xref: /openbmc/linux/net/sunrpc/sched.c (revision fd589a8f)
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11 
12 #include <linux/module.h>
13 
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 
22 #include <linux/sunrpc/clnt.h>
23 
24 #ifdef RPC_DEBUG
25 #define RPCDBG_FACILITY		RPCDBG_SCHED
26 #define RPC_TASK_MAGIC_ID	0xf00baa
27 #endif
28 
29 /*
30  * RPC slabs and memory pools
31  */
32 #define RPC_BUFFER_MAXSIZE	(2048)
33 #define RPC_BUFFER_POOLSIZE	(8)
34 #define RPC_TASK_POOLSIZE	(8)
35 static struct kmem_cache	*rpc_task_slabp __read_mostly;
36 static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
37 static mempool_t	*rpc_task_mempool __read_mostly;
38 static mempool_t	*rpc_buffer_mempool __read_mostly;
39 
40 static void			rpc_async_schedule(struct work_struct *);
41 static void			 rpc_release_task(struct rpc_task *task);
42 static void __rpc_queue_timer_fn(unsigned long ptr);
43 
44 /*
45  * RPC tasks sit here while waiting for conditions to improve.
46  */
47 static struct rpc_wait_queue delay_queue;
48 
49 /*
50  * rpciod-related stuff
51  */
52 struct workqueue_struct *rpciod_workqueue;
53 
54 /*
55  * Disable the timer for a given RPC task. Should be called with
56  * queue->lock and bh_disabled in order to avoid races within
57  * rpc_run_timer().
58  */
59 static void
60 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
61 {
62 	if (task->tk_timeout == 0)
63 		return;
64 	dprintk("RPC: %5u disabling timer\n", task->tk_pid);
65 	task->tk_timeout = 0;
66 	list_del(&task->u.tk_wait.timer_list);
67 	if (list_empty(&queue->timer_list.list))
68 		del_timer(&queue->timer_list.timer);
69 }
70 
71 static void
72 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
73 {
74 	queue->timer_list.expires = expires;
75 	mod_timer(&queue->timer_list.timer, expires);
76 }
77 
78 /*
79  * Set up a timer for the current task.
80  */
81 static void
82 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
83 {
84 	if (!task->tk_timeout)
85 		return;
86 
87 	dprintk("RPC: %5u setting alarm for %lu ms\n",
88 			task->tk_pid, task->tk_timeout * 1000 / HZ);
89 
90 	task->u.tk_wait.expires = jiffies + task->tk_timeout;
91 	if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
92 		rpc_set_queue_timer(queue, task->u.tk_wait.expires);
93 	list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
94 }
95 
96 /*
97  * Add new request to a priority queue.
98  */
99 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
100 {
101 	struct list_head *q;
102 	struct rpc_task *t;
103 
104 	INIT_LIST_HEAD(&task->u.tk_wait.links);
105 	q = &queue->tasks[task->tk_priority];
106 	if (unlikely(task->tk_priority > queue->maxpriority))
107 		q = &queue->tasks[queue->maxpriority];
108 	list_for_each_entry(t, q, u.tk_wait.list) {
109 		if (t->tk_owner == task->tk_owner) {
110 			list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
111 			return;
112 		}
113 	}
114 	list_add_tail(&task->u.tk_wait.list, q);
115 }
116 
117 /*
118  * Add new request to wait queue.
119  *
120  * Swapper tasks always get inserted at the head of the queue.
121  * This should avoid many nasty memory deadlocks and hopefully
122  * improve overall performance.
123  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
124  */
125 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
126 {
127 	BUG_ON (RPC_IS_QUEUED(task));
128 
129 	if (RPC_IS_PRIORITY(queue))
130 		__rpc_add_wait_queue_priority(queue, task);
131 	else if (RPC_IS_SWAPPER(task))
132 		list_add(&task->u.tk_wait.list, &queue->tasks[0]);
133 	else
134 		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
135 	task->tk_waitqueue = queue;
136 	queue->qlen++;
137 	rpc_set_queued(task);
138 
139 	dprintk("RPC: %5u added to queue %p \"%s\"\n",
140 			task->tk_pid, queue, rpc_qname(queue));
141 }
142 
143 /*
144  * Remove request from a priority queue.
145  */
146 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
147 {
148 	struct rpc_task *t;
149 
150 	if (!list_empty(&task->u.tk_wait.links)) {
151 		t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
152 		list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
153 		list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
154 	}
155 }
156 
157 /*
158  * Remove request from queue.
159  * Note: must be called with spin lock held.
160  */
161 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
162 {
163 	__rpc_disable_timer(queue, task);
164 	if (RPC_IS_PRIORITY(queue))
165 		__rpc_remove_wait_queue_priority(task);
166 	list_del(&task->u.tk_wait.list);
167 	queue->qlen--;
168 	dprintk("RPC: %5u removed from queue %p \"%s\"\n",
169 			task->tk_pid, queue, rpc_qname(queue));
170 }
171 
172 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
173 {
174 	queue->priority = priority;
175 	queue->count = 1 << (priority * 2);
176 }
177 
178 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
179 {
180 	queue->owner = pid;
181 	queue->nr = RPC_BATCH_COUNT;
182 }
183 
184 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
185 {
186 	rpc_set_waitqueue_priority(queue, queue->maxpriority);
187 	rpc_set_waitqueue_owner(queue, 0);
188 }
189 
190 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
191 {
192 	int i;
193 
194 	spin_lock_init(&queue->lock);
195 	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
196 		INIT_LIST_HEAD(&queue->tasks[i]);
197 	queue->maxpriority = nr_queues - 1;
198 	rpc_reset_waitqueue_priority(queue);
199 	queue->qlen = 0;
200 	setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
201 	INIT_LIST_HEAD(&queue->timer_list.list);
202 #ifdef RPC_DEBUG
203 	queue->name = qname;
204 #endif
205 }
206 
207 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
208 {
209 	__rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
210 }
211 
212 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
213 {
214 	__rpc_init_priority_wait_queue(queue, qname, 1);
215 }
216 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
217 
218 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
219 {
220 	del_timer_sync(&queue->timer_list.timer);
221 }
222 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
223 
224 static int rpc_wait_bit_killable(void *word)
225 {
226 	if (fatal_signal_pending(current))
227 		return -ERESTARTSYS;
228 	schedule();
229 	return 0;
230 }
231 
232 #ifdef RPC_DEBUG
233 static void rpc_task_set_debuginfo(struct rpc_task *task)
234 {
235 	static atomic_t rpc_pid;
236 
237 	task->tk_magic = RPC_TASK_MAGIC_ID;
238 	task->tk_pid = atomic_inc_return(&rpc_pid);
239 }
240 #else
241 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
242 {
243 }
244 #endif
245 
246 static void rpc_set_active(struct rpc_task *task)
247 {
248 	struct rpc_clnt *clnt;
249 	if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0)
250 		return;
251 	rpc_task_set_debuginfo(task);
252 	/* Add to global list of all tasks */
253 	clnt = task->tk_client;
254 	if (clnt != NULL) {
255 		spin_lock(&clnt->cl_lock);
256 		list_add_tail(&task->tk_task, &clnt->cl_tasks);
257 		spin_unlock(&clnt->cl_lock);
258 	}
259 }
260 
261 /*
262  * Mark an RPC call as having completed by clearing the 'active' bit
263  */
264 static void rpc_mark_complete_task(struct rpc_task *task)
265 {
266 	smp_mb__before_clear_bit();
267 	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
268 	smp_mb__after_clear_bit();
269 	wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
270 }
271 
272 /*
273  * Allow callers to wait for completion of an RPC call
274  */
275 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
276 {
277 	if (action == NULL)
278 		action = rpc_wait_bit_killable;
279 	return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
280 			action, TASK_KILLABLE);
281 }
282 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
283 
284 /*
285  * Make an RPC task runnable.
286  *
287  * Note: If the task is ASYNC, this must be called with
288  * the spinlock held to protect the wait queue operation.
289  */
290 static void rpc_make_runnable(struct rpc_task *task)
291 {
292 	rpc_clear_queued(task);
293 	if (rpc_test_and_set_running(task))
294 		return;
295 	if (RPC_IS_ASYNC(task)) {
296 		int status;
297 
298 		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
299 		status = queue_work(rpciod_workqueue, &task->u.tk_work);
300 		if (status < 0) {
301 			printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
302 			task->tk_status = status;
303 			return;
304 		}
305 	} else
306 		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
307 }
308 
309 /*
310  * Prepare for sleeping on a wait queue.
311  * By always appending tasks to the list we ensure FIFO behavior.
312  * NB: An RPC task will only receive interrupt-driven events as long
313  * as it's on a wait queue.
314  */
315 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
316 			rpc_action action)
317 {
318 	dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
319 			task->tk_pid, rpc_qname(q), jiffies);
320 
321 	if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
322 		printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
323 		return;
324 	}
325 
326 	__rpc_add_wait_queue(q, task);
327 
328 	BUG_ON(task->tk_callback != NULL);
329 	task->tk_callback = action;
330 	__rpc_add_timer(q, task);
331 }
332 
333 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
334 				rpc_action action)
335 {
336 	/* Mark the task as being activated if so needed */
337 	rpc_set_active(task);
338 
339 	/*
340 	 * Protect the queue operations.
341 	 */
342 	spin_lock_bh(&q->lock);
343 	__rpc_sleep_on(q, task, action);
344 	spin_unlock_bh(&q->lock);
345 }
346 EXPORT_SYMBOL_GPL(rpc_sleep_on);
347 
348 /**
349  * __rpc_do_wake_up_task - wake up a single rpc_task
350  * @queue: wait queue
351  * @task: task to be woken up
352  *
353  * Caller must hold queue->lock, and have cleared the task queued flag.
354  */
355 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
356 {
357 	dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
358 			task->tk_pid, jiffies);
359 
360 #ifdef RPC_DEBUG
361 	BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
362 #endif
363 	/* Has the task been executed yet? If not, we cannot wake it up! */
364 	if (!RPC_IS_ACTIVATED(task)) {
365 		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
366 		return;
367 	}
368 
369 	__rpc_remove_wait_queue(queue, task);
370 
371 	rpc_make_runnable(task);
372 
373 	dprintk("RPC:       __rpc_wake_up_task done\n");
374 }
375 
376 /*
377  * Wake up a queued task while the queue lock is being held
378  */
379 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
380 {
381 	if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
382 		__rpc_do_wake_up_task(queue, task);
383 }
384 
385 /*
386  * Wake up a task on a specific queue
387  */
388 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
389 {
390 	spin_lock_bh(&queue->lock);
391 	rpc_wake_up_task_queue_locked(queue, task);
392 	spin_unlock_bh(&queue->lock);
393 }
394 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
395 
396 /*
397  * Wake up the specified task
398  */
399 static void rpc_wake_up_task(struct rpc_task *task)
400 {
401 	rpc_wake_up_queued_task(task->tk_waitqueue, task);
402 }
403 
404 /*
405  * Wake up the next task on a priority queue.
406  */
407 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
408 {
409 	struct list_head *q;
410 	struct rpc_task *task;
411 
412 	/*
413 	 * Service a batch of tasks from a single owner.
414 	 */
415 	q = &queue->tasks[queue->priority];
416 	if (!list_empty(q)) {
417 		task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
418 		if (queue->owner == task->tk_owner) {
419 			if (--queue->nr)
420 				goto out;
421 			list_move_tail(&task->u.tk_wait.list, q);
422 		}
423 		/*
424 		 * Check if we need to switch queues.
425 		 */
426 		if (--queue->count)
427 			goto new_owner;
428 	}
429 
430 	/*
431 	 * Service the next queue.
432 	 */
433 	do {
434 		if (q == &queue->tasks[0])
435 			q = &queue->tasks[queue->maxpriority];
436 		else
437 			q = q - 1;
438 		if (!list_empty(q)) {
439 			task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
440 			goto new_queue;
441 		}
442 	} while (q != &queue->tasks[queue->priority]);
443 
444 	rpc_reset_waitqueue_priority(queue);
445 	return NULL;
446 
447 new_queue:
448 	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
449 new_owner:
450 	rpc_set_waitqueue_owner(queue, task->tk_owner);
451 out:
452 	rpc_wake_up_task_queue_locked(queue, task);
453 	return task;
454 }
455 
456 /*
457  * Wake up the next task on the wait queue.
458  */
459 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
460 {
461 	struct rpc_task	*task = NULL;
462 
463 	dprintk("RPC:       wake_up_next(%p \"%s\")\n",
464 			queue, rpc_qname(queue));
465 	spin_lock_bh(&queue->lock);
466 	if (RPC_IS_PRIORITY(queue))
467 		task = __rpc_wake_up_next_priority(queue);
468 	else {
469 		task_for_first(task, &queue->tasks[0])
470 			rpc_wake_up_task_queue_locked(queue, task);
471 	}
472 	spin_unlock_bh(&queue->lock);
473 
474 	return task;
475 }
476 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
477 
478 /**
479  * rpc_wake_up - wake up all rpc_tasks
480  * @queue: rpc_wait_queue on which the tasks are sleeping
481  *
482  * Grabs queue->lock
483  */
484 void rpc_wake_up(struct rpc_wait_queue *queue)
485 {
486 	struct rpc_task *task, *next;
487 	struct list_head *head;
488 
489 	spin_lock_bh(&queue->lock);
490 	head = &queue->tasks[queue->maxpriority];
491 	for (;;) {
492 		list_for_each_entry_safe(task, next, head, u.tk_wait.list)
493 			rpc_wake_up_task_queue_locked(queue, task);
494 		if (head == &queue->tasks[0])
495 			break;
496 		head--;
497 	}
498 	spin_unlock_bh(&queue->lock);
499 }
500 EXPORT_SYMBOL_GPL(rpc_wake_up);
501 
502 /**
503  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
504  * @queue: rpc_wait_queue on which the tasks are sleeping
505  * @status: status value to set
506  *
507  * Grabs queue->lock
508  */
509 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
510 {
511 	struct rpc_task *task, *next;
512 	struct list_head *head;
513 
514 	spin_lock_bh(&queue->lock);
515 	head = &queue->tasks[queue->maxpriority];
516 	for (;;) {
517 		list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
518 			task->tk_status = status;
519 			rpc_wake_up_task_queue_locked(queue, task);
520 		}
521 		if (head == &queue->tasks[0])
522 			break;
523 		head--;
524 	}
525 	spin_unlock_bh(&queue->lock);
526 }
527 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
528 
529 static void __rpc_queue_timer_fn(unsigned long ptr)
530 {
531 	struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
532 	struct rpc_task *task, *n;
533 	unsigned long expires, now, timeo;
534 
535 	spin_lock(&queue->lock);
536 	expires = now = jiffies;
537 	list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
538 		timeo = task->u.tk_wait.expires;
539 		if (time_after_eq(now, timeo)) {
540 			dprintk("RPC: %5u timeout\n", task->tk_pid);
541 			task->tk_status = -ETIMEDOUT;
542 			rpc_wake_up_task_queue_locked(queue, task);
543 			continue;
544 		}
545 		if (expires == now || time_after(expires, timeo))
546 			expires = timeo;
547 	}
548 	if (!list_empty(&queue->timer_list.list))
549 		rpc_set_queue_timer(queue, expires);
550 	spin_unlock(&queue->lock);
551 }
552 
553 static void __rpc_atrun(struct rpc_task *task)
554 {
555 	task->tk_status = 0;
556 }
557 
558 /*
559  * Run a task at a later time
560  */
561 void rpc_delay(struct rpc_task *task, unsigned long delay)
562 {
563 	task->tk_timeout = delay;
564 	rpc_sleep_on(&delay_queue, task, __rpc_atrun);
565 }
566 EXPORT_SYMBOL_GPL(rpc_delay);
567 
568 /*
569  * Helper to call task->tk_ops->rpc_call_prepare
570  */
571 void rpc_prepare_task(struct rpc_task *task)
572 {
573 	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
574 }
575 
576 /*
577  * Helper that calls task->tk_ops->rpc_call_done if it exists
578  */
579 void rpc_exit_task(struct rpc_task *task)
580 {
581 	task->tk_action = NULL;
582 	if (task->tk_ops->rpc_call_done != NULL) {
583 		task->tk_ops->rpc_call_done(task, task->tk_calldata);
584 		if (task->tk_action != NULL) {
585 			WARN_ON(RPC_ASSASSINATED(task));
586 			/* Always release the RPC slot and buffer memory */
587 			xprt_release(task);
588 		}
589 	}
590 }
591 EXPORT_SYMBOL_GPL(rpc_exit_task);
592 
593 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
594 {
595 	if (ops->rpc_release != NULL)
596 		ops->rpc_release(calldata);
597 }
598 
599 /*
600  * This is the RPC `scheduler' (or rather, the finite state machine).
601  */
602 static void __rpc_execute(struct rpc_task *task)
603 {
604 	struct rpc_wait_queue *queue;
605 	int task_is_async = RPC_IS_ASYNC(task);
606 	int status = 0;
607 
608 	dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
609 			task->tk_pid, task->tk_flags);
610 
611 	BUG_ON(RPC_IS_QUEUED(task));
612 
613 	for (;;) {
614 
615 		/*
616 		 * Execute any pending callback.
617 		 */
618 		if (task->tk_callback) {
619 			void (*save_callback)(struct rpc_task *);
620 
621 			/*
622 			 * We set tk_callback to NULL before calling it,
623 			 * in case it sets the tk_callback field itself:
624 			 */
625 			save_callback = task->tk_callback;
626 			task->tk_callback = NULL;
627 			save_callback(task);
628 		}
629 
630 		/*
631 		 * Perform the next FSM step.
632 		 * tk_action may be NULL when the task has been killed
633 		 * by someone else.
634 		 */
635 		if (!RPC_IS_QUEUED(task)) {
636 			if (task->tk_action == NULL)
637 				break;
638 			task->tk_action(task);
639 		}
640 
641 		/*
642 		 * Lockless check for whether task is sleeping or not.
643 		 */
644 		if (!RPC_IS_QUEUED(task))
645 			continue;
646 		/*
647 		 * The queue->lock protects against races with
648 		 * rpc_make_runnable().
649 		 *
650 		 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
651 		 * rpc_task, rpc_make_runnable() can assign it to a
652 		 * different workqueue. We therefore cannot assume that the
653 		 * rpc_task pointer may still be dereferenced.
654 		 */
655 		queue = task->tk_waitqueue;
656 		spin_lock_bh(&queue->lock);
657 		if (!RPC_IS_QUEUED(task)) {
658 			spin_unlock_bh(&queue->lock);
659 			continue;
660 		}
661 		rpc_clear_running(task);
662 		spin_unlock_bh(&queue->lock);
663 		if (task_is_async)
664 			return;
665 
666 		/* sync task: sleep here */
667 		dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
668 		status = out_of_line_wait_on_bit(&task->tk_runstate,
669 				RPC_TASK_QUEUED, rpc_wait_bit_killable,
670 				TASK_KILLABLE);
671 		if (status == -ERESTARTSYS) {
672 			/*
673 			 * When a sync task receives a signal, it exits with
674 			 * -ERESTARTSYS. In order to catch any callbacks that
675 			 * clean up after sleeping on some queue, we don't
676 			 * break the loop here, but go around once more.
677 			 */
678 			dprintk("RPC: %5u got signal\n", task->tk_pid);
679 			task->tk_flags |= RPC_TASK_KILLED;
680 			rpc_exit(task, -ERESTARTSYS);
681 			rpc_wake_up_task(task);
682 		}
683 		rpc_set_running(task);
684 		dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
685 	}
686 
687 	dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
688 			task->tk_status);
689 	/* Release all resources associated with the task */
690 	rpc_release_task(task);
691 }
692 
693 /*
694  * User-visible entry point to the scheduler.
695  *
696  * This may be called recursively if e.g. an async NFS task updates
697  * the attributes and finds that dirty pages must be flushed.
698  * NOTE: Upon exit of this function the task is guaranteed to be
699  *	 released. In particular note that tk_release() will have
700  *	 been called, so your task memory may have been freed.
701  */
702 void rpc_execute(struct rpc_task *task)
703 {
704 	rpc_set_active(task);
705 	rpc_set_running(task);
706 	__rpc_execute(task);
707 }
708 
709 static void rpc_async_schedule(struct work_struct *work)
710 {
711 	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
712 }
713 
714 struct rpc_buffer {
715 	size_t	len;
716 	char	data[];
717 };
718 
719 /**
720  * rpc_malloc - allocate an RPC buffer
721  * @task: RPC task that will use this buffer
722  * @size: requested byte size
723  *
724  * To prevent rpciod from hanging, this allocator never sleeps,
725  * returning NULL if the request cannot be serviced immediately.
726  * The caller can arrange to sleep in a way that is safe for rpciod.
727  *
728  * Most requests are 'small' (under 2KiB) and can be serviced from a
729  * mempool, ensuring that NFS reads and writes can always proceed,
730  * and that there is good locality of reference for these buffers.
731  *
732  * In order to avoid memory starvation triggering more writebacks of
733  * NFS requests, we avoid using GFP_KERNEL.
734  */
735 void *rpc_malloc(struct rpc_task *task, size_t size)
736 {
737 	struct rpc_buffer *buf;
738 	gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
739 
740 	size += sizeof(struct rpc_buffer);
741 	if (size <= RPC_BUFFER_MAXSIZE)
742 		buf = mempool_alloc(rpc_buffer_mempool, gfp);
743 	else
744 		buf = kmalloc(size, gfp);
745 
746 	if (!buf)
747 		return NULL;
748 
749 	buf->len = size;
750 	dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
751 			task->tk_pid, size, buf);
752 	return &buf->data;
753 }
754 EXPORT_SYMBOL_GPL(rpc_malloc);
755 
756 /**
757  * rpc_free - free buffer allocated via rpc_malloc
758  * @buffer: buffer to free
759  *
760  */
761 void rpc_free(void *buffer)
762 {
763 	size_t size;
764 	struct rpc_buffer *buf;
765 
766 	if (!buffer)
767 		return;
768 
769 	buf = container_of(buffer, struct rpc_buffer, data);
770 	size = buf->len;
771 
772 	dprintk("RPC:       freeing buffer of size %zu at %p\n",
773 			size, buf);
774 
775 	if (size <= RPC_BUFFER_MAXSIZE)
776 		mempool_free(buf, rpc_buffer_mempool);
777 	else
778 		kfree(buf);
779 }
780 EXPORT_SYMBOL_GPL(rpc_free);
781 
782 /*
783  * Creation and deletion of RPC task structures
784  */
785 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
786 {
787 	memset(task, 0, sizeof(*task));
788 	atomic_set(&task->tk_count, 1);
789 	task->tk_flags  = task_setup_data->flags;
790 	task->tk_ops = task_setup_data->callback_ops;
791 	task->tk_calldata = task_setup_data->callback_data;
792 	INIT_LIST_HEAD(&task->tk_task);
793 
794 	/* Initialize retry counters */
795 	task->tk_garb_retry = 2;
796 	task->tk_cred_retry = 2;
797 
798 	task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
799 	task->tk_owner = current->tgid;
800 
801 	/* Initialize workqueue for async tasks */
802 	task->tk_workqueue = task_setup_data->workqueue;
803 
804 	task->tk_client = task_setup_data->rpc_client;
805 	if (task->tk_client != NULL) {
806 		kref_get(&task->tk_client->cl_kref);
807 		if (task->tk_client->cl_softrtry)
808 			task->tk_flags |= RPC_TASK_SOFT;
809 	}
810 
811 	if (task->tk_ops->rpc_call_prepare != NULL)
812 		task->tk_action = rpc_prepare_task;
813 
814 	if (task_setup_data->rpc_message != NULL) {
815 		task->tk_msg.rpc_proc = task_setup_data->rpc_message->rpc_proc;
816 		task->tk_msg.rpc_argp = task_setup_data->rpc_message->rpc_argp;
817 		task->tk_msg.rpc_resp = task_setup_data->rpc_message->rpc_resp;
818 		/* Bind the user cred */
819 		rpcauth_bindcred(task, task_setup_data->rpc_message->rpc_cred, task_setup_data->flags);
820 		if (task->tk_action == NULL)
821 			rpc_call_start(task);
822 	}
823 
824 	/* starting timestamp */
825 	task->tk_start = jiffies;
826 
827 	dprintk("RPC:       new task initialized, procpid %u\n",
828 				task_pid_nr(current));
829 }
830 
831 static struct rpc_task *
832 rpc_alloc_task(void)
833 {
834 	return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
835 }
836 
837 /*
838  * Create a new task for the specified client.
839  */
840 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
841 {
842 	struct rpc_task	*task = setup_data->task;
843 	unsigned short flags = 0;
844 
845 	if (task == NULL) {
846 		task = rpc_alloc_task();
847 		if (task == NULL)
848 			goto out;
849 		flags = RPC_TASK_DYNAMIC;
850 	}
851 
852 	rpc_init_task(task, setup_data);
853 
854 	task->tk_flags |= flags;
855 	dprintk("RPC:       allocated task %p\n", task);
856 out:
857 	return task;
858 }
859 
860 static void rpc_free_task(struct rpc_task *task)
861 {
862 	const struct rpc_call_ops *tk_ops = task->tk_ops;
863 	void *calldata = task->tk_calldata;
864 
865 	if (task->tk_flags & RPC_TASK_DYNAMIC) {
866 		dprintk("RPC: %5u freeing task\n", task->tk_pid);
867 		mempool_free(task, rpc_task_mempool);
868 	}
869 	rpc_release_calldata(tk_ops, calldata);
870 }
871 
872 static void rpc_async_release(struct work_struct *work)
873 {
874 	rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
875 }
876 
877 void rpc_put_task(struct rpc_task *task)
878 {
879 	if (!atomic_dec_and_test(&task->tk_count))
880 		return;
881 	/* Release resources */
882 	if (task->tk_rqstp)
883 		xprt_release(task);
884 	if (task->tk_msg.rpc_cred)
885 		rpcauth_unbindcred(task);
886 	if (task->tk_client) {
887 		rpc_release_client(task->tk_client);
888 		task->tk_client = NULL;
889 	}
890 	if (task->tk_workqueue != NULL) {
891 		INIT_WORK(&task->u.tk_work, rpc_async_release);
892 		queue_work(task->tk_workqueue, &task->u.tk_work);
893 	} else
894 		rpc_free_task(task);
895 }
896 EXPORT_SYMBOL_GPL(rpc_put_task);
897 
898 static void rpc_release_task(struct rpc_task *task)
899 {
900 #ifdef RPC_DEBUG
901 	BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
902 #endif
903 	dprintk("RPC: %5u release task\n", task->tk_pid);
904 
905 	if (!list_empty(&task->tk_task)) {
906 		struct rpc_clnt *clnt = task->tk_client;
907 		/* Remove from client task list */
908 		spin_lock(&clnt->cl_lock);
909 		list_del(&task->tk_task);
910 		spin_unlock(&clnt->cl_lock);
911 	}
912 	BUG_ON (RPC_IS_QUEUED(task));
913 
914 #ifdef RPC_DEBUG
915 	task->tk_magic = 0;
916 #endif
917 	/* Wake up anyone who is waiting for task completion */
918 	rpc_mark_complete_task(task);
919 
920 	rpc_put_task(task);
921 }
922 
923 /*
924  * Kill all tasks for the given client.
925  * XXX: kill their descendants as well?
926  */
927 void rpc_killall_tasks(struct rpc_clnt *clnt)
928 {
929 	struct rpc_task	*rovr;
930 
931 
932 	if (list_empty(&clnt->cl_tasks))
933 		return;
934 	dprintk("RPC:       killing all tasks for client %p\n", clnt);
935 	/*
936 	 * Spin lock all_tasks to prevent changes...
937 	 */
938 	spin_lock(&clnt->cl_lock);
939 	list_for_each_entry(rovr, &clnt->cl_tasks, tk_task) {
940 		if (! RPC_IS_ACTIVATED(rovr))
941 			continue;
942 		if (!(rovr->tk_flags & RPC_TASK_KILLED)) {
943 			rovr->tk_flags |= RPC_TASK_KILLED;
944 			rpc_exit(rovr, -EIO);
945 			rpc_wake_up_task(rovr);
946 		}
947 	}
948 	spin_unlock(&clnt->cl_lock);
949 }
950 EXPORT_SYMBOL_GPL(rpc_killall_tasks);
951 
952 int rpciod_up(void)
953 {
954 	return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
955 }
956 
957 void rpciod_down(void)
958 {
959 	module_put(THIS_MODULE);
960 }
961 
962 /*
963  * Start up the rpciod workqueue.
964  */
965 static int rpciod_start(void)
966 {
967 	struct workqueue_struct *wq;
968 
969 	/*
970 	 * Create the rpciod thread and wait for it to start.
971 	 */
972 	dprintk("RPC:       creating workqueue rpciod\n");
973 	wq = create_workqueue("rpciod");
974 	rpciod_workqueue = wq;
975 	return rpciod_workqueue != NULL;
976 }
977 
978 static void rpciod_stop(void)
979 {
980 	struct workqueue_struct *wq = NULL;
981 
982 	if (rpciod_workqueue == NULL)
983 		return;
984 	dprintk("RPC:       destroying workqueue rpciod\n");
985 
986 	wq = rpciod_workqueue;
987 	rpciod_workqueue = NULL;
988 	destroy_workqueue(wq);
989 }
990 
991 void
992 rpc_destroy_mempool(void)
993 {
994 	rpciod_stop();
995 	if (rpc_buffer_mempool)
996 		mempool_destroy(rpc_buffer_mempool);
997 	if (rpc_task_mempool)
998 		mempool_destroy(rpc_task_mempool);
999 	if (rpc_task_slabp)
1000 		kmem_cache_destroy(rpc_task_slabp);
1001 	if (rpc_buffer_slabp)
1002 		kmem_cache_destroy(rpc_buffer_slabp);
1003 	rpc_destroy_wait_queue(&delay_queue);
1004 }
1005 
1006 int
1007 rpc_init_mempool(void)
1008 {
1009 	/*
1010 	 * The following is not strictly a mempool initialisation,
1011 	 * but there is no harm in doing it here
1012 	 */
1013 	rpc_init_wait_queue(&delay_queue, "delayq");
1014 	if (!rpciod_start())
1015 		goto err_nomem;
1016 
1017 	rpc_task_slabp = kmem_cache_create("rpc_tasks",
1018 					     sizeof(struct rpc_task),
1019 					     0, SLAB_HWCACHE_ALIGN,
1020 					     NULL);
1021 	if (!rpc_task_slabp)
1022 		goto err_nomem;
1023 	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1024 					     RPC_BUFFER_MAXSIZE,
1025 					     0, SLAB_HWCACHE_ALIGN,
1026 					     NULL);
1027 	if (!rpc_buffer_slabp)
1028 		goto err_nomem;
1029 	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1030 						    rpc_task_slabp);
1031 	if (!rpc_task_mempool)
1032 		goto err_nomem;
1033 	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1034 						      rpc_buffer_slabp);
1035 	if (!rpc_buffer_mempool)
1036 		goto err_nomem;
1037 	return 0;
1038 err_nomem:
1039 	rpc_destroy_mempool();
1040 	return -ENOMEM;
1041 }
1042