xref: /openbmc/linux/net/sunrpc/sched.c (revision f21e49be)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/sched.c
4  *
5  * Scheduling for synchronous and asynchronous RPC requests.
6  *
7  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8  *
9  * TCP NFS related read + write fixes
10  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
11  */
12 
13 #include <linux/module.h>
14 
15 #include <linux/sched.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/mempool.h>
19 #include <linux/smp.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22 #include <linux/freezer.h>
23 #include <linux/sched/mm.h>
24 
25 #include <linux/sunrpc/clnt.h>
26 #include <linux/sunrpc/metrics.h>
27 
28 #include "sunrpc.h"
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/sunrpc.h>
32 
33 /*
34  * RPC slabs and memory pools
35  */
36 #define RPC_BUFFER_MAXSIZE	(2048)
37 #define RPC_BUFFER_POOLSIZE	(8)
38 #define RPC_TASK_POOLSIZE	(8)
39 static struct kmem_cache	*rpc_task_slabp __read_mostly;
40 static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
41 static mempool_t	*rpc_task_mempool __read_mostly;
42 static mempool_t	*rpc_buffer_mempool __read_mostly;
43 
44 static void			rpc_async_schedule(struct work_struct *);
45 static void			 rpc_release_task(struct rpc_task *task);
46 static void __rpc_queue_timer_fn(struct work_struct *);
47 
48 /*
49  * RPC tasks sit here while waiting for conditions to improve.
50  */
51 static struct rpc_wait_queue delay_queue;
52 
53 /*
54  * rpciod-related stuff
55  */
56 struct workqueue_struct *rpciod_workqueue __read_mostly;
57 struct workqueue_struct *xprtiod_workqueue __read_mostly;
58 EXPORT_SYMBOL_GPL(xprtiod_workqueue);
59 
60 unsigned long
61 rpc_task_timeout(const struct rpc_task *task)
62 {
63 	unsigned long timeout = READ_ONCE(task->tk_timeout);
64 
65 	if (timeout != 0) {
66 		unsigned long now = jiffies;
67 		if (time_before(now, timeout))
68 			return timeout - now;
69 	}
70 	return 0;
71 }
72 EXPORT_SYMBOL_GPL(rpc_task_timeout);
73 
74 /*
75  * Disable the timer for a given RPC task. Should be called with
76  * queue->lock and bh_disabled in order to avoid races within
77  * rpc_run_timer().
78  */
79 static void
80 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
81 {
82 	if (list_empty(&task->u.tk_wait.timer_list))
83 		return;
84 	task->tk_timeout = 0;
85 	list_del(&task->u.tk_wait.timer_list);
86 	if (list_empty(&queue->timer_list.list))
87 		cancel_delayed_work(&queue->timer_list.dwork);
88 }
89 
90 static void
91 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
92 {
93 	unsigned long now = jiffies;
94 	queue->timer_list.expires = expires;
95 	if (time_before_eq(expires, now))
96 		expires = 0;
97 	else
98 		expires -= now;
99 	mod_delayed_work(rpciod_workqueue, &queue->timer_list.dwork, expires);
100 }
101 
102 /*
103  * Set up a timer for the current task.
104  */
105 static void
106 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
107 		unsigned long timeout)
108 {
109 	task->tk_timeout = timeout;
110 	if (list_empty(&queue->timer_list.list) || time_before(timeout, queue->timer_list.expires))
111 		rpc_set_queue_timer(queue, timeout);
112 	list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
113 }
114 
115 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
116 {
117 	if (queue->priority != priority) {
118 		queue->priority = priority;
119 		queue->nr = 1U << priority;
120 	}
121 }
122 
123 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
124 {
125 	rpc_set_waitqueue_priority(queue, queue->maxpriority);
126 }
127 
128 /*
129  * Add a request to a queue list
130  */
131 static void
132 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
133 {
134 	struct rpc_task *t;
135 
136 	list_for_each_entry(t, q, u.tk_wait.list) {
137 		if (t->tk_owner == task->tk_owner) {
138 			list_add_tail(&task->u.tk_wait.links,
139 					&t->u.tk_wait.links);
140 			/* Cache the queue head in task->u.tk_wait.list */
141 			task->u.tk_wait.list.next = q;
142 			task->u.tk_wait.list.prev = NULL;
143 			return;
144 		}
145 	}
146 	INIT_LIST_HEAD(&task->u.tk_wait.links);
147 	list_add_tail(&task->u.tk_wait.list, q);
148 }
149 
150 /*
151  * Remove request from a queue list
152  */
153 static void
154 __rpc_list_dequeue_task(struct rpc_task *task)
155 {
156 	struct list_head *q;
157 	struct rpc_task *t;
158 
159 	if (task->u.tk_wait.list.prev == NULL) {
160 		list_del(&task->u.tk_wait.links);
161 		return;
162 	}
163 	if (!list_empty(&task->u.tk_wait.links)) {
164 		t = list_first_entry(&task->u.tk_wait.links,
165 				struct rpc_task,
166 				u.tk_wait.links);
167 		/* Assume __rpc_list_enqueue_task() cached the queue head */
168 		q = t->u.tk_wait.list.next;
169 		list_add_tail(&t->u.tk_wait.list, q);
170 		list_del(&task->u.tk_wait.links);
171 	}
172 	list_del(&task->u.tk_wait.list);
173 }
174 
175 /*
176  * Add new request to a priority queue.
177  */
178 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
179 		struct rpc_task *task,
180 		unsigned char queue_priority)
181 {
182 	if (unlikely(queue_priority > queue->maxpriority))
183 		queue_priority = queue->maxpriority;
184 	__rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
185 }
186 
187 /*
188  * Add new request to wait queue.
189  *
190  * Swapper tasks always get inserted at the head of the queue.
191  * This should avoid many nasty memory deadlocks and hopefully
192  * improve overall performance.
193  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
194  */
195 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
196 		struct rpc_task *task,
197 		unsigned char queue_priority)
198 {
199 	INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
200 	if (RPC_IS_PRIORITY(queue))
201 		__rpc_add_wait_queue_priority(queue, task, queue_priority);
202 	else if (RPC_IS_SWAPPER(task))
203 		list_add(&task->u.tk_wait.list, &queue->tasks[0]);
204 	else
205 		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
206 	task->tk_waitqueue = queue;
207 	queue->qlen++;
208 	/* barrier matches the read in rpc_wake_up_task_queue_locked() */
209 	smp_wmb();
210 	rpc_set_queued(task);
211 }
212 
213 /*
214  * Remove request from a priority queue.
215  */
216 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
217 {
218 	__rpc_list_dequeue_task(task);
219 }
220 
221 /*
222  * Remove request from queue.
223  * Note: must be called with spin lock held.
224  */
225 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
226 {
227 	__rpc_disable_timer(queue, task);
228 	if (RPC_IS_PRIORITY(queue))
229 		__rpc_remove_wait_queue_priority(task);
230 	else
231 		list_del(&task->u.tk_wait.list);
232 	queue->qlen--;
233 }
234 
235 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
236 {
237 	int i;
238 
239 	spin_lock_init(&queue->lock);
240 	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
241 		INIT_LIST_HEAD(&queue->tasks[i]);
242 	queue->maxpriority = nr_queues - 1;
243 	rpc_reset_waitqueue_priority(queue);
244 	queue->qlen = 0;
245 	queue->timer_list.expires = 0;
246 	INIT_DELAYED_WORK(&queue->timer_list.dwork, __rpc_queue_timer_fn);
247 	INIT_LIST_HEAD(&queue->timer_list.list);
248 	rpc_assign_waitqueue_name(queue, qname);
249 }
250 
251 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
252 {
253 	__rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
254 }
255 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
256 
257 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
258 {
259 	__rpc_init_priority_wait_queue(queue, qname, 1);
260 }
261 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
262 
263 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
264 {
265 	cancel_delayed_work_sync(&queue->timer_list.dwork);
266 }
267 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
268 
269 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
270 {
271 	freezable_schedule_unsafe();
272 	if (signal_pending_state(mode, current))
273 		return -ERESTARTSYS;
274 	return 0;
275 }
276 
277 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
278 static void rpc_task_set_debuginfo(struct rpc_task *task)
279 {
280 	struct rpc_clnt *clnt = task->tk_client;
281 
282 	/* Might be a task carrying a reverse-direction operation */
283 	if (!clnt) {
284 		static atomic_t rpc_pid;
285 
286 		task->tk_pid = atomic_inc_return(&rpc_pid);
287 		return;
288 	}
289 
290 	task->tk_pid = atomic_inc_return(&clnt->cl_pid);
291 }
292 #else
293 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
294 {
295 }
296 #endif
297 
298 static void rpc_set_active(struct rpc_task *task)
299 {
300 	rpc_task_set_debuginfo(task);
301 	set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
302 	trace_rpc_task_begin(task, NULL);
303 }
304 
305 /*
306  * Mark an RPC call as having completed by clearing the 'active' bit
307  * and then waking up all tasks that were sleeping.
308  */
309 static int rpc_complete_task(struct rpc_task *task)
310 {
311 	void *m = &task->tk_runstate;
312 	wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
313 	struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
314 	unsigned long flags;
315 	int ret;
316 
317 	trace_rpc_task_complete(task, NULL);
318 
319 	spin_lock_irqsave(&wq->lock, flags);
320 	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
321 	ret = atomic_dec_and_test(&task->tk_count);
322 	if (waitqueue_active(wq))
323 		__wake_up_locked_key(wq, TASK_NORMAL, &k);
324 	spin_unlock_irqrestore(&wq->lock, flags);
325 	return ret;
326 }
327 
328 /*
329  * Allow callers to wait for completion of an RPC call
330  *
331  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
332  * to enforce taking of the wq->lock and hence avoid races with
333  * rpc_complete_task().
334  */
335 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
336 {
337 	if (action == NULL)
338 		action = rpc_wait_bit_killable;
339 	return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
340 			action, TASK_KILLABLE);
341 }
342 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
343 
344 /*
345  * Make an RPC task runnable.
346  *
347  * Note: If the task is ASYNC, and is being made runnable after sitting on an
348  * rpc_wait_queue, this must be called with the queue spinlock held to protect
349  * the wait queue operation.
350  * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
351  * which is needed to ensure that __rpc_execute() doesn't loop (due to the
352  * lockless RPC_IS_QUEUED() test) before we've had a chance to test
353  * the RPC_TASK_RUNNING flag.
354  */
355 static void rpc_make_runnable(struct workqueue_struct *wq,
356 		struct rpc_task *task)
357 {
358 	bool need_wakeup = !rpc_test_and_set_running(task);
359 
360 	rpc_clear_queued(task);
361 	if (!need_wakeup)
362 		return;
363 	if (RPC_IS_ASYNC(task)) {
364 		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
365 		queue_work(wq, &task->u.tk_work);
366 	} else
367 		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
368 }
369 
370 /*
371  * Prepare for sleeping on a wait queue.
372  * By always appending tasks to the list we ensure FIFO behavior.
373  * NB: An RPC task will only receive interrupt-driven events as long
374  * as it's on a wait queue.
375  */
376 static void __rpc_do_sleep_on_priority(struct rpc_wait_queue *q,
377 		struct rpc_task *task,
378 		unsigned char queue_priority)
379 {
380 	trace_rpc_task_sleep(task, q);
381 
382 	__rpc_add_wait_queue(q, task, queue_priority);
383 }
384 
385 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
386 		struct rpc_task *task,
387 		unsigned char queue_priority)
388 {
389 	if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
390 		return;
391 	__rpc_do_sleep_on_priority(q, task, queue_priority);
392 }
393 
394 static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
395 		struct rpc_task *task, unsigned long timeout,
396 		unsigned char queue_priority)
397 {
398 	if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
399 		return;
400 	if (time_is_after_jiffies(timeout)) {
401 		__rpc_do_sleep_on_priority(q, task, queue_priority);
402 		__rpc_add_timer(q, task, timeout);
403 	} else
404 		task->tk_status = -ETIMEDOUT;
405 }
406 
407 static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
408 {
409 	if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
410 		task->tk_callback = action;
411 }
412 
413 static bool rpc_sleep_check_activated(struct rpc_task *task)
414 {
415 	/* We shouldn't ever put an inactive task to sleep */
416 	if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
417 		task->tk_status = -EIO;
418 		rpc_put_task_async(task);
419 		return false;
420 	}
421 	return true;
422 }
423 
424 void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
425 				rpc_action action, unsigned long timeout)
426 {
427 	if (!rpc_sleep_check_activated(task))
428 		return;
429 
430 	rpc_set_tk_callback(task, action);
431 
432 	/*
433 	 * Protect the queue operations.
434 	 */
435 	spin_lock(&q->lock);
436 	__rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
437 	spin_unlock(&q->lock);
438 }
439 EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
440 
441 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
442 				rpc_action action)
443 {
444 	if (!rpc_sleep_check_activated(task))
445 		return;
446 
447 	rpc_set_tk_callback(task, action);
448 
449 	WARN_ON_ONCE(task->tk_timeout != 0);
450 	/*
451 	 * Protect the queue operations.
452 	 */
453 	spin_lock(&q->lock);
454 	__rpc_sleep_on_priority(q, task, task->tk_priority);
455 	spin_unlock(&q->lock);
456 }
457 EXPORT_SYMBOL_GPL(rpc_sleep_on);
458 
459 void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
460 		struct rpc_task *task, unsigned long timeout, int priority)
461 {
462 	if (!rpc_sleep_check_activated(task))
463 		return;
464 
465 	priority -= RPC_PRIORITY_LOW;
466 	/*
467 	 * Protect the queue operations.
468 	 */
469 	spin_lock(&q->lock);
470 	__rpc_sleep_on_priority_timeout(q, task, timeout, priority);
471 	spin_unlock(&q->lock);
472 }
473 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
474 
475 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
476 		int priority)
477 {
478 	if (!rpc_sleep_check_activated(task))
479 		return;
480 
481 	WARN_ON_ONCE(task->tk_timeout != 0);
482 	priority -= RPC_PRIORITY_LOW;
483 	/*
484 	 * Protect the queue operations.
485 	 */
486 	spin_lock(&q->lock);
487 	__rpc_sleep_on_priority(q, task, priority);
488 	spin_unlock(&q->lock);
489 }
490 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
491 
492 /**
493  * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
494  * @wq: workqueue on which to run task
495  * @queue: wait queue
496  * @task: task to be woken up
497  *
498  * Caller must hold queue->lock, and have cleared the task queued flag.
499  */
500 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
501 		struct rpc_wait_queue *queue,
502 		struct rpc_task *task)
503 {
504 	/* Has the task been executed yet? If not, we cannot wake it up! */
505 	if (!RPC_IS_ACTIVATED(task)) {
506 		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
507 		return;
508 	}
509 
510 	trace_rpc_task_wakeup(task, queue);
511 
512 	__rpc_remove_wait_queue(queue, task);
513 
514 	rpc_make_runnable(wq, task);
515 }
516 
517 /*
518  * Wake up a queued task while the queue lock is being held
519  */
520 static struct rpc_task *
521 rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
522 		struct rpc_wait_queue *queue, struct rpc_task *task,
523 		bool (*action)(struct rpc_task *, void *), void *data)
524 {
525 	if (RPC_IS_QUEUED(task)) {
526 		smp_rmb();
527 		if (task->tk_waitqueue == queue) {
528 			if (action == NULL || action(task, data)) {
529 				__rpc_do_wake_up_task_on_wq(wq, queue, task);
530 				return task;
531 			}
532 		}
533 	}
534 	return NULL;
535 }
536 
537 /*
538  * Wake up a queued task while the queue lock is being held
539  */
540 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue,
541 					  struct rpc_task *task)
542 {
543 	rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
544 						   task, NULL, NULL);
545 }
546 
547 /*
548  * Wake up a task on a specific queue
549  */
550 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
551 {
552 	if (!RPC_IS_QUEUED(task))
553 		return;
554 	spin_lock(&queue->lock);
555 	rpc_wake_up_task_queue_locked(queue, task);
556 	spin_unlock(&queue->lock);
557 }
558 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
559 
560 static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
561 {
562 	task->tk_status = *(int *)status;
563 	return true;
564 }
565 
566 static void
567 rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
568 		struct rpc_task *task, int status)
569 {
570 	rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
571 			task, rpc_task_action_set_status, &status);
572 }
573 
574 /**
575  * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
576  * @queue: pointer to rpc_wait_queue
577  * @task: pointer to rpc_task
578  * @status: integer error value
579  *
580  * If @task is queued on @queue, then it is woken up, and @task->tk_status is
581  * set to the value of @status.
582  */
583 void
584 rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
585 		struct rpc_task *task, int status)
586 {
587 	if (!RPC_IS_QUEUED(task))
588 		return;
589 	spin_lock(&queue->lock);
590 	rpc_wake_up_task_queue_set_status_locked(queue, task, status);
591 	spin_unlock(&queue->lock);
592 }
593 
594 /*
595  * Wake up the next task on a priority queue.
596  */
597 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
598 {
599 	struct list_head *q;
600 	struct rpc_task *task;
601 
602 	/*
603 	 * Service the privileged queue.
604 	 */
605 	q = &queue->tasks[RPC_NR_PRIORITY - 1];
606 	if (queue->maxpriority > RPC_PRIORITY_PRIVILEGED && !list_empty(q)) {
607 		task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
608 		goto out;
609 	}
610 
611 	/*
612 	 * Service a batch of tasks from a single owner.
613 	 */
614 	q = &queue->tasks[queue->priority];
615 	if (!list_empty(q) && queue->nr) {
616 		queue->nr--;
617 		task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
618 		goto out;
619 	}
620 
621 	/*
622 	 * Service the next queue.
623 	 */
624 	do {
625 		if (q == &queue->tasks[0])
626 			q = &queue->tasks[queue->maxpriority];
627 		else
628 			q = q - 1;
629 		if (!list_empty(q)) {
630 			task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
631 			goto new_queue;
632 		}
633 	} while (q != &queue->tasks[queue->priority]);
634 
635 	rpc_reset_waitqueue_priority(queue);
636 	return NULL;
637 
638 new_queue:
639 	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
640 out:
641 	return task;
642 }
643 
644 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
645 {
646 	if (RPC_IS_PRIORITY(queue))
647 		return __rpc_find_next_queued_priority(queue);
648 	if (!list_empty(&queue->tasks[0]))
649 		return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
650 	return NULL;
651 }
652 
653 /*
654  * Wake up the first task on the wait queue.
655  */
656 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
657 		struct rpc_wait_queue *queue,
658 		bool (*func)(struct rpc_task *, void *), void *data)
659 {
660 	struct rpc_task	*task = NULL;
661 
662 	spin_lock(&queue->lock);
663 	task = __rpc_find_next_queued(queue);
664 	if (task != NULL)
665 		task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
666 				task, func, data);
667 	spin_unlock(&queue->lock);
668 
669 	return task;
670 }
671 
672 /*
673  * Wake up the first task on the wait queue.
674  */
675 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
676 		bool (*func)(struct rpc_task *, void *), void *data)
677 {
678 	return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
679 }
680 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
681 
682 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
683 {
684 	return true;
685 }
686 
687 /*
688  * Wake up the next task on the wait queue.
689 */
690 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
691 {
692 	return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
693 }
694 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
695 
696 /**
697  * rpc_wake_up_locked - wake up all rpc_tasks
698  * @queue: rpc_wait_queue on which the tasks are sleeping
699  *
700  */
701 static void rpc_wake_up_locked(struct rpc_wait_queue *queue)
702 {
703 	struct rpc_task *task;
704 
705 	for (;;) {
706 		task = __rpc_find_next_queued(queue);
707 		if (task == NULL)
708 			break;
709 		rpc_wake_up_task_queue_locked(queue, task);
710 	}
711 }
712 
713 /**
714  * rpc_wake_up - wake up all rpc_tasks
715  * @queue: rpc_wait_queue on which the tasks are sleeping
716  *
717  * Grabs queue->lock
718  */
719 void rpc_wake_up(struct rpc_wait_queue *queue)
720 {
721 	spin_lock(&queue->lock);
722 	rpc_wake_up_locked(queue);
723 	spin_unlock(&queue->lock);
724 }
725 EXPORT_SYMBOL_GPL(rpc_wake_up);
726 
727 /**
728  * rpc_wake_up_status_locked - wake up all rpc_tasks and set their status value.
729  * @queue: rpc_wait_queue on which the tasks are sleeping
730  * @status: status value to set
731  */
732 static void rpc_wake_up_status_locked(struct rpc_wait_queue *queue, int status)
733 {
734 	struct rpc_task *task;
735 
736 	for (;;) {
737 		task = __rpc_find_next_queued(queue);
738 		if (task == NULL)
739 			break;
740 		rpc_wake_up_task_queue_set_status_locked(queue, task, status);
741 	}
742 }
743 
744 /**
745  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
746  * @queue: rpc_wait_queue on which the tasks are sleeping
747  * @status: status value to set
748  *
749  * Grabs queue->lock
750  */
751 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
752 {
753 	spin_lock(&queue->lock);
754 	rpc_wake_up_status_locked(queue, status);
755 	spin_unlock(&queue->lock);
756 }
757 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
758 
759 static void __rpc_queue_timer_fn(struct work_struct *work)
760 {
761 	struct rpc_wait_queue *queue = container_of(work,
762 			struct rpc_wait_queue,
763 			timer_list.dwork.work);
764 	struct rpc_task *task, *n;
765 	unsigned long expires, now, timeo;
766 
767 	spin_lock(&queue->lock);
768 	expires = now = jiffies;
769 	list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
770 		timeo = task->tk_timeout;
771 		if (time_after_eq(now, timeo)) {
772 			trace_rpc_task_timeout(task, task->tk_action);
773 			task->tk_status = -ETIMEDOUT;
774 			rpc_wake_up_task_queue_locked(queue, task);
775 			continue;
776 		}
777 		if (expires == now || time_after(expires, timeo))
778 			expires = timeo;
779 	}
780 	if (!list_empty(&queue->timer_list.list))
781 		rpc_set_queue_timer(queue, expires);
782 	spin_unlock(&queue->lock);
783 }
784 
785 static void __rpc_atrun(struct rpc_task *task)
786 {
787 	if (task->tk_status == -ETIMEDOUT)
788 		task->tk_status = 0;
789 }
790 
791 /*
792  * Run a task at a later time
793  */
794 void rpc_delay(struct rpc_task *task, unsigned long delay)
795 {
796 	rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
797 }
798 EXPORT_SYMBOL_GPL(rpc_delay);
799 
800 /*
801  * Helper to call task->tk_ops->rpc_call_prepare
802  */
803 void rpc_prepare_task(struct rpc_task *task)
804 {
805 	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
806 }
807 
808 static void
809 rpc_init_task_statistics(struct rpc_task *task)
810 {
811 	/* Initialize retry counters */
812 	task->tk_garb_retry = 2;
813 	task->tk_cred_retry = 2;
814 	task->tk_rebind_retry = 2;
815 
816 	/* starting timestamp */
817 	task->tk_start = ktime_get();
818 }
819 
820 static void
821 rpc_reset_task_statistics(struct rpc_task *task)
822 {
823 	task->tk_timeouts = 0;
824 	task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
825 	rpc_init_task_statistics(task);
826 }
827 
828 /*
829  * Helper that calls task->tk_ops->rpc_call_done if it exists
830  */
831 void rpc_exit_task(struct rpc_task *task)
832 {
833 	trace_rpc_task_end(task, task->tk_action);
834 	task->tk_action = NULL;
835 	if (task->tk_ops->rpc_count_stats)
836 		task->tk_ops->rpc_count_stats(task, task->tk_calldata);
837 	else if (task->tk_client)
838 		rpc_count_iostats(task, task->tk_client->cl_metrics);
839 	if (task->tk_ops->rpc_call_done != NULL) {
840 		trace_rpc_task_call_done(task, task->tk_ops->rpc_call_done);
841 		task->tk_ops->rpc_call_done(task, task->tk_calldata);
842 		if (task->tk_action != NULL) {
843 			/* Always release the RPC slot and buffer memory */
844 			xprt_release(task);
845 			rpc_reset_task_statistics(task);
846 		}
847 	}
848 }
849 
850 void rpc_signal_task(struct rpc_task *task)
851 {
852 	struct rpc_wait_queue *queue;
853 
854 	if (!RPC_IS_ACTIVATED(task))
855 		return;
856 
857 	trace_rpc_task_signalled(task, task->tk_action);
858 	set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
859 	smp_mb__after_atomic();
860 	queue = READ_ONCE(task->tk_waitqueue);
861 	if (queue)
862 		rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS);
863 }
864 
865 void rpc_exit(struct rpc_task *task, int status)
866 {
867 	task->tk_status = status;
868 	task->tk_action = rpc_exit_task;
869 	rpc_wake_up_queued_task(task->tk_waitqueue, task);
870 }
871 EXPORT_SYMBOL_GPL(rpc_exit);
872 
873 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
874 {
875 	if (ops->rpc_release != NULL)
876 		ops->rpc_release(calldata);
877 }
878 
879 /*
880  * This is the RPC `scheduler' (or rather, the finite state machine).
881  */
882 static void __rpc_execute(struct rpc_task *task)
883 {
884 	struct rpc_wait_queue *queue;
885 	int task_is_async = RPC_IS_ASYNC(task);
886 	int status = 0;
887 
888 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
889 	if (RPC_IS_QUEUED(task))
890 		return;
891 
892 	for (;;) {
893 		void (*do_action)(struct rpc_task *);
894 
895 		/*
896 		 * Perform the next FSM step or a pending callback.
897 		 *
898 		 * tk_action may be NULL if the task has been killed.
899 		 * In particular, note that rpc_killall_tasks may
900 		 * do this at any time, so beware when dereferencing.
901 		 */
902 		do_action = task->tk_action;
903 		if (task->tk_callback) {
904 			do_action = task->tk_callback;
905 			task->tk_callback = NULL;
906 		}
907 		if (!do_action)
908 			break;
909 		trace_rpc_task_run_action(task, do_action);
910 		do_action(task);
911 
912 		/*
913 		 * Lockless check for whether task is sleeping or not.
914 		 */
915 		if (!RPC_IS_QUEUED(task)) {
916 			cond_resched();
917 			continue;
918 		}
919 
920 		/*
921 		 * Signalled tasks should exit rather than sleep.
922 		 */
923 		if (RPC_SIGNALLED(task)) {
924 			task->tk_rpc_status = -ERESTARTSYS;
925 			rpc_exit(task, -ERESTARTSYS);
926 		}
927 
928 		/*
929 		 * The queue->lock protects against races with
930 		 * rpc_make_runnable().
931 		 *
932 		 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
933 		 * rpc_task, rpc_make_runnable() can assign it to a
934 		 * different workqueue. We therefore cannot assume that the
935 		 * rpc_task pointer may still be dereferenced.
936 		 */
937 		queue = task->tk_waitqueue;
938 		spin_lock(&queue->lock);
939 		if (!RPC_IS_QUEUED(task)) {
940 			spin_unlock(&queue->lock);
941 			continue;
942 		}
943 		rpc_clear_running(task);
944 		spin_unlock(&queue->lock);
945 		if (task_is_async)
946 			return;
947 
948 		/* sync task: sleep here */
949 		trace_rpc_task_sync_sleep(task, task->tk_action);
950 		status = out_of_line_wait_on_bit(&task->tk_runstate,
951 				RPC_TASK_QUEUED, rpc_wait_bit_killable,
952 				TASK_KILLABLE);
953 		if (status < 0) {
954 			/*
955 			 * When a sync task receives a signal, it exits with
956 			 * -ERESTARTSYS. In order to catch any callbacks that
957 			 * clean up after sleeping on some queue, we don't
958 			 * break the loop here, but go around once more.
959 			 */
960 			trace_rpc_task_signalled(task, task->tk_action);
961 			set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
962 			task->tk_rpc_status = -ERESTARTSYS;
963 			rpc_exit(task, -ERESTARTSYS);
964 		}
965 		trace_rpc_task_sync_wake(task, task->tk_action);
966 	}
967 
968 	/* Release all resources associated with the task */
969 	rpc_release_task(task);
970 }
971 
972 /*
973  * User-visible entry point to the scheduler.
974  *
975  * This may be called recursively if e.g. an async NFS task updates
976  * the attributes and finds that dirty pages must be flushed.
977  * NOTE: Upon exit of this function the task is guaranteed to be
978  *	 released. In particular note that tk_release() will have
979  *	 been called, so your task memory may have been freed.
980  */
981 void rpc_execute(struct rpc_task *task)
982 {
983 	bool is_async = RPC_IS_ASYNC(task);
984 
985 	rpc_set_active(task);
986 	rpc_make_runnable(rpciod_workqueue, task);
987 	if (!is_async) {
988 		unsigned int pflags = memalloc_nofs_save();
989 		__rpc_execute(task);
990 		memalloc_nofs_restore(pflags);
991 	}
992 }
993 
994 static void rpc_async_schedule(struct work_struct *work)
995 {
996 	unsigned int pflags = memalloc_nofs_save();
997 
998 	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
999 	memalloc_nofs_restore(pflags);
1000 }
1001 
1002 /**
1003  * rpc_malloc - allocate RPC buffer resources
1004  * @task: RPC task
1005  *
1006  * A single memory region is allocated, which is split between the
1007  * RPC call and RPC reply that this task is being used for. When
1008  * this RPC is retired, the memory is released by calling rpc_free.
1009  *
1010  * To prevent rpciod from hanging, this allocator never sleeps,
1011  * returning -ENOMEM and suppressing warning if the request cannot
1012  * be serviced immediately. The caller can arrange to sleep in a
1013  * way that is safe for rpciod.
1014  *
1015  * Most requests are 'small' (under 2KiB) and can be serviced from a
1016  * mempool, ensuring that NFS reads and writes can always proceed,
1017  * and that there is good locality of reference for these buffers.
1018  */
1019 int rpc_malloc(struct rpc_task *task)
1020 {
1021 	struct rpc_rqst *rqst = task->tk_rqstp;
1022 	size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
1023 	struct rpc_buffer *buf;
1024 	gfp_t gfp = GFP_NOFS;
1025 
1026 	if (RPC_IS_SWAPPER(task))
1027 		gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
1028 
1029 	size += sizeof(struct rpc_buffer);
1030 	if (size <= RPC_BUFFER_MAXSIZE)
1031 		buf = mempool_alloc(rpc_buffer_mempool, gfp);
1032 	else
1033 		buf = kmalloc(size, gfp);
1034 
1035 	if (!buf)
1036 		return -ENOMEM;
1037 
1038 	buf->len = size;
1039 	rqst->rq_buffer = buf->data;
1040 	rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1041 	return 0;
1042 }
1043 EXPORT_SYMBOL_GPL(rpc_malloc);
1044 
1045 /**
1046  * rpc_free - free RPC buffer resources allocated via rpc_malloc
1047  * @task: RPC task
1048  *
1049  */
1050 void rpc_free(struct rpc_task *task)
1051 {
1052 	void *buffer = task->tk_rqstp->rq_buffer;
1053 	size_t size;
1054 	struct rpc_buffer *buf;
1055 
1056 	buf = container_of(buffer, struct rpc_buffer, data);
1057 	size = buf->len;
1058 
1059 	if (size <= RPC_BUFFER_MAXSIZE)
1060 		mempool_free(buf, rpc_buffer_mempool);
1061 	else
1062 		kfree(buf);
1063 }
1064 EXPORT_SYMBOL_GPL(rpc_free);
1065 
1066 /*
1067  * Creation and deletion of RPC task structures
1068  */
1069 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1070 {
1071 	memset(task, 0, sizeof(*task));
1072 	atomic_set(&task->tk_count, 1);
1073 	task->tk_flags  = task_setup_data->flags;
1074 	task->tk_ops = task_setup_data->callback_ops;
1075 	task->tk_calldata = task_setup_data->callback_data;
1076 	INIT_LIST_HEAD(&task->tk_task);
1077 
1078 	task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1079 	task->tk_owner = current->tgid;
1080 
1081 	/* Initialize workqueue for async tasks */
1082 	task->tk_workqueue = task_setup_data->workqueue;
1083 
1084 	task->tk_xprt = rpc_task_get_xprt(task_setup_data->rpc_client,
1085 			xprt_get(task_setup_data->rpc_xprt));
1086 
1087 	task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1088 
1089 	if (task->tk_ops->rpc_call_prepare != NULL)
1090 		task->tk_action = rpc_prepare_task;
1091 
1092 	rpc_init_task_statistics(task);
1093 }
1094 
1095 static struct rpc_task *
1096 rpc_alloc_task(void)
1097 {
1098 	return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
1099 }
1100 
1101 /*
1102  * Create a new task for the specified client.
1103  */
1104 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1105 {
1106 	struct rpc_task	*task = setup_data->task;
1107 	unsigned short flags = 0;
1108 
1109 	if (task == NULL) {
1110 		task = rpc_alloc_task();
1111 		flags = RPC_TASK_DYNAMIC;
1112 	}
1113 
1114 	rpc_init_task(task, setup_data);
1115 	task->tk_flags |= flags;
1116 	return task;
1117 }
1118 
1119 /*
1120  * rpc_free_task - release rpc task and perform cleanups
1121  *
1122  * Note that we free up the rpc_task _after_ rpc_release_calldata()
1123  * in order to work around a workqueue dependency issue.
1124  *
1125  * Tejun Heo states:
1126  * "Workqueue currently considers two work items to be the same if they're
1127  * on the same address and won't execute them concurrently - ie. it
1128  * makes a work item which is queued again while being executed wait
1129  * for the previous execution to complete.
1130  *
1131  * If a work function frees the work item, and then waits for an event
1132  * which should be performed by another work item and *that* work item
1133  * recycles the freed work item, it can create a false dependency loop.
1134  * There really is no reliable way to detect this short of verifying
1135  * every memory free."
1136  *
1137  */
1138 static void rpc_free_task(struct rpc_task *task)
1139 {
1140 	unsigned short tk_flags = task->tk_flags;
1141 
1142 	put_rpccred(task->tk_op_cred);
1143 	rpc_release_calldata(task->tk_ops, task->tk_calldata);
1144 
1145 	if (tk_flags & RPC_TASK_DYNAMIC)
1146 		mempool_free(task, rpc_task_mempool);
1147 }
1148 
1149 static void rpc_async_release(struct work_struct *work)
1150 {
1151 	unsigned int pflags = memalloc_nofs_save();
1152 
1153 	rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1154 	memalloc_nofs_restore(pflags);
1155 }
1156 
1157 static void rpc_release_resources_task(struct rpc_task *task)
1158 {
1159 	xprt_release(task);
1160 	if (task->tk_msg.rpc_cred) {
1161 		if (!(task->tk_flags & RPC_TASK_CRED_NOREF))
1162 			put_cred(task->tk_msg.rpc_cred);
1163 		task->tk_msg.rpc_cred = NULL;
1164 	}
1165 	rpc_task_release_client(task);
1166 }
1167 
1168 static void rpc_final_put_task(struct rpc_task *task,
1169 		struct workqueue_struct *q)
1170 {
1171 	if (q != NULL) {
1172 		INIT_WORK(&task->u.tk_work, rpc_async_release);
1173 		queue_work(q, &task->u.tk_work);
1174 	} else
1175 		rpc_free_task(task);
1176 }
1177 
1178 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1179 {
1180 	if (atomic_dec_and_test(&task->tk_count)) {
1181 		rpc_release_resources_task(task);
1182 		rpc_final_put_task(task, q);
1183 	}
1184 }
1185 
1186 void rpc_put_task(struct rpc_task *task)
1187 {
1188 	rpc_do_put_task(task, NULL);
1189 }
1190 EXPORT_SYMBOL_GPL(rpc_put_task);
1191 
1192 void rpc_put_task_async(struct rpc_task *task)
1193 {
1194 	rpc_do_put_task(task, task->tk_workqueue);
1195 }
1196 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1197 
1198 static void rpc_release_task(struct rpc_task *task)
1199 {
1200 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
1201 
1202 	rpc_release_resources_task(task);
1203 
1204 	/*
1205 	 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1206 	 * so it should be safe to use task->tk_count as a test for whether
1207 	 * or not any other processes still hold references to our rpc_task.
1208 	 */
1209 	if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1210 		/* Wake up anyone who may be waiting for task completion */
1211 		if (!rpc_complete_task(task))
1212 			return;
1213 	} else {
1214 		if (!atomic_dec_and_test(&task->tk_count))
1215 			return;
1216 	}
1217 	rpc_final_put_task(task, task->tk_workqueue);
1218 }
1219 
1220 int rpciod_up(void)
1221 {
1222 	return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1223 }
1224 
1225 void rpciod_down(void)
1226 {
1227 	module_put(THIS_MODULE);
1228 }
1229 
1230 /*
1231  * Start up the rpciod workqueue.
1232  */
1233 static int rpciod_start(void)
1234 {
1235 	struct workqueue_struct *wq;
1236 
1237 	/*
1238 	 * Create the rpciod thread and wait for it to start.
1239 	 */
1240 	wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1241 	if (!wq)
1242 		goto out_failed;
1243 	rpciod_workqueue = wq;
1244 	wq = alloc_workqueue("xprtiod", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
1245 	if (!wq)
1246 		goto free_rpciod;
1247 	xprtiod_workqueue = wq;
1248 	return 1;
1249 free_rpciod:
1250 	wq = rpciod_workqueue;
1251 	rpciod_workqueue = NULL;
1252 	destroy_workqueue(wq);
1253 out_failed:
1254 	return 0;
1255 }
1256 
1257 static void rpciod_stop(void)
1258 {
1259 	struct workqueue_struct *wq = NULL;
1260 
1261 	if (rpciod_workqueue == NULL)
1262 		return;
1263 
1264 	wq = rpciod_workqueue;
1265 	rpciod_workqueue = NULL;
1266 	destroy_workqueue(wq);
1267 	wq = xprtiod_workqueue;
1268 	xprtiod_workqueue = NULL;
1269 	destroy_workqueue(wq);
1270 }
1271 
1272 void
1273 rpc_destroy_mempool(void)
1274 {
1275 	rpciod_stop();
1276 	mempool_destroy(rpc_buffer_mempool);
1277 	mempool_destroy(rpc_task_mempool);
1278 	kmem_cache_destroy(rpc_task_slabp);
1279 	kmem_cache_destroy(rpc_buffer_slabp);
1280 	rpc_destroy_wait_queue(&delay_queue);
1281 }
1282 
1283 int
1284 rpc_init_mempool(void)
1285 {
1286 	/*
1287 	 * The following is not strictly a mempool initialisation,
1288 	 * but there is no harm in doing it here
1289 	 */
1290 	rpc_init_wait_queue(&delay_queue, "delayq");
1291 	if (!rpciod_start())
1292 		goto err_nomem;
1293 
1294 	rpc_task_slabp = kmem_cache_create("rpc_tasks",
1295 					     sizeof(struct rpc_task),
1296 					     0, SLAB_HWCACHE_ALIGN,
1297 					     NULL);
1298 	if (!rpc_task_slabp)
1299 		goto err_nomem;
1300 	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1301 					     RPC_BUFFER_MAXSIZE,
1302 					     0, SLAB_HWCACHE_ALIGN,
1303 					     NULL);
1304 	if (!rpc_buffer_slabp)
1305 		goto err_nomem;
1306 	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1307 						    rpc_task_slabp);
1308 	if (!rpc_task_mempool)
1309 		goto err_nomem;
1310 	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1311 						      rpc_buffer_slabp);
1312 	if (!rpc_buffer_mempool)
1313 		goto err_nomem;
1314 	return 0;
1315 err_nomem:
1316 	rpc_destroy_mempool();
1317 	return -ENOMEM;
1318 }
1319