node_with_cpus(node) {
221 		/* some architectures (e.g. SN2) have cpuless nodes */
222 		BUG_ON(pidx > maxpools);
223 		m->to_pool[node] = pidx;
224 		m->pool_to[pidx] = node;
225 		pidx++;
226 	}
227 	/* nodes brought online later all get mapped to pool0, sorry */
228 
229 	return pidx;
230 }
231 
232 
233 /*
234  * Add a reference to the global map of cpus to pools (and
235  * vice versa).  Initialise the map if we're the first user.
236  * Returns the number of pools.
237  */
238 static unsigned int
239 svc_pool_map_get(void)
240 {
241 	struct svc_pool_map *m = &svc_pool_map;
242 	int npools = -1;
243 
244 	mutex_lock(&svc_pool_map_mutex);
245 
246 	if (m->count++) {
247 		mutex_unlock(&svc_pool_map_mutex);
248 		return m->npools;
249 	}
250 
251 	if (m->mode == SVC_POOL_AUTO)
252 		m->mode = svc_pool_map_choose_mode();
253 
254 	switch (m->mode) {
255 	case SVC_POOL_PERCPU:
256 		npools = svc_pool_map_init_percpu(m);
257 		break;
258 	case SVC_POOL_PERNODE:
259 		npools = svc_pool_map_init_pernode(m);
260 		break;
261 	}
262 
263 	if (npools < 0) {
264 		/* default, or memory allocation failure */
265 		npools = 1;
266 		m->mode = SVC_POOL_GLOBAL;
267 	}
268 	m->npools = npools;
269 
270 	mutex_unlock(&svc_pool_map_mutex);
271 	return m->npools;
272 }
273 
274 
275 /*
276  * Drop a reference to the global map of cpus to pools.
277  * When the last reference is dropped, the map data is
278  * freed; this allows the sysadmin to change the pool
279  * mode using the pool_mode module option without
280  * rebooting or re-loading sunrpc.ko.
281  */
282 static void
283 svc_pool_map_put(void)
284 {
285 	struct svc_pool_map *m = &svc_pool_map;
286 
287 	mutex_lock(&svc_pool_map_mutex);
288 
289 	if (!--m->count) {
290 		kfree(m->to_pool);
291 		m->to_pool = NULL;
292 		kfree(m->pool_to);
293 		m->pool_to = NULL;
294 		m->npools = 0;
295 	}
296 
297 	mutex_unlock(&svc_pool_map_mutex);
298 }
299 
300 
301 static int svc_pool_map_get_node(unsigned int pidx)
302 {
303 	const struct svc_pool_map *m = &svc_pool_map;
304 
305 	if (m->count) {
306 		if (m->mode == SVC_POOL_PERCPU)
307 			return cpu_to_node(m->pool_to[pidx]);
308 		if (m->mode == SVC_POOL_PERNODE)
309 			return m->pool_to[pidx];
310 	}
311 	return NUMA_NO_NODE;
312 }
313 /*
314  * Set the given thread's cpus_allowed mask so that it
315  * will only run on cpus in the given pool.
316  */
317 static inline void
318 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx)
319 {
320 	struct svc_pool_map *m = &svc_pool_map;
321 	unsigned int node = m->pool_to[pidx];
322 
323 	/*
324 	 * The caller checks for sv_nrpools > 1, which
325 	 * implies that we've been initialized.
326 	 */
327 	BUG_ON(m->count == 0);
328 
329 	switch (m->mode) {
330 	case SVC_POOL_PERCPU:
331 	{
332 		set_cpus_allowed_ptr(task, cpumask_of(node));
333 		break;
334 	}
335 	case SVC_POOL_PERNODE:
336 	{
337 		set_cpus_allowed_ptr(task, cpumask_of_node(node));
338 		break;
339 	}
340 	}
341 }
342 
343 /*
344  * Use the mapping mode to choose a pool for a given CPU.
345  * Used when enqueueing an incoming RPC.  Always returns
346  * a non-NULL pool pointer.
347  */
348 struct svc_pool *
349 svc_pool_for_cpu(struct svc_serv *serv, int cpu)
350 {
351 	struct svc_pool_map *m = &svc_pool_map;
352 	unsigned int pidx = 0;
353 
354 	/*
355 	 * An uninitialised map happens in a pure client when
356 	 * lockd is brought up, so silently treat it the
357 	 * same as SVC_POOL_GLOBAL.
358 	 */
359 	if (svc_serv_is_pooled(serv)) {
360 		switch (m->mode) {
361 		case SVC_POOL_PERCPU:
362 			pidx = m->to_pool[cpu];
363 			break;
364 		case SVC_POOL_PERNODE:
365 			pidx = m->to_pool[cpu_to_node(cpu)];
366 			break;
367 		}
368 	}
369 	return &serv->sv_pools[pidx % serv->sv_nrpools];
370 }
371 
372 int svc_rpcb_setup(struct svc_serv *serv, struct net *net)
373 {
374 	int err;
375 
376 	err = rpcb_create_local(net);
377 	if (err)
378 		return err;
379 
380 	/* Remove any stale portmap registrations */
381 	svc_unregister(serv, net);
382 	return 0;
383 }
384 EXPORT_SYMBOL_GPL(svc_rpcb_setup);
385 
386 void svc_rpcb_cleanup(struct svc_serv *serv, struct net *net)
387 {
388 	svc_unregister(serv, net);
389 	rpcb_put_local(net);
390 }
391 EXPORT_SYMBOL_GPL(svc_rpcb_cleanup);
392 
393 static int svc_uses_rpcbind(struct svc_serv *serv)
394 {
395 	struct svc_program	*progp;
396 	unsigned int		i;
397 
398 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
399 		for (i = 0; i < progp->pg_nvers; i++) {
400 			if (progp->pg_vers[i] == NULL)
401 				continue;
402 			if (progp->pg_vers[i]->vs_hidden == 0)
403 				return 1;
404 		}
405 	}
406 
407 	return 0;
408 }
409 
410 int svc_bind(struct svc_serv *serv, struct net *net)
411 {
412 	if (!svc_uses_rpcbind(serv))
413 		return 0;
414 	return svc_rpcb_setup(serv, net);
415 }
416 EXPORT_SYMBOL_GPL(svc_bind);
417 
418 /*
419  * Create an RPC service
420  */
421 static struct svc_serv *
422 __svc_create(struct svc_program *prog, unsigned int bufsize, int npools,
423 	     void (*shutdown)(struct svc_serv *serv, struct net *net))
424 {
425 	struct svc_serv	*serv;
426 	unsigned int vers;
427 	unsigned int xdrsize;
428 	unsigned int i;
429 
430 	if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL)))
431 		return NULL;
432 	serv->sv_name      = prog->pg_name;
433 	serv->sv_program   = prog;
434 	serv->sv_nrthreads = 1;
435 	serv->sv_stats     = prog->pg_stats;
436 	if (bufsize > RPCSVC_MAXPAYLOAD)
437 		bufsize = RPCSVC_MAXPAYLOAD;
438 	serv->sv_max_payload = bufsize? bufsize : 4096;
439 	serv->sv_max_mesg  = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE);
440 	serv->sv_shutdown  = shutdown;
441 	xdrsize = 0;
442 	while (prog) {
443 		prog->pg_lovers = prog->pg_nvers-1;
444 		for (vers=0; vers<prog->pg_nvers ; vers++)
445 			if (prog->pg_vers[vers]) {
446 				prog->pg_hivers = vers;
447 				if (prog->pg_lovers > vers)
448 					prog->pg_lovers = vers;
449 				if (prog->pg_vers[vers]->vs_xdrsize > xdrsize)
450 					xdrsize = prog->pg_vers[vers]->vs_xdrsize;
451 			}
452 		prog = prog->pg_next;
453 	}
454 	serv->sv_xdrsize   = xdrsize;
455 	INIT_LIST_HEAD(&serv->sv_tempsocks);
456 	INIT_LIST_HEAD(&serv->sv_permsocks);
457 	init_timer(&serv->sv_temptimer);
458 	spin_lock_init(&serv->sv_lock);
459 
460 	serv->sv_nrpools = npools;
461 	serv->sv_pools =
462 		kcalloc(serv->sv_nrpools, sizeof(struct svc_pool),
463 			GFP_KERNEL);
464 	if (!serv->sv_pools) {
465 		kfree(serv);
466 		return NULL;
467 	}
468 
469 	for (i = 0; i < serv->sv_nrpools; i++) {
470 		struct svc_pool *pool = &serv->sv_pools[i];
471 
472 		dprintk("svc: initialising pool %u for %s\n",
473 				i, serv->sv_name);
474 
475 		pool->sp_id = i;
476 		INIT_LIST_HEAD(&pool->sp_threads);
477 		INIT_LIST_HEAD(&pool->sp_sockets);
478 		INIT_LIST_HEAD(&pool->sp_all_threads);
479 		spin_lock_init(&pool->sp_lock);
480 	}
481 
482 	if (svc_uses_rpcbind(serv) && (!serv->sv_shutdown))
483 		serv->sv_shutdown = svc_rpcb_cleanup;
484 
485 	return serv;
486 }
487 
488 struct svc_serv *
489 svc_create(struct svc_program *prog, unsigned int bufsize,
490 	   void (*shutdown)(struct svc_serv *serv, struct net *net))
491 {
492 	return __svc_create(prog, bufsize, /*npools*/1, shutdown);
493 }
494 EXPORT_SYMBOL_GPL(svc_create);
495 
496 struct svc_serv *
497 svc_create_pooled(struct svc_program *prog, unsigned int bufsize,
498 		  void (*shutdown)(struct svc_serv *serv, struct net *net),
499 		  svc_thread_fn func, struct module *mod)
500 {
501 	struct svc_serv *serv;
502 	unsigned int npools = svc_pool_map_get();
503 
504 	serv = __svc_create(prog, bufsize, npools, shutdown);
505 
506 	if (serv != NULL) {
507 		serv->sv_function = func;
508 		serv->sv_module = mod;
509 	}
510 
511 	return serv;
512 }
513 EXPORT_SYMBOL_GPL(svc_create_pooled);
514 
515 void svc_shutdown_net(struct svc_serv *serv, struct net *net)
516 {
517 	/*
518 	 * The set of xprts (contained in the sv_tempsocks and
519 	 * sv_permsocks lists) is now constant, since it is modified
520 	 * only by accepting new sockets (done by service threads in
521 	 * svc_recv) or aging old ones (done by sv_temptimer), or
522 	 * configuration changes (excluded by whatever locking the
523 	 * caller is using--nfsd_mutex in the case of nfsd).  So it's
524 	 * safe to traverse those lists and shut everything down:
525 	 */
526 	svc_close_net(serv, net);
527 
528 	if (serv->sv_shutdown)
529 		serv->sv_shutdown(serv, net);
530 }
531 EXPORT_SYMBOL_GPL(svc_shutdown_net);
532 
533 /*
534  * Destroy an RPC service. Should be called with appropriate locking to
535  * protect the sv_nrthreads, sv_permsocks and sv_tempsocks.
536  */
537 void
538 svc_destroy(struct svc_serv *serv)
539 {
540 	dprintk("svc: svc_destroy(%s, %d)\n",
541 				serv->sv_program->pg_name,
542 				serv->sv_nrthreads);
543 
544 	if (serv->sv_nrthreads) {
545 		if (--(serv->sv_nrthreads) != 0) {
546 			svc_sock_update_bufs(serv);
547 			return;
548 		}
549 	} else
550 		printk("svc_destroy: no threads for serv=%p!\n", serv);
551 
552 	del_timer_sync(&serv->sv_temptimer);
553 
554 	/*
555 	 * The last user is gone and thus all sockets have to be destroyed to
556 	 * the point. Check this.
557 	 */
558 	BUG_ON(!list_empty(&serv->sv_permsocks));
559 	BUG_ON(!list_empty(&serv->sv_tempsocks));
560 
561 	cache_clean_deferred(serv);
562 
563 	if (svc_serv_is_pooled(serv))
564 		svc_pool_map_put();
565 
566 	kfree(serv->sv_pools);
567 	kfree(serv);
568 }
569 EXPORT_SYMBOL_GPL(svc_destroy);
570 
571 /*
572  * Allocate an RPC server's buffer space.
573  * We allocate pages and place them in rq_argpages.
574  */
575 static int
576 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size, int node)
577 {
578 	unsigned int pages, arghi;
579 
580 	/* bc_xprt uses fore channel allocated buffers */
581 	if (svc_is_backchannel(rqstp))
582 		return 1;
583 
584 	pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply.
585 				       * We assume one is at most one page
586 				       */
587 	arghi = 0;
588 	BUG_ON(pages > RPCSVC_MAXPAGES);
589 	while (pages) {
590 		struct page *p = alloc_pages_node(node, GFP_KERNEL, 0);
591 		if (!p)
592 			break;
593 		rqstp->rq_pages[arghi++] = p;
594 		pages--;
595 	}
596 	return pages == 0;
597 }
598 
599 /*
600  * Release an RPC server buffer
601  */
602 static void
603 svc_release_buffer(struct svc_rqst *rqstp)
604 {
605 	unsigned int i;
606 
607 	for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++)
608 		if (rqstp->rq_pages[i])
609 			put_page(rqstp->rq_pages[i]);
610 }
611 
612 struct svc_rqst *
613 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node)
614 {
615 	struct svc_rqst	*rqstp;
616 
617 	rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node);
618 	if (!rqstp)
619 		goto out_enomem;
620 
621 	init_waitqueue_head(&rqstp->rq_wait);
622 
623 	serv->sv_nrthreads++;
624 	spin_lock_bh(&pool->sp_lock);
625 	pool->sp_nrthreads++;
626 	list_add(&rqstp->rq_all, &pool->sp_all_threads);
627 	spin_unlock_bh(&pool->sp_lock);
628 	rqstp->rq_server = serv;
629 	rqstp->rq_pool = pool;
630 
631 	rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
632 	if (!rqstp->rq_argp)
633 		goto out_thread;
634 
635 	rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
636 	if (!rqstp->rq_resp)
637 		goto out_thread;
638 
639 	if (!svc_init_buffer(rqstp, serv->sv_max_mesg, node))
640 		goto out_thread;
641 
642 	return rqstp;
643 out_thread:
644 	svc_exit_thread(rqstp);
645 out_enomem:
646 	return ERR_PTR(-ENOMEM);
647 }
648 EXPORT_SYMBOL_GPL(svc_prepare_thread);
649 
650 /*
651  * Choose a pool in which to create a new thread, for svc_set_num_threads
652  */
653 static inline struct svc_pool *
654 choose_pool(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
655 {
656 	if (pool != NULL)
657 		return pool;
658 
659 	return &serv->sv_pools[(*state)++ % serv->sv_nrpools];
660 }
661 
662 /*
663  * Choose a thread to kill, for svc_set_num_threads
664  */
665 static inline struct task_struct *
666 choose_victim(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
667 {
668 	unsigned int i;
669 	struct task_struct *task = NULL;
670 
671 	if (pool != NULL) {
672 		spin_lock_bh(&pool->sp_lock);
673 	} else {
674 		/* choose a pool in round-robin fashion */
675 		for (i = 0; i < serv->sv_nrpools; i++) {
676 			pool = &serv->sv_pools[--(*state) % serv->sv_nrpools];
677 			spin_lock_bh(&pool->sp_lock);
678 			if (!list_empty(&pool->sp_all_threads))
679 				goto found_pool;
680 			spin_unlock_bh(&pool->sp_lock);
681 		}
682 		return NULL;
683 	}
684 
685 found_pool:
686 	if (!list_empty(&pool->sp_all_threads)) {
687 		struct svc_rqst *rqstp;
688 
689 		/*
690 		 * Remove from the pool->sp_all_threads list
691 		 * so we don't try to kill it again.
692 		 */
693 		rqstp = list_entry(pool->sp_all_threads.next, struct svc_rqst, rq_all);
694 		list_del_init(&rqstp->rq_all);
695 		task = rqstp->rq_task;
696 	}
697 	spin_unlock_bh(&pool->sp_lock);
698 
699 	return task;
700 }
701 
702 /*
703  * Create or destroy enough new threads to make the number
704  * of threads the given number.  If `pool' is non-NULL, applies
705  * only to threads in that pool, otherwise round-robins between
706  * all pools.  Caller must ensure that mutual exclusion between this and
707  * server startup or shutdown.
708  *
709  * Destroying threads relies on the service threads filling in
710  * rqstp->rq_task, which only the nfs ones do.  Assumes the serv
711  * has been created using svc_create_pooled().
712  *
713  * Based on code that used to be in nfsd_svc() but tweaked
714  * to be pool-aware.
715  */
716 int
717 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
718 {
719 	struct svc_rqst	*rqstp;
720 	struct task_struct *task;
721 	struct svc_pool *chosen_pool;
722 	int error = 0;
723 	unsigned int state = serv->sv_nrthreads-1;
724 	int node;
725 
726 	if (pool == NULL) {
727 		/* The -1 assumes caller has done a svc_get() */
728 		nrservs -= (serv->sv_nrthreads-1);
729 	} else {
730 		spin_lock_bh(&pool->sp_lock);
731 		nrservs -= pool->sp_nrthreads;
732 		spin_unlock_bh(&pool->sp_lock);
733 	}
734 
735 	/* create new threads */
736 	while (nrservs > 0) {
737 		nrservs--;
738 		chosen_pool = choose_pool(serv, pool, &state);
739 
740 		node = svc_pool_map_get_node(chosen_pool->sp_id);
741 		rqstp = svc_prepare_thread(serv, chosen_pool, node);
742 		if (IS_ERR(rqstp)) {
743 			error = PTR_ERR(rqstp);
744 			break;
745 		}
746 
747 		__module_get(serv->sv_module);
748 		task = kthread_create_on_node(serv->sv_function, rqstp,
749 					      node, serv->sv_name);
750 		if (IS_ERR(task)) {
751 			error = PTR_ERR(task);
752 			module_put(serv->sv_module);
753 			svc_exit_thread(rqstp);
754 			break;
755 		}
756 
757 		rqstp->rq_task = task;
758 		if (serv->sv_nrpools > 1)
759 			svc_pool_map_set_cpumask(task, chosen_pool->sp_id);
760 
761 		svc_sock_update_bufs(serv);
762 		wake_up_process(task);
763 	}
764 	/* destroy old threads */
765 	while (nrservs < 0 &&
766 	       (task = choose_victim(serv, pool, &state)) != NULL) {
767 		send_sig(SIGINT, task, 1);
768 		nrservs++;
769 	}
770 
771 	return error;
772 }
773 EXPORT_SYMBOL_GPL(svc_set_num_threads);
774 
775 /*
776  * Called from a server thread as it's exiting. Caller must hold the BKL or
777  * the "service mutex", whichever is appropriate for the service.
778  */
779 void
780 svc_exit_thread(struct svc_rqst *rqstp)
781 {
782 	struct svc_serv	*serv = rqstp->rq_server;
783 	struct svc_pool	*pool = rqstp->rq_pool;
784 
785 	svc_release_buffer(rqstp);
786 	kfree(rqstp->rq_resp);
787 	kfree(rqstp->rq_argp);
788 	kfree(rqstp->rq_auth_data);
789 
790 	spin_lock_bh(&pool->sp_lock);
791 	pool->sp_nrthreads--;
792 	list_del(&rqstp->rq_all);
793 	spin_unlock_bh(&pool->sp_lock);
794 
795 	kfree(rqstp);
796 
797 	/* Release the server */
798 	if (serv)
799 		svc_destroy(serv);
800 }
801 EXPORT_SYMBOL_GPL(svc_exit_thread);
802 
803 /*
804  * Register an "inet" protocol family netid with the local
805  * rpcbind daemon via an rpcbind v4 SET request.
806  *
807  * No netconfig infrastructure is available in the kernel, so
808  * we map IP_ protocol numbers to netids by hand.
809  *
810  * Returns zero on success; a negative errno value is returned
811  * if any error occurs.
812  */
813 static int __svc_rpcb_register4(struct net *net, const u32 program,
814 				const u32 version,
815 				const unsigned short protocol,
816 				const unsigned short port)
817 {
818 	const struct sockaddr_in sin = {
819 		.sin_family		= AF_INET,
820 		.sin_addr.s_addr	= htonl(INADDR_ANY),
821 		.sin_port		= htons(port),
822 	};
823 	const char *netid;
824 	int error;
825 
826 	switch (protocol) {
827 	case IPPROTO_UDP:
828 		netid = RPCBIND_NETID_UDP;
829 		break;
830 	case IPPROTO_TCP:
831 		netid = RPCBIND_NETID_TCP;
832 		break;
833 	default:
834 		return -ENOPROTOOPT;
835 	}
836 
837 	error = rpcb_v4_register(net, program, version,
838 					(const struct sockaddr *)&sin, netid);
839 
840 	/*
841 	 * User space didn't support rpcbind v4, so retry this
842 	 * registration request with the legacy rpcbind v2 protocol.
843 	 */
844 	if (error == -EPROTONOSUPPORT)
845 		error = rpcb_register(net, program, version, protocol, port);
846 
847 	return error;
848 }
849 
850 #if IS_ENABLED(CONFIG_IPV6)
851 /*
852  * Register an "inet6" protocol family netid with the local
853  * rpcbind daemon via an rpcbind v4 SET request.
854  *
855  * No netconfig infrastructure is available in the kernel, so
856  * we map IP_ protocol numbers to netids by hand.
857  *
858  * Returns zero on success; a negative errno value is returned
859  * if any error occurs.
860  */
861 static int __svc_rpcb_register6(struct net *net, const u32 program,
862 				const u32 version,
863 				const unsigned short protocol,
864 				const unsigned short port)
865 {
866 	const struct sockaddr_in6 sin6 = {
867 		.sin6_family		= AF_INET6,
868 		.sin6_addr		= IN6ADDR_ANY_INIT,
869 		.sin6_port		= htons(port),
870 	};
871 	const char *netid;
872 	int error;
873 
874 	switch (protocol) {
875 	case IPPROTO_UDP:
876 		netid = RPCBIND_NETID_UDP6;
877 		break;
878 	case IPPROTO_TCP:
879 		netid = RPCBIND_NETID_TCP6;
880 		break;
881 	default:
882 		return -ENOPROTOOPT;
883 	}
884 
885 	error = rpcb_v4_register(net, program, version,
886 					(const struct sockaddr *)&sin6, netid);
887 
888 	/*
889 	 * User space didn't support rpcbind version 4, so we won't
890 	 * use a PF_INET6 listener.
891 	 */
892 	if (error == -EPROTONOSUPPORT)
893 		error = -EAFNOSUPPORT;
894 
895 	return error;
896 }
897 #endif	/* IS_ENABLED(CONFIG_IPV6) */
898 
899 /*
900  * Register a kernel RPC service via rpcbind version 4.
901  *
902  * Returns zero on success; a negative errno value is returned
903  * if any error occurs.
904  */
905 static int __svc_register(struct net *net, const char *progname,
906 			  const u32 program, const u32 version,
907 			  const int family,
908 			  const unsigned short protocol,
909 			  const unsigned short port)
910 {
911 	int error = -EAFNOSUPPORT;
912 
913 	switch (family) {
914 	case PF_INET:
915 		error = __svc_rpcb_register4(net, program, version,
916 						protocol, port);
917 		break;
918 #if IS_ENABLED(CONFIG_IPV6)
919 	case PF_INET6:
920 		error = __svc_rpcb_register6(net, program, version,
921 						protocol, port);
922 #endif
923 	}
924 
925 	if (error < 0)
926 		printk(KERN_WARNING "svc: failed to register %sv%u RPC "
927 			"service (errno %d).\n", progname, version, -error);
928 	return error;
929 }
930 
931 /**
932  * svc_register - register an RPC service with the local portmapper
933  * @serv: svc_serv struct for the service to register
934  * @net: net namespace for the service to register
935  * @family: protocol family of service's listener socket
936  * @proto: transport protocol number to advertise
937  * @port: port to advertise
938  *
939  * Service is registered for any address in the passed-in protocol family
940  */
941 int svc_register(const struct svc_serv *serv, struct net *net,
942 		 const int family, const unsigned short proto,
943 		 const unsigned short port)
944 {
945 	struct svc_program	*progp;
946 	unsigned int		i;
947 	int			error = 0;
948 
949 	BUG_ON(proto == 0 && port == 0);
950 
951 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
952 		for (i = 0; i < progp->pg_nvers; i++) {
953 			if (progp->pg_vers[i] == NULL)
954 				continue;
955 
956 			dprintk("svc: svc_register(%sv%d, %s, %u, %u)%s\n",
957 					progp->pg_name,
958 					i,
959 					proto == IPPROTO_UDP?  "udp" : "tcp",
960 					port,
961 					family,
962 					progp->pg_vers[i]->vs_hidden?
963 						" (but not telling portmap)" : "");
964 
965 			if (progp->pg_vers[i]->vs_hidden)
966 				continue;
967 
968 			error = __svc_register(net, progp->pg_name, progp->pg_prog,
969 						i, family, proto, port);
970 			if (error < 0)
971 				break;
972 		}
973 	}
974 
975 	return error;
976 }
977 
978 /*
979  * If user space is running rpcbind, it should take the v4 UNSET
980  * and clear everything for this [program, version].  If user space
981  * is running portmap, it will reject the v4 UNSET, but won't have
982  * any "inet6" entries anyway.  So a PMAP_UNSET should be sufficient
983  * in this case to clear all existing entries for [program, version].
984  */
985 static void __svc_unregister(struct net *net, const u32 program, const u32 version,
986 			     const char *progname)
987 {
988 	int error;
989 
990 	error = rpcb_v4_register(net, program, version, NULL, "");
991 
992 	/*
993 	 * User space didn't support rpcbind v4, so retry this
994 	 * request with the legacy rpcbind v2 protocol.
995 	 */
996 	if (error == -EPROTONOSUPPORT)
997 		error = rpcb_register(net, program, version, 0, 0);
998 
999 	dprintk("svc: %s(%sv%u), error %d\n",
1000 			__func__, progname, version, error);
1001 }
1002 
1003 /*
1004  * All netids, bind addresses and ports registered for [program, version]
1005  * are removed from the local rpcbind database (if the service is not
1006  * hidden) to make way for a new instance of the service.
1007  *
1008  * The result of unregistration is reported via dprintk for those who want
1009  * verification of the result, but is otherwise not important.
1010  */
1011 static void svc_unregister(const struct svc_serv *serv, struct net *net)
1012 {
1013 	struct svc_program *progp;
1014 	unsigned long flags;
1015 	unsigned int i;
1016 
1017 	clear_thread_flag(TIF_SIGPENDING);
1018 
1019 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
1020 		for (i = 0; i < progp->pg_nvers; i++) {
1021 			if (progp->pg_vers[i] == NULL)
1022 				continue;
1023 			if (progp->pg_vers[i]->vs_hidden)
1024 				continue;
1025 
1026 			dprintk("svc: attempting to unregister %sv%u\n",
1027 				progp->pg_name, i);
1028 			__svc_unregister(net, progp->pg_prog, i, progp->pg_name);
1029 		}
1030 	}
1031 
1032 	spin_lock_irqsave(&current->sighand->siglock, flags);
1033 	recalc_sigpending();
1034 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
1035 }
1036 
1037 /*
1038  * Printk the given error with the address of the client that caused it.
1039  */
1040 static __printf(2, 3)
1041 void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...)
1042 {
1043 	struct va_format vaf;
1044 	va_list args;
1045 	char 	buf[RPC_MAX_ADDRBUFLEN];
1046 
1047 	va_start(args, fmt);
1048 
1049 	vaf.fmt = fmt;
1050 	vaf.va = &args;
1051 
1052 	net_warn_ratelimited("svc: %s: %pV",
1053 			     svc_print_addr(rqstp, buf, sizeof(buf)), &vaf);
1054 
1055 	va_end(args);
1056 }
1057 
1058 /*
1059  * Common routine for processing the RPC request.
1060  */
1061 static int
1062 svc_process_common(struct svc_rqst *rqstp, struct kvec *argv, struct kvec *resv)
1063 {
1064 	struct svc_program	*progp;
1065 	struct svc_version	*versp = NULL;	/* compiler food */
1066 	struct svc_procedure	*procp = NULL;
1067 	struct svc_serv		*serv = rqstp->rq_server;
1068 	kxdrproc_t		xdr;
1069 	__be32			*statp;
1070 	u32			prog, vers, proc;
1071 	__be32			auth_stat, rpc_stat;
1072 	int			auth_res;
1073 	__be32			*reply_statp;
1074 
1075 	rpc_stat = rpc_success;
1076 
1077 	if (argv->iov_len < 6*4)
1078 		goto err_short_len;
1079 
1080 	/* Will be turned off only in gss privacy case: */
1081 	rqstp->rq_splice_ok = 1;
1082 	/* Will be turned off only when NFSv4 Sessions are used */
1083 	rqstp->rq_usedeferral = 1;
1084 	rqstp->rq_dropme = false;
1085 
1086 	/* Setup reply header */
1087 	rqstp->rq_xprt->xpt_ops->xpo_prep_reply_hdr(rqstp);
1088 
1089 	svc_putu32(resv, rqstp->rq_xid);
1090 
1091 	vers = svc_getnl(argv);
1092 
1093 	/* First words of reply: */
1094 	svc_putnl(resv, 1);		/* REPLY */
1095 
1096 	if (vers != 2)		/* RPC version number */
1097 		goto err_bad_rpc;
1098 
1099 	/* Save position in case we later decide to reject: */
1100 	reply_statp = resv->iov_base + resv->iov_len;
1101 
1102 	svc_putnl(resv, 0);		/* ACCEPT */
1103 
1104 	rqstp->rq_prog = prog = svc_getnl(argv);	/* program number */
1105 	rqstp->rq_vers = vers = svc_getnl(argv);	/* version number */
1106 	rqstp->rq_proc = proc = svc_getnl(argv);	/* procedure number */
1107 
1108 	progp = serv->sv_program;
1109 
1110 	for (progp = serv->sv_program; progp; progp = progp->pg_next)
1111 		if (prog == progp->pg_prog)
1112 			break;
1113 
1114 	/*
1115 	 * Decode auth data, and add verifier to reply buffer.
1116 	 * We do this before anything else in order to get a decent
1117 	 * auth verifier.
1118 	 */
1119 	auth_res = svc_authenticate(rqstp, &auth_stat);
1120 	/* Also give the program a chance to reject this call: */
1121 	if (auth_res == SVC_OK && progp) {
1122 		auth_stat = rpc_autherr_badcred;
1123 		auth_res = progp->pg_authenticate(rqstp);
1124 	}
1125 	switch (auth_res) {
1126 	case SVC_OK:
1127 		break;
1128 	case SVC_GARBAGE:
1129 		goto err_garbage;
1130 	case SVC_SYSERR:
1131 		rpc_stat = rpc_system_err;
1132 		goto err_bad;
1133 	case SVC_DENIED:
1134 		goto err_bad_auth;
1135 	case SVC_CLOSE:
1136 		if (test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags))
1137 			svc_close_xprt(rqstp->rq_xprt);
1138 	case SVC_DROP:
1139 		goto dropit;
1140 	case SVC_COMPLETE:
1141 		goto sendit;
1142 	}
1143 
1144 	if (progp == NULL)
1145 		goto err_bad_prog;
1146 
1147 	if (vers >= progp->pg_nvers ||
1148 	  !(versp = progp->pg_vers[vers]))
1149 		goto err_bad_vers;
1150 
1151 	procp = versp->vs_proc + proc;
1152 	if (proc >= versp->vs_nproc || !procp->pc_func)
1153 		goto err_bad_proc;
1154 	rqstp->rq_procinfo = procp;
1155 
1156 	/* Syntactic check complete */
1157 	serv->sv_stats->rpccnt++;
1158 
1159 	/* Build the reply header. */
1160 	statp = resv->iov_base +resv->iov_len;
1161 	svc_putnl(resv, RPC_SUCCESS);
1162 
1163 	/* Bump per-procedure stats counter */
1164 	procp->pc_count++;
1165 
1166 	/* Initialize storage for argp and resp */
1167 	memset(rqstp->rq_argp, 0, procp->pc_argsize);
1168 	memset(rqstp->rq_resp, 0, procp->pc_ressize);
1169 
1170 	/* un-reserve some of the out-queue now that we have a
1171 	 * better idea of reply size
1172 	 */
1173 	if (procp->pc_xdrressize)
1174 		svc_reserve_auth(rqstp, procp->pc_xdrressize<<2);
1175 
1176 	/* Call the function that processes the request. */
1177 	if (!versp->vs_dispatch) {
1178 		/* Decode arguments */
1179 		xdr = procp->pc_decode;
1180 		if (xdr && !xdr(rqstp, argv->iov_base, rqstp->rq_argp))
1181 			goto err_garbage;
1182 
1183 		*statp = procp->pc_func(rqstp, rqstp->rq_argp, rqstp->rq_resp);
1184 
1185 		/* Encode reply */
1186 		if (rqstp->rq_dropme) {
1187 			if (procp->pc_release)
1188 				procp->pc_release(rqstp, NULL, rqstp->rq_resp);
1189 			goto dropit;
1190 		}
1191 		if (*statp == rpc_success &&
1192 		    (xdr = procp->pc_encode) &&
1193 		    !xdr(rqstp, resv->iov_base+resv->iov_len, rqstp->rq_resp)) {
1194 			dprintk("svc: failed to encode reply\n");
1195 			/* serv->sv_stats->rpcsystemerr++; */
1196 			*statp = rpc_system_err;
1197 		}
1198 	} else {
1199 		dprintk("svc: calling dispatcher\n");
1200 		if (!versp->vs_dispatch(rqstp, statp)) {
1201 			/* Release reply info */
1202 			if (procp->pc_release)
1203 				procp->pc_release(rqstp, NULL, rqstp->rq_resp);
1204 			goto dropit;
1205 		}
1206 	}
1207 
1208 	/* Check RPC status result */
1209 	if (*statp != rpc_success)
1210 		resv->iov_len = ((void*)statp)  - resv->iov_base + 4;
1211 
1212 	/* Release reply info */
1213 	if (procp->pc_release)
1214 		procp->pc_release(rqstp, NULL, rqstp->rq_resp);
1215 
1216 	if (procp->pc_encode == NULL)
1217 		goto dropit;
1218 
1219  sendit:
1220 	if (svc_authorise(rqstp))
1221 		goto dropit;
1222 	return 1;		/* Caller can now send it */
1223 
1224  dropit:
1225 	svc_authorise(rqstp);	/* doesn't hurt to call this twice */
1226 	dprintk("svc: svc_process dropit\n");
1227 	return 0;
1228 
1229 err_short_len:
1230 	svc_printk(rqstp, "short len %Zd, dropping request\n",
1231 			argv->iov_len);
1232 
1233 	goto dropit;			/* drop request */
1234 
1235 err_bad_rpc:
1236 	serv->sv_stats->rpcbadfmt++;
1237 	svc_putnl(resv, 1);	/* REJECT */
1238 	svc_putnl(resv, 0);	/* RPC_MISMATCH */
1239 	svc_putnl(resv, 2);	/* Only RPCv2 supported */
1240 	svc_putnl(resv, 2);
1241 	goto sendit;
1242 
1243 err_bad_auth:
1244 	dprintk("svc: authentication failed (%d)\n", ntohl(auth_stat));
1245 	serv->sv_stats->rpcbadauth++;
1246 	/* Restore write pointer to location of accept status: */
1247 	xdr_ressize_check(rqstp, reply_statp);
1248 	svc_putnl(resv, 1);	/* REJECT */
1249 	svc_putnl(resv, 1);	/* AUTH_ERROR */
1250 	svc_putnl(resv, ntohl(auth_stat));	/* status */
1251 	goto sendit;
1252 
1253 err_bad_prog:
1254 	dprintk("svc: unknown program %d\n", prog);
1255 	serv->sv_stats->rpcbadfmt++;
1256 	svc_putnl(resv, RPC_PROG_UNAVAIL);
1257 	goto sendit;
1258 
1259 err_bad_vers:
1260 	svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n",
1261 		       vers, prog, progp->pg_name);
1262 
1263 	serv->sv_stats->rpcbadfmt++;
1264 	svc_putnl(resv, RPC_PROG_MISMATCH);
1265 	svc_putnl(resv, progp->pg_lovers);
1266 	svc_putnl(resv, progp->pg_hivers);
1267 	goto sendit;
1268 
1269 err_bad_proc:
1270 	svc_printk(rqstp, "unknown procedure (%d)\n", proc);
1271 
1272 	serv->sv_stats->rpcbadfmt++;
1273 	svc_putnl(resv, RPC_PROC_UNAVAIL);
1274 	goto sendit;
1275 
1276 err_garbage:
1277 	svc_printk(rqstp, "failed to decode args\n");
1278 
1279 	rpc_stat = rpc_garbage_args;
1280 err_bad:
1281 	serv->sv_stats->rpcbadfmt++;
1282 	svc_putnl(resv, ntohl(rpc_stat));
1283 	goto sendit;
1284 }
1285 EXPORT_SYMBOL_GPL(svc_process);
1286 
1287 /*
1288  * Process the RPC request.
1289  */
1290 int
1291 svc_process(struct svc_rqst *rqstp)
1292 {
1293 	struct kvec		*argv = &rqstp->rq_arg.head[0];
1294 	struct kvec		*resv = &rqstp->rq_res.head[0];
1295 	struct svc_serv		*serv = rqstp->rq_server;
1296 	u32			dir;
1297 
1298 	/*
1299 	 * Setup response xdr_buf.
1300 	 * Initially it has just one page
1301 	 */
1302 	rqstp->rq_resused = 1;
1303 	resv->iov_base = page_address(rqstp->rq_respages[0]);
1304 	resv->iov_len = 0;
1305 	rqstp->rq_res.pages = rqstp->rq_respages + 1;
1306 	rqstp->rq_res.len = 0;
1307 	rqstp->rq_res.page_base = 0;
1308 	rqstp->rq_res.page_len = 0;
1309 	rqstp->rq_res.buflen = PAGE_SIZE;
1310 	rqstp->rq_res.tail[0].iov_base = NULL;
1311 	rqstp->rq_res.tail[0].iov_len = 0;
1312 
1313 	rqstp->rq_xid = svc_getu32(argv);
1314 
1315 	dir  = svc_getnl(argv);
1316 	if (dir != 0) {
1317 		/* direction != CALL */
1318 		svc_printk(rqstp, "bad direction %d, dropping request\n", dir);
1319 		serv->sv_stats->rpcbadfmt++;
1320 		svc_drop(rqstp);
1321 		return 0;
1322 	}
1323 
1324 	/* Returns 1 for send, 0 for drop */
1325 	if (svc_process_common(rqstp, argv, resv))
1326 		return svc_send(rqstp);
1327 	else {
1328 		svc_drop(rqstp);
1329 		return 0;
1330 	}
1331 }
1332 
1333 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1334 /*
1335  * Process a backchannel RPC request that arrived over an existing
1336  * outbound connection
1337  */
1338 int
1339 bc_svc_process(struct svc_serv *serv, struct rpc_rqst *req,
1340 	       struct svc_rqst *rqstp)
1341 {
1342 	struct kvec	*argv = &rqstp->rq_arg.head[0];
1343 	struct kvec	*resv = &rqstp->rq_res.head[0];
1344 
1345 	/* Build the svc_rqst used by the common processing routine */
1346 	rqstp->rq_xprt = serv->sv_bc_xprt;
1347 	rqstp->rq_xid = req->rq_xid;
1348 	rqstp->rq_prot = req->rq_xprt->prot;
1349 	rqstp->rq_server = serv;
1350 
1351 	rqstp->rq_addrlen = sizeof(req->rq_xprt->addr);
1352 	memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen);
1353 	memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg));
1354 	memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res));
1355 
1356 	/* reset result send buffer "put" position */
1357 	resv->iov_len = 0;
1358 
1359 	if (rqstp->rq_prot != IPPROTO_TCP) {
1360 		printk(KERN_ERR "No support for Non-TCP transports!\n");
1361 		BUG();
1362 	}
1363 
1364 	/*
1365 	 * Skip the next two words because they've already been
1366 	 * processed in the trasport
1367 	 */
1368 	svc_getu32(argv);	/* XID */
1369 	svc_getnl(argv);	/* CALLDIR */
1370 
1371 	/* Returns 1 for send, 0 for drop */
1372 	if (svc_process_common(rqstp, argv, resv)) {
1373 		memcpy(&req->rq_snd_buf, &rqstp->rq_res,
1374 						sizeof(req->rq_snd_buf));
1375 		return bc_send(req);
1376 	} else {
1377 		/* drop request */
1378 		xprt_free_bc_request(req);
1379 		return 0;
1380 	}
1381 }
1382 EXPORT_SYMBOL_GPL(bc_svc_process);
1383 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
1384 
1385 /*
1386  * Return (transport-specific) limit on the rpc payload.
1387  */
1388 u32 svc_max_payload(const struct svc_rqst *rqstp)
1389 {
1390 	u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload;
1391 
1392 	if (rqstp->rq_server->sv_max_payload < max)
1393 		max = rqstp->rq_server->sv_max_payload;
1394 	return max;
1395 }
1396 EXPORT_SYMBOL_GPL(svc_max_payload);
1397