1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/net/sunrpc/svc.c 4 * 5 * High-level RPC service routines 6 * 7 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 8 * 9 * Multiple threads pools and NUMAisation 10 * Copyright (c) 2006 Silicon Graphics, Inc. 11 * by Greg Banks <gnb@melbourne.sgi.com> 12 */ 13 14 #include <linux/linkage.h> 15 #include <linux/sched/signal.h> 16 #include <linux/errno.h> 17 #include <linux/net.h> 18 #include <linux/in.h> 19 #include <linux/mm.h> 20 #include <linux/interrupt.h> 21 #include <linux/module.h> 22 #include <linux/kthread.h> 23 #include <linux/slab.h> 24 25 #include <linux/sunrpc/types.h> 26 #include <linux/sunrpc/xdr.h> 27 #include <linux/sunrpc/stats.h> 28 #include <linux/sunrpc/svcsock.h> 29 #include <linux/sunrpc/clnt.h> 30 #include <linux/sunrpc/bc_xprt.h> 31 32 #include <trace/events/sunrpc.h> 33 34 #include "fail.h" 35 36 #define RPCDBG_FACILITY RPCDBG_SVCDSP 37 38 static void svc_unregister(const struct svc_serv *serv, struct net *net); 39 40 #define SVC_POOL_DEFAULT SVC_POOL_GLOBAL 41 42 /* 43 * Mode for mapping cpus to pools. 44 */ 45 enum { 46 SVC_POOL_AUTO = -1, /* choose one of the others */ 47 SVC_POOL_GLOBAL, /* no mapping, just a single global pool 48 * (legacy & UP mode) */ 49 SVC_POOL_PERCPU, /* one pool per cpu */ 50 SVC_POOL_PERNODE /* one pool per numa node */ 51 }; 52 53 /* 54 * Structure for mapping cpus to pools and vice versa. 55 * Setup once during sunrpc initialisation. 56 */ 57 58 struct svc_pool_map { 59 int count; /* How many svc_servs use us */ 60 int mode; /* Note: int not enum to avoid 61 * warnings about "enumeration value 62 * not handled in switch" */ 63 unsigned int npools; 64 unsigned int *pool_to; /* maps pool id to cpu or node */ 65 unsigned int *to_pool; /* maps cpu or node to pool id */ 66 }; 67 68 static struct svc_pool_map svc_pool_map = { 69 .mode = SVC_POOL_DEFAULT 70 }; 71 72 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */ 73 74 static int 75 param_set_pool_mode(const char *val, const struct kernel_param *kp) 76 { 77 int *ip = (int *)kp->arg; 78 struct svc_pool_map *m = &svc_pool_map; 79 int err; 80 81 mutex_lock(&svc_pool_map_mutex); 82 83 err = -EBUSY; 84 if (m->count) 85 goto out; 86 87 err = 0; 88 if (!strncmp(val, "auto", 4)) 89 *ip = SVC_POOL_AUTO; 90 else if (!strncmp(val, "global", 6)) 91 *ip = SVC_POOL_GLOBAL; 92 else if (!strncmp(val, "percpu", 6)) 93 *ip = SVC_POOL_PERCPU; 94 else if (!strncmp(val, "pernode", 7)) 95 *ip = SVC_POOL_PERNODE; 96 else 97 err = -EINVAL; 98 99 out: 100 mutex_unlock(&svc_pool_map_mutex); 101 return err; 102 } 103 104 static int 105 param_get_pool_mode(char *buf, const struct kernel_param *kp) 106 { 107 int *ip = (int *)kp->arg; 108 109 switch (*ip) 110 { 111 case SVC_POOL_AUTO: 112 return strlcpy(buf, "auto\n", 20); 113 case SVC_POOL_GLOBAL: 114 return strlcpy(buf, "global\n", 20); 115 case SVC_POOL_PERCPU: 116 return strlcpy(buf, "percpu\n", 20); 117 case SVC_POOL_PERNODE: 118 return strlcpy(buf, "pernode\n", 20); 119 default: 120 return sprintf(buf, "%d\n", *ip); 121 } 122 } 123 124 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode, 125 &svc_pool_map.mode, 0644); 126 127 /* 128 * Detect best pool mapping mode heuristically, 129 * according to the machine's topology. 130 */ 131 static int 132 svc_pool_map_choose_mode(void) 133 { 134 unsigned int node; 135 136 if (nr_online_nodes > 1) { 137 /* 138 * Actually have multiple NUMA nodes, 139 * so split pools on NUMA node boundaries 140 */ 141 return SVC_POOL_PERNODE; 142 } 143 144 node = first_online_node; 145 if (nr_cpus_node(node) > 2) { 146 /* 147 * Non-trivial SMP, or CONFIG_NUMA on 148 * non-NUMA hardware, e.g. with a generic 149 * x86_64 kernel on Xeons. In this case we 150 * want to divide the pools on cpu boundaries. 151 */ 152 return SVC_POOL_PERCPU; 153 } 154 155 /* default: one global pool */ 156 return SVC_POOL_GLOBAL; 157 } 158 159 /* 160 * Allocate the to_pool[] and pool_to[] arrays. 161 * Returns 0 on success or an errno. 162 */ 163 static int 164 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools) 165 { 166 m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL); 167 if (!m->to_pool) 168 goto fail; 169 m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL); 170 if (!m->pool_to) 171 goto fail_free; 172 173 return 0; 174 175 fail_free: 176 kfree(m->to_pool); 177 m->to_pool = NULL; 178 fail: 179 return -ENOMEM; 180 } 181 182 /* 183 * Initialise the pool map for SVC_POOL_PERCPU mode. 184 * Returns number of pools or <0 on error. 185 */ 186 static int 187 svc_pool_map_init_percpu(struct svc_pool_map *m) 188 { 189 unsigned int maxpools = nr_cpu_ids; 190 unsigned int pidx = 0; 191 unsigned int cpu; 192 int err; 193 194 err = svc_pool_map_alloc_arrays(m, maxpools); 195 if (err) 196 return err; 197 198 for_each_online_cpu(cpu) { 199 BUG_ON(pidx >= maxpools); 200 m->to_pool[cpu] = pidx; 201 m->pool_to[pidx] = cpu; 202 pidx++; 203 } 204 /* cpus brought online later all get mapped to pool0, sorry */ 205 206 return pidx; 207 }; 208 209 210 /* 211 * Initialise the pool map for SVC_POOL_PERNODE mode. 212 * Returns number of pools or <0 on error. 213 */ 214 static int 215 svc_pool_map_init_pernode(struct svc_pool_map *m) 216 { 217 unsigned int maxpools = nr_node_ids; 218 unsigned int pidx = 0; 219 unsigned int node; 220 int err; 221 222 err = svc_pool_map_alloc_arrays(m, maxpools); 223 if (err) 224 return err; 225 226 for_each_node_with_cpus(node) { 227 /* some architectures (e.g. SN2) have cpuless nodes */ 228 BUG_ON(pidx > maxpools); 229 m->to_pool[node] = pidx; 230 m->pool_to[pidx] = node; 231 pidx++; 232 } 233 /* nodes brought online later all get mapped to pool0, sorry */ 234 235 return pidx; 236 } 237 238 239 /* 240 * Add a reference to the global map of cpus to pools (and 241 * vice versa) if pools are in use. 242 * Initialise the map if we're the first user. 243 * Returns the number of pools. If this is '1', no reference 244 * was taken. 245 */ 246 static unsigned int 247 svc_pool_map_get(void) 248 { 249 struct svc_pool_map *m = &svc_pool_map; 250 int npools = -1; 251 252 mutex_lock(&svc_pool_map_mutex); 253 254 if (m->count++) { 255 mutex_unlock(&svc_pool_map_mutex); 256 WARN_ON_ONCE(m->npools <= 1); 257 return m->npools; 258 } 259 260 if (m->mode == SVC_POOL_AUTO) 261 m->mode = svc_pool_map_choose_mode(); 262 263 switch (m->mode) { 264 case SVC_POOL_PERCPU: 265 npools = svc_pool_map_init_percpu(m); 266 break; 267 case SVC_POOL_PERNODE: 268 npools = svc_pool_map_init_pernode(m); 269 break; 270 } 271 272 if (npools <= 0) { 273 /* default, or memory allocation failure */ 274 npools = 1; 275 m->mode = SVC_POOL_GLOBAL; 276 } 277 m->npools = npools; 278 279 if (npools == 1) 280 /* service is unpooled, so doesn't hold a reference */ 281 m->count--; 282 283 mutex_unlock(&svc_pool_map_mutex); 284 return npools; 285 } 286 287 /* 288 * Drop a reference to the global map of cpus to pools, if 289 * pools were in use, i.e. if npools > 1. 290 * When the last reference is dropped, the map data is 291 * freed; this allows the sysadmin to change the pool 292 * mode using the pool_mode module option without 293 * rebooting or re-loading sunrpc.ko. 294 */ 295 static void 296 svc_pool_map_put(int npools) 297 { 298 struct svc_pool_map *m = &svc_pool_map; 299 300 if (npools <= 1) 301 return; 302 mutex_lock(&svc_pool_map_mutex); 303 304 if (!--m->count) { 305 kfree(m->to_pool); 306 m->to_pool = NULL; 307 kfree(m->pool_to); 308 m->pool_to = NULL; 309 m->npools = 0; 310 } 311 312 mutex_unlock(&svc_pool_map_mutex); 313 } 314 315 static int svc_pool_map_get_node(unsigned int pidx) 316 { 317 const struct svc_pool_map *m = &svc_pool_map; 318 319 if (m->count) { 320 if (m->mode == SVC_POOL_PERCPU) 321 return cpu_to_node(m->pool_to[pidx]); 322 if (m->mode == SVC_POOL_PERNODE) 323 return m->pool_to[pidx]; 324 } 325 return NUMA_NO_NODE; 326 } 327 /* 328 * Set the given thread's cpus_allowed mask so that it 329 * will only run on cpus in the given pool. 330 */ 331 static inline void 332 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx) 333 { 334 struct svc_pool_map *m = &svc_pool_map; 335 unsigned int node = m->pool_to[pidx]; 336 337 /* 338 * The caller checks for sv_nrpools > 1, which 339 * implies that we've been initialized. 340 */ 341 WARN_ON_ONCE(m->count == 0); 342 if (m->count == 0) 343 return; 344 345 switch (m->mode) { 346 case SVC_POOL_PERCPU: 347 { 348 set_cpus_allowed_ptr(task, cpumask_of(node)); 349 break; 350 } 351 case SVC_POOL_PERNODE: 352 { 353 set_cpus_allowed_ptr(task, cpumask_of_node(node)); 354 break; 355 } 356 } 357 } 358 359 /** 360 * svc_pool_for_cpu - Select pool to run a thread on this cpu 361 * @serv: An RPC service 362 * 363 * Use the active CPU and the svc_pool_map's mode setting to 364 * select the svc thread pool to use. Once initialized, the 365 * svc_pool_map does not change. 366 * 367 * Return value: 368 * A pointer to an svc_pool 369 */ 370 struct svc_pool *svc_pool_for_cpu(struct svc_serv *serv) 371 { 372 struct svc_pool_map *m = &svc_pool_map; 373 int cpu = raw_smp_processor_id(); 374 unsigned int pidx = 0; 375 376 if (serv->sv_nrpools <= 1) 377 return serv->sv_pools; 378 379 switch (m->mode) { 380 case SVC_POOL_PERCPU: 381 pidx = m->to_pool[cpu]; 382 break; 383 case SVC_POOL_PERNODE: 384 pidx = m->to_pool[cpu_to_node(cpu)]; 385 break; 386 } 387 388 return &serv->sv_pools[pidx % serv->sv_nrpools]; 389 } 390 391 int svc_rpcb_setup(struct svc_serv *serv, struct net *net) 392 { 393 int err; 394 395 err = rpcb_create_local(net); 396 if (err) 397 return err; 398 399 /* Remove any stale portmap registrations */ 400 svc_unregister(serv, net); 401 return 0; 402 } 403 EXPORT_SYMBOL_GPL(svc_rpcb_setup); 404 405 void svc_rpcb_cleanup(struct svc_serv *serv, struct net *net) 406 { 407 svc_unregister(serv, net); 408 rpcb_put_local(net); 409 } 410 EXPORT_SYMBOL_GPL(svc_rpcb_cleanup); 411 412 static int svc_uses_rpcbind(struct svc_serv *serv) 413 { 414 struct svc_program *progp; 415 unsigned int i; 416 417 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 418 for (i = 0; i < progp->pg_nvers; i++) { 419 if (progp->pg_vers[i] == NULL) 420 continue; 421 if (!progp->pg_vers[i]->vs_hidden) 422 return 1; 423 } 424 } 425 426 return 0; 427 } 428 429 int svc_bind(struct svc_serv *serv, struct net *net) 430 { 431 if (!svc_uses_rpcbind(serv)) 432 return 0; 433 return svc_rpcb_setup(serv, net); 434 } 435 EXPORT_SYMBOL_GPL(svc_bind); 436 437 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 438 static void 439 __svc_init_bc(struct svc_serv *serv) 440 { 441 INIT_LIST_HEAD(&serv->sv_cb_list); 442 spin_lock_init(&serv->sv_cb_lock); 443 init_waitqueue_head(&serv->sv_cb_waitq); 444 } 445 #else 446 static void 447 __svc_init_bc(struct svc_serv *serv) 448 { 449 } 450 #endif 451 452 /* 453 * Create an RPC service 454 */ 455 static struct svc_serv * 456 __svc_create(struct svc_program *prog, unsigned int bufsize, int npools, 457 int (*threadfn)(void *data)) 458 { 459 struct svc_serv *serv; 460 unsigned int vers; 461 unsigned int xdrsize; 462 unsigned int i; 463 464 if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL))) 465 return NULL; 466 serv->sv_name = prog->pg_name; 467 serv->sv_program = prog; 468 kref_init(&serv->sv_refcnt); 469 serv->sv_stats = prog->pg_stats; 470 if (bufsize > RPCSVC_MAXPAYLOAD) 471 bufsize = RPCSVC_MAXPAYLOAD; 472 serv->sv_max_payload = bufsize? bufsize : 4096; 473 serv->sv_max_mesg = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE); 474 serv->sv_threadfn = threadfn; 475 xdrsize = 0; 476 while (prog) { 477 prog->pg_lovers = prog->pg_nvers-1; 478 for (vers=0; vers<prog->pg_nvers ; vers++) 479 if (prog->pg_vers[vers]) { 480 prog->pg_hivers = vers; 481 if (prog->pg_lovers > vers) 482 prog->pg_lovers = vers; 483 if (prog->pg_vers[vers]->vs_xdrsize > xdrsize) 484 xdrsize = prog->pg_vers[vers]->vs_xdrsize; 485 } 486 prog = prog->pg_next; 487 } 488 serv->sv_xdrsize = xdrsize; 489 INIT_LIST_HEAD(&serv->sv_tempsocks); 490 INIT_LIST_HEAD(&serv->sv_permsocks); 491 timer_setup(&serv->sv_temptimer, NULL, 0); 492 spin_lock_init(&serv->sv_lock); 493 494 __svc_init_bc(serv); 495 496 serv->sv_nrpools = npools; 497 serv->sv_pools = 498 kcalloc(serv->sv_nrpools, sizeof(struct svc_pool), 499 GFP_KERNEL); 500 if (!serv->sv_pools) { 501 kfree(serv); 502 return NULL; 503 } 504 505 for (i = 0; i < serv->sv_nrpools; i++) { 506 struct svc_pool *pool = &serv->sv_pools[i]; 507 508 dprintk("svc: initialising pool %u for %s\n", 509 i, serv->sv_name); 510 511 pool->sp_id = i; 512 INIT_LIST_HEAD(&pool->sp_sockets); 513 INIT_LIST_HEAD(&pool->sp_all_threads); 514 spin_lock_init(&pool->sp_lock); 515 516 percpu_counter_init(&pool->sp_sockets_queued, 0, GFP_KERNEL); 517 percpu_counter_init(&pool->sp_threads_woken, 0, GFP_KERNEL); 518 percpu_counter_init(&pool->sp_threads_timedout, 0, GFP_KERNEL); 519 } 520 521 return serv; 522 } 523 524 /** 525 * svc_create - Create an RPC service 526 * @prog: the RPC program the new service will handle 527 * @bufsize: maximum message size for @prog 528 * @threadfn: a function to service RPC requests for @prog 529 * 530 * Returns an instantiated struct svc_serv object or NULL. 531 */ 532 struct svc_serv *svc_create(struct svc_program *prog, unsigned int bufsize, 533 int (*threadfn)(void *data)) 534 { 535 return __svc_create(prog, bufsize, 1, threadfn); 536 } 537 EXPORT_SYMBOL_GPL(svc_create); 538 539 /** 540 * svc_create_pooled - Create an RPC service with pooled threads 541 * @prog: the RPC program the new service will handle 542 * @bufsize: maximum message size for @prog 543 * @threadfn: a function to service RPC requests for @prog 544 * 545 * Returns an instantiated struct svc_serv object or NULL. 546 */ 547 struct svc_serv *svc_create_pooled(struct svc_program *prog, 548 unsigned int bufsize, 549 int (*threadfn)(void *data)) 550 { 551 struct svc_serv *serv; 552 unsigned int npools = svc_pool_map_get(); 553 554 serv = __svc_create(prog, bufsize, npools, threadfn); 555 if (!serv) 556 goto out_err; 557 return serv; 558 out_err: 559 svc_pool_map_put(npools); 560 return NULL; 561 } 562 EXPORT_SYMBOL_GPL(svc_create_pooled); 563 564 /* 565 * Destroy an RPC service. Should be called with appropriate locking to 566 * protect sv_permsocks and sv_tempsocks. 567 */ 568 void 569 svc_destroy(struct kref *ref) 570 { 571 struct svc_serv *serv = container_of(ref, struct svc_serv, sv_refcnt); 572 unsigned int i; 573 574 dprintk("svc: svc_destroy(%s)\n", serv->sv_program->pg_name); 575 timer_shutdown_sync(&serv->sv_temptimer); 576 577 /* 578 * The last user is gone and thus all sockets have to be destroyed to 579 * the point. Check this. 580 */ 581 BUG_ON(!list_empty(&serv->sv_permsocks)); 582 BUG_ON(!list_empty(&serv->sv_tempsocks)); 583 584 cache_clean_deferred(serv); 585 586 svc_pool_map_put(serv->sv_nrpools); 587 588 for (i = 0; i < serv->sv_nrpools; i++) { 589 struct svc_pool *pool = &serv->sv_pools[i]; 590 591 percpu_counter_destroy(&pool->sp_sockets_queued); 592 percpu_counter_destroy(&pool->sp_threads_woken); 593 percpu_counter_destroy(&pool->sp_threads_timedout); 594 } 595 kfree(serv->sv_pools); 596 kfree(serv); 597 } 598 EXPORT_SYMBOL_GPL(svc_destroy); 599 600 /* 601 * Allocate an RPC server's buffer space. 602 * We allocate pages and place them in rq_pages. 603 */ 604 static int 605 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size, int node) 606 { 607 unsigned int pages, arghi; 608 609 /* bc_xprt uses fore channel allocated buffers */ 610 if (svc_is_backchannel(rqstp)) 611 return 1; 612 613 pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply. 614 * We assume one is at most one page 615 */ 616 arghi = 0; 617 WARN_ON_ONCE(pages > RPCSVC_MAXPAGES); 618 if (pages > RPCSVC_MAXPAGES) 619 pages = RPCSVC_MAXPAGES; 620 while (pages) { 621 struct page *p = alloc_pages_node(node, GFP_KERNEL, 0); 622 if (!p) 623 break; 624 rqstp->rq_pages[arghi++] = p; 625 pages--; 626 } 627 return pages == 0; 628 } 629 630 /* 631 * Release an RPC server buffer 632 */ 633 static void 634 svc_release_buffer(struct svc_rqst *rqstp) 635 { 636 unsigned int i; 637 638 for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++) 639 if (rqstp->rq_pages[i]) 640 put_page(rqstp->rq_pages[i]); 641 } 642 643 struct svc_rqst * 644 svc_rqst_alloc(struct svc_serv *serv, struct svc_pool *pool, int node) 645 { 646 struct svc_rqst *rqstp; 647 648 rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node); 649 if (!rqstp) 650 return rqstp; 651 652 pagevec_init(&rqstp->rq_pvec); 653 654 __set_bit(RQ_BUSY, &rqstp->rq_flags); 655 rqstp->rq_server = serv; 656 rqstp->rq_pool = pool; 657 658 rqstp->rq_scratch_page = alloc_pages_node(node, GFP_KERNEL, 0); 659 if (!rqstp->rq_scratch_page) 660 goto out_enomem; 661 662 rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node); 663 if (!rqstp->rq_argp) 664 goto out_enomem; 665 666 rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node); 667 if (!rqstp->rq_resp) 668 goto out_enomem; 669 670 if (!svc_init_buffer(rqstp, serv->sv_max_mesg, node)) 671 goto out_enomem; 672 673 return rqstp; 674 out_enomem: 675 svc_rqst_free(rqstp); 676 return NULL; 677 } 678 EXPORT_SYMBOL_GPL(svc_rqst_alloc); 679 680 static struct svc_rqst * 681 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node) 682 { 683 struct svc_rqst *rqstp; 684 685 rqstp = svc_rqst_alloc(serv, pool, node); 686 if (!rqstp) 687 return ERR_PTR(-ENOMEM); 688 689 svc_get(serv); 690 spin_lock_bh(&serv->sv_lock); 691 serv->sv_nrthreads += 1; 692 spin_unlock_bh(&serv->sv_lock); 693 694 spin_lock_bh(&pool->sp_lock); 695 pool->sp_nrthreads++; 696 list_add_rcu(&rqstp->rq_all, &pool->sp_all_threads); 697 spin_unlock_bh(&pool->sp_lock); 698 return rqstp; 699 } 700 701 /* 702 * Choose a pool in which to create a new thread, for svc_set_num_threads 703 */ 704 static inline struct svc_pool * 705 choose_pool(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state) 706 { 707 if (pool != NULL) 708 return pool; 709 710 return &serv->sv_pools[(*state)++ % serv->sv_nrpools]; 711 } 712 713 /* 714 * Choose a thread to kill, for svc_set_num_threads 715 */ 716 static inline struct task_struct * 717 choose_victim(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state) 718 { 719 unsigned int i; 720 struct task_struct *task = NULL; 721 722 if (pool != NULL) { 723 spin_lock_bh(&pool->sp_lock); 724 } else { 725 /* choose a pool in round-robin fashion */ 726 for (i = 0; i < serv->sv_nrpools; i++) { 727 pool = &serv->sv_pools[--(*state) % serv->sv_nrpools]; 728 spin_lock_bh(&pool->sp_lock); 729 if (!list_empty(&pool->sp_all_threads)) 730 goto found_pool; 731 spin_unlock_bh(&pool->sp_lock); 732 } 733 return NULL; 734 } 735 736 found_pool: 737 if (!list_empty(&pool->sp_all_threads)) { 738 struct svc_rqst *rqstp; 739 740 /* 741 * Remove from the pool->sp_all_threads list 742 * so we don't try to kill it again. 743 */ 744 rqstp = list_entry(pool->sp_all_threads.next, struct svc_rqst, rq_all); 745 set_bit(RQ_VICTIM, &rqstp->rq_flags); 746 list_del_rcu(&rqstp->rq_all); 747 task = rqstp->rq_task; 748 } 749 spin_unlock_bh(&pool->sp_lock); 750 751 return task; 752 } 753 754 /* create new threads */ 755 static int 756 svc_start_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs) 757 { 758 struct svc_rqst *rqstp; 759 struct task_struct *task; 760 struct svc_pool *chosen_pool; 761 unsigned int state = serv->sv_nrthreads-1; 762 int node; 763 764 do { 765 nrservs--; 766 chosen_pool = choose_pool(serv, pool, &state); 767 768 node = svc_pool_map_get_node(chosen_pool->sp_id); 769 rqstp = svc_prepare_thread(serv, chosen_pool, node); 770 if (IS_ERR(rqstp)) 771 return PTR_ERR(rqstp); 772 773 task = kthread_create_on_node(serv->sv_threadfn, rqstp, 774 node, "%s", serv->sv_name); 775 if (IS_ERR(task)) { 776 svc_exit_thread(rqstp); 777 return PTR_ERR(task); 778 } 779 780 rqstp->rq_task = task; 781 if (serv->sv_nrpools > 1) 782 svc_pool_map_set_cpumask(task, chosen_pool->sp_id); 783 784 svc_sock_update_bufs(serv); 785 wake_up_process(task); 786 } while (nrservs > 0); 787 788 return 0; 789 } 790 791 /* 792 * Create or destroy enough new threads to make the number 793 * of threads the given number. If `pool' is non-NULL, applies 794 * only to threads in that pool, otherwise round-robins between 795 * all pools. Caller must ensure that mutual exclusion between this and 796 * server startup or shutdown. 797 */ 798 799 /* destroy old threads */ 800 static int 801 svc_stop_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs) 802 { 803 struct svc_rqst *rqstp; 804 struct task_struct *task; 805 unsigned int state = serv->sv_nrthreads-1; 806 807 /* destroy old threads */ 808 do { 809 task = choose_victim(serv, pool, &state); 810 if (task == NULL) 811 break; 812 rqstp = kthread_data(task); 813 /* Did we lose a race to svo_function threadfn? */ 814 if (kthread_stop(task) == -EINTR) 815 svc_exit_thread(rqstp); 816 nrservs++; 817 } while (nrservs < 0); 818 return 0; 819 } 820 821 int 822 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs) 823 { 824 if (pool == NULL) { 825 nrservs -= serv->sv_nrthreads; 826 } else { 827 spin_lock_bh(&pool->sp_lock); 828 nrservs -= pool->sp_nrthreads; 829 spin_unlock_bh(&pool->sp_lock); 830 } 831 832 if (nrservs > 0) 833 return svc_start_kthreads(serv, pool, nrservs); 834 if (nrservs < 0) 835 return svc_stop_kthreads(serv, pool, nrservs); 836 return 0; 837 } 838 EXPORT_SYMBOL_GPL(svc_set_num_threads); 839 840 /** 841 * svc_rqst_replace_page - Replace one page in rq_pages[] 842 * @rqstp: svc_rqst with pages to replace 843 * @page: replacement page 844 * 845 * When replacing a page in rq_pages, batch the release of the 846 * replaced pages to avoid hammering the page allocator. 847 * 848 * Return values: 849 * %true: page replaced 850 * %false: array bounds checking failed 851 */ 852 bool svc_rqst_replace_page(struct svc_rqst *rqstp, struct page *page) 853 { 854 struct page **begin = rqstp->rq_pages; 855 struct page **end = &rqstp->rq_pages[RPCSVC_MAXPAGES]; 856 857 if (unlikely(rqstp->rq_next_page < begin || rqstp->rq_next_page > end)) { 858 trace_svc_replace_page_err(rqstp); 859 return false; 860 } 861 862 if (*rqstp->rq_next_page) { 863 if (!pagevec_space(&rqstp->rq_pvec)) 864 __pagevec_release(&rqstp->rq_pvec); 865 pagevec_add(&rqstp->rq_pvec, *rqstp->rq_next_page); 866 } 867 868 get_page(page); 869 *(rqstp->rq_next_page++) = page; 870 return true; 871 } 872 EXPORT_SYMBOL_GPL(svc_rqst_replace_page); 873 874 /** 875 * svc_rqst_release_pages - Release Reply buffer pages 876 * @rqstp: RPC transaction context 877 * 878 * Release response pages that might still be in flight after 879 * svc_send, and any spliced filesystem-owned pages. 880 */ 881 void svc_rqst_release_pages(struct svc_rqst *rqstp) 882 { 883 int i, count = rqstp->rq_next_page - rqstp->rq_respages; 884 885 if (count) { 886 release_pages(rqstp->rq_respages, count); 887 for (i = 0; i < count; i++) 888 rqstp->rq_respages[i] = NULL; 889 } 890 } 891 892 /* 893 * Called from a server thread as it's exiting. Caller must hold the "service 894 * mutex" for the service. 895 */ 896 void 897 svc_rqst_free(struct svc_rqst *rqstp) 898 { 899 pagevec_release(&rqstp->rq_pvec); 900 svc_release_buffer(rqstp); 901 if (rqstp->rq_scratch_page) 902 put_page(rqstp->rq_scratch_page); 903 kfree(rqstp->rq_resp); 904 kfree(rqstp->rq_argp); 905 kfree(rqstp->rq_auth_data); 906 kfree_rcu(rqstp, rq_rcu_head); 907 } 908 EXPORT_SYMBOL_GPL(svc_rqst_free); 909 910 void 911 svc_exit_thread(struct svc_rqst *rqstp) 912 { 913 struct svc_serv *serv = rqstp->rq_server; 914 struct svc_pool *pool = rqstp->rq_pool; 915 916 spin_lock_bh(&pool->sp_lock); 917 pool->sp_nrthreads--; 918 if (!test_and_set_bit(RQ_VICTIM, &rqstp->rq_flags)) 919 list_del_rcu(&rqstp->rq_all); 920 spin_unlock_bh(&pool->sp_lock); 921 922 spin_lock_bh(&serv->sv_lock); 923 serv->sv_nrthreads -= 1; 924 spin_unlock_bh(&serv->sv_lock); 925 svc_sock_update_bufs(serv); 926 927 svc_rqst_free(rqstp); 928 929 svc_put(serv); 930 } 931 EXPORT_SYMBOL_GPL(svc_exit_thread); 932 933 /* 934 * Register an "inet" protocol family netid with the local 935 * rpcbind daemon via an rpcbind v4 SET request. 936 * 937 * No netconfig infrastructure is available in the kernel, so 938 * we map IP_ protocol numbers to netids by hand. 939 * 940 * Returns zero on success; a negative errno value is returned 941 * if any error occurs. 942 */ 943 static int __svc_rpcb_register4(struct net *net, const u32 program, 944 const u32 version, 945 const unsigned short protocol, 946 const unsigned short port) 947 { 948 const struct sockaddr_in sin = { 949 .sin_family = AF_INET, 950 .sin_addr.s_addr = htonl(INADDR_ANY), 951 .sin_port = htons(port), 952 }; 953 const char *netid; 954 int error; 955 956 switch (protocol) { 957 case IPPROTO_UDP: 958 netid = RPCBIND_NETID_UDP; 959 break; 960 case IPPROTO_TCP: 961 netid = RPCBIND_NETID_TCP; 962 break; 963 default: 964 return -ENOPROTOOPT; 965 } 966 967 error = rpcb_v4_register(net, program, version, 968 (const struct sockaddr *)&sin, netid); 969 970 /* 971 * User space didn't support rpcbind v4, so retry this 972 * registration request with the legacy rpcbind v2 protocol. 973 */ 974 if (error == -EPROTONOSUPPORT) 975 error = rpcb_register(net, program, version, protocol, port); 976 977 return error; 978 } 979 980 #if IS_ENABLED(CONFIG_IPV6) 981 /* 982 * Register an "inet6" protocol family netid with the local 983 * rpcbind daemon via an rpcbind v4 SET request. 984 * 985 * No netconfig infrastructure is available in the kernel, so 986 * we map IP_ protocol numbers to netids by hand. 987 * 988 * Returns zero on success; a negative errno value is returned 989 * if any error occurs. 990 */ 991 static int __svc_rpcb_register6(struct net *net, const u32 program, 992 const u32 version, 993 const unsigned short protocol, 994 const unsigned short port) 995 { 996 const struct sockaddr_in6 sin6 = { 997 .sin6_family = AF_INET6, 998 .sin6_addr = IN6ADDR_ANY_INIT, 999 .sin6_port = htons(port), 1000 }; 1001 const char *netid; 1002 int error; 1003 1004 switch (protocol) { 1005 case IPPROTO_UDP: 1006 netid = RPCBIND_NETID_UDP6; 1007 break; 1008 case IPPROTO_TCP: 1009 netid = RPCBIND_NETID_TCP6; 1010 break; 1011 default: 1012 return -ENOPROTOOPT; 1013 } 1014 1015 error = rpcb_v4_register(net, program, version, 1016 (const struct sockaddr *)&sin6, netid); 1017 1018 /* 1019 * User space didn't support rpcbind version 4, so we won't 1020 * use a PF_INET6 listener. 1021 */ 1022 if (error == -EPROTONOSUPPORT) 1023 error = -EAFNOSUPPORT; 1024 1025 return error; 1026 } 1027 #endif /* IS_ENABLED(CONFIG_IPV6) */ 1028 1029 /* 1030 * Register a kernel RPC service via rpcbind version 4. 1031 * 1032 * Returns zero on success; a negative errno value is returned 1033 * if any error occurs. 1034 */ 1035 static int __svc_register(struct net *net, const char *progname, 1036 const u32 program, const u32 version, 1037 const int family, 1038 const unsigned short protocol, 1039 const unsigned short port) 1040 { 1041 int error = -EAFNOSUPPORT; 1042 1043 switch (family) { 1044 case PF_INET: 1045 error = __svc_rpcb_register4(net, program, version, 1046 protocol, port); 1047 break; 1048 #if IS_ENABLED(CONFIG_IPV6) 1049 case PF_INET6: 1050 error = __svc_rpcb_register6(net, program, version, 1051 protocol, port); 1052 #endif 1053 } 1054 1055 trace_svc_register(progname, version, family, protocol, port, error); 1056 return error; 1057 } 1058 1059 int svc_rpcbind_set_version(struct net *net, 1060 const struct svc_program *progp, 1061 u32 version, int family, 1062 unsigned short proto, 1063 unsigned short port) 1064 { 1065 return __svc_register(net, progp->pg_name, progp->pg_prog, 1066 version, family, proto, port); 1067 1068 } 1069 EXPORT_SYMBOL_GPL(svc_rpcbind_set_version); 1070 1071 int svc_generic_rpcbind_set(struct net *net, 1072 const struct svc_program *progp, 1073 u32 version, int family, 1074 unsigned short proto, 1075 unsigned short port) 1076 { 1077 const struct svc_version *vers = progp->pg_vers[version]; 1078 int error; 1079 1080 if (vers == NULL) 1081 return 0; 1082 1083 if (vers->vs_hidden) { 1084 trace_svc_noregister(progp->pg_name, version, proto, 1085 port, family, 0); 1086 return 0; 1087 } 1088 1089 /* 1090 * Don't register a UDP port if we need congestion 1091 * control. 1092 */ 1093 if (vers->vs_need_cong_ctrl && proto == IPPROTO_UDP) 1094 return 0; 1095 1096 error = svc_rpcbind_set_version(net, progp, version, 1097 family, proto, port); 1098 1099 return (vers->vs_rpcb_optnl) ? 0 : error; 1100 } 1101 EXPORT_SYMBOL_GPL(svc_generic_rpcbind_set); 1102 1103 /** 1104 * svc_register - register an RPC service with the local portmapper 1105 * @serv: svc_serv struct for the service to register 1106 * @net: net namespace for the service to register 1107 * @family: protocol family of service's listener socket 1108 * @proto: transport protocol number to advertise 1109 * @port: port to advertise 1110 * 1111 * Service is registered for any address in the passed-in protocol family 1112 */ 1113 int svc_register(const struct svc_serv *serv, struct net *net, 1114 const int family, const unsigned short proto, 1115 const unsigned short port) 1116 { 1117 struct svc_program *progp; 1118 unsigned int i; 1119 int error = 0; 1120 1121 WARN_ON_ONCE(proto == 0 && port == 0); 1122 if (proto == 0 && port == 0) 1123 return -EINVAL; 1124 1125 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 1126 for (i = 0; i < progp->pg_nvers; i++) { 1127 1128 error = progp->pg_rpcbind_set(net, progp, i, 1129 family, proto, port); 1130 if (error < 0) { 1131 printk(KERN_WARNING "svc: failed to register " 1132 "%sv%u RPC service (errno %d).\n", 1133 progp->pg_name, i, -error); 1134 break; 1135 } 1136 } 1137 } 1138 1139 return error; 1140 } 1141 1142 /* 1143 * If user space is running rpcbind, it should take the v4 UNSET 1144 * and clear everything for this [program, version]. If user space 1145 * is running portmap, it will reject the v4 UNSET, but won't have 1146 * any "inet6" entries anyway. So a PMAP_UNSET should be sufficient 1147 * in this case to clear all existing entries for [program, version]. 1148 */ 1149 static void __svc_unregister(struct net *net, const u32 program, const u32 version, 1150 const char *progname) 1151 { 1152 int error; 1153 1154 error = rpcb_v4_register(net, program, version, NULL, ""); 1155 1156 /* 1157 * User space didn't support rpcbind v4, so retry this 1158 * request with the legacy rpcbind v2 protocol. 1159 */ 1160 if (error == -EPROTONOSUPPORT) 1161 error = rpcb_register(net, program, version, 0, 0); 1162 1163 trace_svc_unregister(progname, version, error); 1164 } 1165 1166 /* 1167 * All netids, bind addresses and ports registered for [program, version] 1168 * are removed from the local rpcbind database (if the service is not 1169 * hidden) to make way for a new instance of the service. 1170 * 1171 * The result of unregistration is reported via dprintk for those who want 1172 * verification of the result, but is otherwise not important. 1173 */ 1174 static void svc_unregister(const struct svc_serv *serv, struct net *net) 1175 { 1176 struct svc_program *progp; 1177 unsigned long flags; 1178 unsigned int i; 1179 1180 clear_thread_flag(TIF_SIGPENDING); 1181 1182 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 1183 for (i = 0; i < progp->pg_nvers; i++) { 1184 if (progp->pg_vers[i] == NULL) 1185 continue; 1186 if (progp->pg_vers[i]->vs_hidden) 1187 continue; 1188 __svc_unregister(net, progp->pg_prog, i, progp->pg_name); 1189 } 1190 } 1191 1192 spin_lock_irqsave(¤t->sighand->siglock, flags); 1193 recalc_sigpending(); 1194 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 1195 } 1196 1197 /* 1198 * dprintk the given error with the address of the client that caused it. 1199 */ 1200 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 1201 static __printf(2, 3) 1202 void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) 1203 { 1204 struct va_format vaf; 1205 va_list args; 1206 char buf[RPC_MAX_ADDRBUFLEN]; 1207 1208 va_start(args, fmt); 1209 1210 vaf.fmt = fmt; 1211 vaf.va = &args; 1212 1213 dprintk("svc: %s: %pV", svc_print_addr(rqstp, buf, sizeof(buf)), &vaf); 1214 1215 va_end(args); 1216 } 1217 #else 1218 static __printf(2,3) void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) {} 1219 #endif 1220 1221 __be32 1222 svc_generic_init_request(struct svc_rqst *rqstp, 1223 const struct svc_program *progp, 1224 struct svc_process_info *ret) 1225 { 1226 const struct svc_version *versp = NULL; /* compiler food */ 1227 const struct svc_procedure *procp = NULL; 1228 1229 if (rqstp->rq_vers >= progp->pg_nvers ) 1230 goto err_bad_vers; 1231 versp = progp->pg_vers[rqstp->rq_vers]; 1232 if (!versp) 1233 goto err_bad_vers; 1234 1235 /* 1236 * Some protocol versions (namely NFSv4) require some form of 1237 * congestion control. (See RFC 7530 section 3.1 paragraph 2) 1238 * In other words, UDP is not allowed. We mark those when setting 1239 * up the svc_xprt, and verify that here. 1240 * 1241 * The spec is not very clear about what error should be returned 1242 * when someone tries to access a server that is listening on UDP 1243 * for lower versions. RPC_PROG_MISMATCH seems to be the closest 1244 * fit. 1245 */ 1246 if (versp->vs_need_cong_ctrl && rqstp->rq_xprt && 1247 !test_bit(XPT_CONG_CTRL, &rqstp->rq_xprt->xpt_flags)) 1248 goto err_bad_vers; 1249 1250 if (rqstp->rq_proc >= versp->vs_nproc) 1251 goto err_bad_proc; 1252 rqstp->rq_procinfo = procp = &versp->vs_proc[rqstp->rq_proc]; 1253 if (!procp) 1254 goto err_bad_proc; 1255 1256 /* Initialize storage for argp and resp */ 1257 memset(rqstp->rq_argp, 0, procp->pc_argzero); 1258 memset(rqstp->rq_resp, 0, procp->pc_ressize); 1259 1260 /* Bump per-procedure stats counter */ 1261 this_cpu_inc(versp->vs_count[rqstp->rq_proc]); 1262 1263 ret->dispatch = versp->vs_dispatch; 1264 return rpc_success; 1265 err_bad_vers: 1266 ret->mismatch.lovers = progp->pg_lovers; 1267 ret->mismatch.hivers = progp->pg_hivers; 1268 return rpc_prog_mismatch; 1269 err_bad_proc: 1270 return rpc_proc_unavail; 1271 } 1272 EXPORT_SYMBOL_GPL(svc_generic_init_request); 1273 1274 /* 1275 * Common routine for processing the RPC request. 1276 */ 1277 static int 1278 svc_process_common(struct svc_rqst *rqstp) 1279 { 1280 struct xdr_stream *xdr = &rqstp->rq_res_stream; 1281 struct svc_program *progp; 1282 const struct svc_procedure *procp = NULL; 1283 struct svc_serv *serv = rqstp->rq_server; 1284 struct svc_process_info process; 1285 int auth_res, rc; 1286 unsigned int aoffset; 1287 __be32 *p; 1288 1289 /* Will be turned off by GSS integrity and privacy services */ 1290 set_bit(RQ_SPLICE_OK, &rqstp->rq_flags); 1291 /* Will be turned off only when NFSv4 Sessions are used */ 1292 set_bit(RQ_USEDEFERRAL, &rqstp->rq_flags); 1293 clear_bit(RQ_DROPME, &rqstp->rq_flags); 1294 1295 /* Construct the first words of the reply: */ 1296 svcxdr_init_encode(rqstp); 1297 xdr_stream_encode_be32(xdr, rqstp->rq_xid); 1298 xdr_stream_encode_be32(xdr, rpc_reply); 1299 1300 p = xdr_inline_decode(&rqstp->rq_arg_stream, XDR_UNIT * 4); 1301 if (unlikely(!p)) 1302 goto err_short_len; 1303 if (*p++ != cpu_to_be32(RPC_VERSION)) 1304 goto err_bad_rpc; 1305 1306 xdr_stream_encode_be32(xdr, rpc_msg_accepted); 1307 1308 rqstp->rq_prog = be32_to_cpup(p++); 1309 rqstp->rq_vers = be32_to_cpup(p++); 1310 rqstp->rq_proc = be32_to_cpup(p); 1311 1312 for (progp = serv->sv_program; progp; progp = progp->pg_next) 1313 if (rqstp->rq_prog == progp->pg_prog) 1314 break; 1315 1316 /* 1317 * Decode auth data, and add verifier to reply buffer. 1318 * We do this before anything else in order to get a decent 1319 * auth verifier. 1320 */ 1321 auth_res = svc_authenticate(rqstp); 1322 /* Also give the program a chance to reject this call: */ 1323 if (auth_res == SVC_OK && progp) 1324 auth_res = progp->pg_authenticate(rqstp); 1325 trace_svc_authenticate(rqstp, auth_res); 1326 switch (auth_res) { 1327 case SVC_OK: 1328 break; 1329 case SVC_GARBAGE: 1330 goto err_garbage_args; 1331 case SVC_SYSERR: 1332 goto err_system_err; 1333 case SVC_DENIED: 1334 goto err_bad_auth; 1335 case SVC_CLOSE: 1336 goto close; 1337 case SVC_DROP: 1338 goto dropit; 1339 case SVC_COMPLETE: 1340 goto sendit; 1341 } 1342 1343 if (progp == NULL) 1344 goto err_bad_prog; 1345 1346 switch (progp->pg_init_request(rqstp, progp, &process)) { 1347 case rpc_success: 1348 break; 1349 case rpc_prog_unavail: 1350 goto err_bad_prog; 1351 case rpc_prog_mismatch: 1352 goto err_bad_vers; 1353 case rpc_proc_unavail: 1354 goto err_bad_proc; 1355 } 1356 1357 procp = rqstp->rq_procinfo; 1358 /* Should this check go into the dispatcher? */ 1359 if (!procp || !procp->pc_func) 1360 goto err_bad_proc; 1361 1362 /* Syntactic check complete */ 1363 serv->sv_stats->rpccnt++; 1364 trace_svc_process(rqstp, progp->pg_name); 1365 1366 aoffset = xdr_stream_pos(xdr); 1367 1368 /* un-reserve some of the out-queue now that we have a 1369 * better idea of reply size 1370 */ 1371 if (procp->pc_xdrressize) 1372 svc_reserve_auth(rqstp, procp->pc_xdrressize<<2); 1373 1374 /* Call the function that processes the request. */ 1375 rc = process.dispatch(rqstp); 1376 if (procp->pc_release) 1377 procp->pc_release(rqstp); 1378 if (!rc) 1379 goto dropit; 1380 if (rqstp->rq_auth_stat != rpc_auth_ok) 1381 goto err_bad_auth; 1382 1383 if (*rqstp->rq_accept_statp != rpc_success) 1384 xdr_truncate_encode(xdr, aoffset); 1385 1386 if (procp->pc_encode == NULL) 1387 goto dropit; 1388 1389 sendit: 1390 if (svc_authorise(rqstp)) 1391 goto close_xprt; 1392 return 1; /* Caller can now send it */ 1393 1394 dropit: 1395 svc_authorise(rqstp); /* doesn't hurt to call this twice */ 1396 dprintk("svc: svc_process dropit\n"); 1397 return 0; 1398 1399 close: 1400 svc_authorise(rqstp); 1401 close_xprt: 1402 if (rqstp->rq_xprt && test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags)) 1403 svc_xprt_close(rqstp->rq_xprt); 1404 dprintk("svc: svc_process close\n"); 1405 return 0; 1406 1407 err_short_len: 1408 svc_printk(rqstp, "short len %u, dropping request\n", 1409 rqstp->rq_arg.len); 1410 goto close_xprt; 1411 1412 err_bad_rpc: 1413 serv->sv_stats->rpcbadfmt++; 1414 xdr_stream_encode_u32(xdr, RPC_MSG_DENIED); 1415 xdr_stream_encode_u32(xdr, RPC_MISMATCH); 1416 /* Only RPCv2 supported */ 1417 xdr_stream_encode_u32(xdr, RPC_VERSION); 1418 xdr_stream_encode_u32(xdr, RPC_VERSION); 1419 return 1; /* don't wrap */ 1420 1421 err_bad_auth: 1422 dprintk("svc: authentication failed (%d)\n", 1423 be32_to_cpu(rqstp->rq_auth_stat)); 1424 serv->sv_stats->rpcbadauth++; 1425 /* Restore write pointer to location of reply status: */ 1426 xdr_truncate_encode(xdr, XDR_UNIT * 2); 1427 xdr_stream_encode_u32(xdr, RPC_MSG_DENIED); 1428 xdr_stream_encode_u32(xdr, RPC_AUTH_ERROR); 1429 xdr_stream_encode_be32(xdr, rqstp->rq_auth_stat); 1430 goto sendit; 1431 1432 err_bad_prog: 1433 dprintk("svc: unknown program %d\n", rqstp->rq_prog); 1434 serv->sv_stats->rpcbadfmt++; 1435 *rqstp->rq_accept_statp = rpc_prog_unavail; 1436 goto sendit; 1437 1438 err_bad_vers: 1439 svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n", 1440 rqstp->rq_vers, rqstp->rq_prog, progp->pg_name); 1441 1442 serv->sv_stats->rpcbadfmt++; 1443 *rqstp->rq_accept_statp = rpc_prog_mismatch; 1444 1445 /* 1446 * svc_authenticate() has already added the verifier and 1447 * advanced the stream just past rq_accept_statp. 1448 */ 1449 xdr_stream_encode_u32(xdr, process.mismatch.lovers); 1450 xdr_stream_encode_u32(xdr, process.mismatch.hivers); 1451 goto sendit; 1452 1453 err_bad_proc: 1454 svc_printk(rqstp, "unknown procedure (%d)\n", rqstp->rq_proc); 1455 1456 serv->sv_stats->rpcbadfmt++; 1457 *rqstp->rq_accept_statp = rpc_proc_unavail; 1458 goto sendit; 1459 1460 err_garbage_args: 1461 svc_printk(rqstp, "failed to decode RPC header\n"); 1462 1463 serv->sv_stats->rpcbadfmt++; 1464 *rqstp->rq_accept_statp = rpc_garbage_args; 1465 goto sendit; 1466 1467 err_system_err: 1468 serv->sv_stats->rpcbadfmt++; 1469 *rqstp->rq_accept_statp = rpc_system_err; 1470 goto sendit; 1471 } 1472 1473 /** 1474 * svc_process - Execute one RPC transaction 1475 * @rqstp: RPC transaction context 1476 * 1477 */ 1478 void svc_process(struct svc_rqst *rqstp) 1479 { 1480 struct kvec *resv = &rqstp->rq_res.head[0]; 1481 __be32 *p; 1482 1483 #if IS_ENABLED(CONFIG_FAIL_SUNRPC) 1484 if (!fail_sunrpc.ignore_server_disconnect && 1485 should_fail(&fail_sunrpc.attr, 1)) 1486 svc_xprt_deferred_close(rqstp->rq_xprt); 1487 #endif 1488 1489 /* 1490 * Setup response xdr_buf. 1491 * Initially it has just one page 1492 */ 1493 rqstp->rq_next_page = &rqstp->rq_respages[1]; 1494 resv->iov_base = page_address(rqstp->rq_respages[0]); 1495 resv->iov_len = 0; 1496 rqstp->rq_res.pages = rqstp->rq_next_page; 1497 rqstp->rq_res.len = 0; 1498 rqstp->rq_res.page_base = 0; 1499 rqstp->rq_res.page_len = 0; 1500 rqstp->rq_res.buflen = PAGE_SIZE; 1501 rqstp->rq_res.tail[0].iov_base = NULL; 1502 rqstp->rq_res.tail[0].iov_len = 0; 1503 1504 svcxdr_init_decode(rqstp); 1505 p = xdr_inline_decode(&rqstp->rq_arg_stream, XDR_UNIT * 2); 1506 if (unlikely(!p)) 1507 goto out_drop; 1508 rqstp->rq_xid = *p++; 1509 if (unlikely(*p != rpc_call)) 1510 goto out_baddir; 1511 1512 if (!svc_process_common(rqstp)) 1513 goto out_drop; 1514 svc_send(rqstp); 1515 return; 1516 1517 out_baddir: 1518 svc_printk(rqstp, "bad direction 0x%08x, dropping request\n", 1519 be32_to_cpu(*p)); 1520 rqstp->rq_server->sv_stats->rpcbadfmt++; 1521 out_drop: 1522 svc_drop(rqstp); 1523 } 1524 EXPORT_SYMBOL_GPL(svc_process); 1525 1526 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 1527 /* 1528 * Process a backchannel RPC request that arrived over an existing 1529 * outbound connection 1530 */ 1531 int 1532 bc_svc_process(struct svc_serv *serv, struct rpc_rqst *req, 1533 struct svc_rqst *rqstp) 1534 { 1535 struct rpc_task *task; 1536 int proc_error; 1537 int error; 1538 1539 dprintk("svc: %s(%p)\n", __func__, req); 1540 1541 /* Build the svc_rqst used by the common processing routine */ 1542 rqstp->rq_xid = req->rq_xid; 1543 rqstp->rq_prot = req->rq_xprt->prot; 1544 rqstp->rq_server = serv; 1545 rqstp->rq_bc_net = req->rq_xprt->xprt_net; 1546 1547 rqstp->rq_addrlen = sizeof(req->rq_xprt->addr); 1548 memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen); 1549 memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg)); 1550 memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res)); 1551 1552 /* Adjust the argument buffer length */ 1553 rqstp->rq_arg.len = req->rq_private_buf.len; 1554 if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) { 1555 rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len; 1556 rqstp->rq_arg.page_len = 0; 1557 } else if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len + 1558 rqstp->rq_arg.page_len) 1559 rqstp->rq_arg.page_len = rqstp->rq_arg.len - 1560 rqstp->rq_arg.head[0].iov_len; 1561 else 1562 rqstp->rq_arg.len = rqstp->rq_arg.head[0].iov_len + 1563 rqstp->rq_arg.page_len; 1564 1565 /* Reset the response buffer */ 1566 rqstp->rq_res.head[0].iov_len = 0; 1567 1568 /* 1569 * Skip the XID and calldir fields because they've already 1570 * been processed by the caller. 1571 */ 1572 svcxdr_init_decode(rqstp); 1573 if (!xdr_inline_decode(&rqstp->rq_arg_stream, XDR_UNIT * 2)) { 1574 error = -EINVAL; 1575 goto out; 1576 } 1577 1578 /* Parse and execute the bc call */ 1579 proc_error = svc_process_common(rqstp); 1580 1581 atomic_dec(&req->rq_xprt->bc_slot_count); 1582 if (!proc_error) { 1583 /* Processing error: drop the request */ 1584 xprt_free_bc_request(req); 1585 error = -EINVAL; 1586 goto out; 1587 } 1588 /* Finally, send the reply synchronously */ 1589 memcpy(&req->rq_snd_buf, &rqstp->rq_res, sizeof(req->rq_snd_buf)); 1590 task = rpc_run_bc_task(req); 1591 if (IS_ERR(task)) { 1592 error = PTR_ERR(task); 1593 goto out; 1594 } 1595 1596 WARN_ON_ONCE(atomic_read(&task->tk_count) != 1); 1597 error = task->tk_status; 1598 rpc_put_task(task); 1599 1600 out: 1601 dprintk("svc: %s(), error=%d\n", __func__, error); 1602 return error; 1603 } 1604 EXPORT_SYMBOL_GPL(bc_svc_process); 1605 #endif /* CONFIG_SUNRPC_BACKCHANNEL */ 1606 1607 /** 1608 * svc_max_payload - Return transport-specific limit on the RPC payload 1609 * @rqstp: RPC transaction context 1610 * 1611 * Returns the maximum number of payload bytes the current transport 1612 * allows. 1613 */ 1614 u32 svc_max_payload(const struct svc_rqst *rqstp) 1615 { 1616 u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload; 1617 1618 if (rqstp->rq_server->sv_max_payload < max) 1619 max = rqstp->rq_server->sv_max_payload; 1620 return max; 1621 } 1622 EXPORT_SYMBOL_GPL(svc_max_payload); 1623 1624 /** 1625 * svc_proc_name - Return RPC procedure name in string form 1626 * @rqstp: svc_rqst to operate on 1627 * 1628 * Return value: 1629 * Pointer to a NUL-terminated string 1630 */ 1631 const char *svc_proc_name(const struct svc_rqst *rqstp) 1632 { 1633 if (rqstp && rqstp->rq_procinfo) 1634 return rqstp->rq_procinfo->pc_name; 1635 return "unknown"; 1636 } 1637 1638 1639 /** 1640 * svc_encode_result_payload - mark a range of bytes as a result payload 1641 * @rqstp: svc_rqst to operate on 1642 * @offset: payload's byte offset in rqstp->rq_res 1643 * @length: size of payload, in bytes 1644 * 1645 * Returns zero on success, or a negative errno if a permanent 1646 * error occurred. 1647 */ 1648 int svc_encode_result_payload(struct svc_rqst *rqstp, unsigned int offset, 1649 unsigned int length) 1650 { 1651 return rqstp->rq_xprt->xpt_ops->xpo_result_payload(rqstp, offset, 1652 length); 1653 } 1654 EXPORT_SYMBOL_GPL(svc_encode_result_payload); 1655 1656 /** 1657 * svc_fill_write_vector - Construct data argument for VFS write call 1658 * @rqstp: svc_rqst to operate on 1659 * @payload: xdr_buf containing only the write data payload 1660 * 1661 * Fills in rqstp::rq_vec, and returns the number of elements. 1662 */ 1663 unsigned int svc_fill_write_vector(struct svc_rqst *rqstp, 1664 struct xdr_buf *payload) 1665 { 1666 struct page **pages = payload->pages; 1667 struct kvec *first = payload->head; 1668 struct kvec *vec = rqstp->rq_vec; 1669 size_t total = payload->len; 1670 unsigned int i; 1671 1672 /* Some types of transport can present the write payload 1673 * entirely in rq_arg.pages. In this case, @first is empty. 1674 */ 1675 i = 0; 1676 if (first->iov_len) { 1677 vec[i].iov_base = first->iov_base; 1678 vec[i].iov_len = min_t(size_t, total, first->iov_len); 1679 total -= vec[i].iov_len; 1680 ++i; 1681 } 1682 1683 while (total) { 1684 vec[i].iov_base = page_address(*pages); 1685 vec[i].iov_len = min_t(size_t, total, PAGE_SIZE); 1686 total -= vec[i].iov_len; 1687 ++i; 1688 ++pages; 1689 } 1690 1691 WARN_ON_ONCE(i > ARRAY_SIZE(rqstp->rq_vec)); 1692 return i; 1693 } 1694 EXPORT_SYMBOL_GPL(svc_fill_write_vector); 1695 1696 /** 1697 * svc_fill_symlink_pathname - Construct pathname argument for VFS symlink call 1698 * @rqstp: svc_rqst to operate on 1699 * @first: buffer containing first section of pathname 1700 * @p: buffer containing remaining section of pathname 1701 * @total: total length of the pathname argument 1702 * 1703 * The VFS symlink API demands a NUL-terminated pathname in mapped memory. 1704 * Returns pointer to a NUL-terminated string, or an ERR_PTR. Caller must free 1705 * the returned string. 1706 */ 1707 char *svc_fill_symlink_pathname(struct svc_rqst *rqstp, struct kvec *first, 1708 void *p, size_t total) 1709 { 1710 size_t len, remaining; 1711 char *result, *dst; 1712 1713 result = kmalloc(total + 1, GFP_KERNEL); 1714 if (!result) 1715 return ERR_PTR(-ESERVERFAULT); 1716 1717 dst = result; 1718 remaining = total; 1719 1720 len = min_t(size_t, total, first->iov_len); 1721 if (len) { 1722 memcpy(dst, first->iov_base, len); 1723 dst += len; 1724 remaining -= len; 1725 } 1726 1727 if (remaining) { 1728 len = min_t(size_t, remaining, PAGE_SIZE); 1729 memcpy(dst, p, len); 1730 dst += len; 1731 } 1732 1733 *dst = '\0'; 1734 1735 /* Sanity check: Linux doesn't allow the pathname argument to 1736 * contain a NUL byte. 1737 */ 1738 if (strlen(result) != total) { 1739 kfree(result); 1740 return ERR_PTR(-EINVAL); 1741 } 1742 return result; 1743 } 1744 EXPORT_SYMBOL_GPL(svc_fill_symlink_pathname); 1745