xref: /openbmc/linux/net/sunrpc/svc.c (revision 2ae1beb3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/svc.c
4  *
5  * High-level RPC service routines
6  *
7  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
8  *
9  * Multiple threads pools and NUMAisation
10  * Copyright (c) 2006 Silicon Graphics, Inc.
11  * by Greg Banks <gnb@melbourne.sgi.com>
12  */
13 
14 #include <linux/linkage.h>
15 #include <linux/sched/signal.h>
16 #include <linux/errno.h>
17 #include <linux/net.h>
18 #include <linux/in.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/module.h>
22 #include <linux/kthread.h>
23 #include <linux/slab.h>
24 
25 #include <linux/sunrpc/types.h>
26 #include <linux/sunrpc/xdr.h>
27 #include <linux/sunrpc/stats.h>
28 #include <linux/sunrpc/svcsock.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/sunrpc/bc_xprt.h>
31 
32 #include <trace/events/sunrpc.h>
33 
34 #include "fail.h"
35 
36 #define RPCDBG_FACILITY	RPCDBG_SVCDSP
37 
38 static void svc_unregister(const struct svc_serv *serv, struct net *net);
39 
40 #define SVC_POOL_DEFAULT	SVC_POOL_GLOBAL
41 
42 /*
43  * Mode for mapping cpus to pools.
44  */
45 enum {
46 	SVC_POOL_AUTO = -1,	/* choose one of the others */
47 	SVC_POOL_GLOBAL,	/* no mapping, just a single global pool
48 				 * (legacy & UP mode) */
49 	SVC_POOL_PERCPU,	/* one pool per cpu */
50 	SVC_POOL_PERNODE	/* one pool per numa node */
51 };
52 
53 /*
54  * Structure for mapping cpus to pools and vice versa.
55  * Setup once during sunrpc initialisation.
56  */
57 
58 struct svc_pool_map {
59 	int count;			/* How many svc_servs use us */
60 	int mode;			/* Note: int not enum to avoid
61 					 * warnings about "enumeration value
62 					 * not handled in switch" */
63 	unsigned int npools;
64 	unsigned int *pool_to;		/* maps pool id to cpu or node */
65 	unsigned int *to_pool;		/* maps cpu or node to pool id */
66 };
67 
68 static struct svc_pool_map svc_pool_map = {
69 	.mode = SVC_POOL_DEFAULT
70 };
71 
72 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */
73 
74 static int
75 param_set_pool_mode(const char *val, const struct kernel_param *kp)
76 {
77 	int *ip = (int *)kp->arg;
78 	struct svc_pool_map *m = &svc_pool_map;
79 	int err;
80 
81 	mutex_lock(&svc_pool_map_mutex);
82 
83 	err = -EBUSY;
84 	if (m->count)
85 		goto out;
86 
87 	err = 0;
88 	if (!strncmp(val, "auto", 4))
89 		*ip = SVC_POOL_AUTO;
90 	else if (!strncmp(val, "global", 6))
91 		*ip = SVC_POOL_GLOBAL;
92 	else if (!strncmp(val, "percpu", 6))
93 		*ip = SVC_POOL_PERCPU;
94 	else if (!strncmp(val, "pernode", 7))
95 		*ip = SVC_POOL_PERNODE;
96 	else
97 		err = -EINVAL;
98 
99 out:
100 	mutex_unlock(&svc_pool_map_mutex);
101 	return err;
102 }
103 
104 static int
105 param_get_pool_mode(char *buf, const struct kernel_param *kp)
106 {
107 	int *ip = (int *)kp->arg;
108 
109 	switch (*ip)
110 	{
111 	case SVC_POOL_AUTO:
112 		return sysfs_emit(buf, "auto\n");
113 	case SVC_POOL_GLOBAL:
114 		return sysfs_emit(buf, "global\n");
115 	case SVC_POOL_PERCPU:
116 		return sysfs_emit(buf, "percpu\n");
117 	case SVC_POOL_PERNODE:
118 		return sysfs_emit(buf, "pernode\n");
119 	default:
120 		return sysfs_emit(buf, "%d\n", *ip);
121 	}
122 }
123 
124 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode,
125 		 &svc_pool_map.mode, 0644);
126 
127 /*
128  * Detect best pool mapping mode heuristically,
129  * according to the machine's topology.
130  */
131 static int
132 svc_pool_map_choose_mode(void)
133 {
134 	unsigned int node;
135 
136 	if (nr_online_nodes > 1) {
137 		/*
138 		 * Actually have multiple NUMA nodes,
139 		 * so split pools on NUMA node boundaries
140 		 */
141 		return SVC_POOL_PERNODE;
142 	}
143 
144 	node = first_online_node;
145 	if (nr_cpus_node(node) > 2) {
146 		/*
147 		 * Non-trivial SMP, or CONFIG_NUMA on
148 		 * non-NUMA hardware, e.g. with a generic
149 		 * x86_64 kernel on Xeons.  In this case we
150 		 * want to divide the pools on cpu boundaries.
151 		 */
152 		return SVC_POOL_PERCPU;
153 	}
154 
155 	/* default: one global pool */
156 	return SVC_POOL_GLOBAL;
157 }
158 
159 /*
160  * Allocate the to_pool[] and pool_to[] arrays.
161  * Returns 0 on success or an errno.
162  */
163 static int
164 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools)
165 {
166 	m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
167 	if (!m->to_pool)
168 		goto fail;
169 	m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
170 	if (!m->pool_to)
171 		goto fail_free;
172 
173 	return 0;
174 
175 fail_free:
176 	kfree(m->to_pool);
177 	m->to_pool = NULL;
178 fail:
179 	return -ENOMEM;
180 }
181 
182 /*
183  * Initialise the pool map for SVC_POOL_PERCPU mode.
184  * Returns number of pools or <0 on error.
185  */
186 static int
187 svc_pool_map_init_percpu(struct svc_pool_map *m)
188 {
189 	unsigned int maxpools = nr_cpu_ids;
190 	unsigned int pidx = 0;
191 	unsigned int cpu;
192 	int err;
193 
194 	err = svc_pool_map_alloc_arrays(m, maxpools);
195 	if (err)
196 		return err;
197 
198 	for_each_online_cpu(cpu) {
199 		BUG_ON(pidx >= maxpools);
200 		m->to_pool[cpu] = pidx;
201 		m->pool_to[pidx] = cpu;
202 		pidx++;
203 	}
204 	/* cpus brought online later all get mapped to pool0, sorry */
205 
206 	return pidx;
207 };
208 
209 
210 /*
211  * Initialise the pool map for SVC_POOL_PERNODE mode.
212  * Returns number of pools or <0 on error.
213  */
214 static int
215 svc_pool_map_init_pernode(struct svc_pool_map *m)
216 {
217 	unsigned int maxpools = nr_node_ids;
218 	unsigned int pidx = 0;
219 	unsigned int node;
220 	int err;
221 
222 	err = svc_pool_map_alloc_arrays(m, maxpools);
223 	if (err)
224 		return err;
225 
226 	for_each_node_with_cpus(node) {
227 		/* some architectures (e.g. SN2) have cpuless nodes */
228 		BUG_ON(pidx > maxpools);
229 		m->to_pool[node] = pidx;
230 		m->pool_to[pidx] = node;
231 		pidx++;
232 	}
233 	/* nodes brought online later all get mapped to pool0, sorry */
234 
235 	return pidx;
236 }
237 
238 
239 /*
240  * Add a reference to the global map of cpus to pools (and
241  * vice versa) if pools are in use.
242  * Initialise the map if we're the first user.
243  * Returns the number of pools. If this is '1', no reference
244  * was taken.
245  */
246 static unsigned int
247 svc_pool_map_get(void)
248 {
249 	struct svc_pool_map *m = &svc_pool_map;
250 	int npools = -1;
251 
252 	mutex_lock(&svc_pool_map_mutex);
253 
254 	if (m->count++) {
255 		mutex_unlock(&svc_pool_map_mutex);
256 		WARN_ON_ONCE(m->npools <= 1);
257 		return m->npools;
258 	}
259 
260 	if (m->mode == SVC_POOL_AUTO)
261 		m->mode = svc_pool_map_choose_mode();
262 
263 	switch (m->mode) {
264 	case SVC_POOL_PERCPU:
265 		npools = svc_pool_map_init_percpu(m);
266 		break;
267 	case SVC_POOL_PERNODE:
268 		npools = svc_pool_map_init_pernode(m);
269 		break;
270 	}
271 
272 	if (npools <= 0) {
273 		/* default, or memory allocation failure */
274 		npools = 1;
275 		m->mode = SVC_POOL_GLOBAL;
276 	}
277 	m->npools = npools;
278 
279 	if (npools == 1)
280 		/* service is unpooled, so doesn't hold a reference */
281 		m->count--;
282 
283 	mutex_unlock(&svc_pool_map_mutex);
284 	return npools;
285 }
286 
287 /*
288  * Drop a reference to the global map of cpus to pools, if
289  * pools were in use, i.e. if npools > 1.
290  * When the last reference is dropped, the map data is
291  * freed; this allows the sysadmin to change the pool
292  * mode using the pool_mode module option without
293  * rebooting or re-loading sunrpc.ko.
294  */
295 static void
296 svc_pool_map_put(int npools)
297 {
298 	struct svc_pool_map *m = &svc_pool_map;
299 
300 	if (npools <= 1)
301 		return;
302 	mutex_lock(&svc_pool_map_mutex);
303 
304 	if (!--m->count) {
305 		kfree(m->to_pool);
306 		m->to_pool = NULL;
307 		kfree(m->pool_to);
308 		m->pool_to = NULL;
309 		m->npools = 0;
310 	}
311 
312 	mutex_unlock(&svc_pool_map_mutex);
313 }
314 
315 static int svc_pool_map_get_node(unsigned int pidx)
316 {
317 	const struct svc_pool_map *m = &svc_pool_map;
318 
319 	if (m->count) {
320 		if (m->mode == SVC_POOL_PERCPU)
321 			return cpu_to_node(m->pool_to[pidx]);
322 		if (m->mode == SVC_POOL_PERNODE)
323 			return m->pool_to[pidx];
324 	}
325 	return NUMA_NO_NODE;
326 }
327 /*
328  * Set the given thread's cpus_allowed mask so that it
329  * will only run on cpus in the given pool.
330  */
331 static inline void
332 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx)
333 {
334 	struct svc_pool_map *m = &svc_pool_map;
335 	unsigned int node = m->pool_to[pidx];
336 
337 	/*
338 	 * The caller checks for sv_nrpools > 1, which
339 	 * implies that we've been initialized.
340 	 */
341 	WARN_ON_ONCE(m->count == 0);
342 	if (m->count == 0)
343 		return;
344 
345 	switch (m->mode) {
346 	case SVC_POOL_PERCPU:
347 	{
348 		set_cpus_allowed_ptr(task, cpumask_of(node));
349 		break;
350 	}
351 	case SVC_POOL_PERNODE:
352 	{
353 		set_cpus_allowed_ptr(task, cpumask_of_node(node));
354 		break;
355 	}
356 	}
357 }
358 
359 /**
360  * svc_pool_for_cpu - Select pool to run a thread on this cpu
361  * @serv: An RPC service
362  *
363  * Use the active CPU and the svc_pool_map's mode setting to
364  * select the svc thread pool to use. Once initialized, the
365  * svc_pool_map does not change.
366  *
367  * Return value:
368  *   A pointer to an svc_pool
369  */
370 struct svc_pool *svc_pool_for_cpu(struct svc_serv *serv)
371 {
372 	struct svc_pool_map *m = &svc_pool_map;
373 	int cpu = raw_smp_processor_id();
374 	unsigned int pidx = 0;
375 
376 	if (serv->sv_nrpools <= 1)
377 		return serv->sv_pools;
378 
379 	switch (m->mode) {
380 	case SVC_POOL_PERCPU:
381 		pidx = m->to_pool[cpu];
382 		break;
383 	case SVC_POOL_PERNODE:
384 		pidx = m->to_pool[cpu_to_node(cpu)];
385 		break;
386 	}
387 
388 	return &serv->sv_pools[pidx % serv->sv_nrpools];
389 }
390 
391 int svc_rpcb_setup(struct svc_serv *serv, struct net *net)
392 {
393 	int err;
394 
395 	err = rpcb_create_local(net);
396 	if (err)
397 		return err;
398 
399 	/* Remove any stale portmap registrations */
400 	svc_unregister(serv, net);
401 	return 0;
402 }
403 EXPORT_SYMBOL_GPL(svc_rpcb_setup);
404 
405 void svc_rpcb_cleanup(struct svc_serv *serv, struct net *net)
406 {
407 	svc_unregister(serv, net);
408 	rpcb_put_local(net);
409 }
410 EXPORT_SYMBOL_GPL(svc_rpcb_cleanup);
411 
412 static int svc_uses_rpcbind(struct svc_serv *serv)
413 {
414 	struct svc_program	*progp;
415 	unsigned int		i;
416 
417 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
418 		for (i = 0; i < progp->pg_nvers; i++) {
419 			if (progp->pg_vers[i] == NULL)
420 				continue;
421 			if (!progp->pg_vers[i]->vs_hidden)
422 				return 1;
423 		}
424 	}
425 
426 	return 0;
427 }
428 
429 int svc_bind(struct svc_serv *serv, struct net *net)
430 {
431 	if (!svc_uses_rpcbind(serv))
432 		return 0;
433 	return svc_rpcb_setup(serv, net);
434 }
435 EXPORT_SYMBOL_GPL(svc_bind);
436 
437 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
438 static void
439 __svc_init_bc(struct svc_serv *serv)
440 {
441 	INIT_LIST_HEAD(&serv->sv_cb_list);
442 	spin_lock_init(&serv->sv_cb_lock);
443 	init_waitqueue_head(&serv->sv_cb_waitq);
444 }
445 #else
446 static void
447 __svc_init_bc(struct svc_serv *serv)
448 {
449 }
450 #endif
451 
452 /*
453  * Create an RPC service
454  */
455 static struct svc_serv *
456 __svc_create(struct svc_program *prog, struct svc_stat *stats,
457 	     unsigned int bufsize, int npools, int (*threadfn)(void *data))
458 {
459 	struct svc_serv	*serv;
460 	unsigned int vers;
461 	unsigned int xdrsize;
462 	unsigned int i;
463 
464 	if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL)))
465 		return NULL;
466 	serv->sv_name      = prog->pg_name;
467 	serv->sv_program   = prog;
468 	kref_init(&serv->sv_refcnt);
469 	serv->sv_stats     = stats;
470 	if (bufsize > RPCSVC_MAXPAYLOAD)
471 		bufsize = RPCSVC_MAXPAYLOAD;
472 	serv->sv_max_payload = bufsize? bufsize : 4096;
473 	serv->sv_max_mesg  = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE);
474 	serv->sv_threadfn = threadfn;
475 	xdrsize = 0;
476 	while (prog) {
477 		prog->pg_lovers = prog->pg_nvers-1;
478 		for (vers=0; vers<prog->pg_nvers ; vers++)
479 			if (prog->pg_vers[vers]) {
480 				prog->pg_hivers = vers;
481 				if (prog->pg_lovers > vers)
482 					prog->pg_lovers = vers;
483 				if (prog->pg_vers[vers]->vs_xdrsize > xdrsize)
484 					xdrsize = prog->pg_vers[vers]->vs_xdrsize;
485 			}
486 		prog = prog->pg_next;
487 	}
488 	serv->sv_xdrsize   = xdrsize;
489 	INIT_LIST_HEAD(&serv->sv_tempsocks);
490 	INIT_LIST_HEAD(&serv->sv_permsocks);
491 	timer_setup(&serv->sv_temptimer, NULL, 0);
492 	spin_lock_init(&serv->sv_lock);
493 
494 	__svc_init_bc(serv);
495 
496 	serv->sv_nrpools = npools;
497 	serv->sv_pools =
498 		kcalloc(serv->sv_nrpools, sizeof(struct svc_pool),
499 			GFP_KERNEL);
500 	if (!serv->sv_pools) {
501 		kfree(serv);
502 		return NULL;
503 	}
504 
505 	for (i = 0; i < serv->sv_nrpools; i++) {
506 		struct svc_pool *pool = &serv->sv_pools[i];
507 
508 		dprintk("svc: initialising pool %u for %s\n",
509 				i, serv->sv_name);
510 
511 		pool->sp_id = i;
512 		INIT_LIST_HEAD(&pool->sp_sockets);
513 		INIT_LIST_HEAD(&pool->sp_all_threads);
514 		spin_lock_init(&pool->sp_lock);
515 
516 		percpu_counter_init(&pool->sp_messages_arrived, 0, GFP_KERNEL);
517 		percpu_counter_init(&pool->sp_sockets_queued, 0, GFP_KERNEL);
518 		percpu_counter_init(&pool->sp_threads_woken, 0, GFP_KERNEL);
519 	}
520 
521 	return serv;
522 }
523 
524 /**
525  * svc_create - Create an RPC service
526  * @prog: the RPC program the new service will handle
527  * @bufsize: maximum message size for @prog
528  * @threadfn: a function to service RPC requests for @prog
529  *
530  * Returns an instantiated struct svc_serv object or NULL.
531  */
532 struct svc_serv *svc_create(struct svc_program *prog, unsigned int bufsize,
533 			    int (*threadfn)(void *data))
534 {
535 	return __svc_create(prog, NULL, bufsize, 1, threadfn);
536 }
537 EXPORT_SYMBOL_GPL(svc_create);
538 
539 /**
540  * svc_create_pooled - Create an RPC service with pooled threads
541  * @prog: the RPC program the new service will handle
542  * @stats: the stats struct if desired
543  * @bufsize: maximum message size for @prog
544  * @threadfn: a function to service RPC requests for @prog
545  *
546  * Returns an instantiated struct svc_serv object or NULL.
547  */
548 struct svc_serv *svc_create_pooled(struct svc_program *prog,
549 				   struct svc_stat *stats,
550 				   unsigned int bufsize,
551 				   int (*threadfn)(void *data))
552 {
553 	struct svc_serv *serv;
554 	unsigned int npools = svc_pool_map_get();
555 
556 	serv = __svc_create(prog, stats, bufsize, npools, threadfn);
557 	if (!serv)
558 		goto out_err;
559 	return serv;
560 out_err:
561 	svc_pool_map_put(npools);
562 	return NULL;
563 }
564 EXPORT_SYMBOL_GPL(svc_create_pooled);
565 
566 /*
567  * Destroy an RPC service. Should be called with appropriate locking to
568  * protect sv_permsocks and sv_tempsocks.
569  */
570 void
571 svc_destroy(struct kref *ref)
572 {
573 	struct svc_serv *serv = container_of(ref, struct svc_serv, sv_refcnt);
574 	unsigned int i;
575 
576 	dprintk("svc: svc_destroy(%s)\n", serv->sv_program->pg_name);
577 	timer_shutdown_sync(&serv->sv_temptimer);
578 
579 	/*
580 	 * The last user is gone and thus all sockets have to be destroyed to
581 	 * the point. Check this.
582 	 */
583 	BUG_ON(!list_empty(&serv->sv_permsocks));
584 	BUG_ON(!list_empty(&serv->sv_tempsocks));
585 
586 	cache_clean_deferred(serv);
587 
588 	svc_pool_map_put(serv->sv_nrpools);
589 
590 	for (i = 0; i < serv->sv_nrpools; i++) {
591 		struct svc_pool *pool = &serv->sv_pools[i];
592 
593 		percpu_counter_destroy(&pool->sp_messages_arrived);
594 		percpu_counter_destroy(&pool->sp_sockets_queued);
595 		percpu_counter_destroy(&pool->sp_threads_woken);
596 	}
597 	kfree(serv->sv_pools);
598 	kfree(serv);
599 }
600 EXPORT_SYMBOL_GPL(svc_destroy);
601 
602 static bool
603 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size, int node)
604 {
605 	unsigned long pages, ret;
606 
607 	/* bc_xprt uses fore channel allocated buffers */
608 	if (svc_is_backchannel(rqstp))
609 		return true;
610 
611 	pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply.
612 				       * We assume one is at most one page
613 				       */
614 	WARN_ON_ONCE(pages > RPCSVC_MAXPAGES);
615 	if (pages > RPCSVC_MAXPAGES)
616 		pages = RPCSVC_MAXPAGES;
617 
618 	ret = alloc_pages_bulk_array_node(GFP_KERNEL, node, pages,
619 					  rqstp->rq_pages);
620 	return ret == pages;
621 }
622 
623 /*
624  * Release an RPC server buffer
625  */
626 static void
627 svc_release_buffer(struct svc_rqst *rqstp)
628 {
629 	unsigned int i;
630 
631 	for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++)
632 		if (rqstp->rq_pages[i])
633 			put_page(rqstp->rq_pages[i]);
634 }
635 
636 struct svc_rqst *
637 svc_rqst_alloc(struct svc_serv *serv, struct svc_pool *pool, int node)
638 {
639 	struct svc_rqst	*rqstp;
640 
641 	rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node);
642 	if (!rqstp)
643 		return rqstp;
644 
645 	folio_batch_init(&rqstp->rq_fbatch);
646 
647 	__set_bit(RQ_BUSY, &rqstp->rq_flags);
648 	rqstp->rq_server = serv;
649 	rqstp->rq_pool = pool;
650 
651 	rqstp->rq_scratch_page = alloc_pages_node(node, GFP_KERNEL, 0);
652 	if (!rqstp->rq_scratch_page)
653 		goto out_enomem;
654 
655 	rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
656 	if (!rqstp->rq_argp)
657 		goto out_enomem;
658 
659 	rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
660 	if (!rqstp->rq_resp)
661 		goto out_enomem;
662 
663 	if (!svc_init_buffer(rqstp, serv->sv_max_mesg, node))
664 		goto out_enomem;
665 
666 	return rqstp;
667 out_enomem:
668 	svc_rqst_free(rqstp);
669 	return NULL;
670 }
671 EXPORT_SYMBOL_GPL(svc_rqst_alloc);
672 
673 static struct svc_rqst *
674 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node)
675 {
676 	struct svc_rqst	*rqstp;
677 
678 	rqstp = svc_rqst_alloc(serv, pool, node);
679 	if (!rqstp)
680 		return ERR_PTR(-ENOMEM);
681 
682 	svc_get(serv);
683 	spin_lock_bh(&serv->sv_lock);
684 	serv->sv_nrthreads += 1;
685 	spin_unlock_bh(&serv->sv_lock);
686 
687 	spin_lock_bh(&pool->sp_lock);
688 	pool->sp_nrthreads++;
689 	list_add_rcu(&rqstp->rq_all, &pool->sp_all_threads);
690 	spin_unlock_bh(&pool->sp_lock);
691 	return rqstp;
692 }
693 
694 /**
695  * svc_pool_wake_idle_thread - Awaken an idle thread in @pool
696  * @pool: service thread pool
697  *
698  * Can be called from soft IRQ or process context. Finding an idle
699  * service thread and marking it BUSY is atomic with respect to
700  * other calls to svc_pool_wake_idle_thread().
701  *
702  */
703 void svc_pool_wake_idle_thread(struct svc_pool *pool)
704 {
705 	struct svc_rqst	*rqstp;
706 
707 	rcu_read_lock();
708 	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
709 		if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags))
710 			continue;
711 
712 		WRITE_ONCE(rqstp->rq_qtime, ktime_get());
713 		wake_up_process(rqstp->rq_task);
714 		rcu_read_unlock();
715 		percpu_counter_inc(&pool->sp_threads_woken);
716 		trace_svc_wake_up(rqstp->rq_task->pid);
717 		return;
718 	}
719 	rcu_read_unlock();
720 
721 	set_bit(SP_CONGESTED, &pool->sp_flags);
722 }
723 
724 static struct svc_pool *
725 svc_pool_next(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
726 {
727 	return pool ? pool : &serv->sv_pools[(*state)++ % serv->sv_nrpools];
728 }
729 
730 static struct task_struct *
731 svc_pool_victim(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
732 {
733 	unsigned int i;
734 	struct task_struct *task = NULL;
735 
736 	if (pool != NULL) {
737 		spin_lock_bh(&pool->sp_lock);
738 	} else {
739 		for (i = 0; i < serv->sv_nrpools; i++) {
740 			pool = &serv->sv_pools[--(*state) % serv->sv_nrpools];
741 			spin_lock_bh(&pool->sp_lock);
742 			if (!list_empty(&pool->sp_all_threads))
743 				goto found_pool;
744 			spin_unlock_bh(&pool->sp_lock);
745 		}
746 		return NULL;
747 	}
748 
749 found_pool:
750 	if (!list_empty(&pool->sp_all_threads)) {
751 		struct svc_rqst *rqstp;
752 
753 		rqstp = list_entry(pool->sp_all_threads.next, struct svc_rqst, rq_all);
754 		set_bit(RQ_VICTIM, &rqstp->rq_flags);
755 		list_del_rcu(&rqstp->rq_all);
756 		task = rqstp->rq_task;
757 	}
758 	spin_unlock_bh(&pool->sp_lock);
759 	return task;
760 }
761 
762 static int
763 svc_start_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
764 {
765 	struct svc_rqst	*rqstp;
766 	struct task_struct *task;
767 	struct svc_pool *chosen_pool;
768 	unsigned int state = serv->sv_nrthreads-1;
769 	int node;
770 
771 	do {
772 		nrservs--;
773 		chosen_pool = svc_pool_next(serv, pool, &state);
774 		node = svc_pool_map_get_node(chosen_pool->sp_id);
775 
776 		rqstp = svc_prepare_thread(serv, chosen_pool, node);
777 		if (IS_ERR(rqstp))
778 			return PTR_ERR(rqstp);
779 		task = kthread_create_on_node(serv->sv_threadfn, rqstp,
780 					      node, "%s", serv->sv_name);
781 		if (IS_ERR(task)) {
782 			svc_exit_thread(rqstp);
783 			return PTR_ERR(task);
784 		}
785 
786 		rqstp->rq_task = task;
787 		if (serv->sv_nrpools > 1)
788 			svc_pool_map_set_cpumask(task, chosen_pool->sp_id);
789 
790 		svc_sock_update_bufs(serv);
791 		wake_up_process(task);
792 	} while (nrservs > 0);
793 
794 	return 0;
795 }
796 
797 static int
798 svc_stop_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
799 {
800 	struct svc_rqst	*rqstp;
801 	struct task_struct *task;
802 	unsigned int state = serv->sv_nrthreads-1;
803 
804 	do {
805 		task = svc_pool_victim(serv, pool, &state);
806 		if (task == NULL)
807 			break;
808 		rqstp = kthread_data(task);
809 		/* Did we lose a race to svo_function threadfn? */
810 		if (kthread_stop(task) == -EINTR)
811 			svc_exit_thread(rqstp);
812 		nrservs++;
813 	} while (nrservs < 0);
814 	return 0;
815 }
816 
817 /**
818  * svc_set_num_threads - adjust number of threads per RPC service
819  * @serv: RPC service to adjust
820  * @pool: Specific pool from which to choose threads, or NULL
821  * @nrservs: New number of threads for @serv (0 or less means kill all threads)
822  *
823  * Create or destroy threads to make the number of threads for @serv the
824  * given number. If @pool is non-NULL, change only threads in that pool;
825  * otherwise, round-robin between all pools for @serv. @serv's
826  * sv_nrthreads is adjusted for each thread created or destroyed.
827  *
828  * Caller must ensure mutual exclusion between this and server startup or
829  * shutdown.
830  *
831  * Returns zero on success or a negative errno if an error occurred while
832  * starting a thread.
833  */
834 int
835 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
836 {
837 	if (pool == NULL) {
838 		nrservs -= serv->sv_nrthreads;
839 	} else {
840 		spin_lock_bh(&pool->sp_lock);
841 		nrservs -= pool->sp_nrthreads;
842 		spin_unlock_bh(&pool->sp_lock);
843 	}
844 
845 	if (nrservs > 0)
846 		return svc_start_kthreads(serv, pool, nrservs);
847 	if (nrservs < 0)
848 		return svc_stop_kthreads(serv, pool, nrservs);
849 	return 0;
850 }
851 EXPORT_SYMBOL_GPL(svc_set_num_threads);
852 
853 /**
854  * svc_rqst_replace_page - Replace one page in rq_pages[]
855  * @rqstp: svc_rqst with pages to replace
856  * @page: replacement page
857  *
858  * When replacing a page in rq_pages, batch the release of the
859  * replaced pages to avoid hammering the page allocator.
860  *
861  * Return values:
862  *   %true: page replaced
863  *   %false: array bounds checking failed
864  */
865 bool svc_rqst_replace_page(struct svc_rqst *rqstp, struct page *page)
866 {
867 	struct page **begin = rqstp->rq_pages;
868 	struct page **end = &rqstp->rq_pages[RPCSVC_MAXPAGES];
869 
870 	if (unlikely(rqstp->rq_next_page < begin || rqstp->rq_next_page > end)) {
871 		trace_svc_replace_page_err(rqstp);
872 		return false;
873 	}
874 
875 	if (*rqstp->rq_next_page) {
876 		if (!folio_batch_add(&rqstp->rq_fbatch,
877 				page_folio(*rqstp->rq_next_page)))
878 			__folio_batch_release(&rqstp->rq_fbatch);
879 	}
880 
881 	get_page(page);
882 	*(rqstp->rq_next_page++) = page;
883 	return true;
884 }
885 EXPORT_SYMBOL_GPL(svc_rqst_replace_page);
886 
887 /**
888  * svc_rqst_release_pages - Release Reply buffer pages
889  * @rqstp: RPC transaction context
890  *
891  * Release response pages that might still be in flight after
892  * svc_send, and any spliced filesystem-owned pages.
893  */
894 void svc_rqst_release_pages(struct svc_rqst *rqstp)
895 {
896 	int i, count = rqstp->rq_next_page - rqstp->rq_respages;
897 
898 	if (count) {
899 		release_pages(rqstp->rq_respages, count);
900 		for (i = 0; i < count; i++)
901 			rqstp->rq_respages[i] = NULL;
902 	}
903 }
904 
905 /*
906  * Called from a server thread as it's exiting. Caller must hold the "service
907  * mutex" for the service.
908  */
909 void
910 svc_rqst_free(struct svc_rqst *rqstp)
911 {
912 	folio_batch_release(&rqstp->rq_fbatch);
913 	svc_release_buffer(rqstp);
914 	if (rqstp->rq_scratch_page)
915 		put_page(rqstp->rq_scratch_page);
916 	kfree(rqstp->rq_resp);
917 	kfree(rqstp->rq_argp);
918 	kfree(rqstp->rq_auth_data);
919 	kfree_rcu(rqstp, rq_rcu_head);
920 }
921 EXPORT_SYMBOL_GPL(svc_rqst_free);
922 
923 void
924 svc_exit_thread(struct svc_rqst *rqstp)
925 {
926 	struct svc_serv	*serv = rqstp->rq_server;
927 	struct svc_pool	*pool = rqstp->rq_pool;
928 
929 	spin_lock_bh(&pool->sp_lock);
930 	pool->sp_nrthreads--;
931 	if (!test_and_set_bit(RQ_VICTIM, &rqstp->rq_flags))
932 		list_del_rcu(&rqstp->rq_all);
933 	spin_unlock_bh(&pool->sp_lock);
934 
935 	spin_lock_bh(&serv->sv_lock);
936 	serv->sv_nrthreads -= 1;
937 	spin_unlock_bh(&serv->sv_lock);
938 	svc_sock_update_bufs(serv);
939 
940 	svc_rqst_free(rqstp);
941 
942 	svc_put(serv);
943 }
944 EXPORT_SYMBOL_GPL(svc_exit_thread);
945 
946 /*
947  * Register an "inet" protocol family netid with the local
948  * rpcbind daemon via an rpcbind v4 SET request.
949  *
950  * No netconfig infrastructure is available in the kernel, so
951  * we map IP_ protocol numbers to netids by hand.
952  *
953  * Returns zero on success; a negative errno value is returned
954  * if any error occurs.
955  */
956 static int __svc_rpcb_register4(struct net *net, const u32 program,
957 				const u32 version,
958 				const unsigned short protocol,
959 				const unsigned short port)
960 {
961 	const struct sockaddr_in sin = {
962 		.sin_family		= AF_INET,
963 		.sin_addr.s_addr	= htonl(INADDR_ANY),
964 		.sin_port		= htons(port),
965 	};
966 	const char *netid;
967 	int error;
968 
969 	switch (protocol) {
970 	case IPPROTO_UDP:
971 		netid = RPCBIND_NETID_UDP;
972 		break;
973 	case IPPROTO_TCP:
974 		netid = RPCBIND_NETID_TCP;
975 		break;
976 	default:
977 		return -ENOPROTOOPT;
978 	}
979 
980 	error = rpcb_v4_register(net, program, version,
981 					(const struct sockaddr *)&sin, netid);
982 
983 	/*
984 	 * User space didn't support rpcbind v4, so retry this
985 	 * registration request with the legacy rpcbind v2 protocol.
986 	 */
987 	if (error == -EPROTONOSUPPORT)
988 		error = rpcb_register(net, program, version, protocol, port);
989 
990 	return error;
991 }
992 
993 #if IS_ENABLED(CONFIG_IPV6)
994 /*
995  * Register an "inet6" protocol family netid with the local
996  * rpcbind daemon via an rpcbind v4 SET request.
997  *
998  * No netconfig infrastructure is available in the kernel, so
999  * we map IP_ protocol numbers to netids by hand.
1000  *
1001  * Returns zero on success; a negative errno value is returned
1002  * if any error occurs.
1003  */
1004 static int __svc_rpcb_register6(struct net *net, const u32 program,
1005 				const u32 version,
1006 				const unsigned short protocol,
1007 				const unsigned short port)
1008 {
1009 	const struct sockaddr_in6 sin6 = {
1010 		.sin6_family		= AF_INET6,
1011 		.sin6_addr		= IN6ADDR_ANY_INIT,
1012 		.sin6_port		= htons(port),
1013 	};
1014 	const char *netid;
1015 	int error;
1016 
1017 	switch (protocol) {
1018 	case IPPROTO_UDP:
1019 		netid = RPCBIND_NETID_UDP6;
1020 		break;
1021 	case IPPROTO_TCP:
1022 		netid = RPCBIND_NETID_TCP6;
1023 		break;
1024 	default:
1025 		return -ENOPROTOOPT;
1026 	}
1027 
1028 	error = rpcb_v4_register(net, program, version,
1029 					(const struct sockaddr *)&sin6, netid);
1030 
1031 	/*
1032 	 * User space didn't support rpcbind version 4, so we won't
1033 	 * use a PF_INET6 listener.
1034 	 */
1035 	if (error == -EPROTONOSUPPORT)
1036 		error = -EAFNOSUPPORT;
1037 
1038 	return error;
1039 }
1040 #endif	/* IS_ENABLED(CONFIG_IPV6) */
1041 
1042 /*
1043  * Register a kernel RPC service via rpcbind version 4.
1044  *
1045  * Returns zero on success; a negative errno value is returned
1046  * if any error occurs.
1047  */
1048 static int __svc_register(struct net *net, const char *progname,
1049 			  const u32 program, const u32 version,
1050 			  const int family,
1051 			  const unsigned short protocol,
1052 			  const unsigned short port)
1053 {
1054 	int error = -EAFNOSUPPORT;
1055 
1056 	switch (family) {
1057 	case PF_INET:
1058 		error = __svc_rpcb_register4(net, program, version,
1059 						protocol, port);
1060 		break;
1061 #if IS_ENABLED(CONFIG_IPV6)
1062 	case PF_INET6:
1063 		error = __svc_rpcb_register6(net, program, version,
1064 						protocol, port);
1065 #endif
1066 	}
1067 
1068 	trace_svc_register(progname, version, family, protocol, port, error);
1069 	return error;
1070 }
1071 
1072 int svc_rpcbind_set_version(struct net *net,
1073 			    const struct svc_program *progp,
1074 			    u32 version, int family,
1075 			    unsigned short proto,
1076 			    unsigned short port)
1077 {
1078 	return __svc_register(net, progp->pg_name, progp->pg_prog,
1079 				version, family, proto, port);
1080 
1081 }
1082 EXPORT_SYMBOL_GPL(svc_rpcbind_set_version);
1083 
1084 int svc_generic_rpcbind_set(struct net *net,
1085 			    const struct svc_program *progp,
1086 			    u32 version, int family,
1087 			    unsigned short proto,
1088 			    unsigned short port)
1089 {
1090 	const struct svc_version *vers = progp->pg_vers[version];
1091 	int error;
1092 
1093 	if (vers == NULL)
1094 		return 0;
1095 
1096 	if (vers->vs_hidden) {
1097 		trace_svc_noregister(progp->pg_name, version, proto,
1098 				     port, family, 0);
1099 		return 0;
1100 	}
1101 
1102 	/*
1103 	 * Don't register a UDP port if we need congestion
1104 	 * control.
1105 	 */
1106 	if (vers->vs_need_cong_ctrl && proto == IPPROTO_UDP)
1107 		return 0;
1108 
1109 	error = svc_rpcbind_set_version(net, progp, version,
1110 					family, proto, port);
1111 
1112 	return (vers->vs_rpcb_optnl) ? 0 : error;
1113 }
1114 EXPORT_SYMBOL_GPL(svc_generic_rpcbind_set);
1115 
1116 /**
1117  * svc_register - register an RPC service with the local portmapper
1118  * @serv: svc_serv struct for the service to register
1119  * @net: net namespace for the service to register
1120  * @family: protocol family of service's listener socket
1121  * @proto: transport protocol number to advertise
1122  * @port: port to advertise
1123  *
1124  * Service is registered for any address in the passed-in protocol family
1125  */
1126 int svc_register(const struct svc_serv *serv, struct net *net,
1127 		 const int family, const unsigned short proto,
1128 		 const unsigned short port)
1129 {
1130 	struct svc_program	*progp;
1131 	unsigned int		i;
1132 	int			error = 0;
1133 
1134 	WARN_ON_ONCE(proto == 0 && port == 0);
1135 	if (proto == 0 && port == 0)
1136 		return -EINVAL;
1137 
1138 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
1139 		for (i = 0; i < progp->pg_nvers; i++) {
1140 
1141 			error = progp->pg_rpcbind_set(net, progp, i,
1142 					family, proto, port);
1143 			if (error < 0) {
1144 				printk(KERN_WARNING "svc: failed to register "
1145 					"%sv%u RPC service (errno %d).\n",
1146 					progp->pg_name, i, -error);
1147 				break;
1148 			}
1149 		}
1150 	}
1151 
1152 	return error;
1153 }
1154 
1155 /*
1156  * If user space is running rpcbind, it should take the v4 UNSET
1157  * and clear everything for this [program, version].  If user space
1158  * is running portmap, it will reject the v4 UNSET, but won't have
1159  * any "inet6" entries anyway.  So a PMAP_UNSET should be sufficient
1160  * in this case to clear all existing entries for [program, version].
1161  */
1162 static void __svc_unregister(struct net *net, const u32 program, const u32 version,
1163 			     const char *progname)
1164 {
1165 	int error;
1166 
1167 	error = rpcb_v4_register(net, program, version, NULL, "");
1168 
1169 	/*
1170 	 * User space didn't support rpcbind v4, so retry this
1171 	 * request with the legacy rpcbind v2 protocol.
1172 	 */
1173 	if (error == -EPROTONOSUPPORT)
1174 		error = rpcb_register(net, program, version, 0, 0);
1175 
1176 	trace_svc_unregister(progname, version, error);
1177 }
1178 
1179 /*
1180  * All netids, bind addresses and ports registered for [program, version]
1181  * are removed from the local rpcbind database (if the service is not
1182  * hidden) to make way for a new instance of the service.
1183  *
1184  * The result of unregistration is reported via dprintk for those who want
1185  * verification of the result, but is otherwise not important.
1186  */
1187 static void svc_unregister(const struct svc_serv *serv, struct net *net)
1188 {
1189 	struct sighand_struct *sighand;
1190 	struct svc_program *progp;
1191 	unsigned long flags;
1192 	unsigned int i;
1193 
1194 	clear_thread_flag(TIF_SIGPENDING);
1195 
1196 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
1197 		for (i = 0; i < progp->pg_nvers; i++) {
1198 			if (progp->pg_vers[i] == NULL)
1199 				continue;
1200 			if (progp->pg_vers[i]->vs_hidden)
1201 				continue;
1202 			__svc_unregister(net, progp->pg_prog, i, progp->pg_name);
1203 		}
1204 	}
1205 
1206 	rcu_read_lock();
1207 	sighand = rcu_dereference(current->sighand);
1208 	spin_lock_irqsave(&sighand->siglock, flags);
1209 	recalc_sigpending();
1210 	spin_unlock_irqrestore(&sighand->siglock, flags);
1211 	rcu_read_unlock();
1212 }
1213 
1214 /*
1215  * dprintk the given error with the address of the client that caused it.
1216  */
1217 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
1218 static __printf(2, 3)
1219 void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...)
1220 {
1221 	struct va_format vaf;
1222 	va_list args;
1223 	char 	buf[RPC_MAX_ADDRBUFLEN];
1224 
1225 	va_start(args, fmt);
1226 
1227 	vaf.fmt = fmt;
1228 	vaf.va = &args;
1229 
1230 	dprintk("svc: %s: %pV", svc_print_addr(rqstp, buf, sizeof(buf)), &vaf);
1231 
1232 	va_end(args);
1233 }
1234 #else
1235 static __printf(2,3) void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) {}
1236 #endif
1237 
1238 __be32
1239 svc_generic_init_request(struct svc_rqst *rqstp,
1240 		const struct svc_program *progp,
1241 		struct svc_process_info *ret)
1242 {
1243 	const struct svc_version *versp = NULL;	/* compiler food */
1244 	const struct svc_procedure *procp = NULL;
1245 
1246 	if (rqstp->rq_vers >= progp->pg_nvers )
1247 		goto err_bad_vers;
1248 	versp = progp->pg_vers[rqstp->rq_vers];
1249 	if (!versp)
1250 		goto err_bad_vers;
1251 
1252 	/*
1253 	 * Some protocol versions (namely NFSv4) require some form of
1254 	 * congestion control.  (See RFC 7530 section 3.1 paragraph 2)
1255 	 * In other words, UDP is not allowed. We mark those when setting
1256 	 * up the svc_xprt, and verify that here.
1257 	 *
1258 	 * The spec is not very clear about what error should be returned
1259 	 * when someone tries to access a server that is listening on UDP
1260 	 * for lower versions. RPC_PROG_MISMATCH seems to be the closest
1261 	 * fit.
1262 	 */
1263 	if (versp->vs_need_cong_ctrl && rqstp->rq_xprt &&
1264 	    !test_bit(XPT_CONG_CTRL, &rqstp->rq_xprt->xpt_flags))
1265 		goto err_bad_vers;
1266 
1267 	if (rqstp->rq_proc >= versp->vs_nproc)
1268 		goto err_bad_proc;
1269 	rqstp->rq_procinfo = procp = &versp->vs_proc[rqstp->rq_proc];
1270 
1271 	/* Initialize storage for argp and resp */
1272 	memset(rqstp->rq_argp, 0, procp->pc_argzero);
1273 	memset(rqstp->rq_resp, 0, procp->pc_ressize);
1274 
1275 	/* Bump per-procedure stats counter */
1276 	this_cpu_inc(versp->vs_count[rqstp->rq_proc]);
1277 
1278 	ret->dispatch = versp->vs_dispatch;
1279 	return rpc_success;
1280 err_bad_vers:
1281 	ret->mismatch.lovers = progp->pg_lovers;
1282 	ret->mismatch.hivers = progp->pg_hivers;
1283 	return rpc_prog_mismatch;
1284 err_bad_proc:
1285 	return rpc_proc_unavail;
1286 }
1287 EXPORT_SYMBOL_GPL(svc_generic_init_request);
1288 
1289 /*
1290  * Common routine for processing the RPC request.
1291  */
1292 static int
1293 svc_process_common(struct svc_rqst *rqstp)
1294 {
1295 	struct xdr_stream	*xdr = &rqstp->rq_res_stream;
1296 	struct svc_program	*progp;
1297 	const struct svc_procedure *procp = NULL;
1298 	struct svc_serv		*serv = rqstp->rq_server;
1299 	struct svc_process_info process;
1300 	enum svc_auth_status	auth_res;
1301 	unsigned int		aoffset;
1302 	int			rc;
1303 	__be32			*p;
1304 
1305 	/* Will be turned off by GSS integrity and privacy services */
1306 	set_bit(RQ_SPLICE_OK, &rqstp->rq_flags);
1307 	/* Will be turned off only when NFSv4 Sessions are used */
1308 	set_bit(RQ_USEDEFERRAL, &rqstp->rq_flags);
1309 	clear_bit(RQ_DROPME, &rqstp->rq_flags);
1310 
1311 	/* Construct the first words of the reply: */
1312 	svcxdr_init_encode(rqstp);
1313 	xdr_stream_encode_be32(xdr, rqstp->rq_xid);
1314 	xdr_stream_encode_be32(xdr, rpc_reply);
1315 
1316 	p = xdr_inline_decode(&rqstp->rq_arg_stream, XDR_UNIT * 4);
1317 	if (unlikely(!p))
1318 		goto err_short_len;
1319 	if (*p++ != cpu_to_be32(RPC_VERSION))
1320 		goto err_bad_rpc;
1321 
1322 	xdr_stream_encode_be32(xdr, rpc_msg_accepted);
1323 
1324 	rqstp->rq_prog = be32_to_cpup(p++);
1325 	rqstp->rq_vers = be32_to_cpup(p++);
1326 	rqstp->rq_proc = be32_to_cpup(p);
1327 
1328 	for (progp = serv->sv_program; progp; progp = progp->pg_next)
1329 		if (rqstp->rq_prog == progp->pg_prog)
1330 			break;
1331 
1332 	/*
1333 	 * Decode auth data, and add verifier to reply buffer.
1334 	 * We do this before anything else in order to get a decent
1335 	 * auth verifier.
1336 	 */
1337 	auth_res = svc_authenticate(rqstp);
1338 	/* Also give the program a chance to reject this call: */
1339 	if (auth_res == SVC_OK && progp)
1340 		auth_res = progp->pg_authenticate(rqstp);
1341 	trace_svc_authenticate(rqstp, auth_res);
1342 	switch (auth_res) {
1343 	case SVC_OK:
1344 		break;
1345 	case SVC_GARBAGE:
1346 		goto err_garbage_args;
1347 	case SVC_SYSERR:
1348 		goto err_system_err;
1349 	case SVC_DENIED:
1350 		goto err_bad_auth;
1351 	case SVC_CLOSE:
1352 		goto close;
1353 	case SVC_DROP:
1354 		goto dropit;
1355 	case SVC_COMPLETE:
1356 		goto sendit;
1357 	default:
1358 		pr_warn_once("Unexpected svc_auth_status (%d)\n", auth_res);
1359 		goto err_system_err;
1360 	}
1361 
1362 	if (progp == NULL)
1363 		goto err_bad_prog;
1364 
1365 	switch (progp->pg_init_request(rqstp, progp, &process)) {
1366 	case rpc_success:
1367 		break;
1368 	case rpc_prog_unavail:
1369 		goto err_bad_prog;
1370 	case rpc_prog_mismatch:
1371 		goto err_bad_vers;
1372 	case rpc_proc_unavail:
1373 		goto err_bad_proc;
1374 	}
1375 
1376 	procp = rqstp->rq_procinfo;
1377 	/* Should this check go into the dispatcher? */
1378 	if (!procp || !procp->pc_func)
1379 		goto err_bad_proc;
1380 
1381 	/* Syntactic check complete */
1382 	if (serv->sv_stats)
1383 		serv->sv_stats->rpccnt++;
1384 	trace_svc_process(rqstp, progp->pg_name);
1385 
1386 	aoffset = xdr_stream_pos(xdr);
1387 
1388 	/* un-reserve some of the out-queue now that we have a
1389 	 * better idea of reply size
1390 	 */
1391 	if (procp->pc_xdrressize)
1392 		svc_reserve_auth(rqstp, procp->pc_xdrressize<<2);
1393 
1394 	/* Call the function that processes the request. */
1395 	rc = process.dispatch(rqstp);
1396 	if (procp->pc_release)
1397 		procp->pc_release(rqstp);
1398 	xdr_finish_decode(xdr);
1399 
1400 	if (!rc)
1401 		goto dropit;
1402 	if (rqstp->rq_auth_stat != rpc_auth_ok)
1403 		goto err_bad_auth;
1404 
1405 	if (*rqstp->rq_accept_statp != rpc_success)
1406 		xdr_truncate_encode(xdr, aoffset);
1407 
1408 	if (procp->pc_encode == NULL)
1409 		goto dropit;
1410 
1411  sendit:
1412 	if (svc_authorise(rqstp))
1413 		goto close_xprt;
1414 	return 1;		/* Caller can now send it */
1415 
1416  dropit:
1417 	svc_authorise(rqstp);	/* doesn't hurt to call this twice */
1418 	dprintk("svc: svc_process dropit\n");
1419 	return 0;
1420 
1421  close:
1422 	svc_authorise(rqstp);
1423 close_xprt:
1424 	if (rqstp->rq_xprt && test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags))
1425 		svc_xprt_close(rqstp->rq_xprt);
1426 	dprintk("svc: svc_process close\n");
1427 	return 0;
1428 
1429 err_short_len:
1430 	svc_printk(rqstp, "short len %u, dropping request\n",
1431 		   rqstp->rq_arg.len);
1432 	goto close_xprt;
1433 
1434 err_bad_rpc:
1435 	if (serv->sv_stats)
1436 		serv->sv_stats->rpcbadfmt++;
1437 	xdr_stream_encode_u32(xdr, RPC_MSG_DENIED);
1438 	xdr_stream_encode_u32(xdr, RPC_MISMATCH);
1439 	/* Only RPCv2 supported */
1440 	xdr_stream_encode_u32(xdr, RPC_VERSION);
1441 	xdr_stream_encode_u32(xdr, RPC_VERSION);
1442 	return 1;	/* don't wrap */
1443 
1444 err_bad_auth:
1445 	dprintk("svc: authentication failed (%d)\n",
1446 		be32_to_cpu(rqstp->rq_auth_stat));
1447 	if (serv->sv_stats)
1448 		serv->sv_stats->rpcbadauth++;
1449 	/* Restore write pointer to location of reply status: */
1450 	xdr_truncate_encode(xdr, XDR_UNIT * 2);
1451 	xdr_stream_encode_u32(xdr, RPC_MSG_DENIED);
1452 	xdr_stream_encode_u32(xdr, RPC_AUTH_ERROR);
1453 	xdr_stream_encode_be32(xdr, rqstp->rq_auth_stat);
1454 	goto sendit;
1455 
1456 err_bad_prog:
1457 	dprintk("svc: unknown program %d\n", rqstp->rq_prog);
1458 	if (serv->sv_stats)
1459 		serv->sv_stats->rpcbadfmt++;
1460 	*rqstp->rq_accept_statp = rpc_prog_unavail;
1461 	goto sendit;
1462 
1463 err_bad_vers:
1464 	svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n",
1465 		       rqstp->rq_vers, rqstp->rq_prog, progp->pg_name);
1466 
1467 	if (serv->sv_stats)
1468 		serv->sv_stats->rpcbadfmt++;
1469 	*rqstp->rq_accept_statp = rpc_prog_mismatch;
1470 
1471 	/*
1472 	 * svc_authenticate() has already added the verifier and
1473 	 * advanced the stream just past rq_accept_statp.
1474 	 */
1475 	xdr_stream_encode_u32(xdr, process.mismatch.lovers);
1476 	xdr_stream_encode_u32(xdr, process.mismatch.hivers);
1477 	goto sendit;
1478 
1479 err_bad_proc:
1480 	svc_printk(rqstp, "unknown procedure (%d)\n", rqstp->rq_proc);
1481 
1482 	if (serv->sv_stats)
1483 		serv->sv_stats->rpcbadfmt++;
1484 	*rqstp->rq_accept_statp = rpc_proc_unavail;
1485 	goto sendit;
1486 
1487 err_garbage_args:
1488 	svc_printk(rqstp, "failed to decode RPC header\n");
1489 
1490 	if (serv->sv_stats)
1491 		serv->sv_stats->rpcbadfmt++;
1492 	*rqstp->rq_accept_statp = rpc_garbage_args;
1493 	goto sendit;
1494 
1495 err_system_err:
1496 	if (serv->sv_stats)
1497 		serv->sv_stats->rpcbadfmt++;
1498 	*rqstp->rq_accept_statp = rpc_system_err;
1499 	goto sendit;
1500 }
1501 
1502 /**
1503  * svc_process - Execute one RPC transaction
1504  * @rqstp: RPC transaction context
1505  *
1506  */
1507 void svc_process(struct svc_rqst *rqstp)
1508 {
1509 	struct kvec		*resv = &rqstp->rq_res.head[0];
1510 	__be32 *p;
1511 
1512 #if IS_ENABLED(CONFIG_FAIL_SUNRPC)
1513 	if (!fail_sunrpc.ignore_server_disconnect &&
1514 	    should_fail(&fail_sunrpc.attr, 1))
1515 		svc_xprt_deferred_close(rqstp->rq_xprt);
1516 #endif
1517 
1518 	/*
1519 	 * Setup response xdr_buf.
1520 	 * Initially it has just one page
1521 	 */
1522 	rqstp->rq_next_page = &rqstp->rq_respages[1];
1523 	resv->iov_base = page_address(rqstp->rq_respages[0]);
1524 	resv->iov_len = 0;
1525 	rqstp->rq_res.pages = rqstp->rq_next_page;
1526 	rqstp->rq_res.len = 0;
1527 	rqstp->rq_res.page_base = 0;
1528 	rqstp->rq_res.page_len = 0;
1529 	rqstp->rq_res.buflen = PAGE_SIZE;
1530 	rqstp->rq_res.tail[0].iov_base = NULL;
1531 	rqstp->rq_res.tail[0].iov_len = 0;
1532 
1533 	svcxdr_init_decode(rqstp);
1534 	p = xdr_inline_decode(&rqstp->rq_arg_stream, XDR_UNIT * 2);
1535 	if (unlikely(!p))
1536 		goto out_drop;
1537 	rqstp->rq_xid = *p++;
1538 	if (unlikely(*p != rpc_call))
1539 		goto out_baddir;
1540 
1541 	if (!svc_process_common(rqstp))
1542 		goto out_drop;
1543 	svc_send(rqstp);
1544 	return;
1545 
1546 out_baddir:
1547 	svc_printk(rqstp, "bad direction 0x%08x, dropping request\n",
1548 		   be32_to_cpu(*p));
1549 	if (rqstp->rq_server->sv_stats)
1550 		rqstp->rq_server->sv_stats->rpcbadfmt++;
1551 out_drop:
1552 	svc_drop(rqstp);
1553 }
1554 
1555 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1556 /*
1557  * Process a backchannel RPC request that arrived over an existing
1558  * outbound connection
1559  */
1560 int
1561 bc_svc_process(struct svc_serv *serv, struct rpc_rqst *req,
1562 	       struct svc_rqst *rqstp)
1563 {
1564 	struct rpc_task *task;
1565 	int proc_error;
1566 	int error;
1567 
1568 	dprintk("svc: %s(%p)\n", __func__, req);
1569 
1570 	/* Build the svc_rqst used by the common processing routine */
1571 	rqstp->rq_xid = req->rq_xid;
1572 	rqstp->rq_prot = req->rq_xprt->prot;
1573 	rqstp->rq_server = serv;
1574 	rqstp->rq_bc_net = req->rq_xprt->xprt_net;
1575 
1576 	rqstp->rq_addrlen = sizeof(req->rq_xprt->addr);
1577 	memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen);
1578 	memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg));
1579 	memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res));
1580 
1581 	/* Adjust the argument buffer length */
1582 	rqstp->rq_arg.len = req->rq_private_buf.len;
1583 	if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) {
1584 		rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len;
1585 		rqstp->rq_arg.page_len = 0;
1586 	} else if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len +
1587 			rqstp->rq_arg.page_len)
1588 		rqstp->rq_arg.page_len = rqstp->rq_arg.len -
1589 			rqstp->rq_arg.head[0].iov_len;
1590 	else
1591 		rqstp->rq_arg.len = rqstp->rq_arg.head[0].iov_len +
1592 			rqstp->rq_arg.page_len;
1593 
1594 	/* Reset the response buffer */
1595 	rqstp->rq_res.head[0].iov_len = 0;
1596 
1597 	/*
1598 	 * Skip the XID and calldir fields because they've already
1599 	 * been processed by the caller.
1600 	 */
1601 	svcxdr_init_decode(rqstp);
1602 	if (!xdr_inline_decode(&rqstp->rq_arg_stream, XDR_UNIT * 2)) {
1603 		error = -EINVAL;
1604 		goto out;
1605 	}
1606 
1607 	/* Parse and execute the bc call */
1608 	proc_error = svc_process_common(rqstp);
1609 
1610 	atomic_dec(&req->rq_xprt->bc_slot_count);
1611 	if (!proc_error) {
1612 		/* Processing error: drop the request */
1613 		xprt_free_bc_request(req);
1614 		error = -EINVAL;
1615 		goto out;
1616 	}
1617 	/* Finally, send the reply synchronously */
1618 	memcpy(&req->rq_snd_buf, &rqstp->rq_res, sizeof(req->rq_snd_buf));
1619 	task = rpc_run_bc_task(req);
1620 	if (IS_ERR(task)) {
1621 		error = PTR_ERR(task);
1622 		goto out;
1623 	}
1624 
1625 	WARN_ON_ONCE(atomic_read(&task->tk_count) != 1);
1626 	error = task->tk_status;
1627 	rpc_put_task(task);
1628 
1629 out:
1630 	dprintk("svc: %s(), error=%d\n", __func__, error);
1631 	return error;
1632 }
1633 EXPORT_SYMBOL_GPL(bc_svc_process);
1634 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
1635 
1636 /**
1637  * svc_max_payload - Return transport-specific limit on the RPC payload
1638  * @rqstp: RPC transaction context
1639  *
1640  * Returns the maximum number of payload bytes the current transport
1641  * allows.
1642  */
1643 u32 svc_max_payload(const struct svc_rqst *rqstp)
1644 {
1645 	u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload;
1646 
1647 	if (rqstp->rq_server->sv_max_payload < max)
1648 		max = rqstp->rq_server->sv_max_payload;
1649 	return max;
1650 }
1651 EXPORT_SYMBOL_GPL(svc_max_payload);
1652 
1653 /**
1654  * svc_proc_name - Return RPC procedure name in string form
1655  * @rqstp: svc_rqst to operate on
1656  *
1657  * Return value:
1658  *   Pointer to a NUL-terminated string
1659  */
1660 const char *svc_proc_name(const struct svc_rqst *rqstp)
1661 {
1662 	if (rqstp && rqstp->rq_procinfo)
1663 		return rqstp->rq_procinfo->pc_name;
1664 	return "unknown";
1665 }
1666 
1667 
1668 /**
1669  * svc_encode_result_payload - mark a range of bytes as a result payload
1670  * @rqstp: svc_rqst to operate on
1671  * @offset: payload's byte offset in rqstp->rq_res
1672  * @length: size of payload, in bytes
1673  *
1674  * Returns zero on success, or a negative errno if a permanent
1675  * error occurred.
1676  */
1677 int svc_encode_result_payload(struct svc_rqst *rqstp, unsigned int offset,
1678 			      unsigned int length)
1679 {
1680 	return rqstp->rq_xprt->xpt_ops->xpo_result_payload(rqstp, offset,
1681 							   length);
1682 }
1683 EXPORT_SYMBOL_GPL(svc_encode_result_payload);
1684 
1685 /**
1686  * svc_fill_write_vector - Construct data argument for VFS write call
1687  * @rqstp: svc_rqst to operate on
1688  * @payload: xdr_buf containing only the write data payload
1689  *
1690  * Fills in rqstp::rq_vec, and returns the number of elements.
1691  */
1692 unsigned int svc_fill_write_vector(struct svc_rqst *rqstp,
1693 				   struct xdr_buf *payload)
1694 {
1695 	struct page **pages = payload->pages;
1696 	struct kvec *first = payload->head;
1697 	struct kvec *vec = rqstp->rq_vec;
1698 	size_t total = payload->len;
1699 	unsigned int i;
1700 
1701 	/* Some types of transport can present the write payload
1702 	 * entirely in rq_arg.pages. In this case, @first is empty.
1703 	 */
1704 	i = 0;
1705 	if (first->iov_len) {
1706 		vec[i].iov_base = first->iov_base;
1707 		vec[i].iov_len = min_t(size_t, total, first->iov_len);
1708 		total -= vec[i].iov_len;
1709 		++i;
1710 	}
1711 
1712 	while (total) {
1713 		vec[i].iov_base = page_address(*pages);
1714 		vec[i].iov_len = min_t(size_t, total, PAGE_SIZE);
1715 		total -= vec[i].iov_len;
1716 		++i;
1717 		++pages;
1718 	}
1719 
1720 	WARN_ON_ONCE(i > ARRAY_SIZE(rqstp->rq_vec));
1721 	return i;
1722 }
1723 EXPORT_SYMBOL_GPL(svc_fill_write_vector);
1724 
1725 /**
1726  * svc_fill_symlink_pathname - Construct pathname argument for VFS symlink call
1727  * @rqstp: svc_rqst to operate on
1728  * @first: buffer containing first section of pathname
1729  * @p: buffer containing remaining section of pathname
1730  * @total: total length of the pathname argument
1731  *
1732  * The VFS symlink API demands a NUL-terminated pathname in mapped memory.
1733  * Returns pointer to a NUL-terminated string, or an ERR_PTR. Caller must free
1734  * the returned string.
1735  */
1736 char *svc_fill_symlink_pathname(struct svc_rqst *rqstp, struct kvec *first,
1737 				void *p, size_t total)
1738 {
1739 	size_t len, remaining;
1740 	char *result, *dst;
1741 
1742 	result = kmalloc(total + 1, GFP_KERNEL);
1743 	if (!result)
1744 		return ERR_PTR(-ESERVERFAULT);
1745 
1746 	dst = result;
1747 	remaining = total;
1748 
1749 	len = min_t(size_t, total, first->iov_len);
1750 	if (len) {
1751 		memcpy(dst, first->iov_base, len);
1752 		dst += len;
1753 		remaining -= len;
1754 	}
1755 
1756 	if (remaining) {
1757 		len = min_t(size_t, remaining, PAGE_SIZE);
1758 		memcpy(dst, p, len);
1759 		dst += len;
1760 	}
1761 
1762 	*dst = '\0';
1763 
1764 	/* Sanity check: Linux doesn't allow the pathname argument to
1765 	 * contain a NUL byte.
1766 	 */
1767 	if (strlen(result) != total) {
1768 		kfree(result);
1769 		return ERR_PTR(-EINVAL);
1770 	}
1771 	return result;
1772 }
1773 EXPORT_SYMBOL_GPL(svc_fill_symlink_pathname);
1774