xref: /openbmc/linux/net/sunrpc/sched.c (revision f80be457)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/sched.c
4  *
5  * Scheduling for synchronous and asynchronous RPC requests.
6  *
7  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8  *
9  * TCP NFS related read + write fixes
10  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
11  */
12 
13 #include <linux/module.h>
14 
15 #include <linux/sched.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/mempool.h>
19 #include <linux/smp.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22 #include <linux/freezer.h>
23 #include <linux/sched/mm.h>
24 
25 #include <linux/sunrpc/clnt.h>
26 #include <linux/sunrpc/metrics.h>
27 
28 #include "sunrpc.h"
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/sunrpc.h>
32 
33 /*
34  * RPC slabs and memory pools
35  */
36 #define RPC_BUFFER_MAXSIZE	(2048)
37 #define RPC_BUFFER_POOLSIZE	(8)
38 #define RPC_TASK_POOLSIZE	(8)
39 static struct kmem_cache	*rpc_task_slabp __read_mostly;
40 static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
41 static mempool_t	*rpc_task_mempool __read_mostly;
42 static mempool_t	*rpc_buffer_mempool __read_mostly;
43 
44 static void			rpc_async_schedule(struct work_struct *);
45 static void			 rpc_release_task(struct rpc_task *task);
46 static void __rpc_queue_timer_fn(struct work_struct *);
47 
48 /*
49  * RPC tasks sit here while waiting for conditions to improve.
50  */
51 static struct rpc_wait_queue delay_queue;
52 
53 /*
54  * rpciod-related stuff
55  */
56 struct workqueue_struct *rpciod_workqueue __read_mostly;
57 struct workqueue_struct *xprtiod_workqueue __read_mostly;
58 EXPORT_SYMBOL_GPL(xprtiod_workqueue);
59 
60 gfp_t rpc_task_gfp_mask(void)
61 {
62 	if (current->flags & PF_WQ_WORKER)
63 		return GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
64 	return GFP_KERNEL;
65 }
66 EXPORT_SYMBOL_GPL(rpc_task_gfp_mask);
67 
68 unsigned long
69 rpc_task_timeout(const struct rpc_task *task)
70 {
71 	unsigned long timeout = READ_ONCE(task->tk_timeout);
72 
73 	if (timeout != 0) {
74 		unsigned long now = jiffies;
75 		if (time_before(now, timeout))
76 			return timeout - now;
77 	}
78 	return 0;
79 }
80 EXPORT_SYMBOL_GPL(rpc_task_timeout);
81 
82 /*
83  * Disable the timer for a given RPC task. Should be called with
84  * queue->lock and bh_disabled in order to avoid races within
85  * rpc_run_timer().
86  */
87 static void
88 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
89 {
90 	if (list_empty(&task->u.tk_wait.timer_list))
91 		return;
92 	task->tk_timeout = 0;
93 	list_del(&task->u.tk_wait.timer_list);
94 	if (list_empty(&queue->timer_list.list))
95 		cancel_delayed_work(&queue->timer_list.dwork);
96 }
97 
98 static void
99 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
100 {
101 	unsigned long now = jiffies;
102 	queue->timer_list.expires = expires;
103 	if (time_before_eq(expires, now))
104 		expires = 0;
105 	else
106 		expires -= now;
107 	mod_delayed_work(rpciod_workqueue, &queue->timer_list.dwork, expires);
108 }
109 
110 /*
111  * Set up a timer for the current task.
112  */
113 static void
114 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
115 		unsigned long timeout)
116 {
117 	task->tk_timeout = timeout;
118 	if (list_empty(&queue->timer_list.list) || time_before(timeout, queue->timer_list.expires))
119 		rpc_set_queue_timer(queue, timeout);
120 	list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
121 }
122 
123 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
124 {
125 	if (queue->priority != priority) {
126 		queue->priority = priority;
127 		queue->nr = 1U << priority;
128 	}
129 }
130 
131 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
132 {
133 	rpc_set_waitqueue_priority(queue, queue->maxpriority);
134 }
135 
136 /*
137  * Add a request to a queue list
138  */
139 static void
140 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
141 {
142 	struct rpc_task *t;
143 
144 	list_for_each_entry(t, q, u.tk_wait.list) {
145 		if (t->tk_owner == task->tk_owner) {
146 			list_add_tail(&task->u.tk_wait.links,
147 					&t->u.tk_wait.links);
148 			/* Cache the queue head in task->u.tk_wait.list */
149 			task->u.tk_wait.list.next = q;
150 			task->u.tk_wait.list.prev = NULL;
151 			return;
152 		}
153 	}
154 	INIT_LIST_HEAD(&task->u.tk_wait.links);
155 	list_add_tail(&task->u.tk_wait.list, q);
156 }
157 
158 /*
159  * Remove request from a queue list
160  */
161 static void
162 __rpc_list_dequeue_task(struct rpc_task *task)
163 {
164 	struct list_head *q;
165 	struct rpc_task *t;
166 
167 	if (task->u.tk_wait.list.prev == NULL) {
168 		list_del(&task->u.tk_wait.links);
169 		return;
170 	}
171 	if (!list_empty(&task->u.tk_wait.links)) {
172 		t = list_first_entry(&task->u.tk_wait.links,
173 				struct rpc_task,
174 				u.tk_wait.links);
175 		/* Assume __rpc_list_enqueue_task() cached the queue head */
176 		q = t->u.tk_wait.list.next;
177 		list_add_tail(&t->u.tk_wait.list, q);
178 		list_del(&task->u.tk_wait.links);
179 	}
180 	list_del(&task->u.tk_wait.list);
181 }
182 
183 /*
184  * Add new request to a priority queue.
185  */
186 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
187 		struct rpc_task *task,
188 		unsigned char queue_priority)
189 {
190 	if (unlikely(queue_priority > queue->maxpriority))
191 		queue_priority = queue->maxpriority;
192 	__rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
193 }
194 
195 /*
196  * Add new request to wait queue.
197  */
198 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
199 		struct rpc_task *task,
200 		unsigned char queue_priority)
201 {
202 	INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
203 	if (RPC_IS_PRIORITY(queue))
204 		__rpc_add_wait_queue_priority(queue, task, queue_priority);
205 	else
206 		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
207 	task->tk_waitqueue = queue;
208 	queue->qlen++;
209 	/* barrier matches the read in rpc_wake_up_task_queue_locked() */
210 	smp_wmb();
211 	rpc_set_queued(task);
212 }
213 
214 /*
215  * Remove request from a priority queue.
216  */
217 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
218 {
219 	__rpc_list_dequeue_task(task);
220 }
221 
222 /*
223  * Remove request from queue.
224  * Note: must be called with spin lock held.
225  */
226 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
227 {
228 	__rpc_disable_timer(queue, task);
229 	if (RPC_IS_PRIORITY(queue))
230 		__rpc_remove_wait_queue_priority(task);
231 	else
232 		list_del(&task->u.tk_wait.list);
233 	queue->qlen--;
234 }
235 
236 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
237 {
238 	int i;
239 
240 	spin_lock_init(&queue->lock);
241 	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
242 		INIT_LIST_HEAD(&queue->tasks[i]);
243 	queue->maxpriority = nr_queues - 1;
244 	rpc_reset_waitqueue_priority(queue);
245 	queue->qlen = 0;
246 	queue->timer_list.expires = 0;
247 	INIT_DELAYED_WORK(&queue->timer_list.dwork, __rpc_queue_timer_fn);
248 	INIT_LIST_HEAD(&queue->timer_list.list);
249 	rpc_assign_waitqueue_name(queue, qname);
250 }
251 
252 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
253 {
254 	__rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
255 }
256 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
257 
258 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
259 {
260 	__rpc_init_priority_wait_queue(queue, qname, 1);
261 }
262 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
263 
264 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
265 {
266 	cancel_delayed_work_sync(&queue->timer_list.dwork);
267 }
268 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
269 
270 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
271 {
272 	freezable_schedule_unsafe();
273 	if (signal_pending_state(mode, current))
274 		return -ERESTARTSYS;
275 	return 0;
276 }
277 
278 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
279 static void rpc_task_set_debuginfo(struct rpc_task *task)
280 {
281 	struct rpc_clnt *clnt = task->tk_client;
282 
283 	/* Might be a task carrying a reverse-direction operation */
284 	if (!clnt) {
285 		static atomic_t rpc_pid;
286 
287 		task->tk_pid = atomic_inc_return(&rpc_pid);
288 		return;
289 	}
290 
291 	task->tk_pid = atomic_inc_return(&clnt->cl_pid);
292 }
293 #else
294 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
295 {
296 }
297 #endif
298 
299 static void rpc_set_active(struct rpc_task *task)
300 {
301 	rpc_task_set_debuginfo(task);
302 	set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
303 	trace_rpc_task_begin(task, NULL);
304 }
305 
306 /*
307  * Mark an RPC call as having completed by clearing the 'active' bit
308  * and then waking up all tasks that were sleeping.
309  */
310 static int rpc_complete_task(struct rpc_task *task)
311 {
312 	void *m = &task->tk_runstate;
313 	wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
314 	struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
315 	unsigned long flags;
316 	int ret;
317 
318 	trace_rpc_task_complete(task, NULL);
319 
320 	spin_lock_irqsave(&wq->lock, flags);
321 	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
322 	ret = atomic_dec_and_test(&task->tk_count);
323 	if (waitqueue_active(wq))
324 		__wake_up_locked_key(wq, TASK_NORMAL, &k);
325 	spin_unlock_irqrestore(&wq->lock, flags);
326 	return ret;
327 }
328 
329 /*
330  * Allow callers to wait for completion of an RPC call
331  *
332  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
333  * to enforce taking of the wq->lock and hence avoid races with
334  * rpc_complete_task().
335  */
336 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
337 {
338 	if (action == NULL)
339 		action = rpc_wait_bit_killable;
340 	return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
341 			action, TASK_KILLABLE);
342 }
343 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
344 
345 /*
346  * Make an RPC task runnable.
347  *
348  * Note: If the task is ASYNC, and is being made runnable after sitting on an
349  * rpc_wait_queue, this must be called with the queue spinlock held to protect
350  * the wait queue operation.
351  * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
352  * which is needed to ensure that __rpc_execute() doesn't loop (due to the
353  * lockless RPC_IS_QUEUED() test) before we've had a chance to test
354  * the RPC_TASK_RUNNING flag.
355  */
356 static void rpc_make_runnable(struct workqueue_struct *wq,
357 		struct rpc_task *task)
358 {
359 	bool need_wakeup = !rpc_test_and_set_running(task);
360 
361 	rpc_clear_queued(task);
362 	if (!need_wakeup)
363 		return;
364 	if (RPC_IS_ASYNC(task)) {
365 		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
366 		queue_work(wq, &task->u.tk_work);
367 	} else
368 		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
369 }
370 
371 /*
372  * Prepare for sleeping on a wait queue.
373  * By always appending tasks to the list we ensure FIFO behavior.
374  * NB: An RPC task will only receive interrupt-driven events as long
375  * as it's on a wait queue.
376  */
377 static void __rpc_do_sleep_on_priority(struct rpc_wait_queue *q,
378 		struct rpc_task *task,
379 		unsigned char queue_priority)
380 {
381 	trace_rpc_task_sleep(task, q);
382 
383 	__rpc_add_wait_queue(q, task, queue_priority);
384 }
385 
386 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
387 		struct rpc_task *task,
388 		unsigned char queue_priority)
389 {
390 	if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
391 		return;
392 	__rpc_do_sleep_on_priority(q, task, queue_priority);
393 }
394 
395 static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
396 		struct rpc_task *task, unsigned long timeout,
397 		unsigned char queue_priority)
398 {
399 	if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
400 		return;
401 	if (time_is_after_jiffies(timeout)) {
402 		__rpc_do_sleep_on_priority(q, task, queue_priority);
403 		__rpc_add_timer(q, task, timeout);
404 	} else
405 		task->tk_status = -ETIMEDOUT;
406 }
407 
408 static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
409 {
410 	if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
411 		task->tk_callback = action;
412 }
413 
414 static bool rpc_sleep_check_activated(struct rpc_task *task)
415 {
416 	/* We shouldn't ever put an inactive task to sleep */
417 	if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
418 		task->tk_status = -EIO;
419 		rpc_put_task_async(task);
420 		return false;
421 	}
422 	return true;
423 }
424 
425 void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
426 				rpc_action action, unsigned long timeout)
427 {
428 	if (!rpc_sleep_check_activated(task))
429 		return;
430 
431 	rpc_set_tk_callback(task, action);
432 
433 	/*
434 	 * Protect the queue operations.
435 	 */
436 	spin_lock(&q->lock);
437 	__rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
438 	spin_unlock(&q->lock);
439 }
440 EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
441 
442 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
443 				rpc_action action)
444 {
445 	if (!rpc_sleep_check_activated(task))
446 		return;
447 
448 	rpc_set_tk_callback(task, action);
449 
450 	WARN_ON_ONCE(task->tk_timeout != 0);
451 	/*
452 	 * Protect the queue operations.
453 	 */
454 	spin_lock(&q->lock);
455 	__rpc_sleep_on_priority(q, task, task->tk_priority);
456 	spin_unlock(&q->lock);
457 }
458 EXPORT_SYMBOL_GPL(rpc_sleep_on);
459 
460 void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
461 		struct rpc_task *task, unsigned long timeout, int priority)
462 {
463 	if (!rpc_sleep_check_activated(task))
464 		return;
465 
466 	priority -= RPC_PRIORITY_LOW;
467 	/*
468 	 * Protect the queue operations.
469 	 */
470 	spin_lock(&q->lock);
471 	__rpc_sleep_on_priority_timeout(q, task, timeout, priority);
472 	spin_unlock(&q->lock);
473 }
474 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
475 
476 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
477 		int priority)
478 {
479 	if (!rpc_sleep_check_activated(task))
480 		return;
481 
482 	WARN_ON_ONCE(task->tk_timeout != 0);
483 	priority -= RPC_PRIORITY_LOW;
484 	/*
485 	 * Protect the queue operations.
486 	 */
487 	spin_lock(&q->lock);
488 	__rpc_sleep_on_priority(q, task, priority);
489 	spin_unlock(&q->lock);
490 }
491 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
492 
493 /**
494  * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
495  * @wq: workqueue on which to run task
496  * @queue: wait queue
497  * @task: task to be woken up
498  *
499  * Caller must hold queue->lock, and have cleared the task queued flag.
500  */
501 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
502 		struct rpc_wait_queue *queue,
503 		struct rpc_task *task)
504 {
505 	/* Has the task been executed yet? If not, we cannot wake it up! */
506 	if (!RPC_IS_ACTIVATED(task)) {
507 		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
508 		return;
509 	}
510 
511 	trace_rpc_task_wakeup(task, queue);
512 
513 	__rpc_remove_wait_queue(queue, task);
514 
515 	rpc_make_runnable(wq, task);
516 }
517 
518 /*
519  * Wake up a queued task while the queue lock is being held
520  */
521 static struct rpc_task *
522 rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
523 		struct rpc_wait_queue *queue, struct rpc_task *task,
524 		bool (*action)(struct rpc_task *, void *), void *data)
525 {
526 	if (RPC_IS_QUEUED(task)) {
527 		smp_rmb();
528 		if (task->tk_waitqueue == queue) {
529 			if (action == NULL || action(task, data)) {
530 				__rpc_do_wake_up_task_on_wq(wq, queue, task);
531 				return task;
532 			}
533 		}
534 	}
535 	return NULL;
536 }
537 
538 /*
539  * Wake up a queued task while the queue lock is being held
540  */
541 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue,
542 					  struct rpc_task *task)
543 {
544 	rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
545 						   task, NULL, NULL);
546 }
547 
548 /*
549  * Wake up a task on a specific queue
550  */
551 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
552 {
553 	if (!RPC_IS_QUEUED(task))
554 		return;
555 	spin_lock(&queue->lock);
556 	rpc_wake_up_task_queue_locked(queue, task);
557 	spin_unlock(&queue->lock);
558 }
559 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
560 
561 static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
562 {
563 	task->tk_status = *(int *)status;
564 	return true;
565 }
566 
567 static void
568 rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
569 		struct rpc_task *task, int status)
570 {
571 	rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
572 			task, rpc_task_action_set_status, &status);
573 }
574 
575 /**
576  * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
577  * @queue: pointer to rpc_wait_queue
578  * @task: pointer to rpc_task
579  * @status: integer error value
580  *
581  * If @task is queued on @queue, then it is woken up, and @task->tk_status is
582  * set to the value of @status.
583  */
584 void
585 rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
586 		struct rpc_task *task, int status)
587 {
588 	if (!RPC_IS_QUEUED(task))
589 		return;
590 	spin_lock(&queue->lock);
591 	rpc_wake_up_task_queue_set_status_locked(queue, task, status);
592 	spin_unlock(&queue->lock);
593 }
594 
595 /*
596  * Wake up the next task on a priority queue.
597  */
598 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
599 {
600 	struct list_head *q;
601 	struct rpc_task *task;
602 
603 	/*
604 	 * Service the privileged queue.
605 	 */
606 	q = &queue->tasks[RPC_NR_PRIORITY - 1];
607 	if (queue->maxpriority > RPC_PRIORITY_PRIVILEGED && !list_empty(q)) {
608 		task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
609 		goto out;
610 	}
611 
612 	/*
613 	 * Service a batch of tasks from a single owner.
614 	 */
615 	q = &queue->tasks[queue->priority];
616 	if (!list_empty(q) && queue->nr) {
617 		queue->nr--;
618 		task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
619 		goto out;
620 	}
621 
622 	/*
623 	 * Service the next queue.
624 	 */
625 	do {
626 		if (q == &queue->tasks[0])
627 			q = &queue->tasks[queue->maxpriority];
628 		else
629 			q = q - 1;
630 		if (!list_empty(q)) {
631 			task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
632 			goto new_queue;
633 		}
634 	} while (q != &queue->tasks[queue->priority]);
635 
636 	rpc_reset_waitqueue_priority(queue);
637 	return NULL;
638 
639 new_queue:
640 	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
641 out:
642 	return task;
643 }
644 
645 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
646 {
647 	if (RPC_IS_PRIORITY(queue))
648 		return __rpc_find_next_queued_priority(queue);
649 	if (!list_empty(&queue->tasks[0]))
650 		return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
651 	return NULL;
652 }
653 
654 /*
655  * Wake up the first task on the wait queue.
656  */
657 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
658 		struct rpc_wait_queue *queue,
659 		bool (*func)(struct rpc_task *, void *), void *data)
660 {
661 	struct rpc_task	*task = NULL;
662 
663 	spin_lock(&queue->lock);
664 	task = __rpc_find_next_queued(queue);
665 	if (task != NULL)
666 		task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
667 				task, func, data);
668 	spin_unlock(&queue->lock);
669 
670 	return task;
671 }
672 
673 /*
674  * Wake up the first task on the wait queue.
675  */
676 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
677 		bool (*func)(struct rpc_task *, void *), void *data)
678 {
679 	return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
680 }
681 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
682 
683 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
684 {
685 	return true;
686 }
687 
688 /*
689  * Wake up the next task on the wait queue.
690 */
691 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
692 {
693 	return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
694 }
695 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
696 
697 /**
698  * rpc_wake_up_locked - wake up all rpc_tasks
699  * @queue: rpc_wait_queue on which the tasks are sleeping
700  *
701  */
702 static void rpc_wake_up_locked(struct rpc_wait_queue *queue)
703 {
704 	struct rpc_task *task;
705 
706 	for (;;) {
707 		task = __rpc_find_next_queued(queue);
708 		if (task == NULL)
709 			break;
710 		rpc_wake_up_task_queue_locked(queue, task);
711 	}
712 }
713 
714 /**
715  * rpc_wake_up - wake up all rpc_tasks
716  * @queue: rpc_wait_queue on which the tasks are sleeping
717  *
718  * Grabs queue->lock
719  */
720 void rpc_wake_up(struct rpc_wait_queue *queue)
721 {
722 	spin_lock(&queue->lock);
723 	rpc_wake_up_locked(queue);
724 	spin_unlock(&queue->lock);
725 }
726 EXPORT_SYMBOL_GPL(rpc_wake_up);
727 
728 /**
729  * rpc_wake_up_status_locked - wake up all rpc_tasks and set their status value.
730  * @queue: rpc_wait_queue on which the tasks are sleeping
731  * @status: status value to set
732  */
733 static void rpc_wake_up_status_locked(struct rpc_wait_queue *queue, int status)
734 {
735 	struct rpc_task *task;
736 
737 	for (;;) {
738 		task = __rpc_find_next_queued(queue);
739 		if (task == NULL)
740 			break;
741 		rpc_wake_up_task_queue_set_status_locked(queue, task, status);
742 	}
743 }
744 
745 /**
746  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
747  * @queue: rpc_wait_queue on which the tasks are sleeping
748  * @status: status value to set
749  *
750  * Grabs queue->lock
751  */
752 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
753 {
754 	spin_lock(&queue->lock);
755 	rpc_wake_up_status_locked(queue, status);
756 	spin_unlock(&queue->lock);
757 }
758 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
759 
760 static void __rpc_queue_timer_fn(struct work_struct *work)
761 {
762 	struct rpc_wait_queue *queue = container_of(work,
763 			struct rpc_wait_queue,
764 			timer_list.dwork.work);
765 	struct rpc_task *task, *n;
766 	unsigned long expires, now, timeo;
767 
768 	spin_lock(&queue->lock);
769 	expires = now = jiffies;
770 	list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
771 		timeo = task->tk_timeout;
772 		if (time_after_eq(now, timeo)) {
773 			trace_rpc_task_timeout(task, task->tk_action);
774 			task->tk_status = -ETIMEDOUT;
775 			rpc_wake_up_task_queue_locked(queue, task);
776 			continue;
777 		}
778 		if (expires == now || time_after(expires, timeo))
779 			expires = timeo;
780 	}
781 	if (!list_empty(&queue->timer_list.list))
782 		rpc_set_queue_timer(queue, expires);
783 	spin_unlock(&queue->lock);
784 }
785 
786 static void __rpc_atrun(struct rpc_task *task)
787 {
788 	if (task->tk_status == -ETIMEDOUT)
789 		task->tk_status = 0;
790 }
791 
792 /*
793  * Run a task at a later time
794  */
795 void rpc_delay(struct rpc_task *task, unsigned long delay)
796 {
797 	rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
798 }
799 EXPORT_SYMBOL_GPL(rpc_delay);
800 
801 /*
802  * Helper to call task->tk_ops->rpc_call_prepare
803  */
804 void rpc_prepare_task(struct rpc_task *task)
805 {
806 	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
807 }
808 
809 static void
810 rpc_init_task_statistics(struct rpc_task *task)
811 {
812 	/* Initialize retry counters */
813 	task->tk_garb_retry = 2;
814 	task->tk_cred_retry = 2;
815 	task->tk_rebind_retry = 2;
816 
817 	/* starting timestamp */
818 	task->tk_start = ktime_get();
819 }
820 
821 static void
822 rpc_reset_task_statistics(struct rpc_task *task)
823 {
824 	task->tk_timeouts = 0;
825 	task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
826 	rpc_init_task_statistics(task);
827 }
828 
829 /*
830  * Helper that calls task->tk_ops->rpc_call_done if it exists
831  */
832 void rpc_exit_task(struct rpc_task *task)
833 {
834 	trace_rpc_task_end(task, task->tk_action);
835 	task->tk_action = NULL;
836 	if (task->tk_ops->rpc_count_stats)
837 		task->tk_ops->rpc_count_stats(task, task->tk_calldata);
838 	else if (task->tk_client)
839 		rpc_count_iostats(task, task->tk_client->cl_metrics);
840 	if (task->tk_ops->rpc_call_done != NULL) {
841 		trace_rpc_task_call_done(task, task->tk_ops->rpc_call_done);
842 		task->tk_ops->rpc_call_done(task, task->tk_calldata);
843 		if (task->tk_action != NULL) {
844 			/* Always release the RPC slot and buffer memory */
845 			xprt_release(task);
846 			rpc_reset_task_statistics(task);
847 		}
848 	}
849 }
850 
851 void rpc_signal_task(struct rpc_task *task)
852 {
853 	struct rpc_wait_queue *queue;
854 
855 	if (!RPC_IS_ACTIVATED(task))
856 		return;
857 
858 	trace_rpc_task_signalled(task, task->tk_action);
859 	set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
860 	smp_mb__after_atomic();
861 	queue = READ_ONCE(task->tk_waitqueue);
862 	if (queue)
863 		rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS);
864 }
865 
866 void rpc_exit(struct rpc_task *task, int status)
867 {
868 	task->tk_status = status;
869 	task->tk_action = rpc_exit_task;
870 	rpc_wake_up_queued_task(task->tk_waitqueue, task);
871 }
872 EXPORT_SYMBOL_GPL(rpc_exit);
873 
874 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
875 {
876 	if (ops->rpc_release != NULL)
877 		ops->rpc_release(calldata);
878 }
879 
880 static bool xprt_needs_memalloc(struct rpc_xprt *xprt, struct rpc_task *tk)
881 {
882 	if (!xprt)
883 		return false;
884 	if (!atomic_read(&xprt->swapper))
885 		return false;
886 	return test_bit(XPRT_LOCKED, &xprt->state) && xprt->snd_task == tk;
887 }
888 
889 /*
890  * This is the RPC `scheduler' (or rather, the finite state machine).
891  */
892 static void __rpc_execute(struct rpc_task *task)
893 {
894 	struct rpc_wait_queue *queue;
895 	int task_is_async = RPC_IS_ASYNC(task);
896 	int status = 0;
897 	unsigned long pflags = current->flags;
898 
899 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
900 	if (RPC_IS_QUEUED(task))
901 		return;
902 
903 	for (;;) {
904 		void (*do_action)(struct rpc_task *);
905 
906 		/*
907 		 * Perform the next FSM step or a pending callback.
908 		 *
909 		 * tk_action may be NULL if the task has been killed.
910 		 * In particular, note that rpc_killall_tasks may
911 		 * do this at any time, so beware when dereferencing.
912 		 */
913 		do_action = task->tk_action;
914 		if (task->tk_callback) {
915 			do_action = task->tk_callback;
916 			task->tk_callback = NULL;
917 		}
918 		if (!do_action)
919 			break;
920 		if (RPC_IS_SWAPPER(task) ||
921 		    xprt_needs_memalloc(task->tk_xprt, task))
922 			current->flags |= PF_MEMALLOC;
923 
924 		trace_rpc_task_run_action(task, do_action);
925 		do_action(task);
926 
927 		/*
928 		 * Lockless check for whether task is sleeping or not.
929 		 */
930 		if (!RPC_IS_QUEUED(task)) {
931 			cond_resched();
932 			continue;
933 		}
934 
935 		/*
936 		 * Signalled tasks should exit rather than sleep.
937 		 */
938 		if (RPC_SIGNALLED(task)) {
939 			task->tk_rpc_status = -ERESTARTSYS;
940 			rpc_exit(task, -ERESTARTSYS);
941 		}
942 
943 		/*
944 		 * The queue->lock protects against races with
945 		 * rpc_make_runnable().
946 		 *
947 		 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
948 		 * rpc_task, rpc_make_runnable() can assign it to a
949 		 * different workqueue. We therefore cannot assume that the
950 		 * rpc_task pointer may still be dereferenced.
951 		 */
952 		queue = task->tk_waitqueue;
953 		spin_lock(&queue->lock);
954 		if (!RPC_IS_QUEUED(task)) {
955 			spin_unlock(&queue->lock);
956 			continue;
957 		}
958 		rpc_clear_running(task);
959 		spin_unlock(&queue->lock);
960 		if (task_is_async)
961 			goto out;
962 
963 		/* sync task: sleep here */
964 		trace_rpc_task_sync_sleep(task, task->tk_action);
965 		status = out_of_line_wait_on_bit(&task->tk_runstate,
966 				RPC_TASK_QUEUED, rpc_wait_bit_killable,
967 				TASK_KILLABLE);
968 		if (status < 0) {
969 			/*
970 			 * When a sync task receives a signal, it exits with
971 			 * -ERESTARTSYS. In order to catch any callbacks that
972 			 * clean up after sleeping on some queue, we don't
973 			 * break the loop here, but go around once more.
974 			 */
975 			trace_rpc_task_signalled(task, task->tk_action);
976 			set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
977 			task->tk_rpc_status = -ERESTARTSYS;
978 			rpc_exit(task, -ERESTARTSYS);
979 		}
980 		trace_rpc_task_sync_wake(task, task->tk_action);
981 	}
982 
983 	/* Release all resources associated with the task */
984 	rpc_release_task(task);
985 out:
986 	current_restore_flags(pflags, PF_MEMALLOC);
987 }
988 
989 /*
990  * User-visible entry point to the scheduler.
991  *
992  * This may be called recursively if e.g. an async NFS task updates
993  * the attributes and finds that dirty pages must be flushed.
994  * NOTE: Upon exit of this function the task is guaranteed to be
995  *	 released. In particular note that tk_release() will have
996  *	 been called, so your task memory may have been freed.
997  */
998 void rpc_execute(struct rpc_task *task)
999 {
1000 	bool is_async = RPC_IS_ASYNC(task);
1001 
1002 	rpc_set_active(task);
1003 	rpc_make_runnable(rpciod_workqueue, task);
1004 	if (!is_async) {
1005 		unsigned int pflags = memalloc_nofs_save();
1006 		__rpc_execute(task);
1007 		memalloc_nofs_restore(pflags);
1008 	}
1009 }
1010 
1011 static void rpc_async_schedule(struct work_struct *work)
1012 {
1013 	unsigned int pflags = memalloc_nofs_save();
1014 
1015 	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
1016 	memalloc_nofs_restore(pflags);
1017 }
1018 
1019 /**
1020  * rpc_malloc - allocate RPC buffer resources
1021  * @task: RPC task
1022  *
1023  * A single memory region is allocated, which is split between the
1024  * RPC call and RPC reply that this task is being used for. When
1025  * this RPC is retired, the memory is released by calling rpc_free.
1026  *
1027  * To prevent rpciod from hanging, this allocator never sleeps,
1028  * returning -ENOMEM and suppressing warning if the request cannot
1029  * be serviced immediately. The caller can arrange to sleep in a
1030  * way that is safe for rpciod.
1031  *
1032  * Most requests are 'small' (under 2KiB) and can be serviced from a
1033  * mempool, ensuring that NFS reads and writes can always proceed,
1034  * and that there is good locality of reference for these buffers.
1035  */
1036 int rpc_malloc(struct rpc_task *task)
1037 {
1038 	struct rpc_rqst *rqst = task->tk_rqstp;
1039 	size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
1040 	struct rpc_buffer *buf;
1041 	gfp_t gfp = rpc_task_gfp_mask();
1042 
1043 	size += sizeof(struct rpc_buffer);
1044 	if (size <= RPC_BUFFER_MAXSIZE) {
1045 		buf = kmem_cache_alloc(rpc_buffer_slabp, gfp);
1046 		/* Reach for the mempool if dynamic allocation fails */
1047 		if (!buf && RPC_IS_ASYNC(task))
1048 			buf = mempool_alloc(rpc_buffer_mempool, GFP_NOWAIT);
1049 	} else
1050 		buf = kmalloc(size, gfp);
1051 
1052 	if (!buf)
1053 		return -ENOMEM;
1054 
1055 	buf->len = size;
1056 	rqst->rq_buffer = buf->data;
1057 	rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1058 	return 0;
1059 }
1060 EXPORT_SYMBOL_GPL(rpc_malloc);
1061 
1062 /**
1063  * rpc_free - free RPC buffer resources allocated via rpc_malloc
1064  * @task: RPC task
1065  *
1066  */
1067 void rpc_free(struct rpc_task *task)
1068 {
1069 	void *buffer = task->tk_rqstp->rq_buffer;
1070 	size_t size;
1071 	struct rpc_buffer *buf;
1072 
1073 	buf = container_of(buffer, struct rpc_buffer, data);
1074 	size = buf->len;
1075 
1076 	if (size <= RPC_BUFFER_MAXSIZE)
1077 		mempool_free(buf, rpc_buffer_mempool);
1078 	else
1079 		kfree(buf);
1080 }
1081 EXPORT_SYMBOL_GPL(rpc_free);
1082 
1083 /*
1084  * Creation and deletion of RPC task structures
1085  */
1086 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1087 {
1088 	memset(task, 0, sizeof(*task));
1089 	atomic_set(&task->tk_count, 1);
1090 	task->tk_flags  = task_setup_data->flags;
1091 	task->tk_ops = task_setup_data->callback_ops;
1092 	task->tk_calldata = task_setup_data->callback_data;
1093 	INIT_LIST_HEAD(&task->tk_task);
1094 
1095 	task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1096 	task->tk_owner = current->tgid;
1097 
1098 	/* Initialize workqueue for async tasks */
1099 	task->tk_workqueue = task_setup_data->workqueue;
1100 
1101 	task->tk_xprt = rpc_task_get_xprt(task_setup_data->rpc_client,
1102 			xprt_get(task_setup_data->rpc_xprt));
1103 
1104 	task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1105 
1106 	if (task->tk_ops->rpc_call_prepare != NULL)
1107 		task->tk_action = rpc_prepare_task;
1108 
1109 	rpc_init_task_statistics(task);
1110 }
1111 
1112 static struct rpc_task *rpc_alloc_task(void)
1113 {
1114 	struct rpc_task *task;
1115 
1116 	task = kmem_cache_alloc(rpc_task_slabp, rpc_task_gfp_mask());
1117 	if (task)
1118 		return task;
1119 	return mempool_alloc(rpc_task_mempool, GFP_NOWAIT);
1120 }
1121 
1122 /*
1123  * Create a new task for the specified client.
1124  */
1125 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1126 {
1127 	struct rpc_task	*task = setup_data->task;
1128 	unsigned short flags = 0;
1129 
1130 	if (task == NULL) {
1131 		task = rpc_alloc_task();
1132 		if (task == NULL) {
1133 			rpc_release_calldata(setup_data->callback_ops,
1134 					     setup_data->callback_data);
1135 			return ERR_PTR(-ENOMEM);
1136 		}
1137 		flags = RPC_TASK_DYNAMIC;
1138 	}
1139 
1140 	rpc_init_task(task, setup_data);
1141 	task->tk_flags |= flags;
1142 	return task;
1143 }
1144 
1145 /*
1146  * rpc_free_task - release rpc task and perform cleanups
1147  *
1148  * Note that we free up the rpc_task _after_ rpc_release_calldata()
1149  * in order to work around a workqueue dependency issue.
1150  *
1151  * Tejun Heo states:
1152  * "Workqueue currently considers two work items to be the same if they're
1153  * on the same address and won't execute them concurrently - ie. it
1154  * makes a work item which is queued again while being executed wait
1155  * for the previous execution to complete.
1156  *
1157  * If a work function frees the work item, and then waits for an event
1158  * which should be performed by another work item and *that* work item
1159  * recycles the freed work item, it can create a false dependency loop.
1160  * There really is no reliable way to detect this short of verifying
1161  * every memory free."
1162  *
1163  */
1164 static void rpc_free_task(struct rpc_task *task)
1165 {
1166 	unsigned short tk_flags = task->tk_flags;
1167 
1168 	put_rpccred(task->tk_op_cred);
1169 	rpc_release_calldata(task->tk_ops, task->tk_calldata);
1170 
1171 	if (tk_flags & RPC_TASK_DYNAMIC)
1172 		mempool_free(task, rpc_task_mempool);
1173 }
1174 
1175 static void rpc_async_release(struct work_struct *work)
1176 {
1177 	unsigned int pflags = memalloc_nofs_save();
1178 
1179 	rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1180 	memalloc_nofs_restore(pflags);
1181 }
1182 
1183 static void rpc_release_resources_task(struct rpc_task *task)
1184 {
1185 	xprt_release(task);
1186 	if (task->tk_msg.rpc_cred) {
1187 		if (!(task->tk_flags & RPC_TASK_CRED_NOREF))
1188 			put_cred(task->tk_msg.rpc_cred);
1189 		task->tk_msg.rpc_cred = NULL;
1190 	}
1191 	rpc_task_release_client(task);
1192 }
1193 
1194 static void rpc_final_put_task(struct rpc_task *task,
1195 		struct workqueue_struct *q)
1196 {
1197 	if (q != NULL) {
1198 		INIT_WORK(&task->u.tk_work, rpc_async_release);
1199 		queue_work(q, &task->u.tk_work);
1200 	} else
1201 		rpc_free_task(task);
1202 }
1203 
1204 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1205 {
1206 	if (atomic_dec_and_test(&task->tk_count)) {
1207 		rpc_release_resources_task(task);
1208 		rpc_final_put_task(task, q);
1209 	}
1210 }
1211 
1212 void rpc_put_task(struct rpc_task *task)
1213 {
1214 	rpc_do_put_task(task, NULL);
1215 }
1216 EXPORT_SYMBOL_GPL(rpc_put_task);
1217 
1218 void rpc_put_task_async(struct rpc_task *task)
1219 {
1220 	rpc_do_put_task(task, task->tk_workqueue);
1221 }
1222 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1223 
1224 static void rpc_release_task(struct rpc_task *task)
1225 {
1226 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
1227 
1228 	rpc_release_resources_task(task);
1229 
1230 	/*
1231 	 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1232 	 * so it should be safe to use task->tk_count as a test for whether
1233 	 * or not any other processes still hold references to our rpc_task.
1234 	 */
1235 	if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1236 		/* Wake up anyone who may be waiting for task completion */
1237 		if (!rpc_complete_task(task))
1238 			return;
1239 	} else {
1240 		if (!atomic_dec_and_test(&task->tk_count))
1241 			return;
1242 	}
1243 	rpc_final_put_task(task, task->tk_workqueue);
1244 }
1245 
1246 int rpciod_up(void)
1247 {
1248 	return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1249 }
1250 
1251 void rpciod_down(void)
1252 {
1253 	module_put(THIS_MODULE);
1254 }
1255 
1256 /*
1257  * Start up the rpciod workqueue.
1258  */
1259 static int rpciod_start(void)
1260 {
1261 	struct workqueue_struct *wq;
1262 
1263 	/*
1264 	 * Create the rpciod thread and wait for it to start.
1265 	 */
1266 	wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1267 	if (!wq)
1268 		goto out_failed;
1269 	rpciod_workqueue = wq;
1270 	wq = alloc_workqueue("xprtiod", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
1271 	if (!wq)
1272 		goto free_rpciod;
1273 	xprtiod_workqueue = wq;
1274 	return 1;
1275 free_rpciod:
1276 	wq = rpciod_workqueue;
1277 	rpciod_workqueue = NULL;
1278 	destroy_workqueue(wq);
1279 out_failed:
1280 	return 0;
1281 }
1282 
1283 static void rpciod_stop(void)
1284 {
1285 	struct workqueue_struct *wq = NULL;
1286 
1287 	if (rpciod_workqueue == NULL)
1288 		return;
1289 
1290 	wq = rpciod_workqueue;
1291 	rpciod_workqueue = NULL;
1292 	destroy_workqueue(wq);
1293 	wq = xprtiod_workqueue;
1294 	xprtiod_workqueue = NULL;
1295 	destroy_workqueue(wq);
1296 }
1297 
1298 void
1299 rpc_destroy_mempool(void)
1300 {
1301 	rpciod_stop();
1302 	mempool_destroy(rpc_buffer_mempool);
1303 	mempool_destroy(rpc_task_mempool);
1304 	kmem_cache_destroy(rpc_task_slabp);
1305 	kmem_cache_destroy(rpc_buffer_slabp);
1306 	rpc_destroy_wait_queue(&delay_queue);
1307 }
1308 
1309 int
1310 rpc_init_mempool(void)
1311 {
1312 	/*
1313 	 * The following is not strictly a mempool initialisation,
1314 	 * but there is no harm in doing it here
1315 	 */
1316 	rpc_init_wait_queue(&delay_queue, "delayq");
1317 	if (!rpciod_start())
1318 		goto err_nomem;
1319 
1320 	rpc_task_slabp = kmem_cache_create("rpc_tasks",
1321 					     sizeof(struct rpc_task),
1322 					     0, SLAB_HWCACHE_ALIGN,
1323 					     NULL);
1324 	if (!rpc_task_slabp)
1325 		goto err_nomem;
1326 	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1327 					     RPC_BUFFER_MAXSIZE,
1328 					     0, SLAB_HWCACHE_ALIGN,
1329 					     NULL);
1330 	if (!rpc_buffer_slabp)
1331 		goto err_nomem;
1332 	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1333 						    rpc_task_slabp);
1334 	if (!rpc_task_mempool)
1335 		goto err_nomem;
1336 	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1337 						      rpc_buffer_slabp);
1338 	if (!rpc_buffer_mempool)
1339 		goto err_nomem;
1340 	return 0;
1341 err_nomem:
1342 	rpc_destroy_mempool();
1343 	return -ENOMEM;
1344 }
1345