1 /* 2 * linux/net/sunrpc/sched.c 3 * 4 * Scheduling for synchronous and asynchronous RPC requests. 5 * 6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de> 7 * 8 * TCP NFS related read + write fixes 9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie> 10 */ 11 12 #include <linux/module.h> 13 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/slab.h> 17 #include <linux/mempool.h> 18 #include <linux/smp.h> 19 #include <linux/spinlock.h> 20 #include <linux/mutex.h> 21 22 #include <linux/sunrpc/clnt.h> 23 24 #ifdef RPC_DEBUG 25 #define RPCDBG_FACILITY RPCDBG_SCHED 26 #define RPC_TASK_MAGIC_ID 0xf00baa 27 #endif 28 29 /* 30 * RPC slabs and memory pools 31 */ 32 #define RPC_BUFFER_MAXSIZE (2048) 33 #define RPC_BUFFER_POOLSIZE (8) 34 #define RPC_TASK_POOLSIZE (8) 35 static struct kmem_cache *rpc_task_slabp __read_mostly; 36 static struct kmem_cache *rpc_buffer_slabp __read_mostly; 37 static mempool_t *rpc_task_mempool __read_mostly; 38 static mempool_t *rpc_buffer_mempool __read_mostly; 39 40 static void rpc_async_schedule(struct work_struct *); 41 static void rpc_release_task(struct rpc_task *task); 42 static void __rpc_queue_timer_fn(unsigned long ptr); 43 44 /* 45 * RPC tasks sit here while waiting for conditions to improve. 46 */ 47 static struct rpc_wait_queue delay_queue; 48 49 /* 50 * rpciod-related stuff 51 */ 52 struct workqueue_struct *rpciod_workqueue; 53 54 /* 55 * Disable the timer for a given RPC task. Should be called with 56 * queue->lock and bh_disabled in order to avoid races within 57 * rpc_run_timer(). 58 */ 59 static void 60 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task) 61 { 62 if (task->tk_timeout == 0) 63 return; 64 dprintk("RPC: %5u disabling timer\n", task->tk_pid); 65 task->tk_timeout = 0; 66 list_del(&task->u.tk_wait.timer_list); 67 if (list_empty(&queue->timer_list.list)) 68 del_timer(&queue->timer_list.timer); 69 } 70 71 static void 72 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires) 73 { 74 queue->timer_list.expires = expires; 75 mod_timer(&queue->timer_list.timer, expires); 76 } 77 78 /* 79 * Set up a timer for the current task. 80 */ 81 static void 82 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task) 83 { 84 if (!task->tk_timeout) 85 return; 86 87 dprintk("RPC: %5u setting alarm for %lu ms\n", 88 task->tk_pid, task->tk_timeout * 1000 / HZ); 89 90 task->u.tk_wait.expires = jiffies + task->tk_timeout; 91 if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires)) 92 rpc_set_queue_timer(queue, task->u.tk_wait.expires); 93 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list); 94 } 95 96 /* 97 * Add new request to a priority queue. 98 */ 99 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task) 100 { 101 struct list_head *q; 102 struct rpc_task *t; 103 104 INIT_LIST_HEAD(&task->u.tk_wait.links); 105 q = &queue->tasks[task->tk_priority]; 106 if (unlikely(task->tk_priority > queue->maxpriority)) 107 q = &queue->tasks[queue->maxpriority]; 108 list_for_each_entry(t, q, u.tk_wait.list) { 109 if (t->tk_owner == task->tk_owner) { 110 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links); 111 return; 112 } 113 } 114 list_add_tail(&task->u.tk_wait.list, q); 115 } 116 117 /* 118 * Add new request to wait queue. 119 * 120 * Swapper tasks always get inserted at the head of the queue. 121 * This should avoid many nasty memory deadlocks and hopefully 122 * improve overall performance. 123 * Everyone else gets appended to the queue to ensure proper FIFO behavior. 124 */ 125 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task) 126 { 127 BUG_ON (RPC_IS_QUEUED(task)); 128 129 if (RPC_IS_PRIORITY(queue)) 130 __rpc_add_wait_queue_priority(queue, task); 131 else if (RPC_IS_SWAPPER(task)) 132 list_add(&task->u.tk_wait.list, &queue->tasks[0]); 133 else 134 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]); 135 task->tk_waitqueue = queue; 136 queue->qlen++; 137 rpc_set_queued(task); 138 139 dprintk("RPC: %5u added to queue %p \"%s\"\n", 140 task->tk_pid, queue, rpc_qname(queue)); 141 } 142 143 /* 144 * Remove request from a priority queue. 145 */ 146 static void __rpc_remove_wait_queue_priority(struct rpc_task *task) 147 { 148 struct rpc_task *t; 149 150 if (!list_empty(&task->u.tk_wait.links)) { 151 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list); 152 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list); 153 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links); 154 } 155 } 156 157 /* 158 * Remove request from queue. 159 * Note: must be called with spin lock held. 160 */ 161 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task) 162 { 163 __rpc_disable_timer(queue, task); 164 if (RPC_IS_PRIORITY(queue)) 165 __rpc_remove_wait_queue_priority(task); 166 list_del(&task->u.tk_wait.list); 167 queue->qlen--; 168 dprintk("RPC: %5u removed from queue %p \"%s\"\n", 169 task->tk_pid, queue, rpc_qname(queue)); 170 } 171 172 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority) 173 { 174 queue->priority = priority; 175 queue->count = 1 << (priority * 2); 176 } 177 178 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid) 179 { 180 queue->owner = pid; 181 queue->nr = RPC_BATCH_COUNT; 182 } 183 184 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue) 185 { 186 rpc_set_waitqueue_priority(queue, queue->maxpriority); 187 rpc_set_waitqueue_owner(queue, 0); 188 } 189 190 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues) 191 { 192 int i; 193 194 spin_lock_init(&queue->lock); 195 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++) 196 INIT_LIST_HEAD(&queue->tasks[i]); 197 queue->maxpriority = nr_queues - 1; 198 rpc_reset_waitqueue_priority(queue); 199 queue->qlen = 0; 200 setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue); 201 INIT_LIST_HEAD(&queue->timer_list.list); 202 #ifdef RPC_DEBUG 203 queue->name = qname; 204 #endif 205 } 206 207 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname) 208 { 209 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY); 210 } 211 212 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname) 213 { 214 __rpc_init_priority_wait_queue(queue, qname, 1); 215 } 216 EXPORT_SYMBOL_GPL(rpc_init_wait_queue); 217 218 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue) 219 { 220 del_timer_sync(&queue->timer_list.timer); 221 } 222 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue); 223 224 static int rpc_wait_bit_killable(void *word) 225 { 226 if (fatal_signal_pending(current)) 227 return -ERESTARTSYS; 228 schedule(); 229 return 0; 230 } 231 232 #ifdef RPC_DEBUG 233 static void rpc_task_set_debuginfo(struct rpc_task *task) 234 { 235 static atomic_t rpc_pid; 236 237 task->tk_magic = RPC_TASK_MAGIC_ID; 238 task->tk_pid = atomic_inc_return(&rpc_pid); 239 } 240 #else 241 static inline void rpc_task_set_debuginfo(struct rpc_task *task) 242 { 243 } 244 #endif 245 246 static void rpc_set_active(struct rpc_task *task) 247 { 248 struct rpc_clnt *clnt; 249 if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0) 250 return; 251 rpc_task_set_debuginfo(task); 252 /* Add to global list of all tasks */ 253 clnt = task->tk_client; 254 if (clnt != NULL) { 255 spin_lock(&clnt->cl_lock); 256 list_add_tail(&task->tk_task, &clnt->cl_tasks); 257 spin_unlock(&clnt->cl_lock); 258 } 259 } 260 261 /* 262 * Mark an RPC call as having completed by clearing the 'active' bit 263 */ 264 static void rpc_mark_complete_task(struct rpc_task *task) 265 { 266 smp_mb__before_clear_bit(); 267 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate); 268 smp_mb__after_clear_bit(); 269 wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE); 270 } 271 272 /* 273 * Allow callers to wait for completion of an RPC call 274 */ 275 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *)) 276 { 277 if (action == NULL) 278 action = rpc_wait_bit_killable; 279 return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE, 280 action, TASK_KILLABLE); 281 } 282 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task); 283 284 /* 285 * Make an RPC task runnable. 286 * 287 * Note: If the task is ASYNC, this must be called with 288 * the spinlock held to protect the wait queue operation. 289 */ 290 static void rpc_make_runnable(struct rpc_task *task) 291 { 292 rpc_clear_queued(task); 293 if (rpc_test_and_set_running(task)) 294 return; 295 if (RPC_IS_ASYNC(task)) { 296 int status; 297 298 INIT_WORK(&task->u.tk_work, rpc_async_schedule); 299 status = queue_work(rpciod_workqueue, &task->u.tk_work); 300 if (status < 0) { 301 printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status); 302 task->tk_status = status; 303 return; 304 } 305 } else 306 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED); 307 } 308 309 /* 310 * Prepare for sleeping on a wait queue. 311 * By always appending tasks to the list we ensure FIFO behavior. 312 * NB: An RPC task will only receive interrupt-driven events as long 313 * as it's on a wait queue. 314 */ 315 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, 316 rpc_action action) 317 { 318 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n", 319 task->tk_pid, rpc_qname(q), jiffies); 320 321 if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) { 322 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n"); 323 return; 324 } 325 326 __rpc_add_wait_queue(q, task); 327 328 BUG_ON(task->tk_callback != NULL); 329 task->tk_callback = action; 330 __rpc_add_timer(q, task); 331 } 332 333 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, 334 rpc_action action) 335 { 336 /* Mark the task as being activated if so needed */ 337 rpc_set_active(task); 338 339 /* 340 * Protect the queue operations. 341 */ 342 spin_lock_bh(&q->lock); 343 __rpc_sleep_on(q, task, action); 344 spin_unlock_bh(&q->lock); 345 } 346 EXPORT_SYMBOL_GPL(rpc_sleep_on); 347 348 /** 349 * __rpc_do_wake_up_task - wake up a single rpc_task 350 * @queue: wait queue 351 * @task: task to be woken up 352 * 353 * Caller must hold queue->lock, and have cleared the task queued flag. 354 */ 355 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task) 356 { 357 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n", 358 task->tk_pid, jiffies); 359 360 #ifdef RPC_DEBUG 361 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID); 362 #endif 363 /* Has the task been executed yet? If not, we cannot wake it up! */ 364 if (!RPC_IS_ACTIVATED(task)) { 365 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task); 366 return; 367 } 368 369 __rpc_remove_wait_queue(queue, task); 370 371 rpc_make_runnable(task); 372 373 dprintk("RPC: __rpc_wake_up_task done\n"); 374 } 375 376 /* 377 * Wake up a queued task while the queue lock is being held 378 */ 379 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task) 380 { 381 if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue) 382 __rpc_do_wake_up_task(queue, task); 383 } 384 385 /* 386 * Wake up a task on a specific queue 387 */ 388 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task) 389 { 390 spin_lock_bh(&queue->lock); 391 rpc_wake_up_task_queue_locked(queue, task); 392 spin_unlock_bh(&queue->lock); 393 } 394 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task); 395 396 /* 397 * Wake up the specified task 398 */ 399 static void rpc_wake_up_task(struct rpc_task *task) 400 { 401 rpc_wake_up_queued_task(task->tk_waitqueue, task); 402 } 403 404 /* 405 * Wake up the next task on a priority queue. 406 */ 407 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue) 408 { 409 struct list_head *q; 410 struct rpc_task *task; 411 412 /* 413 * Service a batch of tasks from a single owner. 414 */ 415 q = &queue->tasks[queue->priority]; 416 if (!list_empty(q)) { 417 task = list_entry(q->next, struct rpc_task, u.tk_wait.list); 418 if (queue->owner == task->tk_owner) { 419 if (--queue->nr) 420 goto out; 421 list_move_tail(&task->u.tk_wait.list, q); 422 } 423 /* 424 * Check if we need to switch queues. 425 */ 426 if (--queue->count) 427 goto new_owner; 428 } 429 430 /* 431 * Service the next queue. 432 */ 433 do { 434 if (q == &queue->tasks[0]) 435 q = &queue->tasks[queue->maxpriority]; 436 else 437 q = q - 1; 438 if (!list_empty(q)) { 439 task = list_entry(q->next, struct rpc_task, u.tk_wait.list); 440 goto new_queue; 441 } 442 } while (q != &queue->tasks[queue->priority]); 443 444 rpc_reset_waitqueue_priority(queue); 445 return NULL; 446 447 new_queue: 448 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0])); 449 new_owner: 450 rpc_set_waitqueue_owner(queue, task->tk_owner); 451 out: 452 rpc_wake_up_task_queue_locked(queue, task); 453 return task; 454 } 455 456 /* 457 * Wake up the next task on the wait queue. 458 */ 459 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue) 460 { 461 struct rpc_task *task = NULL; 462 463 dprintk("RPC: wake_up_next(%p \"%s\")\n", 464 queue, rpc_qname(queue)); 465 spin_lock_bh(&queue->lock); 466 if (RPC_IS_PRIORITY(queue)) 467 task = __rpc_wake_up_next_priority(queue); 468 else { 469 task_for_first(task, &queue->tasks[0]) 470 rpc_wake_up_task_queue_locked(queue, task); 471 } 472 spin_unlock_bh(&queue->lock); 473 474 return task; 475 } 476 EXPORT_SYMBOL_GPL(rpc_wake_up_next); 477 478 /** 479 * rpc_wake_up - wake up all rpc_tasks 480 * @queue: rpc_wait_queue on which the tasks are sleeping 481 * 482 * Grabs queue->lock 483 */ 484 void rpc_wake_up(struct rpc_wait_queue *queue) 485 { 486 struct rpc_task *task, *next; 487 struct list_head *head; 488 489 spin_lock_bh(&queue->lock); 490 head = &queue->tasks[queue->maxpriority]; 491 for (;;) { 492 list_for_each_entry_safe(task, next, head, u.tk_wait.list) 493 rpc_wake_up_task_queue_locked(queue, task); 494 if (head == &queue->tasks[0]) 495 break; 496 head--; 497 } 498 spin_unlock_bh(&queue->lock); 499 } 500 EXPORT_SYMBOL_GPL(rpc_wake_up); 501 502 /** 503 * rpc_wake_up_status - wake up all rpc_tasks and set their status value. 504 * @queue: rpc_wait_queue on which the tasks are sleeping 505 * @status: status value to set 506 * 507 * Grabs queue->lock 508 */ 509 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status) 510 { 511 struct rpc_task *task, *next; 512 struct list_head *head; 513 514 spin_lock_bh(&queue->lock); 515 head = &queue->tasks[queue->maxpriority]; 516 for (;;) { 517 list_for_each_entry_safe(task, next, head, u.tk_wait.list) { 518 task->tk_status = status; 519 rpc_wake_up_task_queue_locked(queue, task); 520 } 521 if (head == &queue->tasks[0]) 522 break; 523 head--; 524 } 525 spin_unlock_bh(&queue->lock); 526 } 527 EXPORT_SYMBOL_GPL(rpc_wake_up_status); 528 529 static void __rpc_queue_timer_fn(unsigned long ptr) 530 { 531 struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr; 532 struct rpc_task *task, *n; 533 unsigned long expires, now, timeo; 534 535 spin_lock(&queue->lock); 536 expires = now = jiffies; 537 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) { 538 timeo = task->u.tk_wait.expires; 539 if (time_after_eq(now, timeo)) { 540 dprintk("RPC: %5u timeout\n", task->tk_pid); 541 task->tk_status = -ETIMEDOUT; 542 rpc_wake_up_task_queue_locked(queue, task); 543 continue; 544 } 545 if (expires == now || time_after(expires, timeo)) 546 expires = timeo; 547 } 548 if (!list_empty(&queue->timer_list.list)) 549 rpc_set_queue_timer(queue, expires); 550 spin_unlock(&queue->lock); 551 } 552 553 static void __rpc_atrun(struct rpc_task *task) 554 { 555 task->tk_status = 0; 556 } 557 558 /* 559 * Run a task at a later time 560 */ 561 void rpc_delay(struct rpc_task *task, unsigned long delay) 562 { 563 task->tk_timeout = delay; 564 rpc_sleep_on(&delay_queue, task, __rpc_atrun); 565 } 566 EXPORT_SYMBOL_GPL(rpc_delay); 567 568 /* 569 * Helper to call task->tk_ops->rpc_call_prepare 570 */ 571 void rpc_prepare_task(struct rpc_task *task) 572 { 573 task->tk_ops->rpc_call_prepare(task, task->tk_calldata); 574 } 575 576 /* 577 * Helper that calls task->tk_ops->rpc_call_done if it exists 578 */ 579 void rpc_exit_task(struct rpc_task *task) 580 { 581 task->tk_action = NULL; 582 if (task->tk_ops->rpc_call_done != NULL) { 583 task->tk_ops->rpc_call_done(task, task->tk_calldata); 584 if (task->tk_action != NULL) { 585 WARN_ON(RPC_ASSASSINATED(task)); 586 /* Always release the RPC slot and buffer memory */ 587 xprt_release(task); 588 } 589 } 590 } 591 EXPORT_SYMBOL_GPL(rpc_exit_task); 592 593 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata) 594 { 595 if (ops->rpc_release != NULL) 596 ops->rpc_release(calldata); 597 } 598 599 /* 600 * This is the RPC `scheduler' (or rather, the finite state machine). 601 */ 602 static void __rpc_execute(struct rpc_task *task) 603 { 604 struct rpc_wait_queue *queue; 605 int task_is_async = RPC_IS_ASYNC(task); 606 int status = 0; 607 608 dprintk("RPC: %5u __rpc_execute flags=0x%x\n", 609 task->tk_pid, task->tk_flags); 610 611 BUG_ON(RPC_IS_QUEUED(task)); 612 613 for (;;) { 614 615 /* 616 * Execute any pending callback. 617 */ 618 if (task->tk_callback) { 619 void (*save_callback)(struct rpc_task *); 620 621 /* 622 * We set tk_callback to NULL before calling it, 623 * in case it sets the tk_callback field itself: 624 */ 625 save_callback = task->tk_callback; 626 task->tk_callback = NULL; 627 save_callback(task); 628 } 629 630 /* 631 * Perform the next FSM step. 632 * tk_action may be NULL when the task has been killed 633 * by someone else. 634 */ 635 if (!RPC_IS_QUEUED(task)) { 636 if (task->tk_action == NULL) 637 break; 638 task->tk_action(task); 639 } 640 641 /* 642 * Lockless check for whether task is sleeping or not. 643 */ 644 if (!RPC_IS_QUEUED(task)) 645 continue; 646 /* 647 * The queue->lock protects against races with 648 * rpc_make_runnable(). 649 * 650 * Note that once we clear RPC_TASK_RUNNING on an asynchronous 651 * rpc_task, rpc_make_runnable() can assign it to a 652 * different workqueue. We therefore cannot assume that the 653 * rpc_task pointer may still be dereferenced. 654 */ 655 queue = task->tk_waitqueue; 656 spin_lock_bh(&queue->lock); 657 if (!RPC_IS_QUEUED(task)) { 658 spin_unlock_bh(&queue->lock); 659 continue; 660 } 661 rpc_clear_running(task); 662 spin_unlock_bh(&queue->lock); 663 if (task_is_async) 664 return; 665 666 /* sync task: sleep here */ 667 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid); 668 status = out_of_line_wait_on_bit(&task->tk_runstate, 669 RPC_TASK_QUEUED, rpc_wait_bit_killable, 670 TASK_KILLABLE); 671 if (status == -ERESTARTSYS) { 672 /* 673 * When a sync task receives a signal, it exits with 674 * -ERESTARTSYS. In order to catch any callbacks that 675 * clean up after sleeping on some queue, we don't 676 * break the loop here, but go around once more. 677 */ 678 dprintk("RPC: %5u got signal\n", task->tk_pid); 679 task->tk_flags |= RPC_TASK_KILLED; 680 rpc_exit(task, -ERESTARTSYS); 681 rpc_wake_up_task(task); 682 } 683 rpc_set_running(task); 684 dprintk("RPC: %5u sync task resuming\n", task->tk_pid); 685 } 686 687 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status, 688 task->tk_status); 689 /* Release all resources associated with the task */ 690 rpc_release_task(task); 691 } 692 693 /* 694 * User-visible entry point to the scheduler. 695 * 696 * This may be called recursively if e.g. an async NFS task updates 697 * the attributes and finds that dirty pages must be flushed. 698 * NOTE: Upon exit of this function the task is guaranteed to be 699 * released. In particular note that tk_release() will have 700 * been called, so your task memory may have been freed. 701 */ 702 void rpc_execute(struct rpc_task *task) 703 { 704 rpc_set_active(task); 705 rpc_set_running(task); 706 __rpc_execute(task); 707 } 708 709 static void rpc_async_schedule(struct work_struct *work) 710 { 711 __rpc_execute(container_of(work, struct rpc_task, u.tk_work)); 712 } 713 714 struct rpc_buffer { 715 size_t len; 716 char data[]; 717 }; 718 719 /** 720 * rpc_malloc - allocate an RPC buffer 721 * @task: RPC task that will use this buffer 722 * @size: requested byte size 723 * 724 * To prevent rpciod from hanging, this allocator never sleeps, 725 * returning NULL if the request cannot be serviced immediately. 726 * The caller can arrange to sleep in a way that is safe for rpciod. 727 * 728 * Most requests are 'small' (under 2KiB) and can be serviced from a 729 * mempool, ensuring that NFS reads and writes can always proceed, 730 * and that there is good locality of reference for these buffers. 731 * 732 * In order to avoid memory starvation triggering more writebacks of 733 * NFS requests, we avoid using GFP_KERNEL. 734 */ 735 void *rpc_malloc(struct rpc_task *task, size_t size) 736 { 737 struct rpc_buffer *buf; 738 gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT; 739 740 size += sizeof(struct rpc_buffer); 741 if (size <= RPC_BUFFER_MAXSIZE) 742 buf = mempool_alloc(rpc_buffer_mempool, gfp); 743 else 744 buf = kmalloc(size, gfp); 745 746 if (!buf) 747 return NULL; 748 749 buf->len = size; 750 dprintk("RPC: %5u allocated buffer of size %zu at %p\n", 751 task->tk_pid, size, buf); 752 return &buf->data; 753 } 754 EXPORT_SYMBOL_GPL(rpc_malloc); 755 756 /** 757 * rpc_free - free buffer allocated via rpc_malloc 758 * @buffer: buffer to free 759 * 760 */ 761 void rpc_free(void *buffer) 762 { 763 size_t size; 764 struct rpc_buffer *buf; 765 766 if (!buffer) 767 return; 768 769 buf = container_of(buffer, struct rpc_buffer, data); 770 size = buf->len; 771 772 dprintk("RPC: freeing buffer of size %zu at %p\n", 773 size, buf); 774 775 if (size <= RPC_BUFFER_MAXSIZE) 776 mempool_free(buf, rpc_buffer_mempool); 777 else 778 kfree(buf); 779 } 780 EXPORT_SYMBOL_GPL(rpc_free); 781 782 /* 783 * Creation and deletion of RPC task structures 784 */ 785 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data) 786 { 787 memset(task, 0, sizeof(*task)); 788 atomic_set(&task->tk_count, 1); 789 task->tk_flags = task_setup_data->flags; 790 task->tk_ops = task_setup_data->callback_ops; 791 task->tk_calldata = task_setup_data->callback_data; 792 INIT_LIST_HEAD(&task->tk_task); 793 794 /* Initialize retry counters */ 795 task->tk_garb_retry = 2; 796 task->tk_cred_retry = 2; 797 798 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW; 799 task->tk_owner = current->tgid; 800 801 /* Initialize workqueue for async tasks */ 802 task->tk_workqueue = task_setup_data->workqueue; 803 804 task->tk_client = task_setup_data->rpc_client; 805 if (task->tk_client != NULL) { 806 kref_get(&task->tk_client->cl_kref); 807 if (task->tk_client->cl_softrtry) 808 task->tk_flags |= RPC_TASK_SOFT; 809 } 810 811 if (task->tk_ops->rpc_call_prepare != NULL) 812 task->tk_action = rpc_prepare_task; 813 814 if (task_setup_data->rpc_message != NULL) { 815 task->tk_msg.rpc_proc = task_setup_data->rpc_message->rpc_proc; 816 task->tk_msg.rpc_argp = task_setup_data->rpc_message->rpc_argp; 817 task->tk_msg.rpc_resp = task_setup_data->rpc_message->rpc_resp; 818 /* Bind the user cred */ 819 rpcauth_bindcred(task, task_setup_data->rpc_message->rpc_cred, task_setup_data->flags); 820 if (task->tk_action == NULL) 821 rpc_call_start(task); 822 } 823 824 /* starting timestamp */ 825 task->tk_start = jiffies; 826 827 dprintk("RPC: new task initialized, procpid %u\n", 828 task_pid_nr(current)); 829 } 830 831 static struct rpc_task * 832 rpc_alloc_task(void) 833 { 834 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS); 835 } 836 837 /* 838 * Create a new task for the specified client. 839 */ 840 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data) 841 { 842 struct rpc_task *task = setup_data->task; 843 unsigned short flags = 0; 844 845 if (task == NULL) { 846 task = rpc_alloc_task(); 847 if (task == NULL) 848 goto out; 849 flags = RPC_TASK_DYNAMIC; 850 } 851 852 rpc_init_task(task, setup_data); 853 854 task->tk_flags |= flags; 855 dprintk("RPC: allocated task %p\n", task); 856 out: 857 return task; 858 } 859 860 static void rpc_free_task(struct rpc_task *task) 861 { 862 const struct rpc_call_ops *tk_ops = task->tk_ops; 863 void *calldata = task->tk_calldata; 864 865 if (task->tk_flags & RPC_TASK_DYNAMIC) { 866 dprintk("RPC: %5u freeing task\n", task->tk_pid); 867 mempool_free(task, rpc_task_mempool); 868 } 869 rpc_release_calldata(tk_ops, calldata); 870 } 871 872 static void rpc_async_release(struct work_struct *work) 873 { 874 rpc_free_task(container_of(work, struct rpc_task, u.tk_work)); 875 } 876 877 void rpc_put_task(struct rpc_task *task) 878 { 879 if (!atomic_dec_and_test(&task->tk_count)) 880 return; 881 /* Release resources */ 882 if (task->tk_rqstp) 883 xprt_release(task); 884 if (task->tk_msg.rpc_cred) 885 rpcauth_unbindcred(task); 886 if (task->tk_client) { 887 rpc_release_client(task->tk_client); 888 task->tk_client = NULL; 889 } 890 if (task->tk_workqueue != NULL) { 891 INIT_WORK(&task->u.tk_work, rpc_async_release); 892 queue_work(task->tk_workqueue, &task->u.tk_work); 893 } else 894 rpc_free_task(task); 895 } 896 EXPORT_SYMBOL_GPL(rpc_put_task); 897 898 static void rpc_release_task(struct rpc_task *task) 899 { 900 #ifdef RPC_DEBUG 901 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID); 902 #endif 903 dprintk("RPC: %5u release task\n", task->tk_pid); 904 905 if (!list_empty(&task->tk_task)) { 906 struct rpc_clnt *clnt = task->tk_client; 907 /* Remove from client task list */ 908 spin_lock(&clnt->cl_lock); 909 list_del(&task->tk_task); 910 spin_unlock(&clnt->cl_lock); 911 } 912 BUG_ON (RPC_IS_QUEUED(task)); 913 914 #ifdef RPC_DEBUG 915 task->tk_magic = 0; 916 #endif 917 /* Wake up anyone who is waiting for task completion */ 918 rpc_mark_complete_task(task); 919 920 rpc_put_task(task); 921 } 922 923 /* 924 * Kill all tasks for the given client. 925 * XXX: kill their descendants as well? 926 */ 927 void rpc_killall_tasks(struct rpc_clnt *clnt) 928 { 929 struct rpc_task *rovr; 930 931 932 if (list_empty(&clnt->cl_tasks)) 933 return; 934 dprintk("RPC: killing all tasks for client %p\n", clnt); 935 /* 936 * Spin lock all_tasks to prevent changes... 937 */ 938 spin_lock(&clnt->cl_lock); 939 list_for_each_entry(rovr, &clnt->cl_tasks, tk_task) { 940 if (! RPC_IS_ACTIVATED(rovr)) 941 continue; 942 if (!(rovr->tk_flags & RPC_TASK_KILLED)) { 943 rovr->tk_flags |= RPC_TASK_KILLED; 944 rpc_exit(rovr, -EIO); 945 rpc_wake_up_task(rovr); 946 } 947 } 948 spin_unlock(&clnt->cl_lock); 949 } 950 EXPORT_SYMBOL_GPL(rpc_killall_tasks); 951 952 int rpciod_up(void) 953 { 954 return try_module_get(THIS_MODULE) ? 0 : -EINVAL; 955 } 956 957 void rpciod_down(void) 958 { 959 module_put(THIS_MODULE); 960 } 961 962 /* 963 * Start up the rpciod workqueue. 964 */ 965 static int rpciod_start(void) 966 { 967 struct workqueue_struct *wq; 968 969 /* 970 * Create the rpciod thread and wait for it to start. 971 */ 972 dprintk("RPC: creating workqueue rpciod\n"); 973 wq = create_workqueue("rpciod"); 974 rpciod_workqueue = wq; 975 return rpciod_workqueue != NULL; 976 } 977 978 static void rpciod_stop(void) 979 { 980 struct workqueue_struct *wq = NULL; 981 982 if (rpciod_workqueue == NULL) 983 return; 984 dprintk("RPC: destroying workqueue rpciod\n"); 985 986 wq = rpciod_workqueue; 987 rpciod_workqueue = NULL; 988 destroy_workqueue(wq); 989 } 990 991 void 992 rpc_destroy_mempool(void) 993 { 994 rpciod_stop(); 995 if (rpc_buffer_mempool) 996 mempool_destroy(rpc_buffer_mempool); 997 if (rpc_task_mempool) 998 mempool_destroy(rpc_task_mempool); 999 if (rpc_task_slabp) 1000 kmem_cache_destroy(rpc_task_slabp); 1001 if (rpc_buffer_slabp) 1002 kmem_cache_destroy(rpc_buffer_slabp); 1003 rpc_destroy_wait_queue(&delay_queue); 1004 } 1005 1006 int 1007 rpc_init_mempool(void) 1008 { 1009 /* 1010 * The following is not strictly a mempool initialisation, 1011 * but there is no harm in doing it here 1012 */ 1013 rpc_init_wait_queue(&delay_queue, "delayq"); 1014 if (!rpciod_start()) 1015 goto err_nomem; 1016 1017 rpc_task_slabp = kmem_cache_create("rpc_tasks", 1018 sizeof(struct rpc_task), 1019 0, SLAB_HWCACHE_ALIGN, 1020 NULL); 1021 if (!rpc_task_slabp) 1022 goto err_nomem; 1023 rpc_buffer_slabp = kmem_cache_create("rpc_buffers", 1024 RPC_BUFFER_MAXSIZE, 1025 0, SLAB_HWCACHE_ALIGN, 1026 NULL); 1027 if (!rpc_buffer_slabp) 1028 goto err_nomem; 1029 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE, 1030 rpc_task_slabp); 1031 if (!rpc_task_mempool) 1032 goto err_nomem; 1033 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE, 1034 rpc_buffer_slabp); 1035 if (!rpc_buffer_mempool) 1036 goto err_nomem; 1037 return 0; 1038 err_nomem: 1039 rpc_destroy_mempool(); 1040 return -ENOMEM; 1041 } 1042