1 /* 2 * linux/net/sunrpc/svc.c 3 * 4 * High-level RPC service routines 5 * 6 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 7 * 8 * Multiple threads pools and NUMAisation 9 * Copyright (c) 2006 Silicon Graphics, Inc. 10 * by Greg Banks <gnb@melbourne.sgi.com> 11 */ 12 13 #include <linux/linkage.h> 14 #include <linux/sched/signal.h> 15 #include <linux/errno.h> 16 #include <linux/net.h> 17 #include <linux/in.h> 18 #include <linux/mm.h> 19 #include <linux/interrupt.h> 20 #include <linux/module.h> 21 #include <linux/kthread.h> 22 #include <linux/slab.h> 23 24 #include <linux/sunrpc/types.h> 25 #include <linux/sunrpc/xdr.h> 26 #include <linux/sunrpc/stats.h> 27 #include <linux/sunrpc/svcsock.h> 28 #include <linux/sunrpc/clnt.h> 29 #include <linux/sunrpc/bc_xprt.h> 30 31 #include <trace/events/sunrpc.h> 32 33 #define RPCDBG_FACILITY RPCDBG_SVCDSP 34 35 static void svc_unregister(const struct svc_serv *serv, struct net *net); 36 37 #define svc_serv_is_pooled(serv) ((serv)->sv_ops->svo_function) 38 39 #define SVC_POOL_DEFAULT SVC_POOL_GLOBAL 40 41 /* 42 * Structure for mapping cpus to pools and vice versa. 43 * Setup once during sunrpc initialisation. 44 */ 45 struct svc_pool_map svc_pool_map = { 46 .mode = SVC_POOL_DEFAULT 47 }; 48 EXPORT_SYMBOL_GPL(svc_pool_map); 49 50 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */ 51 52 static int 53 param_set_pool_mode(const char *val, struct kernel_param *kp) 54 { 55 int *ip = (int *)kp->arg; 56 struct svc_pool_map *m = &svc_pool_map; 57 int err; 58 59 mutex_lock(&svc_pool_map_mutex); 60 61 err = -EBUSY; 62 if (m->count) 63 goto out; 64 65 err = 0; 66 if (!strncmp(val, "auto", 4)) 67 *ip = SVC_POOL_AUTO; 68 else if (!strncmp(val, "global", 6)) 69 *ip = SVC_POOL_GLOBAL; 70 else if (!strncmp(val, "percpu", 6)) 71 *ip = SVC_POOL_PERCPU; 72 else if (!strncmp(val, "pernode", 7)) 73 *ip = SVC_POOL_PERNODE; 74 else 75 err = -EINVAL; 76 77 out: 78 mutex_unlock(&svc_pool_map_mutex); 79 return err; 80 } 81 82 static int 83 param_get_pool_mode(char *buf, struct kernel_param *kp) 84 { 85 int *ip = (int *)kp->arg; 86 87 switch (*ip) 88 { 89 case SVC_POOL_AUTO: 90 return strlcpy(buf, "auto", 20); 91 case SVC_POOL_GLOBAL: 92 return strlcpy(buf, "global", 20); 93 case SVC_POOL_PERCPU: 94 return strlcpy(buf, "percpu", 20); 95 case SVC_POOL_PERNODE: 96 return strlcpy(buf, "pernode", 20); 97 default: 98 return sprintf(buf, "%d", *ip); 99 } 100 } 101 102 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode, 103 &svc_pool_map.mode, 0644); 104 105 /* 106 * Detect best pool mapping mode heuristically, 107 * according to the machine's topology. 108 */ 109 static int 110 svc_pool_map_choose_mode(void) 111 { 112 unsigned int node; 113 114 if (nr_online_nodes > 1) { 115 /* 116 * Actually have multiple NUMA nodes, 117 * so split pools on NUMA node boundaries 118 */ 119 return SVC_POOL_PERNODE; 120 } 121 122 node = first_online_node; 123 if (nr_cpus_node(node) > 2) { 124 /* 125 * Non-trivial SMP, or CONFIG_NUMA on 126 * non-NUMA hardware, e.g. with a generic 127 * x86_64 kernel on Xeons. In this case we 128 * want to divide the pools on cpu boundaries. 129 */ 130 return SVC_POOL_PERCPU; 131 } 132 133 /* default: one global pool */ 134 return SVC_POOL_GLOBAL; 135 } 136 137 /* 138 * Allocate the to_pool[] and pool_to[] arrays. 139 * Returns 0 on success or an errno. 140 */ 141 static int 142 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools) 143 { 144 m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL); 145 if (!m->to_pool) 146 goto fail; 147 m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL); 148 if (!m->pool_to) 149 goto fail_free; 150 151 return 0; 152 153 fail_free: 154 kfree(m->to_pool); 155 m->to_pool = NULL; 156 fail: 157 return -ENOMEM; 158 } 159 160 /* 161 * Initialise the pool map for SVC_POOL_PERCPU mode. 162 * Returns number of pools or <0 on error. 163 */ 164 static int 165 svc_pool_map_init_percpu(struct svc_pool_map *m) 166 { 167 unsigned int maxpools = nr_cpu_ids; 168 unsigned int pidx = 0; 169 unsigned int cpu; 170 int err; 171 172 err = svc_pool_map_alloc_arrays(m, maxpools); 173 if (err) 174 return err; 175 176 for_each_online_cpu(cpu) { 177 BUG_ON(pidx >= maxpools); 178 m->to_pool[cpu] = pidx; 179 m->pool_to[pidx] = cpu; 180 pidx++; 181 } 182 /* cpus brought online later all get mapped to pool0, sorry */ 183 184 return pidx; 185 }; 186 187 188 /* 189 * Initialise the pool map for SVC_POOL_PERNODE mode. 190 * Returns number of pools or <0 on error. 191 */ 192 static int 193 svc_pool_map_init_pernode(struct svc_pool_map *m) 194 { 195 unsigned int maxpools = nr_node_ids; 196 unsigned int pidx = 0; 197 unsigned int node; 198 int err; 199 200 err = svc_pool_map_alloc_arrays(m, maxpools); 201 if (err) 202 return err; 203 204 for_each_node_with_cpus(node) { 205 /* some architectures (e.g. SN2) have cpuless nodes */ 206 BUG_ON(pidx > maxpools); 207 m->to_pool[node] = pidx; 208 m->pool_to[pidx] = node; 209 pidx++; 210 } 211 /* nodes brought online later all get mapped to pool0, sorry */ 212 213 return pidx; 214 } 215 216 217 /* 218 * Add a reference to the global map of cpus to pools (and 219 * vice versa). Initialise the map if we're the first user. 220 * Returns the number of pools. 221 */ 222 unsigned int 223 svc_pool_map_get(void) 224 { 225 struct svc_pool_map *m = &svc_pool_map; 226 int npools = -1; 227 228 mutex_lock(&svc_pool_map_mutex); 229 230 if (m->count++) { 231 mutex_unlock(&svc_pool_map_mutex); 232 return m->npools; 233 } 234 235 if (m->mode == SVC_POOL_AUTO) 236 m->mode = svc_pool_map_choose_mode(); 237 238 switch (m->mode) { 239 case SVC_POOL_PERCPU: 240 npools = svc_pool_map_init_percpu(m); 241 break; 242 case SVC_POOL_PERNODE: 243 npools = svc_pool_map_init_pernode(m); 244 break; 245 } 246 247 if (npools < 0) { 248 /* default, or memory allocation failure */ 249 npools = 1; 250 m->mode = SVC_POOL_GLOBAL; 251 } 252 m->npools = npools; 253 254 mutex_unlock(&svc_pool_map_mutex); 255 return m->npools; 256 } 257 EXPORT_SYMBOL_GPL(svc_pool_map_get); 258 259 /* 260 * Drop a reference to the global map of cpus to pools. 261 * When the last reference is dropped, the map data is 262 * freed; this allows the sysadmin to change the pool 263 * mode using the pool_mode module option without 264 * rebooting or re-loading sunrpc.ko. 265 */ 266 void 267 svc_pool_map_put(void) 268 { 269 struct svc_pool_map *m = &svc_pool_map; 270 271 mutex_lock(&svc_pool_map_mutex); 272 273 if (!--m->count) { 274 kfree(m->to_pool); 275 m->to_pool = NULL; 276 kfree(m->pool_to); 277 m->pool_to = NULL; 278 m->npools = 0; 279 } 280 281 mutex_unlock(&svc_pool_map_mutex); 282 } 283 EXPORT_SYMBOL_GPL(svc_pool_map_put); 284 285 static int svc_pool_map_get_node(unsigned int pidx) 286 { 287 const struct svc_pool_map *m = &svc_pool_map; 288 289 if (m->count) { 290 if (m->mode == SVC_POOL_PERCPU) 291 return cpu_to_node(m->pool_to[pidx]); 292 if (m->mode == SVC_POOL_PERNODE) 293 return m->pool_to[pidx]; 294 } 295 return NUMA_NO_NODE; 296 } 297 /* 298 * Set the given thread's cpus_allowed mask so that it 299 * will only run on cpus in the given pool. 300 */ 301 static inline void 302 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx) 303 { 304 struct svc_pool_map *m = &svc_pool_map; 305 unsigned int node = m->pool_to[pidx]; 306 307 /* 308 * The caller checks for sv_nrpools > 1, which 309 * implies that we've been initialized. 310 */ 311 WARN_ON_ONCE(m->count == 0); 312 if (m->count == 0) 313 return; 314 315 switch (m->mode) { 316 case SVC_POOL_PERCPU: 317 { 318 set_cpus_allowed_ptr(task, cpumask_of(node)); 319 break; 320 } 321 case SVC_POOL_PERNODE: 322 { 323 set_cpus_allowed_ptr(task, cpumask_of_node(node)); 324 break; 325 } 326 } 327 } 328 329 /* 330 * Use the mapping mode to choose a pool for a given CPU. 331 * Used when enqueueing an incoming RPC. Always returns 332 * a non-NULL pool pointer. 333 */ 334 struct svc_pool * 335 svc_pool_for_cpu(struct svc_serv *serv, int cpu) 336 { 337 struct svc_pool_map *m = &svc_pool_map; 338 unsigned int pidx = 0; 339 340 /* 341 * An uninitialised map happens in a pure client when 342 * lockd is brought up, so silently treat it the 343 * same as SVC_POOL_GLOBAL. 344 */ 345 if (svc_serv_is_pooled(serv)) { 346 switch (m->mode) { 347 case SVC_POOL_PERCPU: 348 pidx = m->to_pool[cpu]; 349 break; 350 case SVC_POOL_PERNODE: 351 pidx = m->to_pool[cpu_to_node(cpu)]; 352 break; 353 } 354 } 355 return &serv->sv_pools[pidx % serv->sv_nrpools]; 356 } 357 358 int svc_rpcb_setup(struct svc_serv *serv, struct net *net) 359 { 360 int err; 361 362 err = rpcb_create_local(net); 363 if (err) 364 return err; 365 366 /* Remove any stale portmap registrations */ 367 svc_unregister(serv, net); 368 return 0; 369 } 370 EXPORT_SYMBOL_GPL(svc_rpcb_setup); 371 372 void svc_rpcb_cleanup(struct svc_serv *serv, struct net *net) 373 { 374 svc_unregister(serv, net); 375 rpcb_put_local(net); 376 } 377 EXPORT_SYMBOL_GPL(svc_rpcb_cleanup); 378 379 static int svc_uses_rpcbind(struct svc_serv *serv) 380 { 381 struct svc_program *progp; 382 unsigned int i; 383 384 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 385 for (i = 0; i < progp->pg_nvers; i++) { 386 if (progp->pg_vers[i] == NULL) 387 continue; 388 if (!progp->pg_vers[i]->vs_hidden) 389 return 1; 390 } 391 } 392 393 return 0; 394 } 395 396 int svc_bind(struct svc_serv *serv, struct net *net) 397 { 398 if (!svc_uses_rpcbind(serv)) 399 return 0; 400 return svc_rpcb_setup(serv, net); 401 } 402 EXPORT_SYMBOL_GPL(svc_bind); 403 404 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 405 static void 406 __svc_init_bc(struct svc_serv *serv) 407 { 408 INIT_LIST_HEAD(&serv->sv_cb_list); 409 spin_lock_init(&serv->sv_cb_lock); 410 init_waitqueue_head(&serv->sv_cb_waitq); 411 } 412 #else 413 static void 414 __svc_init_bc(struct svc_serv *serv) 415 { 416 } 417 #endif 418 419 /* 420 * Create an RPC service 421 */ 422 static struct svc_serv * 423 __svc_create(struct svc_program *prog, unsigned int bufsize, int npools, 424 struct svc_serv_ops *ops) 425 { 426 struct svc_serv *serv; 427 unsigned int vers; 428 unsigned int xdrsize; 429 unsigned int i; 430 431 if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL))) 432 return NULL; 433 serv->sv_name = prog->pg_name; 434 serv->sv_program = prog; 435 serv->sv_nrthreads = 1; 436 serv->sv_stats = prog->pg_stats; 437 if (bufsize > RPCSVC_MAXPAYLOAD) 438 bufsize = RPCSVC_MAXPAYLOAD; 439 serv->sv_max_payload = bufsize? bufsize : 4096; 440 serv->sv_max_mesg = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE); 441 serv->sv_ops = ops; 442 xdrsize = 0; 443 while (prog) { 444 prog->pg_lovers = prog->pg_nvers-1; 445 for (vers=0; vers<prog->pg_nvers ; vers++) 446 if (prog->pg_vers[vers]) { 447 prog->pg_hivers = vers; 448 if (prog->pg_lovers > vers) 449 prog->pg_lovers = vers; 450 if (prog->pg_vers[vers]->vs_xdrsize > xdrsize) 451 xdrsize = prog->pg_vers[vers]->vs_xdrsize; 452 } 453 prog = prog->pg_next; 454 } 455 serv->sv_xdrsize = xdrsize; 456 INIT_LIST_HEAD(&serv->sv_tempsocks); 457 INIT_LIST_HEAD(&serv->sv_permsocks); 458 init_timer(&serv->sv_temptimer); 459 spin_lock_init(&serv->sv_lock); 460 461 __svc_init_bc(serv); 462 463 serv->sv_nrpools = npools; 464 serv->sv_pools = 465 kcalloc(serv->sv_nrpools, sizeof(struct svc_pool), 466 GFP_KERNEL); 467 if (!serv->sv_pools) { 468 kfree(serv); 469 return NULL; 470 } 471 472 for (i = 0; i < serv->sv_nrpools; i++) { 473 struct svc_pool *pool = &serv->sv_pools[i]; 474 475 dprintk("svc: initialising pool %u for %s\n", 476 i, serv->sv_name); 477 478 pool->sp_id = i; 479 INIT_LIST_HEAD(&pool->sp_sockets); 480 INIT_LIST_HEAD(&pool->sp_all_threads); 481 spin_lock_init(&pool->sp_lock); 482 } 483 484 return serv; 485 } 486 487 struct svc_serv * 488 svc_create(struct svc_program *prog, unsigned int bufsize, 489 struct svc_serv_ops *ops) 490 { 491 return __svc_create(prog, bufsize, /*npools*/1, ops); 492 } 493 EXPORT_SYMBOL_GPL(svc_create); 494 495 struct svc_serv * 496 svc_create_pooled(struct svc_program *prog, unsigned int bufsize, 497 struct svc_serv_ops *ops) 498 { 499 struct svc_serv *serv; 500 unsigned int npools = svc_pool_map_get(); 501 502 serv = __svc_create(prog, bufsize, npools, ops); 503 if (!serv) 504 goto out_err; 505 return serv; 506 out_err: 507 svc_pool_map_put(); 508 return NULL; 509 } 510 EXPORT_SYMBOL_GPL(svc_create_pooled); 511 512 void svc_shutdown_net(struct svc_serv *serv, struct net *net) 513 { 514 svc_close_net(serv, net); 515 516 if (serv->sv_ops->svo_shutdown) 517 serv->sv_ops->svo_shutdown(serv, net); 518 } 519 EXPORT_SYMBOL_GPL(svc_shutdown_net); 520 521 /* 522 * Destroy an RPC service. Should be called with appropriate locking to 523 * protect the sv_nrthreads, sv_permsocks and sv_tempsocks. 524 */ 525 void 526 svc_destroy(struct svc_serv *serv) 527 { 528 dprintk("svc: svc_destroy(%s, %d)\n", 529 serv->sv_program->pg_name, 530 serv->sv_nrthreads); 531 532 if (serv->sv_nrthreads) { 533 if (--(serv->sv_nrthreads) != 0) { 534 svc_sock_update_bufs(serv); 535 return; 536 } 537 } else 538 printk("svc_destroy: no threads for serv=%p!\n", serv); 539 540 del_timer_sync(&serv->sv_temptimer); 541 542 /* 543 * The last user is gone and thus all sockets have to be destroyed to 544 * the point. Check this. 545 */ 546 BUG_ON(!list_empty(&serv->sv_permsocks)); 547 BUG_ON(!list_empty(&serv->sv_tempsocks)); 548 549 cache_clean_deferred(serv); 550 551 if (svc_serv_is_pooled(serv)) 552 svc_pool_map_put(); 553 554 kfree(serv->sv_pools); 555 kfree(serv); 556 } 557 EXPORT_SYMBOL_GPL(svc_destroy); 558 559 /* 560 * Allocate an RPC server's buffer space. 561 * We allocate pages and place them in rq_argpages. 562 */ 563 static int 564 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size, int node) 565 { 566 unsigned int pages, arghi; 567 568 /* bc_xprt uses fore channel allocated buffers */ 569 if (svc_is_backchannel(rqstp)) 570 return 1; 571 572 pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply. 573 * We assume one is at most one page 574 */ 575 arghi = 0; 576 WARN_ON_ONCE(pages > RPCSVC_MAXPAGES); 577 if (pages > RPCSVC_MAXPAGES) 578 pages = RPCSVC_MAXPAGES; 579 while (pages) { 580 struct page *p = alloc_pages_node(node, GFP_KERNEL, 0); 581 if (!p) 582 break; 583 rqstp->rq_pages[arghi++] = p; 584 pages--; 585 } 586 return pages == 0; 587 } 588 589 /* 590 * Release an RPC server buffer 591 */ 592 static void 593 svc_release_buffer(struct svc_rqst *rqstp) 594 { 595 unsigned int i; 596 597 for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++) 598 if (rqstp->rq_pages[i]) 599 put_page(rqstp->rq_pages[i]); 600 } 601 602 struct svc_rqst * 603 svc_rqst_alloc(struct svc_serv *serv, struct svc_pool *pool, int node) 604 { 605 struct svc_rqst *rqstp; 606 607 rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node); 608 if (!rqstp) 609 return rqstp; 610 611 __set_bit(RQ_BUSY, &rqstp->rq_flags); 612 spin_lock_init(&rqstp->rq_lock); 613 rqstp->rq_server = serv; 614 rqstp->rq_pool = pool; 615 616 rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node); 617 if (!rqstp->rq_argp) 618 goto out_enomem; 619 620 rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node); 621 if (!rqstp->rq_resp) 622 goto out_enomem; 623 624 if (!svc_init_buffer(rqstp, serv->sv_max_mesg, node)) 625 goto out_enomem; 626 627 return rqstp; 628 out_enomem: 629 svc_rqst_free(rqstp); 630 return NULL; 631 } 632 EXPORT_SYMBOL_GPL(svc_rqst_alloc); 633 634 struct svc_rqst * 635 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node) 636 { 637 struct svc_rqst *rqstp; 638 639 rqstp = svc_rqst_alloc(serv, pool, node); 640 if (!rqstp) 641 return ERR_PTR(-ENOMEM); 642 643 serv->sv_nrthreads++; 644 spin_lock_bh(&pool->sp_lock); 645 pool->sp_nrthreads++; 646 list_add_rcu(&rqstp->rq_all, &pool->sp_all_threads); 647 spin_unlock_bh(&pool->sp_lock); 648 return rqstp; 649 } 650 EXPORT_SYMBOL_GPL(svc_prepare_thread); 651 652 /* 653 * Choose a pool in which to create a new thread, for svc_set_num_threads 654 */ 655 static inline struct svc_pool * 656 choose_pool(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state) 657 { 658 if (pool != NULL) 659 return pool; 660 661 return &serv->sv_pools[(*state)++ % serv->sv_nrpools]; 662 } 663 664 /* 665 * Choose a thread to kill, for svc_set_num_threads 666 */ 667 static inline struct task_struct * 668 choose_victim(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state) 669 { 670 unsigned int i; 671 struct task_struct *task = NULL; 672 673 if (pool != NULL) { 674 spin_lock_bh(&pool->sp_lock); 675 } else { 676 /* choose a pool in round-robin fashion */ 677 for (i = 0; i < serv->sv_nrpools; i++) { 678 pool = &serv->sv_pools[--(*state) % serv->sv_nrpools]; 679 spin_lock_bh(&pool->sp_lock); 680 if (!list_empty(&pool->sp_all_threads)) 681 goto found_pool; 682 spin_unlock_bh(&pool->sp_lock); 683 } 684 return NULL; 685 } 686 687 found_pool: 688 if (!list_empty(&pool->sp_all_threads)) { 689 struct svc_rqst *rqstp; 690 691 /* 692 * Remove from the pool->sp_all_threads list 693 * so we don't try to kill it again. 694 */ 695 rqstp = list_entry(pool->sp_all_threads.next, struct svc_rqst, rq_all); 696 set_bit(RQ_VICTIM, &rqstp->rq_flags); 697 list_del_rcu(&rqstp->rq_all); 698 task = rqstp->rq_task; 699 } 700 spin_unlock_bh(&pool->sp_lock); 701 702 return task; 703 } 704 705 /* 706 * Create or destroy enough new threads to make the number 707 * of threads the given number. If `pool' is non-NULL, applies 708 * only to threads in that pool, otherwise round-robins between 709 * all pools. Caller must ensure that mutual exclusion between this and 710 * server startup or shutdown. 711 * 712 * Destroying threads relies on the service threads filling in 713 * rqstp->rq_task, which only the nfs ones do. Assumes the serv 714 * has been created using svc_create_pooled(). 715 * 716 * Based on code that used to be in nfsd_svc() but tweaked 717 * to be pool-aware. 718 */ 719 int 720 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs) 721 { 722 struct svc_rqst *rqstp; 723 struct task_struct *task; 724 struct svc_pool *chosen_pool; 725 int error = 0; 726 unsigned int state = serv->sv_nrthreads-1; 727 int node; 728 729 if (pool == NULL) { 730 /* The -1 assumes caller has done a svc_get() */ 731 nrservs -= (serv->sv_nrthreads-1); 732 } else { 733 spin_lock_bh(&pool->sp_lock); 734 nrservs -= pool->sp_nrthreads; 735 spin_unlock_bh(&pool->sp_lock); 736 } 737 738 /* create new threads */ 739 while (nrservs > 0) { 740 nrservs--; 741 chosen_pool = choose_pool(serv, pool, &state); 742 743 node = svc_pool_map_get_node(chosen_pool->sp_id); 744 rqstp = svc_prepare_thread(serv, chosen_pool, node); 745 if (IS_ERR(rqstp)) { 746 error = PTR_ERR(rqstp); 747 break; 748 } 749 750 __module_get(serv->sv_ops->svo_module); 751 task = kthread_create_on_node(serv->sv_ops->svo_function, rqstp, 752 node, "%s", serv->sv_name); 753 if (IS_ERR(task)) { 754 error = PTR_ERR(task); 755 module_put(serv->sv_ops->svo_module); 756 svc_exit_thread(rqstp); 757 break; 758 } 759 760 rqstp->rq_task = task; 761 if (serv->sv_nrpools > 1) 762 svc_pool_map_set_cpumask(task, chosen_pool->sp_id); 763 764 svc_sock_update_bufs(serv); 765 wake_up_process(task); 766 } 767 /* destroy old threads */ 768 while (nrservs < 0 && 769 (task = choose_victim(serv, pool, &state)) != NULL) { 770 send_sig(SIGINT, task, 1); 771 nrservs++; 772 } 773 774 return error; 775 } 776 EXPORT_SYMBOL_GPL(svc_set_num_threads); 777 778 /* 779 * Called from a server thread as it's exiting. Caller must hold the "service 780 * mutex" for the service. 781 */ 782 void 783 svc_rqst_free(struct svc_rqst *rqstp) 784 { 785 svc_release_buffer(rqstp); 786 kfree(rqstp->rq_resp); 787 kfree(rqstp->rq_argp); 788 kfree(rqstp->rq_auth_data); 789 kfree_rcu(rqstp, rq_rcu_head); 790 } 791 EXPORT_SYMBOL_GPL(svc_rqst_free); 792 793 void 794 svc_exit_thread(struct svc_rqst *rqstp) 795 { 796 struct svc_serv *serv = rqstp->rq_server; 797 struct svc_pool *pool = rqstp->rq_pool; 798 799 spin_lock_bh(&pool->sp_lock); 800 pool->sp_nrthreads--; 801 if (!test_and_set_bit(RQ_VICTIM, &rqstp->rq_flags)) 802 list_del_rcu(&rqstp->rq_all); 803 spin_unlock_bh(&pool->sp_lock); 804 805 svc_rqst_free(rqstp); 806 807 /* Release the server */ 808 if (serv) 809 svc_destroy(serv); 810 } 811 EXPORT_SYMBOL_GPL(svc_exit_thread); 812 813 /* 814 * Register an "inet" protocol family netid with the local 815 * rpcbind daemon via an rpcbind v4 SET request. 816 * 817 * No netconfig infrastructure is available in the kernel, so 818 * we map IP_ protocol numbers to netids by hand. 819 * 820 * Returns zero on success; a negative errno value is returned 821 * if any error occurs. 822 */ 823 static int __svc_rpcb_register4(struct net *net, const u32 program, 824 const u32 version, 825 const unsigned short protocol, 826 const unsigned short port) 827 { 828 const struct sockaddr_in sin = { 829 .sin_family = AF_INET, 830 .sin_addr.s_addr = htonl(INADDR_ANY), 831 .sin_port = htons(port), 832 }; 833 const char *netid; 834 int error; 835 836 switch (protocol) { 837 case IPPROTO_UDP: 838 netid = RPCBIND_NETID_UDP; 839 break; 840 case IPPROTO_TCP: 841 netid = RPCBIND_NETID_TCP; 842 break; 843 default: 844 return -ENOPROTOOPT; 845 } 846 847 error = rpcb_v4_register(net, program, version, 848 (const struct sockaddr *)&sin, netid); 849 850 /* 851 * User space didn't support rpcbind v4, so retry this 852 * registration request with the legacy rpcbind v2 protocol. 853 */ 854 if (error == -EPROTONOSUPPORT) 855 error = rpcb_register(net, program, version, protocol, port); 856 857 return error; 858 } 859 860 #if IS_ENABLED(CONFIG_IPV6) 861 /* 862 * Register an "inet6" protocol family netid with the local 863 * rpcbind daemon via an rpcbind v4 SET request. 864 * 865 * No netconfig infrastructure is available in the kernel, so 866 * we map IP_ protocol numbers to netids by hand. 867 * 868 * Returns zero on success; a negative errno value is returned 869 * if any error occurs. 870 */ 871 static int __svc_rpcb_register6(struct net *net, const u32 program, 872 const u32 version, 873 const unsigned short protocol, 874 const unsigned short port) 875 { 876 const struct sockaddr_in6 sin6 = { 877 .sin6_family = AF_INET6, 878 .sin6_addr = IN6ADDR_ANY_INIT, 879 .sin6_port = htons(port), 880 }; 881 const char *netid; 882 int error; 883 884 switch (protocol) { 885 case IPPROTO_UDP: 886 netid = RPCBIND_NETID_UDP6; 887 break; 888 case IPPROTO_TCP: 889 netid = RPCBIND_NETID_TCP6; 890 break; 891 default: 892 return -ENOPROTOOPT; 893 } 894 895 error = rpcb_v4_register(net, program, version, 896 (const struct sockaddr *)&sin6, netid); 897 898 /* 899 * User space didn't support rpcbind version 4, so we won't 900 * use a PF_INET6 listener. 901 */ 902 if (error == -EPROTONOSUPPORT) 903 error = -EAFNOSUPPORT; 904 905 return error; 906 } 907 #endif /* IS_ENABLED(CONFIG_IPV6) */ 908 909 /* 910 * Register a kernel RPC service via rpcbind version 4. 911 * 912 * Returns zero on success; a negative errno value is returned 913 * if any error occurs. 914 */ 915 static int __svc_register(struct net *net, const char *progname, 916 const u32 program, const u32 version, 917 const int family, 918 const unsigned short protocol, 919 const unsigned short port) 920 { 921 int error = -EAFNOSUPPORT; 922 923 switch (family) { 924 case PF_INET: 925 error = __svc_rpcb_register4(net, program, version, 926 protocol, port); 927 break; 928 #if IS_ENABLED(CONFIG_IPV6) 929 case PF_INET6: 930 error = __svc_rpcb_register6(net, program, version, 931 protocol, port); 932 #endif 933 } 934 935 return error; 936 } 937 938 /** 939 * svc_register - register an RPC service with the local portmapper 940 * @serv: svc_serv struct for the service to register 941 * @net: net namespace for the service to register 942 * @family: protocol family of service's listener socket 943 * @proto: transport protocol number to advertise 944 * @port: port to advertise 945 * 946 * Service is registered for any address in the passed-in protocol family 947 */ 948 int svc_register(const struct svc_serv *serv, struct net *net, 949 const int family, const unsigned short proto, 950 const unsigned short port) 951 { 952 struct svc_program *progp; 953 struct svc_version *vers; 954 unsigned int i; 955 int error = 0; 956 957 WARN_ON_ONCE(proto == 0 && port == 0); 958 if (proto == 0 && port == 0) 959 return -EINVAL; 960 961 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 962 for (i = 0; i < progp->pg_nvers; i++) { 963 vers = progp->pg_vers[i]; 964 if (vers == NULL) 965 continue; 966 967 dprintk("svc: svc_register(%sv%d, %s, %u, %u)%s\n", 968 progp->pg_name, 969 i, 970 proto == IPPROTO_UDP? "udp" : "tcp", 971 port, 972 family, 973 vers->vs_hidden ? 974 " (but not telling portmap)" : ""); 975 976 if (vers->vs_hidden) 977 continue; 978 979 /* 980 * Don't register a UDP port if we need congestion 981 * control. 982 */ 983 if (vers->vs_need_cong_ctrl && proto == IPPROTO_UDP) 984 continue; 985 986 error = __svc_register(net, progp->pg_name, progp->pg_prog, 987 i, family, proto, port); 988 989 if (vers->vs_rpcb_optnl) { 990 error = 0; 991 continue; 992 } 993 994 if (error < 0) { 995 printk(KERN_WARNING "svc: failed to register " 996 "%sv%u RPC service (errno %d).\n", 997 progp->pg_name, i, -error); 998 break; 999 } 1000 } 1001 } 1002 1003 return error; 1004 } 1005 1006 /* 1007 * If user space is running rpcbind, it should take the v4 UNSET 1008 * and clear everything for this [program, version]. If user space 1009 * is running portmap, it will reject the v4 UNSET, but won't have 1010 * any "inet6" entries anyway. So a PMAP_UNSET should be sufficient 1011 * in this case to clear all existing entries for [program, version]. 1012 */ 1013 static void __svc_unregister(struct net *net, const u32 program, const u32 version, 1014 const char *progname) 1015 { 1016 int error; 1017 1018 error = rpcb_v4_register(net, program, version, NULL, ""); 1019 1020 /* 1021 * User space didn't support rpcbind v4, so retry this 1022 * request with the legacy rpcbind v2 protocol. 1023 */ 1024 if (error == -EPROTONOSUPPORT) 1025 error = rpcb_register(net, program, version, 0, 0); 1026 1027 dprintk("svc: %s(%sv%u), error %d\n", 1028 __func__, progname, version, error); 1029 } 1030 1031 /* 1032 * All netids, bind addresses and ports registered for [program, version] 1033 * are removed from the local rpcbind database (if the service is not 1034 * hidden) to make way for a new instance of the service. 1035 * 1036 * The result of unregistration is reported via dprintk for those who want 1037 * verification of the result, but is otherwise not important. 1038 */ 1039 static void svc_unregister(const struct svc_serv *serv, struct net *net) 1040 { 1041 struct svc_program *progp; 1042 unsigned long flags; 1043 unsigned int i; 1044 1045 clear_thread_flag(TIF_SIGPENDING); 1046 1047 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 1048 for (i = 0; i < progp->pg_nvers; i++) { 1049 if (progp->pg_vers[i] == NULL) 1050 continue; 1051 if (progp->pg_vers[i]->vs_hidden) 1052 continue; 1053 1054 dprintk("svc: attempting to unregister %sv%u\n", 1055 progp->pg_name, i); 1056 __svc_unregister(net, progp->pg_prog, i, progp->pg_name); 1057 } 1058 } 1059 1060 spin_lock_irqsave(¤t->sighand->siglock, flags); 1061 recalc_sigpending(); 1062 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 1063 } 1064 1065 /* 1066 * dprintk the given error with the address of the client that caused it. 1067 */ 1068 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 1069 static __printf(2, 3) 1070 void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) 1071 { 1072 struct va_format vaf; 1073 va_list args; 1074 char buf[RPC_MAX_ADDRBUFLEN]; 1075 1076 va_start(args, fmt); 1077 1078 vaf.fmt = fmt; 1079 vaf.va = &args; 1080 1081 dprintk("svc: %s: %pV", svc_print_addr(rqstp, buf, sizeof(buf)), &vaf); 1082 1083 va_end(args); 1084 } 1085 #else 1086 static __printf(2,3) void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) {} 1087 #endif 1088 1089 /* 1090 * Common routine for processing the RPC request. 1091 */ 1092 static int 1093 svc_process_common(struct svc_rqst *rqstp, struct kvec *argv, struct kvec *resv) 1094 { 1095 struct svc_program *progp; 1096 struct svc_version *versp = NULL; /* compiler food */ 1097 struct svc_procedure *procp = NULL; 1098 struct svc_serv *serv = rqstp->rq_server; 1099 kxdrproc_t xdr; 1100 __be32 *statp; 1101 u32 prog, vers, proc; 1102 __be32 auth_stat, rpc_stat; 1103 int auth_res; 1104 __be32 *reply_statp; 1105 1106 rpc_stat = rpc_success; 1107 1108 if (argv->iov_len < 6*4) 1109 goto err_short_len; 1110 1111 /* Will be turned off only in gss privacy case: */ 1112 set_bit(RQ_SPLICE_OK, &rqstp->rq_flags); 1113 /* Will be turned off only when NFSv4 Sessions are used */ 1114 set_bit(RQ_USEDEFERRAL, &rqstp->rq_flags); 1115 clear_bit(RQ_DROPME, &rqstp->rq_flags); 1116 1117 /* Setup reply header */ 1118 rqstp->rq_xprt->xpt_ops->xpo_prep_reply_hdr(rqstp); 1119 1120 svc_putu32(resv, rqstp->rq_xid); 1121 1122 vers = svc_getnl(argv); 1123 1124 /* First words of reply: */ 1125 svc_putnl(resv, 1); /* REPLY */ 1126 1127 if (vers != 2) /* RPC version number */ 1128 goto err_bad_rpc; 1129 1130 /* Save position in case we later decide to reject: */ 1131 reply_statp = resv->iov_base + resv->iov_len; 1132 1133 svc_putnl(resv, 0); /* ACCEPT */ 1134 1135 rqstp->rq_prog = prog = svc_getnl(argv); /* program number */ 1136 rqstp->rq_vers = vers = svc_getnl(argv); /* version number */ 1137 rqstp->rq_proc = proc = svc_getnl(argv); /* procedure number */ 1138 1139 for (progp = serv->sv_program; progp; progp = progp->pg_next) 1140 if (prog == progp->pg_prog) 1141 break; 1142 1143 /* 1144 * Decode auth data, and add verifier to reply buffer. 1145 * We do this before anything else in order to get a decent 1146 * auth verifier. 1147 */ 1148 auth_res = svc_authenticate(rqstp, &auth_stat); 1149 /* Also give the program a chance to reject this call: */ 1150 if (auth_res == SVC_OK && progp) { 1151 auth_stat = rpc_autherr_badcred; 1152 auth_res = progp->pg_authenticate(rqstp); 1153 } 1154 switch (auth_res) { 1155 case SVC_OK: 1156 break; 1157 case SVC_GARBAGE: 1158 goto err_garbage; 1159 case SVC_SYSERR: 1160 rpc_stat = rpc_system_err; 1161 goto err_bad; 1162 case SVC_DENIED: 1163 goto err_bad_auth; 1164 case SVC_CLOSE: 1165 goto close; 1166 case SVC_DROP: 1167 goto dropit; 1168 case SVC_COMPLETE: 1169 goto sendit; 1170 } 1171 1172 if (progp == NULL) 1173 goto err_bad_prog; 1174 1175 if (vers >= progp->pg_nvers || 1176 !(versp = progp->pg_vers[vers])) 1177 goto err_bad_vers; 1178 1179 /* 1180 * Some protocol versions (namely NFSv4) require some form of 1181 * congestion control. (See RFC 7530 section 3.1 paragraph 2) 1182 * In other words, UDP is not allowed. We mark those when setting 1183 * up the svc_xprt, and verify that here. 1184 * 1185 * The spec is not very clear about what error should be returned 1186 * when someone tries to access a server that is listening on UDP 1187 * for lower versions. RPC_PROG_MISMATCH seems to be the closest 1188 * fit. 1189 */ 1190 if (versp->vs_need_cong_ctrl && 1191 !test_bit(XPT_CONG_CTRL, &rqstp->rq_xprt->xpt_flags)) 1192 goto err_bad_vers; 1193 1194 procp = versp->vs_proc + proc; 1195 if (proc >= versp->vs_nproc || !procp->pc_func) 1196 goto err_bad_proc; 1197 rqstp->rq_procinfo = procp; 1198 1199 /* Syntactic check complete */ 1200 serv->sv_stats->rpccnt++; 1201 1202 /* Build the reply header. */ 1203 statp = resv->iov_base +resv->iov_len; 1204 svc_putnl(resv, RPC_SUCCESS); 1205 1206 /* Bump per-procedure stats counter */ 1207 procp->pc_count++; 1208 1209 /* Initialize storage for argp and resp */ 1210 memset(rqstp->rq_argp, 0, procp->pc_argsize); 1211 memset(rqstp->rq_resp, 0, procp->pc_ressize); 1212 1213 /* un-reserve some of the out-queue now that we have a 1214 * better idea of reply size 1215 */ 1216 if (procp->pc_xdrressize) 1217 svc_reserve_auth(rqstp, procp->pc_xdrressize<<2); 1218 1219 /* Call the function that processes the request. */ 1220 if (!versp->vs_dispatch) { 1221 /* Decode arguments */ 1222 xdr = procp->pc_decode; 1223 if (xdr && !xdr(rqstp, argv->iov_base, rqstp->rq_argp)) 1224 goto err_garbage; 1225 1226 *statp = procp->pc_func(rqstp, rqstp->rq_argp, rqstp->rq_resp); 1227 1228 /* Encode reply */ 1229 if (*statp == rpc_drop_reply || 1230 test_bit(RQ_DROPME, &rqstp->rq_flags)) { 1231 if (procp->pc_release) 1232 procp->pc_release(rqstp, NULL, rqstp->rq_resp); 1233 goto dropit; 1234 } 1235 if (*statp == rpc_autherr_badcred) { 1236 if (procp->pc_release) 1237 procp->pc_release(rqstp, NULL, rqstp->rq_resp); 1238 goto err_bad_auth; 1239 } 1240 if (*statp == rpc_success && 1241 (xdr = procp->pc_encode) && 1242 !xdr(rqstp, resv->iov_base+resv->iov_len, rqstp->rq_resp)) { 1243 dprintk("svc: failed to encode reply\n"); 1244 /* serv->sv_stats->rpcsystemerr++; */ 1245 *statp = rpc_system_err; 1246 } 1247 } else { 1248 dprintk("svc: calling dispatcher\n"); 1249 if (!versp->vs_dispatch(rqstp, statp)) { 1250 /* Release reply info */ 1251 if (procp->pc_release) 1252 procp->pc_release(rqstp, NULL, rqstp->rq_resp); 1253 goto dropit; 1254 } 1255 } 1256 1257 /* Check RPC status result */ 1258 if (*statp != rpc_success) 1259 resv->iov_len = ((void*)statp) - resv->iov_base + 4; 1260 1261 /* Release reply info */ 1262 if (procp->pc_release) 1263 procp->pc_release(rqstp, NULL, rqstp->rq_resp); 1264 1265 if (procp->pc_encode == NULL) 1266 goto dropit; 1267 1268 sendit: 1269 if (svc_authorise(rqstp)) 1270 goto close; 1271 return 1; /* Caller can now send it */ 1272 1273 dropit: 1274 svc_authorise(rqstp); /* doesn't hurt to call this twice */ 1275 dprintk("svc: svc_process dropit\n"); 1276 return 0; 1277 1278 close: 1279 if (test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags)) 1280 svc_close_xprt(rqstp->rq_xprt); 1281 dprintk("svc: svc_process close\n"); 1282 return 0; 1283 1284 err_short_len: 1285 svc_printk(rqstp, "short len %zd, dropping request\n", 1286 argv->iov_len); 1287 goto close; 1288 1289 err_bad_rpc: 1290 serv->sv_stats->rpcbadfmt++; 1291 svc_putnl(resv, 1); /* REJECT */ 1292 svc_putnl(resv, 0); /* RPC_MISMATCH */ 1293 svc_putnl(resv, 2); /* Only RPCv2 supported */ 1294 svc_putnl(resv, 2); 1295 goto sendit; 1296 1297 err_bad_auth: 1298 dprintk("svc: authentication failed (%d)\n", ntohl(auth_stat)); 1299 serv->sv_stats->rpcbadauth++; 1300 /* Restore write pointer to location of accept status: */ 1301 xdr_ressize_check(rqstp, reply_statp); 1302 svc_putnl(resv, 1); /* REJECT */ 1303 svc_putnl(resv, 1); /* AUTH_ERROR */ 1304 svc_putnl(resv, ntohl(auth_stat)); /* status */ 1305 goto sendit; 1306 1307 err_bad_prog: 1308 dprintk("svc: unknown program %d\n", prog); 1309 serv->sv_stats->rpcbadfmt++; 1310 svc_putnl(resv, RPC_PROG_UNAVAIL); 1311 goto sendit; 1312 1313 err_bad_vers: 1314 svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n", 1315 vers, prog, progp->pg_name); 1316 1317 serv->sv_stats->rpcbadfmt++; 1318 svc_putnl(resv, RPC_PROG_MISMATCH); 1319 svc_putnl(resv, progp->pg_lovers); 1320 svc_putnl(resv, progp->pg_hivers); 1321 goto sendit; 1322 1323 err_bad_proc: 1324 svc_printk(rqstp, "unknown procedure (%d)\n", proc); 1325 1326 serv->sv_stats->rpcbadfmt++; 1327 svc_putnl(resv, RPC_PROC_UNAVAIL); 1328 goto sendit; 1329 1330 err_garbage: 1331 svc_printk(rqstp, "failed to decode args\n"); 1332 1333 rpc_stat = rpc_garbage_args; 1334 err_bad: 1335 serv->sv_stats->rpcbadfmt++; 1336 svc_putnl(resv, ntohl(rpc_stat)); 1337 goto sendit; 1338 } 1339 1340 /* 1341 * Process the RPC request. 1342 */ 1343 int 1344 svc_process(struct svc_rqst *rqstp) 1345 { 1346 struct kvec *argv = &rqstp->rq_arg.head[0]; 1347 struct kvec *resv = &rqstp->rq_res.head[0]; 1348 struct svc_serv *serv = rqstp->rq_server; 1349 u32 dir; 1350 1351 /* 1352 * Setup response xdr_buf. 1353 * Initially it has just one page 1354 */ 1355 rqstp->rq_next_page = &rqstp->rq_respages[1]; 1356 resv->iov_base = page_address(rqstp->rq_respages[0]); 1357 resv->iov_len = 0; 1358 rqstp->rq_res.pages = rqstp->rq_respages + 1; 1359 rqstp->rq_res.len = 0; 1360 rqstp->rq_res.page_base = 0; 1361 rqstp->rq_res.page_len = 0; 1362 rqstp->rq_res.buflen = PAGE_SIZE; 1363 rqstp->rq_res.tail[0].iov_base = NULL; 1364 rqstp->rq_res.tail[0].iov_len = 0; 1365 1366 dir = svc_getnl(argv); 1367 if (dir != 0) { 1368 /* direction != CALL */ 1369 svc_printk(rqstp, "bad direction %d, dropping request\n", dir); 1370 serv->sv_stats->rpcbadfmt++; 1371 goto out_drop; 1372 } 1373 1374 /* Returns 1 for send, 0 for drop */ 1375 if (likely(svc_process_common(rqstp, argv, resv))) { 1376 int ret = svc_send(rqstp); 1377 1378 trace_svc_process(rqstp, ret); 1379 return ret; 1380 } 1381 out_drop: 1382 trace_svc_process(rqstp, 0); 1383 svc_drop(rqstp); 1384 return 0; 1385 } 1386 EXPORT_SYMBOL_GPL(svc_process); 1387 1388 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 1389 /* 1390 * Process a backchannel RPC request that arrived over an existing 1391 * outbound connection 1392 */ 1393 int 1394 bc_svc_process(struct svc_serv *serv, struct rpc_rqst *req, 1395 struct svc_rqst *rqstp) 1396 { 1397 struct kvec *argv = &rqstp->rq_arg.head[0]; 1398 struct kvec *resv = &rqstp->rq_res.head[0]; 1399 struct rpc_task *task; 1400 int proc_error; 1401 int error; 1402 1403 dprintk("svc: %s(%p)\n", __func__, req); 1404 1405 /* Build the svc_rqst used by the common processing routine */ 1406 rqstp->rq_xprt = serv->sv_bc_xprt; 1407 rqstp->rq_xid = req->rq_xid; 1408 rqstp->rq_prot = req->rq_xprt->prot; 1409 rqstp->rq_server = serv; 1410 1411 rqstp->rq_addrlen = sizeof(req->rq_xprt->addr); 1412 memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen); 1413 memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg)); 1414 memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res)); 1415 1416 /* Adjust the argument buffer length */ 1417 rqstp->rq_arg.len = req->rq_private_buf.len; 1418 if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) { 1419 rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len; 1420 rqstp->rq_arg.page_len = 0; 1421 } else if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len + 1422 rqstp->rq_arg.page_len) 1423 rqstp->rq_arg.page_len = rqstp->rq_arg.len - 1424 rqstp->rq_arg.head[0].iov_len; 1425 else 1426 rqstp->rq_arg.len = rqstp->rq_arg.head[0].iov_len + 1427 rqstp->rq_arg.page_len; 1428 1429 /* reset result send buffer "put" position */ 1430 resv->iov_len = 0; 1431 1432 /* 1433 * Skip the next two words because they've already been 1434 * processed in the transport 1435 */ 1436 svc_getu32(argv); /* XID */ 1437 svc_getnl(argv); /* CALLDIR */ 1438 1439 /* Parse and execute the bc call */ 1440 proc_error = svc_process_common(rqstp, argv, resv); 1441 1442 atomic_inc(&req->rq_xprt->bc_free_slots); 1443 if (!proc_error) { 1444 /* Processing error: drop the request */ 1445 xprt_free_bc_request(req); 1446 return 0; 1447 } 1448 1449 /* Finally, send the reply synchronously */ 1450 memcpy(&req->rq_snd_buf, &rqstp->rq_res, sizeof(req->rq_snd_buf)); 1451 task = rpc_run_bc_task(req); 1452 if (IS_ERR(task)) { 1453 error = PTR_ERR(task); 1454 goto out; 1455 } 1456 1457 WARN_ON_ONCE(atomic_read(&task->tk_count) != 1); 1458 error = task->tk_status; 1459 rpc_put_task(task); 1460 1461 out: 1462 dprintk("svc: %s(), error=%d\n", __func__, error); 1463 return error; 1464 } 1465 EXPORT_SYMBOL_GPL(bc_svc_process); 1466 #endif /* CONFIG_SUNRPC_BACKCHANNEL */ 1467 1468 /* 1469 * Return (transport-specific) limit on the rpc payload. 1470 */ 1471 u32 svc_max_payload(const struct svc_rqst *rqstp) 1472 { 1473 u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload; 1474 1475 if (rqstp->rq_server->sv_max_payload < max) 1476 max = rqstp->rq_server->sv_max_payload; 1477 return max; 1478 } 1479 EXPORT_SYMBOL_GPL(svc_max_payload); 1480