1 /* 2 * linux/net/sunrpc/sched.c 3 * 4 * Scheduling for synchronous and asynchronous RPC requests. 5 * 6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de> 7 * 8 * TCP NFS related read + write fixes 9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie> 10 */ 11 12 #include <linux/module.h> 13 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/slab.h> 17 #include <linux/mempool.h> 18 #include <linux/smp.h> 19 #include <linux/spinlock.h> 20 #include <linux/mutex.h> 21 22 #include <linux/sunrpc/clnt.h> 23 24 #include "sunrpc.h" 25 26 #ifdef RPC_DEBUG 27 #define RPCDBG_FACILITY RPCDBG_SCHED 28 #define RPC_TASK_MAGIC_ID 0xf00baa 29 #endif 30 31 /* 32 * RPC slabs and memory pools 33 */ 34 #define RPC_BUFFER_MAXSIZE (2048) 35 #define RPC_BUFFER_POOLSIZE (8) 36 #define RPC_TASK_POOLSIZE (8) 37 static struct kmem_cache *rpc_task_slabp __read_mostly; 38 static struct kmem_cache *rpc_buffer_slabp __read_mostly; 39 static mempool_t *rpc_task_mempool __read_mostly; 40 static mempool_t *rpc_buffer_mempool __read_mostly; 41 42 static void rpc_async_schedule(struct work_struct *); 43 static void rpc_release_task(struct rpc_task *task); 44 static void __rpc_queue_timer_fn(unsigned long ptr); 45 46 /* 47 * RPC tasks sit here while waiting for conditions to improve. 48 */ 49 static struct rpc_wait_queue delay_queue; 50 51 /* 52 * rpciod-related stuff 53 */ 54 struct workqueue_struct *rpciod_workqueue; 55 56 /* 57 * Disable the timer for a given RPC task. Should be called with 58 * queue->lock and bh_disabled in order to avoid races within 59 * rpc_run_timer(). 60 */ 61 static void 62 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task) 63 { 64 if (task->tk_timeout == 0) 65 return; 66 dprintk("RPC: %5u disabling timer\n", task->tk_pid); 67 task->tk_timeout = 0; 68 list_del(&task->u.tk_wait.timer_list); 69 if (list_empty(&queue->timer_list.list)) 70 del_timer(&queue->timer_list.timer); 71 } 72 73 static void 74 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires) 75 { 76 queue->timer_list.expires = expires; 77 mod_timer(&queue->timer_list.timer, expires); 78 } 79 80 /* 81 * Set up a timer for the current task. 82 */ 83 static void 84 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task) 85 { 86 if (!task->tk_timeout) 87 return; 88 89 dprintk("RPC: %5u setting alarm for %lu ms\n", 90 task->tk_pid, task->tk_timeout * 1000 / HZ); 91 92 task->u.tk_wait.expires = jiffies + task->tk_timeout; 93 if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires)) 94 rpc_set_queue_timer(queue, task->u.tk_wait.expires); 95 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list); 96 } 97 98 /* 99 * Add new request to a priority queue. 100 */ 101 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task) 102 { 103 struct list_head *q; 104 struct rpc_task *t; 105 106 INIT_LIST_HEAD(&task->u.tk_wait.links); 107 q = &queue->tasks[task->tk_priority]; 108 if (unlikely(task->tk_priority > queue->maxpriority)) 109 q = &queue->tasks[queue->maxpriority]; 110 list_for_each_entry(t, q, u.tk_wait.list) { 111 if (t->tk_owner == task->tk_owner) { 112 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links); 113 return; 114 } 115 } 116 list_add_tail(&task->u.tk_wait.list, q); 117 } 118 119 /* 120 * Add new request to wait queue. 121 * 122 * Swapper tasks always get inserted at the head of the queue. 123 * This should avoid many nasty memory deadlocks and hopefully 124 * improve overall performance. 125 * Everyone else gets appended to the queue to ensure proper FIFO behavior. 126 */ 127 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task) 128 { 129 BUG_ON (RPC_IS_QUEUED(task)); 130 131 if (RPC_IS_PRIORITY(queue)) 132 __rpc_add_wait_queue_priority(queue, task); 133 else if (RPC_IS_SWAPPER(task)) 134 list_add(&task->u.tk_wait.list, &queue->tasks[0]); 135 else 136 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]); 137 task->tk_waitqueue = queue; 138 queue->qlen++; 139 rpc_set_queued(task); 140 141 dprintk("RPC: %5u added to queue %p \"%s\"\n", 142 task->tk_pid, queue, rpc_qname(queue)); 143 } 144 145 /* 146 * Remove request from a priority queue. 147 */ 148 static void __rpc_remove_wait_queue_priority(struct rpc_task *task) 149 { 150 struct rpc_task *t; 151 152 if (!list_empty(&task->u.tk_wait.links)) { 153 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list); 154 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list); 155 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links); 156 } 157 } 158 159 /* 160 * Remove request from queue. 161 * Note: must be called with spin lock held. 162 */ 163 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task) 164 { 165 __rpc_disable_timer(queue, task); 166 if (RPC_IS_PRIORITY(queue)) 167 __rpc_remove_wait_queue_priority(task); 168 list_del(&task->u.tk_wait.list); 169 queue->qlen--; 170 dprintk("RPC: %5u removed from queue %p \"%s\"\n", 171 task->tk_pid, queue, rpc_qname(queue)); 172 } 173 174 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority) 175 { 176 queue->priority = priority; 177 queue->count = 1 << (priority * 2); 178 } 179 180 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid) 181 { 182 queue->owner = pid; 183 queue->nr = RPC_BATCH_COUNT; 184 } 185 186 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue) 187 { 188 rpc_set_waitqueue_priority(queue, queue->maxpriority); 189 rpc_set_waitqueue_owner(queue, 0); 190 } 191 192 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues) 193 { 194 int i; 195 196 spin_lock_init(&queue->lock); 197 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++) 198 INIT_LIST_HEAD(&queue->tasks[i]); 199 queue->maxpriority = nr_queues - 1; 200 rpc_reset_waitqueue_priority(queue); 201 queue->qlen = 0; 202 setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue); 203 INIT_LIST_HEAD(&queue->timer_list.list); 204 #ifdef RPC_DEBUG 205 queue->name = qname; 206 #endif 207 } 208 209 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname) 210 { 211 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY); 212 } 213 214 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname) 215 { 216 __rpc_init_priority_wait_queue(queue, qname, 1); 217 } 218 EXPORT_SYMBOL_GPL(rpc_init_wait_queue); 219 220 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue) 221 { 222 del_timer_sync(&queue->timer_list.timer); 223 } 224 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue); 225 226 static int rpc_wait_bit_killable(void *word) 227 { 228 if (fatal_signal_pending(current)) 229 return -ERESTARTSYS; 230 schedule(); 231 return 0; 232 } 233 234 #ifdef RPC_DEBUG 235 static void rpc_task_set_debuginfo(struct rpc_task *task) 236 { 237 static atomic_t rpc_pid; 238 239 task->tk_magic = RPC_TASK_MAGIC_ID; 240 task->tk_pid = atomic_inc_return(&rpc_pid); 241 } 242 #else 243 static inline void rpc_task_set_debuginfo(struct rpc_task *task) 244 { 245 } 246 #endif 247 248 static void rpc_set_active(struct rpc_task *task) 249 { 250 struct rpc_clnt *clnt; 251 if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0) 252 return; 253 rpc_task_set_debuginfo(task); 254 /* Add to global list of all tasks */ 255 clnt = task->tk_client; 256 if (clnt != NULL) { 257 spin_lock(&clnt->cl_lock); 258 list_add_tail(&task->tk_task, &clnt->cl_tasks); 259 spin_unlock(&clnt->cl_lock); 260 } 261 } 262 263 /* 264 * Mark an RPC call as having completed by clearing the 'active' bit 265 */ 266 static void rpc_mark_complete_task(struct rpc_task *task) 267 { 268 smp_mb__before_clear_bit(); 269 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate); 270 smp_mb__after_clear_bit(); 271 wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE); 272 } 273 274 /* 275 * Allow callers to wait for completion of an RPC call 276 */ 277 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *)) 278 { 279 if (action == NULL) 280 action = rpc_wait_bit_killable; 281 return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE, 282 action, TASK_KILLABLE); 283 } 284 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task); 285 286 /* 287 * Make an RPC task runnable. 288 * 289 * Note: If the task is ASYNC, this must be called with 290 * the spinlock held to protect the wait queue operation. 291 */ 292 static void rpc_make_runnable(struct rpc_task *task) 293 { 294 rpc_clear_queued(task); 295 if (rpc_test_and_set_running(task)) 296 return; 297 if (RPC_IS_ASYNC(task)) { 298 int status; 299 300 INIT_WORK(&task->u.tk_work, rpc_async_schedule); 301 status = queue_work(rpciod_workqueue, &task->u.tk_work); 302 if (status < 0) { 303 printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status); 304 task->tk_status = status; 305 return; 306 } 307 } else 308 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED); 309 } 310 311 /* 312 * Prepare for sleeping on a wait queue. 313 * By always appending tasks to the list we ensure FIFO behavior. 314 * NB: An RPC task will only receive interrupt-driven events as long 315 * as it's on a wait queue. 316 */ 317 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, 318 rpc_action action) 319 { 320 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n", 321 task->tk_pid, rpc_qname(q), jiffies); 322 323 if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) { 324 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n"); 325 return; 326 } 327 328 __rpc_add_wait_queue(q, task); 329 330 BUG_ON(task->tk_callback != NULL); 331 task->tk_callback = action; 332 __rpc_add_timer(q, task); 333 } 334 335 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, 336 rpc_action action) 337 { 338 /* Mark the task as being activated if so needed */ 339 rpc_set_active(task); 340 341 /* 342 * Protect the queue operations. 343 */ 344 spin_lock_bh(&q->lock); 345 __rpc_sleep_on(q, task, action); 346 spin_unlock_bh(&q->lock); 347 } 348 EXPORT_SYMBOL_GPL(rpc_sleep_on); 349 350 /** 351 * __rpc_do_wake_up_task - wake up a single rpc_task 352 * @queue: wait queue 353 * @task: task to be woken up 354 * 355 * Caller must hold queue->lock, and have cleared the task queued flag. 356 */ 357 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task) 358 { 359 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n", 360 task->tk_pid, jiffies); 361 362 #ifdef RPC_DEBUG 363 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID); 364 #endif 365 /* Has the task been executed yet? If not, we cannot wake it up! */ 366 if (!RPC_IS_ACTIVATED(task)) { 367 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task); 368 return; 369 } 370 371 __rpc_remove_wait_queue(queue, task); 372 373 rpc_make_runnable(task); 374 375 dprintk("RPC: __rpc_wake_up_task done\n"); 376 } 377 378 /* 379 * Wake up a queued task while the queue lock is being held 380 */ 381 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task) 382 { 383 if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue) 384 __rpc_do_wake_up_task(queue, task); 385 } 386 387 /* 388 * Wake up a task on a specific queue 389 */ 390 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task) 391 { 392 spin_lock_bh(&queue->lock); 393 rpc_wake_up_task_queue_locked(queue, task); 394 spin_unlock_bh(&queue->lock); 395 } 396 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task); 397 398 /* 399 * Wake up the specified task 400 */ 401 static void rpc_wake_up_task(struct rpc_task *task) 402 { 403 rpc_wake_up_queued_task(task->tk_waitqueue, task); 404 } 405 406 /* 407 * Wake up the next task on a priority queue. 408 */ 409 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue) 410 { 411 struct list_head *q; 412 struct rpc_task *task; 413 414 /* 415 * Service a batch of tasks from a single owner. 416 */ 417 q = &queue->tasks[queue->priority]; 418 if (!list_empty(q)) { 419 task = list_entry(q->next, struct rpc_task, u.tk_wait.list); 420 if (queue->owner == task->tk_owner) { 421 if (--queue->nr) 422 goto out; 423 list_move_tail(&task->u.tk_wait.list, q); 424 } 425 /* 426 * Check if we need to switch queues. 427 */ 428 if (--queue->count) 429 goto new_owner; 430 } 431 432 /* 433 * Service the next queue. 434 */ 435 do { 436 if (q == &queue->tasks[0]) 437 q = &queue->tasks[queue->maxpriority]; 438 else 439 q = q - 1; 440 if (!list_empty(q)) { 441 task = list_entry(q->next, struct rpc_task, u.tk_wait.list); 442 goto new_queue; 443 } 444 } while (q != &queue->tasks[queue->priority]); 445 446 rpc_reset_waitqueue_priority(queue); 447 return NULL; 448 449 new_queue: 450 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0])); 451 new_owner: 452 rpc_set_waitqueue_owner(queue, task->tk_owner); 453 out: 454 rpc_wake_up_task_queue_locked(queue, task); 455 return task; 456 } 457 458 /* 459 * Wake up the next task on the wait queue. 460 */ 461 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue) 462 { 463 struct rpc_task *task = NULL; 464 465 dprintk("RPC: wake_up_next(%p \"%s\")\n", 466 queue, rpc_qname(queue)); 467 spin_lock_bh(&queue->lock); 468 if (RPC_IS_PRIORITY(queue)) 469 task = __rpc_wake_up_next_priority(queue); 470 else { 471 task_for_first(task, &queue->tasks[0]) 472 rpc_wake_up_task_queue_locked(queue, task); 473 } 474 spin_unlock_bh(&queue->lock); 475 476 return task; 477 } 478 EXPORT_SYMBOL_GPL(rpc_wake_up_next); 479 480 /** 481 * rpc_wake_up - wake up all rpc_tasks 482 * @queue: rpc_wait_queue on which the tasks are sleeping 483 * 484 * Grabs queue->lock 485 */ 486 void rpc_wake_up(struct rpc_wait_queue *queue) 487 { 488 struct rpc_task *task, *next; 489 struct list_head *head; 490 491 spin_lock_bh(&queue->lock); 492 head = &queue->tasks[queue->maxpriority]; 493 for (;;) { 494 list_for_each_entry_safe(task, next, head, u.tk_wait.list) 495 rpc_wake_up_task_queue_locked(queue, task); 496 if (head == &queue->tasks[0]) 497 break; 498 head--; 499 } 500 spin_unlock_bh(&queue->lock); 501 } 502 EXPORT_SYMBOL_GPL(rpc_wake_up); 503 504 /** 505 * rpc_wake_up_status - wake up all rpc_tasks and set their status value. 506 * @queue: rpc_wait_queue on which the tasks are sleeping 507 * @status: status value to set 508 * 509 * Grabs queue->lock 510 */ 511 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status) 512 { 513 struct rpc_task *task, *next; 514 struct list_head *head; 515 516 spin_lock_bh(&queue->lock); 517 head = &queue->tasks[queue->maxpriority]; 518 for (;;) { 519 list_for_each_entry_safe(task, next, head, u.tk_wait.list) { 520 task->tk_status = status; 521 rpc_wake_up_task_queue_locked(queue, task); 522 } 523 if (head == &queue->tasks[0]) 524 break; 525 head--; 526 } 527 spin_unlock_bh(&queue->lock); 528 } 529 EXPORT_SYMBOL_GPL(rpc_wake_up_status); 530 531 static void __rpc_queue_timer_fn(unsigned long ptr) 532 { 533 struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr; 534 struct rpc_task *task, *n; 535 unsigned long expires, now, timeo; 536 537 spin_lock(&queue->lock); 538 expires = now = jiffies; 539 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) { 540 timeo = task->u.tk_wait.expires; 541 if (time_after_eq(now, timeo)) { 542 dprintk("RPC: %5u timeout\n", task->tk_pid); 543 task->tk_status = -ETIMEDOUT; 544 rpc_wake_up_task_queue_locked(queue, task); 545 continue; 546 } 547 if (expires == now || time_after(expires, timeo)) 548 expires = timeo; 549 } 550 if (!list_empty(&queue->timer_list.list)) 551 rpc_set_queue_timer(queue, expires); 552 spin_unlock(&queue->lock); 553 } 554 555 static void __rpc_atrun(struct rpc_task *task) 556 { 557 task->tk_status = 0; 558 } 559 560 /* 561 * Run a task at a later time 562 */ 563 void rpc_delay(struct rpc_task *task, unsigned long delay) 564 { 565 task->tk_timeout = delay; 566 rpc_sleep_on(&delay_queue, task, __rpc_atrun); 567 } 568 EXPORT_SYMBOL_GPL(rpc_delay); 569 570 /* 571 * Helper to call task->tk_ops->rpc_call_prepare 572 */ 573 void rpc_prepare_task(struct rpc_task *task) 574 { 575 task->tk_ops->rpc_call_prepare(task, task->tk_calldata); 576 } 577 578 /* 579 * Helper that calls task->tk_ops->rpc_call_done if it exists 580 */ 581 void rpc_exit_task(struct rpc_task *task) 582 { 583 task->tk_action = NULL; 584 if (task->tk_ops->rpc_call_done != NULL) { 585 task->tk_ops->rpc_call_done(task, task->tk_calldata); 586 if (task->tk_action != NULL) { 587 WARN_ON(RPC_ASSASSINATED(task)); 588 /* Always release the RPC slot and buffer memory */ 589 xprt_release(task); 590 } 591 } 592 } 593 EXPORT_SYMBOL_GPL(rpc_exit_task); 594 595 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata) 596 { 597 if (ops->rpc_release != NULL) 598 ops->rpc_release(calldata); 599 } 600 601 /* 602 * This is the RPC `scheduler' (or rather, the finite state machine). 603 */ 604 static void __rpc_execute(struct rpc_task *task) 605 { 606 struct rpc_wait_queue *queue; 607 int task_is_async = RPC_IS_ASYNC(task); 608 int status = 0; 609 610 dprintk("RPC: %5u __rpc_execute flags=0x%x\n", 611 task->tk_pid, task->tk_flags); 612 613 BUG_ON(RPC_IS_QUEUED(task)); 614 615 for (;;) { 616 617 /* 618 * Execute any pending callback. 619 */ 620 if (task->tk_callback) { 621 void (*save_callback)(struct rpc_task *); 622 623 /* 624 * We set tk_callback to NULL before calling it, 625 * in case it sets the tk_callback field itself: 626 */ 627 save_callback = task->tk_callback; 628 task->tk_callback = NULL; 629 save_callback(task); 630 } 631 632 /* 633 * Perform the next FSM step. 634 * tk_action may be NULL when the task has been killed 635 * by someone else. 636 */ 637 if (!RPC_IS_QUEUED(task)) { 638 if (task->tk_action == NULL) 639 break; 640 task->tk_action(task); 641 } 642 643 /* 644 * Lockless check for whether task is sleeping or not. 645 */ 646 if (!RPC_IS_QUEUED(task)) 647 continue; 648 /* 649 * The queue->lock protects against races with 650 * rpc_make_runnable(). 651 * 652 * Note that once we clear RPC_TASK_RUNNING on an asynchronous 653 * rpc_task, rpc_make_runnable() can assign it to a 654 * different workqueue. We therefore cannot assume that the 655 * rpc_task pointer may still be dereferenced. 656 */ 657 queue = task->tk_waitqueue; 658 spin_lock_bh(&queue->lock); 659 if (!RPC_IS_QUEUED(task)) { 660 spin_unlock_bh(&queue->lock); 661 continue; 662 } 663 rpc_clear_running(task); 664 spin_unlock_bh(&queue->lock); 665 if (task_is_async) 666 return; 667 668 /* sync task: sleep here */ 669 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid); 670 status = out_of_line_wait_on_bit(&task->tk_runstate, 671 RPC_TASK_QUEUED, rpc_wait_bit_killable, 672 TASK_KILLABLE); 673 if (status == -ERESTARTSYS) { 674 /* 675 * When a sync task receives a signal, it exits with 676 * -ERESTARTSYS. In order to catch any callbacks that 677 * clean up after sleeping on some queue, we don't 678 * break the loop here, but go around once more. 679 */ 680 dprintk("RPC: %5u got signal\n", task->tk_pid); 681 task->tk_flags |= RPC_TASK_KILLED; 682 rpc_exit(task, -ERESTARTSYS); 683 rpc_wake_up_task(task); 684 } 685 rpc_set_running(task); 686 dprintk("RPC: %5u sync task resuming\n", task->tk_pid); 687 } 688 689 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status, 690 task->tk_status); 691 /* Release all resources associated with the task */ 692 rpc_release_task(task); 693 } 694 695 /* 696 * User-visible entry point to the scheduler. 697 * 698 * This may be called recursively if e.g. an async NFS task updates 699 * the attributes and finds that dirty pages must be flushed. 700 * NOTE: Upon exit of this function the task is guaranteed to be 701 * released. In particular note that tk_release() will have 702 * been called, so your task memory may have been freed. 703 */ 704 void rpc_execute(struct rpc_task *task) 705 { 706 rpc_set_active(task); 707 rpc_set_running(task); 708 __rpc_execute(task); 709 } 710 711 static void rpc_async_schedule(struct work_struct *work) 712 { 713 __rpc_execute(container_of(work, struct rpc_task, u.tk_work)); 714 } 715 716 /** 717 * rpc_malloc - allocate an RPC buffer 718 * @task: RPC task that will use this buffer 719 * @size: requested byte size 720 * 721 * To prevent rpciod from hanging, this allocator never sleeps, 722 * returning NULL if the request cannot be serviced immediately. 723 * The caller can arrange to sleep in a way that is safe for rpciod. 724 * 725 * Most requests are 'small' (under 2KiB) and can be serviced from a 726 * mempool, ensuring that NFS reads and writes can always proceed, 727 * and that there is good locality of reference for these buffers. 728 * 729 * In order to avoid memory starvation triggering more writebacks of 730 * NFS requests, we avoid using GFP_KERNEL. 731 */ 732 void *rpc_malloc(struct rpc_task *task, size_t size) 733 { 734 struct rpc_buffer *buf; 735 gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT; 736 737 size += sizeof(struct rpc_buffer); 738 if (size <= RPC_BUFFER_MAXSIZE) 739 buf = mempool_alloc(rpc_buffer_mempool, gfp); 740 else 741 buf = kmalloc(size, gfp); 742 743 if (!buf) 744 return NULL; 745 746 buf->len = size; 747 dprintk("RPC: %5u allocated buffer of size %zu at %p\n", 748 task->tk_pid, size, buf); 749 return &buf->data; 750 } 751 EXPORT_SYMBOL_GPL(rpc_malloc); 752 753 /** 754 * rpc_free - free buffer allocated via rpc_malloc 755 * @buffer: buffer to free 756 * 757 */ 758 void rpc_free(void *buffer) 759 { 760 size_t size; 761 struct rpc_buffer *buf; 762 763 if (!buffer) 764 return; 765 766 buf = container_of(buffer, struct rpc_buffer, data); 767 size = buf->len; 768 769 dprintk("RPC: freeing buffer of size %zu at %p\n", 770 size, buf); 771 772 if (size <= RPC_BUFFER_MAXSIZE) 773 mempool_free(buf, rpc_buffer_mempool); 774 else 775 kfree(buf); 776 } 777 EXPORT_SYMBOL_GPL(rpc_free); 778 779 /* 780 * Creation and deletion of RPC task structures 781 */ 782 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data) 783 { 784 memset(task, 0, sizeof(*task)); 785 atomic_set(&task->tk_count, 1); 786 task->tk_flags = task_setup_data->flags; 787 task->tk_ops = task_setup_data->callback_ops; 788 task->tk_calldata = task_setup_data->callback_data; 789 INIT_LIST_HEAD(&task->tk_task); 790 791 /* Initialize retry counters */ 792 task->tk_garb_retry = 2; 793 task->tk_cred_retry = 2; 794 795 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW; 796 task->tk_owner = current->tgid; 797 798 /* Initialize workqueue for async tasks */ 799 task->tk_workqueue = task_setup_data->workqueue; 800 801 task->tk_client = task_setup_data->rpc_client; 802 if (task->tk_client != NULL) { 803 kref_get(&task->tk_client->cl_kref); 804 if (task->tk_client->cl_softrtry) 805 task->tk_flags |= RPC_TASK_SOFT; 806 } 807 808 if (task->tk_ops->rpc_call_prepare != NULL) 809 task->tk_action = rpc_prepare_task; 810 811 if (task_setup_data->rpc_message != NULL) { 812 task->tk_msg.rpc_proc = task_setup_data->rpc_message->rpc_proc; 813 task->tk_msg.rpc_argp = task_setup_data->rpc_message->rpc_argp; 814 task->tk_msg.rpc_resp = task_setup_data->rpc_message->rpc_resp; 815 /* Bind the user cred */ 816 rpcauth_bindcred(task, task_setup_data->rpc_message->rpc_cred, task_setup_data->flags); 817 if (task->tk_action == NULL) 818 rpc_call_start(task); 819 } 820 821 /* starting timestamp */ 822 task->tk_start = jiffies; 823 824 dprintk("RPC: new task initialized, procpid %u\n", 825 task_pid_nr(current)); 826 } 827 828 static struct rpc_task * 829 rpc_alloc_task(void) 830 { 831 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS); 832 } 833 834 /* 835 * Create a new task for the specified client. 836 */ 837 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data) 838 { 839 struct rpc_task *task = setup_data->task; 840 unsigned short flags = 0; 841 842 if (task == NULL) { 843 task = rpc_alloc_task(); 844 if (task == NULL) 845 goto out; 846 flags = RPC_TASK_DYNAMIC; 847 } 848 849 rpc_init_task(task, setup_data); 850 851 task->tk_flags |= flags; 852 dprintk("RPC: allocated task %p\n", task); 853 out: 854 return task; 855 } 856 857 static void rpc_free_task(struct rpc_task *task) 858 { 859 const struct rpc_call_ops *tk_ops = task->tk_ops; 860 void *calldata = task->tk_calldata; 861 862 if (task->tk_flags & RPC_TASK_DYNAMIC) { 863 dprintk("RPC: %5u freeing task\n", task->tk_pid); 864 mempool_free(task, rpc_task_mempool); 865 } 866 rpc_release_calldata(tk_ops, calldata); 867 } 868 869 static void rpc_async_release(struct work_struct *work) 870 { 871 rpc_free_task(container_of(work, struct rpc_task, u.tk_work)); 872 } 873 874 void rpc_put_task(struct rpc_task *task) 875 { 876 if (!atomic_dec_and_test(&task->tk_count)) 877 return; 878 /* Release resources */ 879 if (task->tk_rqstp) 880 xprt_release(task); 881 if (task->tk_msg.rpc_cred) 882 rpcauth_unbindcred(task); 883 if (task->tk_client) { 884 rpc_release_client(task->tk_client); 885 task->tk_client = NULL; 886 } 887 if (task->tk_workqueue != NULL) { 888 INIT_WORK(&task->u.tk_work, rpc_async_release); 889 queue_work(task->tk_workqueue, &task->u.tk_work); 890 } else 891 rpc_free_task(task); 892 } 893 EXPORT_SYMBOL_GPL(rpc_put_task); 894 895 static void rpc_release_task(struct rpc_task *task) 896 { 897 #ifdef RPC_DEBUG 898 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID); 899 #endif 900 dprintk("RPC: %5u release task\n", task->tk_pid); 901 902 if (!list_empty(&task->tk_task)) { 903 struct rpc_clnt *clnt = task->tk_client; 904 /* Remove from client task list */ 905 spin_lock(&clnt->cl_lock); 906 list_del(&task->tk_task); 907 spin_unlock(&clnt->cl_lock); 908 } 909 BUG_ON (RPC_IS_QUEUED(task)); 910 911 #ifdef RPC_DEBUG 912 task->tk_magic = 0; 913 #endif 914 /* Wake up anyone who is waiting for task completion */ 915 rpc_mark_complete_task(task); 916 917 rpc_put_task(task); 918 } 919 920 /* 921 * Kill all tasks for the given client. 922 * XXX: kill their descendants as well? 923 */ 924 void rpc_killall_tasks(struct rpc_clnt *clnt) 925 { 926 struct rpc_task *rovr; 927 928 929 if (list_empty(&clnt->cl_tasks)) 930 return; 931 dprintk("RPC: killing all tasks for client %p\n", clnt); 932 /* 933 * Spin lock all_tasks to prevent changes... 934 */ 935 spin_lock(&clnt->cl_lock); 936 list_for_each_entry(rovr, &clnt->cl_tasks, tk_task) { 937 if (! RPC_IS_ACTIVATED(rovr)) 938 continue; 939 if (!(rovr->tk_flags & RPC_TASK_KILLED)) { 940 rovr->tk_flags |= RPC_TASK_KILLED; 941 rpc_exit(rovr, -EIO); 942 rpc_wake_up_task(rovr); 943 } 944 } 945 spin_unlock(&clnt->cl_lock); 946 } 947 EXPORT_SYMBOL_GPL(rpc_killall_tasks); 948 949 int rpciod_up(void) 950 { 951 return try_module_get(THIS_MODULE) ? 0 : -EINVAL; 952 } 953 954 void rpciod_down(void) 955 { 956 module_put(THIS_MODULE); 957 } 958 959 /* 960 * Start up the rpciod workqueue. 961 */ 962 static int rpciod_start(void) 963 { 964 struct workqueue_struct *wq; 965 966 /* 967 * Create the rpciod thread and wait for it to start. 968 */ 969 dprintk("RPC: creating workqueue rpciod\n"); 970 wq = create_workqueue("rpciod"); 971 rpciod_workqueue = wq; 972 return rpciod_workqueue != NULL; 973 } 974 975 static void rpciod_stop(void) 976 { 977 struct workqueue_struct *wq = NULL; 978 979 if (rpciod_workqueue == NULL) 980 return; 981 dprintk("RPC: destroying workqueue rpciod\n"); 982 983 wq = rpciod_workqueue; 984 rpciod_workqueue = NULL; 985 destroy_workqueue(wq); 986 } 987 988 void 989 rpc_destroy_mempool(void) 990 { 991 rpciod_stop(); 992 if (rpc_buffer_mempool) 993 mempool_destroy(rpc_buffer_mempool); 994 if (rpc_task_mempool) 995 mempool_destroy(rpc_task_mempool); 996 if (rpc_task_slabp) 997 kmem_cache_destroy(rpc_task_slabp); 998 if (rpc_buffer_slabp) 999 kmem_cache_destroy(rpc_buffer_slabp); 1000 rpc_destroy_wait_queue(&delay_queue); 1001 } 1002 1003 int 1004 rpc_init_mempool(void) 1005 { 1006 /* 1007 * The following is not strictly a mempool initialisation, 1008 * but there is no harm in doing it here 1009 */ 1010 rpc_init_wait_queue(&delay_queue, "delayq"); 1011 if (!rpciod_start()) 1012 goto err_nomem; 1013 1014 rpc_task_slabp = kmem_cache_create("rpc_tasks", 1015 sizeof(struct rpc_task), 1016 0, SLAB_HWCACHE_ALIGN, 1017 NULL); 1018 if (!rpc_task_slabp) 1019 goto err_nomem; 1020 rpc_buffer_slabp = kmem_cache_create("rpc_buffers", 1021 RPC_BUFFER_MAXSIZE, 1022 0, SLAB_HWCACHE_ALIGN, 1023 NULL); 1024 if (!rpc_buffer_slabp) 1025 goto err_nomem; 1026 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE, 1027 rpc_task_slabp); 1028 if (!rpc_task_mempool) 1029 goto err_nomem; 1030 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE, 1031 rpc_buffer_slabp); 1032 if (!rpc_buffer_mempool) 1033 goto err_nomem; 1034 return 0; 1035 err_nomem: 1036 rpc_destroy_mempool(); 1037 return -ENOMEM; 1038 } 1039