xref: /openbmc/linux/net/sunrpc/svc.c (revision 0d456bad)
1 /*
2  * linux/net/sunrpc/svc.c
3  *
4  * High-level RPC service routines
5  *
6  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
7  *
8  * Multiple threads pools and NUMAisation
9  * Copyright (c) 2006 Silicon Graphics, Inc.
10  * by Greg Banks <gnb@melbourne.sgi.com>
11  */
12 
13 #include <linux/linkage.h>
14 #include <linux/sched.h>
15 #include <linux/errno.h>
16 #include <linux/net.h>
17 #include <linux/in.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/module.h>
21 #include <linux/kthread.h>
22 #include <linux/slab.h>
23 #include <linux/nsproxy.h>
24 
25 #include <linux/sunrpc/types.h>
26 #include <linux/sunrpc/xdr.h>
27 #include <linux/sunrpc/stats.h>
28 #include <linux/sunrpc/svcsock.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/sunrpc/bc_xprt.h>
31 
32 #define RPCDBG_FACILITY	RPCDBG_SVCDSP
33 
34 static void svc_unregister(const struct svc_serv *serv, struct net *net);
35 
36 #define svc_serv_is_pooled(serv)    ((serv)->sv_function)
37 
38 /*
39  * Mode for mapping cpus to pools.
40  */
41 enum {
42 	SVC_POOL_AUTO = -1,	/* choose one of the others */
43 	SVC_POOL_GLOBAL,	/* no mapping, just a single global pool
44 				 * (legacy & UP mode) */
45 	SVC_POOL_PERCPU,	/* one pool per cpu */
46 	SVC_POOL_PERNODE	/* one pool per numa node */
47 };
48 #define SVC_POOL_DEFAULT	SVC_POOL_GLOBAL
49 
50 /*
51  * Structure for mapping cpus to pools and vice versa.
52  * Setup once during sunrpc initialisation.
53  */
54 static struct svc_pool_map {
55 	int count;			/* How many svc_servs use us */
56 	int mode;			/* Note: int not enum to avoid
57 					 * warnings about "enumeration value
58 					 * not handled in switch" */
59 	unsigned int npools;
60 	unsigned int *pool_to;		/* maps pool id to cpu or node */
61 	unsigned int *to_pool;		/* maps cpu or node to pool id */
62 } svc_pool_map = {
63 	.count = 0,
64 	.mode = SVC_POOL_DEFAULT
65 };
66 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */
67 
68 static int
69 param_set_pool_mode(const char *val, struct kernel_param *kp)
70 {
71 	int *ip = (int *)kp->arg;
72 	struct svc_pool_map *m = &svc_pool_map;
73 	int err;
74 
75 	mutex_lock(&svc_pool_map_mutex);
76 
77 	err = -EBUSY;
78 	if (m->count)
79 		goto out;
80 
81 	err = 0;
82 	if (!strncmp(val, "auto", 4))
83 		*ip = SVC_POOL_AUTO;
84 	else if (!strncmp(val, "global", 6))
85 		*ip = SVC_POOL_GLOBAL;
86 	else if (!strncmp(val, "percpu", 6))
87 		*ip = SVC_POOL_PERCPU;
88 	else if (!strncmp(val, "pernode", 7))
89 		*ip = SVC_POOL_PERNODE;
90 	else
91 		err = -EINVAL;
92 
93 out:
94 	mutex_unlock(&svc_pool_map_mutex);
95 	return err;
96 }
97 
98 static int
99 param_get_pool_mode(char *buf, struct kernel_param *kp)
100 {
101 	int *ip = (int *)kp->arg;
102 
103 	switch (*ip)
104 	{
105 	case SVC_POOL_AUTO:
106 		return strlcpy(buf, "auto", 20);
107 	case SVC_POOL_GLOBAL:
108 		return strlcpy(buf, "global", 20);
109 	case SVC_POOL_PERCPU:
110 		return strlcpy(buf, "percpu", 20);
111 	case SVC_POOL_PERNODE:
112 		return strlcpy(buf, "pernode", 20);
113 	default:
114 		return sprintf(buf, "%d", *ip);
115 	}
116 }
117 
118 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode,
119 		 &svc_pool_map.mode, 0644);
120 
121 /*
122  * Detect best pool mapping mode heuristically,
123  * according to the machine's topology.
124  */
125 static int
126 svc_pool_map_choose_mode(void)
127 {
128 	unsigned int node;
129 
130 	if (nr_online_nodes > 1) {
131 		/*
132 		 * Actually have multiple NUMA nodes,
133 		 * so split pools on NUMA node boundaries
134 		 */
135 		return SVC_POOL_PERNODE;
136 	}
137 
138 	node = first_online_node;
139 	if (nr_cpus_node(node) > 2) {
140 		/*
141 		 * Non-trivial SMP, or CONFIG_NUMA on
142 		 * non-NUMA hardware, e.g. with a generic
143 		 * x86_64 kernel on Xeons.  In this case we
144 		 * want to divide the pools on cpu boundaries.
145 		 */
146 		return SVC_POOL_PERCPU;
147 	}
148 
149 	/* default: one global pool */
150 	return SVC_POOL_GLOBAL;
151 }
152 
153 /*
154  * Allocate the to_pool[] and pool_to[] arrays.
155  * Returns 0 on success or an errno.
156  */
157 static int
158 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools)
159 {
160 	m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
161 	if (!m->to_pool)
162 		goto fail;
163 	m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
164 	if (!m->pool_to)
165 		goto fail_free;
166 
167 	return 0;
168 
169 fail_free:
170 	kfree(m->to_pool);
171 	m->to_pool = NULL;
172 fail:
173 	return -ENOMEM;
174 }
175 
176 /*
177  * Initialise the pool map for SVC_POOL_PERCPU mode.
178  * Returns number of pools or <0 on error.
179  */
180 static int
181 svc_pool_map_init_percpu(struct svc_pool_map *m)
182 {
183 	unsigned int maxpools = nr_cpu_ids;
184 	unsigned int pidx = 0;
185 	unsigned int cpu;
186 	int err;
187 
188 	err = svc_pool_map_alloc_arrays(m, maxpools);
189 	if (err)
190 		return err;
191 
192 	for_each_online_cpu(cpu) {
193 		BUG_ON(pidx > maxpools);
194 		m->to_pool[cpu] = pidx;
195 		m->pool_to[pidx] = cpu;
196 		pidx++;
197 	}
198 	/* cpus brought online later all get mapped to pool0, sorry */
199 
200 	return pidx;
201 };
202 
203 
204 /*
205  * Initialise the pool map for SVC_POOL_PERNODE mode.
206  * Returns number of pools or <0 on error.
207  */
208 static int
209 svc_pool_map_init_pernode(struct svc_pool_map *m)
210 {
211 	unsigned int maxpools = nr_node_ids;
212 	unsigned int pidx = 0;
213 	unsigned int node;
214 	int err;
215 
216 	err = svc_pool_map_alloc_arrays(m, maxpools);
217 	if (err)
218 		return err;
219 
220 	for_each_node_with_cpus(node) {
221 		/* some architectures (e.g. SN2) have cpuless nodes */
222 		BUG_ON(pidx > maxpools);
223 		m->to_pool[node] = pidx;
224 		m->pool_to[pidx] = node;
225 		pidx++;
226 	}
227 	/* nodes brought online later all get mapped to pool0, sorry */
228 
229 	return pidx;
230 }
231 
232 
233 /*
234  * Add a reference to the global map of cpus to pools (and
235  * vice versa).  Initialise the map if we're the first user.
236  * Returns the number of pools.
237  */
238 static unsigned int
239 svc_pool_map_get(void)
240 {
241 	struct svc_pool_map *m = &svc_pool_map;
242 	int npools = -1;
243 
244 	mutex_lock(&svc_pool_map_mutex);
245 
246 	if (m->count++) {
247 		mutex_unlock(&svc_pool_map_mutex);
248 		return m->npools;
249 	}
250 
251 	if (m->mode == SVC_POOL_AUTO)
252 		m->mode = svc_pool_map_choose_mode();
253 
254 	switch (m->mode) {
255 	case SVC_POOL_PERCPU:
256 		npools = svc_pool_map_init_percpu(m);
257 		break;
258 	case SVC_POOL_PERNODE:
259 		npools = svc_pool_map_init_pernode(m);
260 		break;
261 	}
262 
263 	if (npools < 0) {
264 		/* default, or memory allocation failure */
265 		npools = 1;
266 		m->mode = SVC_POOL_GLOBAL;
267 	}
268 	m->npools = npools;
269 
270 	mutex_unlock(&svc_pool_map_mutex);
271 	return m->npools;
272 }
273 
274 
275 /*
276  * Drop a reference to the global map of cpus to pools.
277  * When the last reference is dropped, the map data is
278  * freed; this allows the sysadmin to change the pool
279  * mode using the pool_mode module option without
280  * rebooting or re-loading sunrpc.ko.
281  */
282 static void
283 svc_pool_map_put(void)
284 {
285 	struct svc_pool_map *m = &svc_pool_map;
286 
287 	mutex_lock(&svc_pool_map_mutex);
288 
289 	if (!--m->count) {
290 		kfree(m->to_pool);
291 		m->to_pool = NULL;
292 		kfree(m->pool_to);
293 		m->pool_to = NULL;
294 		m->npools = 0;
295 	}
296 
297 	mutex_unlock(&svc_pool_map_mutex);
298 }
299 
300 
301 static int svc_pool_map_get_node(unsigned int pidx)
302 {
303 	const struct svc_pool_map *m = &svc_pool_map;
304 
305 	if (m->count) {
306 		if (m->mode == SVC_POOL_PERCPU)
307 			return cpu_to_node(m->pool_to[pidx]);
308 		if (m->mode == SVC_POOL_PERNODE)
309 			return m->pool_to[pidx];
310 	}
311 	return NUMA_NO_NODE;
312 }
313 /*
314  * Set the given thread's cpus_allowed mask so that it
315  * will only run on cpus in the given pool.
316  */
317 static inline void
318 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx)
319 {
320 	struct svc_pool_map *m = &svc_pool_map;
321 	unsigned int node = m->pool_to[pidx];
322 
323 	/*
324 	 * The caller checks for sv_nrpools > 1, which
325 	 * implies that we've been initialized.
326 	 */
327 	WARN_ON_ONCE(m->count == 0);
328 	if (m->count == 0)
329 		return;
330 
331 	switch (m->mode) {
332 	case SVC_POOL_PERCPU:
333 	{
334 		set_cpus_allowed_ptr(task, cpumask_of(node));
335 		break;
336 	}
337 	case SVC_POOL_PERNODE:
338 	{
339 		set_cpus_allowed_ptr(task, cpumask_of_node(node));
340 		break;
341 	}
342 	}
343 }
344 
345 /*
346  * Use the mapping mode to choose a pool for a given CPU.
347  * Used when enqueueing an incoming RPC.  Always returns
348  * a non-NULL pool pointer.
349  */
350 struct svc_pool *
351 svc_pool_for_cpu(struct svc_serv *serv, int cpu)
352 {
353 	struct svc_pool_map *m = &svc_pool_map;
354 	unsigned int pidx = 0;
355 
356 	/*
357 	 * An uninitialised map happens in a pure client when
358 	 * lockd is brought up, so silently treat it the
359 	 * same as SVC_POOL_GLOBAL.
360 	 */
361 	if (svc_serv_is_pooled(serv)) {
362 		switch (m->mode) {
363 		case SVC_POOL_PERCPU:
364 			pidx = m->to_pool[cpu];
365 			break;
366 		case SVC_POOL_PERNODE:
367 			pidx = m->to_pool[cpu_to_node(cpu)];
368 			break;
369 		}
370 	}
371 	return &serv->sv_pools[pidx % serv->sv_nrpools];
372 }
373 
374 int svc_rpcb_setup(struct svc_serv *serv, struct net *net)
375 {
376 	int err;
377 
378 	err = rpcb_create_local(net);
379 	if (err)
380 		return err;
381 
382 	/* Remove any stale portmap registrations */
383 	svc_unregister(serv, net);
384 	return 0;
385 }
386 EXPORT_SYMBOL_GPL(svc_rpcb_setup);
387 
388 void svc_rpcb_cleanup(struct svc_serv *serv, struct net *net)
389 {
390 	svc_unregister(serv, net);
391 	rpcb_put_local(net);
392 }
393 EXPORT_SYMBOL_GPL(svc_rpcb_cleanup);
394 
395 static int svc_uses_rpcbind(struct svc_serv *serv)
396 {
397 	struct svc_program	*progp;
398 	unsigned int		i;
399 
400 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
401 		for (i = 0; i < progp->pg_nvers; i++) {
402 			if (progp->pg_vers[i] == NULL)
403 				continue;
404 			if (progp->pg_vers[i]->vs_hidden == 0)
405 				return 1;
406 		}
407 	}
408 
409 	return 0;
410 }
411 
412 int svc_bind(struct svc_serv *serv, struct net *net)
413 {
414 	if (!svc_uses_rpcbind(serv))
415 		return 0;
416 	return svc_rpcb_setup(serv, net);
417 }
418 EXPORT_SYMBOL_GPL(svc_bind);
419 
420 /*
421  * Create an RPC service
422  */
423 static struct svc_serv *
424 __svc_create(struct svc_program *prog, unsigned int bufsize, int npools,
425 	     void (*shutdown)(struct svc_serv *serv, struct net *net))
426 {
427 	struct svc_serv	*serv;
428 	unsigned int vers;
429 	unsigned int xdrsize;
430 	unsigned int i;
431 
432 	if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL)))
433 		return NULL;
434 	serv->sv_name      = prog->pg_name;
435 	serv->sv_program   = prog;
436 	serv->sv_nrthreads = 1;
437 	serv->sv_stats     = prog->pg_stats;
438 	if (bufsize > RPCSVC_MAXPAYLOAD)
439 		bufsize = RPCSVC_MAXPAYLOAD;
440 	serv->sv_max_payload = bufsize? bufsize : 4096;
441 	serv->sv_max_mesg  = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE);
442 	serv->sv_shutdown  = shutdown;
443 	xdrsize = 0;
444 	while (prog) {
445 		prog->pg_lovers = prog->pg_nvers-1;
446 		for (vers=0; vers<prog->pg_nvers ; vers++)
447 			if (prog->pg_vers[vers]) {
448 				prog->pg_hivers = vers;
449 				if (prog->pg_lovers > vers)
450 					prog->pg_lovers = vers;
451 				if (prog->pg_vers[vers]->vs_xdrsize > xdrsize)
452 					xdrsize = prog->pg_vers[vers]->vs_xdrsize;
453 			}
454 		prog = prog->pg_next;
455 	}
456 	serv->sv_xdrsize   = xdrsize;
457 	INIT_LIST_HEAD(&serv->sv_tempsocks);
458 	INIT_LIST_HEAD(&serv->sv_permsocks);
459 	init_timer(&serv->sv_temptimer);
460 	spin_lock_init(&serv->sv_lock);
461 
462 	serv->sv_nrpools = npools;
463 	serv->sv_pools =
464 		kcalloc(serv->sv_nrpools, sizeof(struct svc_pool),
465 			GFP_KERNEL);
466 	if (!serv->sv_pools) {
467 		kfree(serv);
468 		return NULL;
469 	}
470 
471 	for (i = 0; i < serv->sv_nrpools; i++) {
472 		struct svc_pool *pool = &serv->sv_pools[i];
473 
474 		dprintk("svc: initialising pool %u for %s\n",
475 				i, serv->sv_name);
476 
477 		pool->sp_id = i;
478 		INIT_LIST_HEAD(&pool->sp_threads);
479 		INIT_LIST_HEAD(&pool->sp_sockets);
480 		INIT_LIST_HEAD(&pool->sp_all_threads);
481 		spin_lock_init(&pool->sp_lock);
482 	}
483 
484 	if (svc_uses_rpcbind(serv) && (!serv->sv_shutdown))
485 		serv->sv_shutdown = svc_rpcb_cleanup;
486 
487 	return serv;
488 }
489 
490 struct svc_serv *
491 svc_create(struct svc_program *prog, unsigned int bufsize,
492 	   void (*shutdown)(struct svc_serv *serv, struct net *net))
493 {
494 	return __svc_create(prog, bufsize, /*npools*/1, shutdown);
495 }
496 EXPORT_SYMBOL_GPL(svc_create);
497 
498 struct svc_serv *
499 svc_create_pooled(struct svc_program *prog, unsigned int bufsize,
500 		  void (*shutdown)(struct svc_serv *serv, struct net *net),
501 		  svc_thread_fn func, struct module *mod)
502 {
503 	struct svc_serv *serv;
504 	unsigned int npools = svc_pool_map_get();
505 
506 	serv = __svc_create(prog, bufsize, npools, shutdown);
507 
508 	if (serv != NULL) {
509 		serv->sv_function = func;
510 		serv->sv_module = mod;
511 	}
512 
513 	return serv;
514 }
515 EXPORT_SYMBOL_GPL(svc_create_pooled);
516 
517 void svc_shutdown_net(struct svc_serv *serv, struct net *net)
518 {
519 	/*
520 	 * The set of xprts (contained in the sv_tempsocks and
521 	 * sv_permsocks lists) is now constant, since it is modified
522 	 * only by accepting new sockets (done by service threads in
523 	 * svc_recv) or aging old ones (done by sv_temptimer), or
524 	 * configuration changes (excluded by whatever locking the
525 	 * caller is using--nfsd_mutex in the case of nfsd).  So it's
526 	 * safe to traverse those lists and shut everything down:
527 	 */
528 	svc_close_net(serv, net);
529 
530 	if (serv->sv_shutdown)
531 		serv->sv_shutdown(serv, net);
532 }
533 EXPORT_SYMBOL_GPL(svc_shutdown_net);
534 
535 /*
536  * Destroy an RPC service. Should be called with appropriate locking to
537  * protect the sv_nrthreads, sv_permsocks and sv_tempsocks.
538  */
539 void
540 svc_destroy(struct svc_serv *serv)
541 {
542 	dprintk("svc: svc_destroy(%s, %d)\n",
543 				serv->sv_program->pg_name,
544 				serv->sv_nrthreads);
545 
546 	if (serv->sv_nrthreads) {
547 		if (--(serv->sv_nrthreads) != 0) {
548 			svc_sock_update_bufs(serv);
549 			return;
550 		}
551 	} else
552 		printk("svc_destroy: no threads for serv=%p!\n", serv);
553 
554 	del_timer_sync(&serv->sv_temptimer);
555 
556 	/*
557 	 * The last user is gone and thus all sockets have to be destroyed to
558 	 * the point. Check this.
559 	 */
560 	BUG_ON(!list_empty(&serv->sv_permsocks));
561 	BUG_ON(!list_empty(&serv->sv_tempsocks));
562 
563 	cache_clean_deferred(serv);
564 
565 	if (svc_serv_is_pooled(serv))
566 		svc_pool_map_put();
567 
568 	kfree(serv->sv_pools);
569 	kfree(serv);
570 }
571 EXPORT_SYMBOL_GPL(svc_destroy);
572 
573 /*
574  * Allocate an RPC server's buffer space.
575  * We allocate pages and place them in rq_argpages.
576  */
577 static int
578 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size, int node)
579 {
580 	unsigned int pages, arghi;
581 
582 	/* bc_xprt uses fore channel allocated buffers */
583 	if (svc_is_backchannel(rqstp))
584 		return 1;
585 
586 	pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply.
587 				       * We assume one is at most one page
588 				       */
589 	arghi = 0;
590 	WARN_ON_ONCE(pages > RPCSVC_MAXPAGES);
591 	if (pages > RPCSVC_MAXPAGES)
592 		pages = RPCSVC_MAXPAGES;
593 	while (pages) {
594 		struct page *p = alloc_pages_node(node, GFP_KERNEL, 0);
595 		if (!p)
596 			break;
597 		rqstp->rq_pages[arghi++] = p;
598 		pages--;
599 	}
600 	return pages == 0;
601 }
602 
603 /*
604  * Release an RPC server buffer
605  */
606 static void
607 svc_release_buffer(struct svc_rqst *rqstp)
608 {
609 	unsigned int i;
610 
611 	for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++)
612 		if (rqstp->rq_pages[i])
613 			put_page(rqstp->rq_pages[i]);
614 }
615 
616 struct svc_rqst *
617 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node)
618 {
619 	struct svc_rqst	*rqstp;
620 
621 	rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node);
622 	if (!rqstp)
623 		goto out_enomem;
624 
625 	init_waitqueue_head(&rqstp->rq_wait);
626 
627 	serv->sv_nrthreads++;
628 	spin_lock_bh(&pool->sp_lock);
629 	pool->sp_nrthreads++;
630 	list_add(&rqstp->rq_all, &pool->sp_all_threads);
631 	spin_unlock_bh(&pool->sp_lock);
632 	rqstp->rq_server = serv;
633 	rqstp->rq_pool = pool;
634 
635 	rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
636 	if (!rqstp->rq_argp)
637 		goto out_thread;
638 
639 	rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
640 	if (!rqstp->rq_resp)
641 		goto out_thread;
642 
643 	if (!svc_init_buffer(rqstp, serv->sv_max_mesg, node))
644 		goto out_thread;
645 
646 	return rqstp;
647 out_thread:
648 	svc_exit_thread(rqstp);
649 out_enomem:
650 	return ERR_PTR(-ENOMEM);
651 }
652 EXPORT_SYMBOL_GPL(svc_prepare_thread);
653 
654 /*
655  * Choose a pool in which to create a new thread, for svc_set_num_threads
656  */
657 static inline struct svc_pool *
658 choose_pool(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
659 {
660 	if (pool != NULL)
661 		return pool;
662 
663 	return &serv->sv_pools[(*state)++ % serv->sv_nrpools];
664 }
665 
666 /*
667  * Choose a thread to kill, for svc_set_num_threads
668  */
669 static inline struct task_struct *
670 choose_victim(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
671 {
672 	unsigned int i;
673 	struct task_struct *task = NULL;
674 
675 	if (pool != NULL) {
676 		spin_lock_bh(&pool->sp_lock);
677 	} else {
678 		/* choose a pool in round-robin fashion */
679 		for (i = 0; i < serv->sv_nrpools; i++) {
680 			pool = &serv->sv_pools[--(*state) % serv->sv_nrpools];
681 			spin_lock_bh(&pool->sp_lock);
682 			if (!list_empty(&pool->sp_all_threads))
683 				goto found_pool;
684 			spin_unlock_bh(&pool->sp_lock);
685 		}
686 		return NULL;
687 	}
688 
689 found_pool:
690 	if (!list_empty(&pool->sp_all_threads)) {
691 		struct svc_rqst *rqstp;
692 
693 		/*
694 		 * Remove from the pool->sp_all_threads list
695 		 * so we don't try to kill it again.
696 		 */
697 		rqstp = list_entry(pool->sp_all_threads.next, struct svc_rqst, rq_all);
698 		list_del_init(&rqstp->rq_all);
699 		task = rqstp->rq_task;
700 	}
701 	spin_unlock_bh(&pool->sp_lock);
702 
703 	return task;
704 }
705 
706 /*
707  * Create or destroy enough new threads to make the number
708  * of threads the given number.  If `pool' is non-NULL, applies
709  * only to threads in that pool, otherwise round-robins between
710  * all pools.  Caller must ensure that mutual exclusion between this and
711  * server startup or shutdown.
712  *
713  * Destroying threads relies on the service threads filling in
714  * rqstp->rq_task, which only the nfs ones do.  Assumes the serv
715  * has been created using svc_create_pooled().
716  *
717  * Based on code that used to be in nfsd_svc() but tweaked
718  * to be pool-aware.
719  */
720 int
721 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
722 {
723 	struct svc_rqst	*rqstp;
724 	struct task_struct *task;
725 	struct svc_pool *chosen_pool;
726 	int error = 0;
727 	unsigned int state = serv->sv_nrthreads-1;
728 	int node;
729 
730 	if (pool == NULL) {
731 		/* The -1 assumes caller has done a svc_get() */
732 		nrservs -= (serv->sv_nrthreads-1);
733 	} else {
734 		spin_lock_bh(&pool->sp_lock);
735 		nrservs -= pool->sp_nrthreads;
736 		spin_unlock_bh(&pool->sp_lock);
737 	}
738 
739 	/* create new threads */
740 	while (nrservs > 0) {
741 		nrservs--;
742 		chosen_pool = choose_pool(serv, pool, &state);
743 
744 		node = svc_pool_map_get_node(chosen_pool->sp_id);
745 		rqstp = svc_prepare_thread(serv, chosen_pool, node);
746 		if (IS_ERR(rqstp)) {
747 			error = PTR_ERR(rqstp);
748 			break;
749 		}
750 
751 		__module_get(serv->sv_module);
752 		task = kthread_create_on_node(serv->sv_function, rqstp,
753 					      node, serv->sv_name);
754 		if (IS_ERR(task)) {
755 			error = PTR_ERR(task);
756 			module_put(serv->sv_module);
757 			svc_exit_thread(rqstp);
758 			break;
759 		}
760 
761 		rqstp->rq_task = task;
762 		if (serv->sv_nrpools > 1)
763 			svc_pool_map_set_cpumask(task, chosen_pool->sp_id);
764 
765 		svc_sock_update_bufs(serv);
766 		wake_up_process(task);
767 	}
768 	/* destroy old threads */
769 	while (nrservs < 0 &&
770 	       (task = choose_victim(serv, pool, &state)) != NULL) {
771 		send_sig(SIGINT, task, 1);
772 		nrservs++;
773 	}
774 
775 	return error;
776 }
777 EXPORT_SYMBOL_GPL(svc_set_num_threads);
778 
779 /*
780  * Called from a server thread as it's exiting. Caller must hold the BKL or
781  * the "service mutex", whichever is appropriate for the service.
782  */
783 void
784 svc_exit_thread(struct svc_rqst *rqstp)
785 {
786 	struct svc_serv	*serv = rqstp->rq_server;
787 	struct svc_pool	*pool = rqstp->rq_pool;
788 
789 	svc_release_buffer(rqstp);
790 	kfree(rqstp->rq_resp);
791 	kfree(rqstp->rq_argp);
792 	kfree(rqstp->rq_auth_data);
793 
794 	spin_lock_bh(&pool->sp_lock);
795 	pool->sp_nrthreads--;
796 	list_del(&rqstp->rq_all);
797 	spin_unlock_bh(&pool->sp_lock);
798 
799 	kfree(rqstp);
800 
801 	/* Release the server */
802 	if (serv)
803 		svc_destroy(serv);
804 }
805 EXPORT_SYMBOL_GPL(svc_exit_thread);
806 
807 /*
808  * Register an "inet" protocol family netid with the local
809  * rpcbind daemon via an rpcbind v4 SET request.
810  *
811  * No netconfig infrastructure is available in the kernel, so
812  * we map IP_ protocol numbers to netids by hand.
813  *
814  * Returns zero on success; a negative errno value is returned
815  * if any error occurs.
816  */
817 static int __svc_rpcb_register4(struct net *net, const u32 program,
818 				const u32 version,
819 				const unsigned short protocol,
820 				const unsigned short port)
821 {
822 	const struct sockaddr_in sin = {
823 		.sin_family		= AF_INET,
824 		.sin_addr.s_addr	= htonl(INADDR_ANY),
825 		.sin_port		= htons(port),
826 	};
827 	const char *netid;
828 	int error;
829 
830 	switch (protocol) {
831 	case IPPROTO_UDP:
832 		netid = RPCBIND_NETID_UDP;
833 		break;
834 	case IPPROTO_TCP:
835 		netid = RPCBIND_NETID_TCP;
836 		break;
837 	default:
838 		return -ENOPROTOOPT;
839 	}
840 
841 	error = rpcb_v4_register(net, program, version,
842 					(const struct sockaddr *)&sin, netid);
843 
844 	/*
845 	 * User space didn't support rpcbind v4, so retry this
846 	 * registration request with the legacy rpcbind v2 protocol.
847 	 */
848 	if (error == -EPROTONOSUPPORT)
849 		error = rpcb_register(net, program, version, protocol, port);
850 
851 	return error;
852 }
853 
854 #if IS_ENABLED(CONFIG_IPV6)
855 /*
856  * Register an "inet6" protocol family netid with the local
857  * rpcbind daemon via an rpcbind v4 SET request.
858  *
859  * No netconfig infrastructure is available in the kernel, so
860  * we map IP_ protocol numbers to netids by hand.
861  *
862  * Returns zero on success; a negative errno value is returned
863  * if any error occurs.
864  */
865 static int __svc_rpcb_register6(struct net *net, const u32 program,
866 				const u32 version,
867 				const unsigned short protocol,
868 				const unsigned short port)
869 {
870 	const struct sockaddr_in6 sin6 = {
871 		.sin6_family		= AF_INET6,
872 		.sin6_addr		= IN6ADDR_ANY_INIT,
873 		.sin6_port		= htons(port),
874 	};
875 	const char *netid;
876 	int error;
877 
878 	switch (protocol) {
879 	case IPPROTO_UDP:
880 		netid = RPCBIND_NETID_UDP6;
881 		break;
882 	case IPPROTO_TCP:
883 		netid = RPCBIND_NETID_TCP6;
884 		break;
885 	default:
886 		return -ENOPROTOOPT;
887 	}
888 
889 	error = rpcb_v4_register(net, program, version,
890 					(const struct sockaddr *)&sin6, netid);
891 
892 	/*
893 	 * User space didn't support rpcbind version 4, so we won't
894 	 * use a PF_INET6 listener.
895 	 */
896 	if (error == -EPROTONOSUPPORT)
897 		error = -EAFNOSUPPORT;
898 
899 	return error;
900 }
901 #endif	/* IS_ENABLED(CONFIG_IPV6) */
902 
903 /*
904  * Register a kernel RPC service via rpcbind version 4.
905  *
906  * Returns zero on success; a negative errno value is returned
907  * if any error occurs.
908  */
909 static int __svc_register(struct net *net, const char *progname,
910 			  const u32 program, const u32 version,
911 			  const int family,
912 			  const unsigned short protocol,
913 			  const unsigned short port)
914 {
915 	int error = -EAFNOSUPPORT;
916 
917 	switch (family) {
918 	case PF_INET:
919 		error = __svc_rpcb_register4(net, program, version,
920 						protocol, port);
921 		break;
922 #if IS_ENABLED(CONFIG_IPV6)
923 	case PF_INET6:
924 		error = __svc_rpcb_register6(net, program, version,
925 						protocol, port);
926 #endif
927 	}
928 
929 	if (error < 0)
930 		printk(KERN_WARNING "svc: failed to register %sv%u RPC "
931 			"service (errno %d).\n", progname, version, -error);
932 	return error;
933 }
934 
935 /**
936  * svc_register - register an RPC service with the local portmapper
937  * @serv: svc_serv struct for the service to register
938  * @net: net namespace for the service to register
939  * @family: protocol family of service's listener socket
940  * @proto: transport protocol number to advertise
941  * @port: port to advertise
942  *
943  * Service is registered for any address in the passed-in protocol family
944  */
945 int svc_register(const struct svc_serv *serv, struct net *net,
946 		 const int family, const unsigned short proto,
947 		 const unsigned short port)
948 {
949 	struct svc_program	*progp;
950 	unsigned int		i;
951 	int			error = 0;
952 
953 	WARN_ON_ONCE(proto == 0 && port == 0);
954 	if (proto == 0 && port == 0)
955 		return -EINVAL;
956 
957 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
958 		for (i = 0; i < progp->pg_nvers; i++) {
959 			if (progp->pg_vers[i] == NULL)
960 				continue;
961 
962 			dprintk("svc: svc_register(%sv%d, %s, %u, %u)%s\n",
963 					progp->pg_name,
964 					i,
965 					proto == IPPROTO_UDP?  "udp" : "tcp",
966 					port,
967 					family,
968 					progp->pg_vers[i]->vs_hidden?
969 						" (but not telling portmap)" : "");
970 
971 			if (progp->pg_vers[i]->vs_hidden)
972 				continue;
973 
974 			error = __svc_register(net, progp->pg_name, progp->pg_prog,
975 						i, family, proto, port);
976 			if (error < 0)
977 				break;
978 		}
979 	}
980 
981 	return error;
982 }
983 
984 /*
985  * If user space is running rpcbind, it should take the v4 UNSET
986  * and clear everything for this [program, version].  If user space
987  * is running portmap, it will reject the v4 UNSET, but won't have
988  * any "inet6" entries anyway.  So a PMAP_UNSET should be sufficient
989  * in this case to clear all existing entries for [program, version].
990  */
991 static void __svc_unregister(struct net *net, const u32 program, const u32 version,
992 			     const char *progname)
993 {
994 	int error;
995 
996 	error = rpcb_v4_register(net, program, version, NULL, "");
997 
998 	/*
999 	 * User space didn't support rpcbind v4, so retry this
1000 	 * request with the legacy rpcbind v2 protocol.
1001 	 */
1002 	if (error == -EPROTONOSUPPORT)
1003 		error = rpcb_register(net, program, version, 0, 0);
1004 
1005 	dprintk("svc: %s(%sv%u), error %d\n",
1006 			__func__, progname, version, error);
1007 }
1008 
1009 /*
1010  * All netids, bind addresses and ports registered for [program, version]
1011  * are removed from the local rpcbind database (if the service is not
1012  * hidden) to make way for a new instance of the service.
1013  *
1014  * The result of unregistration is reported via dprintk for those who want
1015  * verification of the result, but is otherwise not important.
1016  */
1017 static void svc_unregister(const struct svc_serv *serv, struct net *net)
1018 {
1019 	struct svc_program *progp;
1020 	unsigned long flags;
1021 	unsigned int i;
1022 
1023 	clear_thread_flag(TIF_SIGPENDING);
1024 
1025 	for (progp = serv->sv_program; progp; progp = progp->pg_next) {
1026 		for (i = 0; i < progp->pg_nvers; i++) {
1027 			if (progp->pg_vers[i] == NULL)
1028 				continue;
1029 			if (progp->pg_vers[i]->vs_hidden)
1030 				continue;
1031 
1032 			dprintk("svc: attempting to unregister %sv%u\n",
1033 				progp->pg_name, i);
1034 			__svc_unregister(net, progp->pg_prog, i, progp->pg_name);
1035 		}
1036 	}
1037 
1038 	spin_lock_irqsave(&current->sighand->siglock, flags);
1039 	recalc_sigpending();
1040 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
1041 }
1042 
1043 /*
1044  * Printk the given error with the address of the client that caused it.
1045  */
1046 static __printf(2, 3)
1047 void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...)
1048 {
1049 	struct va_format vaf;
1050 	va_list args;
1051 	char 	buf[RPC_MAX_ADDRBUFLEN];
1052 
1053 	va_start(args, fmt);
1054 
1055 	vaf.fmt = fmt;
1056 	vaf.va = &args;
1057 
1058 	net_warn_ratelimited("svc: %s: %pV",
1059 			     svc_print_addr(rqstp, buf, sizeof(buf)), &vaf);
1060 
1061 	va_end(args);
1062 }
1063 
1064 /*
1065  * Common routine for processing the RPC request.
1066  */
1067 static int
1068 svc_process_common(struct svc_rqst *rqstp, struct kvec *argv, struct kvec *resv)
1069 {
1070 	struct svc_program	*progp;
1071 	struct svc_version	*versp = NULL;	/* compiler food */
1072 	struct svc_procedure	*procp = NULL;
1073 	struct svc_serv		*serv = rqstp->rq_server;
1074 	kxdrproc_t		xdr;
1075 	__be32			*statp;
1076 	u32			prog, vers, proc;
1077 	__be32			auth_stat, rpc_stat;
1078 	int			auth_res;
1079 	__be32			*reply_statp;
1080 
1081 	rpc_stat = rpc_success;
1082 
1083 	if (argv->iov_len < 6*4)
1084 		goto err_short_len;
1085 
1086 	/* Will be turned off only in gss privacy case: */
1087 	rqstp->rq_splice_ok = 1;
1088 	/* Will be turned off only when NFSv4 Sessions are used */
1089 	rqstp->rq_usedeferral = 1;
1090 	rqstp->rq_dropme = false;
1091 
1092 	/* Setup reply header */
1093 	rqstp->rq_xprt->xpt_ops->xpo_prep_reply_hdr(rqstp);
1094 
1095 	svc_putu32(resv, rqstp->rq_xid);
1096 
1097 	vers = svc_getnl(argv);
1098 
1099 	/* First words of reply: */
1100 	svc_putnl(resv, 1);		/* REPLY */
1101 
1102 	if (vers != 2)		/* RPC version number */
1103 		goto err_bad_rpc;
1104 
1105 	/* Save position in case we later decide to reject: */
1106 	reply_statp = resv->iov_base + resv->iov_len;
1107 
1108 	svc_putnl(resv, 0);		/* ACCEPT */
1109 
1110 	rqstp->rq_prog = prog = svc_getnl(argv);	/* program number */
1111 	rqstp->rq_vers = vers = svc_getnl(argv);	/* version number */
1112 	rqstp->rq_proc = proc = svc_getnl(argv);	/* procedure number */
1113 
1114 	progp = serv->sv_program;
1115 
1116 	for (progp = serv->sv_program; progp; progp = progp->pg_next)
1117 		if (prog == progp->pg_prog)
1118 			break;
1119 
1120 	/*
1121 	 * Decode auth data, and add verifier to reply buffer.
1122 	 * We do this before anything else in order to get a decent
1123 	 * auth verifier.
1124 	 */
1125 	auth_res = svc_authenticate(rqstp, &auth_stat);
1126 	/* Also give the program a chance to reject this call: */
1127 	if (auth_res == SVC_OK && progp) {
1128 		auth_stat = rpc_autherr_badcred;
1129 		auth_res = progp->pg_authenticate(rqstp);
1130 	}
1131 	switch (auth_res) {
1132 	case SVC_OK:
1133 		break;
1134 	case SVC_GARBAGE:
1135 		goto err_garbage;
1136 	case SVC_SYSERR:
1137 		rpc_stat = rpc_system_err;
1138 		goto err_bad;
1139 	case SVC_DENIED:
1140 		goto err_bad_auth;
1141 	case SVC_CLOSE:
1142 		if (test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags))
1143 			svc_close_xprt(rqstp->rq_xprt);
1144 	case SVC_DROP:
1145 		goto dropit;
1146 	case SVC_COMPLETE:
1147 		goto sendit;
1148 	}
1149 
1150 	if (progp == NULL)
1151 		goto err_bad_prog;
1152 
1153 	if (vers >= progp->pg_nvers ||
1154 	  !(versp = progp->pg_vers[vers]))
1155 		goto err_bad_vers;
1156 
1157 	procp = versp->vs_proc + proc;
1158 	if (proc >= versp->vs_nproc || !procp->pc_func)
1159 		goto err_bad_proc;
1160 	rqstp->rq_procinfo = procp;
1161 
1162 	/* Syntactic check complete */
1163 	serv->sv_stats->rpccnt++;
1164 
1165 	/* Build the reply header. */
1166 	statp = resv->iov_base +resv->iov_len;
1167 	svc_putnl(resv, RPC_SUCCESS);
1168 
1169 	/* Bump per-procedure stats counter */
1170 	procp->pc_count++;
1171 
1172 	/* Initialize storage for argp and resp */
1173 	memset(rqstp->rq_argp, 0, procp->pc_argsize);
1174 	memset(rqstp->rq_resp, 0, procp->pc_ressize);
1175 
1176 	/* un-reserve some of the out-queue now that we have a
1177 	 * better idea of reply size
1178 	 */
1179 	if (procp->pc_xdrressize)
1180 		svc_reserve_auth(rqstp, procp->pc_xdrressize<<2);
1181 
1182 	/* Call the function that processes the request. */
1183 	if (!versp->vs_dispatch) {
1184 		/* Decode arguments */
1185 		xdr = procp->pc_decode;
1186 		if (xdr && !xdr(rqstp, argv->iov_base, rqstp->rq_argp))
1187 			goto err_garbage;
1188 
1189 		*statp = procp->pc_func(rqstp, rqstp->rq_argp, rqstp->rq_resp);
1190 
1191 		/* Encode reply */
1192 		if (rqstp->rq_dropme) {
1193 			if (procp->pc_release)
1194 				procp->pc_release(rqstp, NULL, rqstp->rq_resp);
1195 			goto dropit;
1196 		}
1197 		if (*statp == rpc_success &&
1198 		    (xdr = procp->pc_encode) &&
1199 		    !xdr(rqstp, resv->iov_base+resv->iov_len, rqstp->rq_resp)) {
1200 			dprintk("svc: failed to encode reply\n");
1201 			/* serv->sv_stats->rpcsystemerr++; */
1202 			*statp = rpc_system_err;
1203 		}
1204 	} else {
1205 		dprintk("svc: calling dispatcher\n");
1206 		if (!versp->vs_dispatch(rqstp, statp)) {
1207 			/* Release reply info */
1208 			if (procp->pc_release)
1209 				procp->pc_release(rqstp, NULL, rqstp->rq_resp);
1210 			goto dropit;
1211 		}
1212 	}
1213 
1214 	/* Check RPC status result */
1215 	if (*statp != rpc_success)
1216 		resv->iov_len = ((void*)statp)  - resv->iov_base + 4;
1217 
1218 	/* Release reply info */
1219 	if (procp->pc_release)
1220 		procp->pc_release(rqstp, NULL, rqstp->rq_resp);
1221 
1222 	if (procp->pc_encode == NULL)
1223 		goto dropit;
1224 
1225  sendit:
1226 	if (svc_authorise(rqstp))
1227 		goto dropit;
1228 	return 1;		/* Caller can now send it */
1229 
1230  dropit:
1231 	svc_authorise(rqstp);	/* doesn't hurt to call this twice */
1232 	dprintk("svc: svc_process dropit\n");
1233 	return 0;
1234 
1235 err_short_len:
1236 	svc_printk(rqstp, "short len %Zd, dropping request\n",
1237 			argv->iov_len);
1238 
1239 	goto dropit;			/* drop request */
1240 
1241 err_bad_rpc:
1242 	serv->sv_stats->rpcbadfmt++;
1243 	svc_putnl(resv, 1);	/* REJECT */
1244 	svc_putnl(resv, 0);	/* RPC_MISMATCH */
1245 	svc_putnl(resv, 2);	/* Only RPCv2 supported */
1246 	svc_putnl(resv, 2);
1247 	goto sendit;
1248 
1249 err_bad_auth:
1250 	dprintk("svc: authentication failed (%d)\n", ntohl(auth_stat));
1251 	serv->sv_stats->rpcbadauth++;
1252 	/* Restore write pointer to location of accept status: */
1253 	xdr_ressize_check(rqstp, reply_statp);
1254 	svc_putnl(resv, 1);	/* REJECT */
1255 	svc_putnl(resv, 1);	/* AUTH_ERROR */
1256 	svc_putnl(resv, ntohl(auth_stat));	/* status */
1257 	goto sendit;
1258 
1259 err_bad_prog:
1260 	dprintk("svc: unknown program %d\n", prog);
1261 	serv->sv_stats->rpcbadfmt++;
1262 	svc_putnl(resv, RPC_PROG_UNAVAIL);
1263 	goto sendit;
1264 
1265 err_bad_vers:
1266 	svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n",
1267 		       vers, prog, progp->pg_name);
1268 
1269 	serv->sv_stats->rpcbadfmt++;
1270 	svc_putnl(resv, RPC_PROG_MISMATCH);
1271 	svc_putnl(resv, progp->pg_lovers);
1272 	svc_putnl(resv, progp->pg_hivers);
1273 	goto sendit;
1274 
1275 err_bad_proc:
1276 	svc_printk(rqstp, "unknown procedure (%d)\n", proc);
1277 
1278 	serv->sv_stats->rpcbadfmt++;
1279 	svc_putnl(resv, RPC_PROC_UNAVAIL);
1280 	goto sendit;
1281 
1282 err_garbage:
1283 	svc_printk(rqstp, "failed to decode args\n");
1284 
1285 	rpc_stat = rpc_garbage_args;
1286 err_bad:
1287 	serv->sv_stats->rpcbadfmt++;
1288 	svc_putnl(resv, ntohl(rpc_stat));
1289 	goto sendit;
1290 }
1291 EXPORT_SYMBOL_GPL(svc_process);
1292 
1293 /*
1294  * Process the RPC request.
1295  */
1296 int
1297 svc_process(struct svc_rqst *rqstp)
1298 {
1299 	struct kvec		*argv = &rqstp->rq_arg.head[0];
1300 	struct kvec		*resv = &rqstp->rq_res.head[0];
1301 	struct svc_serv		*serv = rqstp->rq_server;
1302 	u32			dir;
1303 
1304 	/*
1305 	 * Setup response xdr_buf.
1306 	 * Initially it has just one page
1307 	 */
1308 	rqstp->rq_resused = 1;
1309 	resv->iov_base = page_address(rqstp->rq_respages[0]);
1310 	resv->iov_len = 0;
1311 	rqstp->rq_res.pages = rqstp->rq_respages + 1;
1312 	rqstp->rq_res.len = 0;
1313 	rqstp->rq_res.page_base = 0;
1314 	rqstp->rq_res.page_len = 0;
1315 	rqstp->rq_res.buflen = PAGE_SIZE;
1316 	rqstp->rq_res.tail[0].iov_base = NULL;
1317 	rqstp->rq_res.tail[0].iov_len = 0;
1318 
1319 	rqstp->rq_xid = svc_getu32(argv);
1320 
1321 	dir  = svc_getnl(argv);
1322 	if (dir != 0) {
1323 		/* direction != CALL */
1324 		svc_printk(rqstp, "bad direction %d, dropping request\n", dir);
1325 		serv->sv_stats->rpcbadfmt++;
1326 		svc_drop(rqstp);
1327 		return 0;
1328 	}
1329 
1330 	/* Returns 1 for send, 0 for drop */
1331 	if (svc_process_common(rqstp, argv, resv))
1332 		return svc_send(rqstp);
1333 	else {
1334 		svc_drop(rqstp);
1335 		return 0;
1336 	}
1337 }
1338 
1339 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1340 /*
1341  * Process a backchannel RPC request that arrived over an existing
1342  * outbound connection
1343  */
1344 int
1345 bc_svc_process(struct svc_serv *serv, struct rpc_rqst *req,
1346 	       struct svc_rqst *rqstp)
1347 {
1348 	struct kvec	*argv = &rqstp->rq_arg.head[0];
1349 	struct kvec	*resv = &rqstp->rq_res.head[0];
1350 
1351 	/* Build the svc_rqst used by the common processing routine */
1352 	rqstp->rq_xprt = serv->sv_bc_xprt;
1353 	rqstp->rq_xid = req->rq_xid;
1354 	rqstp->rq_prot = req->rq_xprt->prot;
1355 	rqstp->rq_server = serv;
1356 
1357 	rqstp->rq_addrlen = sizeof(req->rq_xprt->addr);
1358 	memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen);
1359 	memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg));
1360 	memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res));
1361 
1362 	/* reset result send buffer "put" position */
1363 	resv->iov_len = 0;
1364 
1365 	if (rqstp->rq_prot != IPPROTO_TCP) {
1366 		printk(KERN_ERR "No support for Non-TCP transports!\n");
1367 		BUG();
1368 	}
1369 
1370 	/*
1371 	 * Skip the next two words because they've already been
1372 	 * processed in the trasport
1373 	 */
1374 	svc_getu32(argv);	/* XID */
1375 	svc_getnl(argv);	/* CALLDIR */
1376 
1377 	/* Returns 1 for send, 0 for drop */
1378 	if (svc_process_common(rqstp, argv, resv)) {
1379 		memcpy(&req->rq_snd_buf, &rqstp->rq_res,
1380 						sizeof(req->rq_snd_buf));
1381 		return bc_send(req);
1382 	} else {
1383 		/* drop request */
1384 		xprt_free_bc_request(req);
1385 		return 0;
1386 	}
1387 }
1388 EXPORT_SYMBOL_GPL(bc_svc_process);
1389 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
1390 
1391 /*
1392  * Return (transport-specific) limit on the rpc payload.
1393  */
1394 u32 svc_max_payload(const struct svc_rqst *rqstp)
1395 {
1396 	u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload;
1397 
1398 	if (rqstp->rq_server->sv_max_payload < max)
1399 		max = rqstp->rq_server->sv_max_payload;
1400 	return max;
1401 }
1402 EXPORT_SYMBOL_GPL(svc_max_payload);
1403