1 /* 2 * linux/net/sunrpc/sched.c 3 * 4 * Scheduling for synchronous and asynchronous RPC requests. 5 * 6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de> 7 * 8 * TCP NFS related read + write fixes 9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie> 10 */ 11 12 #include <linux/module.h> 13 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/slab.h> 17 #include <linux/mempool.h> 18 #include <linux/smp.h> 19 #include <linux/spinlock.h> 20 #include <linux/mutex.h> 21 22 #include <linux/sunrpc/clnt.h> 23 24 #include "sunrpc.h" 25 26 #ifdef RPC_DEBUG 27 #define RPCDBG_FACILITY RPCDBG_SCHED 28 #endif 29 30 /* 31 * RPC slabs and memory pools 32 */ 33 #define RPC_BUFFER_MAXSIZE (2048) 34 #define RPC_BUFFER_POOLSIZE (8) 35 #define RPC_TASK_POOLSIZE (8) 36 static struct kmem_cache *rpc_task_slabp __read_mostly; 37 static struct kmem_cache *rpc_buffer_slabp __read_mostly; 38 static mempool_t *rpc_task_mempool __read_mostly; 39 static mempool_t *rpc_buffer_mempool __read_mostly; 40 41 static void rpc_async_schedule(struct work_struct *); 42 static void rpc_release_task(struct rpc_task *task); 43 static void __rpc_queue_timer_fn(unsigned long ptr); 44 45 /* 46 * RPC tasks sit here while waiting for conditions to improve. 47 */ 48 static struct rpc_wait_queue delay_queue; 49 50 /* 51 * rpciod-related stuff 52 */ 53 struct workqueue_struct *rpciod_workqueue; 54 55 /* 56 * Disable the timer for a given RPC task. Should be called with 57 * queue->lock and bh_disabled in order to avoid races within 58 * rpc_run_timer(). 59 */ 60 static void 61 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task) 62 { 63 if (task->tk_timeout == 0) 64 return; 65 dprintk("RPC: %5u disabling timer\n", task->tk_pid); 66 task->tk_timeout = 0; 67 list_del(&task->u.tk_wait.timer_list); 68 if (list_empty(&queue->timer_list.list)) 69 del_timer(&queue->timer_list.timer); 70 } 71 72 static void 73 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires) 74 { 75 queue->timer_list.expires = expires; 76 mod_timer(&queue->timer_list.timer, expires); 77 } 78 79 /* 80 * Set up a timer for the current task. 81 */ 82 static void 83 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task) 84 { 85 if (!task->tk_timeout) 86 return; 87 88 dprintk("RPC: %5u setting alarm for %lu ms\n", 89 task->tk_pid, task->tk_timeout * 1000 / HZ); 90 91 task->u.tk_wait.expires = jiffies + task->tk_timeout; 92 if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires)) 93 rpc_set_queue_timer(queue, task->u.tk_wait.expires); 94 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list); 95 } 96 97 /* 98 * Add new request to a priority queue. 99 */ 100 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task) 101 { 102 struct list_head *q; 103 struct rpc_task *t; 104 105 INIT_LIST_HEAD(&task->u.tk_wait.links); 106 q = &queue->tasks[task->tk_priority]; 107 if (unlikely(task->tk_priority > queue->maxpriority)) 108 q = &queue->tasks[queue->maxpriority]; 109 list_for_each_entry(t, q, u.tk_wait.list) { 110 if (t->tk_owner == task->tk_owner) { 111 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links); 112 return; 113 } 114 } 115 list_add_tail(&task->u.tk_wait.list, q); 116 } 117 118 /* 119 * Add new request to wait queue. 120 * 121 * Swapper tasks always get inserted at the head of the queue. 122 * This should avoid many nasty memory deadlocks and hopefully 123 * improve overall performance. 124 * Everyone else gets appended to the queue to ensure proper FIFO behavior. 125 */ 126 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task) 127 { 128 BUG_ON (RPC_IS_QUEUED(task)); 129 130 if (RPC_IS_PRIORITY(queue)) 131 __rpc_add_wait_queue_priority(queue, task); 132 else if (RPC_IS_SWAPPER(task)) 133 list_add(&task->u.tk_wait.list, &queue->tasks[0]); 134 else 135 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]); 136 task->tk_waitqueue = queue; 137 queue->qlen++; 138 rpc_set_queued(task); 139 140 dprintk("RPC: %5u added to queue %p \"%s\"\n", 141 task->tk_pid, queue, rpc_qname(queue)); 142 } 143 144 /* 145 * Remove request from a priority queue. 146 */ 147 static void __rpc_remove_wait_queue_priority(struct rpc_task *task) 148 { 149 struct rpc_task *t; 150 151 if (!list_empty(&task->u.tk_wait.links)) { 152 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list); 153 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list); 154 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links); 155 } 156 } 157 158 /* 159 * Remove request from queue. 160 * Note: must be called with spin lock held. 161 */ 162 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task) 163 { 164 __rpc_disable_timer(queue, task); 165 if (RPC_IS_PRIORITY(queue)) 166 __rpc_remove_wait_queue_priority(task); 167 list_del(&task->u.tk_wait.list); 168 queue->qlen--; 169 dprintk("RPC: %5u removed from queue %p \"%s\"\n", 170 task->tk_pid, queue, rpc_qname(queue)); 171 } 172 173 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority) 174 { 175 queue->priority = priority; 176 queue->count = 1 << (priority * 2); 177 } 178 179 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid) 180 { 181 queue->owner = pid; 182 queue->nr = RPC_BATCH_COUNT; 183 } 184 185 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue) 186 { 187 rpc_set_waitqueue_priority(queue, queue->maxpriority); 188 rpc_set_waitqueue_owner(queue, 0); 189 } 190 191 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues) 192 { 193 int i; 194 195 spin_lock_init(&queue->lock); 196 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++) 197 INIT_LIST_HEAD(&queue->tasks[i]); 198 queue->maxpriority = nr_queues - 1; 199 rpc_reset_waitqueue_priority(queue); 200 queue->qlen = 0; 201 setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue); 202 INIT_LIST_HEAD(&queue->timer_list.list); 203 #ifdef RPC_DEBUG 204 queue->name = qname; 205 #endif 206 } 207 208 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname) 209 { 210 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY); 211 } 212 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue); 213 214 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname) 215 { 216 __rpc_init_priority_wait_queue(queue, qname, 1); 217 } 218 EXPORT_SYMBOL_GPL(rpc_init_wait_queue); 219 220 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue) 221 { 222 del_timer_sync(&queue->timer_list.timer); 223 } 224 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue); 225 226 static int rpc_wait_bit_killable(void *word) 227 { 228 if (fatal_signal_pending(current)) 229 return -ERESTARTSYS; 230 schedule(); 231 return 0; 232 } 233 234 #ifdef RPC_DEBUG 235 static void rpc_task_set_debuginfo(struct rpc_task *task) 236 { 237 static atomic_t rpc_pid; 238 239 task->tk_pid = atomic_inc_return(&rpc_pid); 240 } 241 #else 242 static inline void rpc_task_set_debuginfo(struct rpc_task *task) 243 { 244 } 245 #endif 246 247 static void rpc_set_active(struct rpc_task *task) 248 { 249 rpc_task_set_debuginfo(task); 250 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate); 251 } 252 253 /* 254 * Mark an RPC call as having completed by clearing the 'active' bit 255 */ 256 static void rpc_mark_complete_task(struct rpc_task *task) 257 { 258 smp_mb__before_clear_bit(); 259 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate); 260 smp_mb__after_clear_bit(); 261 wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE); 262 } 263 264 /* 265 * Allow callers to wait for completion of an RPC call 266 */ 267 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *)) 268 { 269 if (action == NULL) 270 action = rpc_wait_bit_killable; 271 return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE, 272 action, TASK_KILLABLE); 273 } 274 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task); 275 276 /* 277 * Make an RPC task runnable. 278 * 279 * Note: If the task is ASYNC, this must be called with 280 * the spinlock held to protect the wait queue operation. 281 */ 282 static void rpc_make_runnable(struct rpc_task *task) 283 { 284 rpc_clear_queued(task); 285 if (rpc_test_and_set_running(task)) 286 return; 287 if (RPC_IS_ASYNC(task)) { 288 int status; 289 290 INIT_WORK(&task->u.tk_work, rpc_async_schedule); 291 status = queue_work(rpciod_workqueue, &task->u.tk_work); 292 if (status < 0) { 293 printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status); 294 task->tk_status = status; 295 return; 296 } 297 } else 298 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED); 299 } 300 301 /* 302 * Prepare for sleeping on a wait queue. 303 * By always appending tasks to the list we ensure FIFO behavior. 304 * NB: An RPC task will only receive interrupt-driven events as long 305 * as it's on a wait queue. 306 */ 307 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, 308 rpc_action action) 309 { 310 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n", 311 task->tk_pid, rpc_qname(q), jiffies); 312 313 __rpc_add_wait_queue(q, task); 314 315 BUG_ON(task->tk_callback != NULL); 316 task->tk_callback = action; 317 __rpc_add_timer(q, task); 318 } 319 320 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, 321 rpc_action action) 322 { 323 /* We shouldn't ever put an inactive task to sleep */ 324 BUG_ON(!RPC_IS_ACTIVATED(task)); 325 326 /* 327 * Protect the queue operations. 328 */ 329 spin_lock_bh(&q->lock); 330 __rpc_sleep_on(q, task, action); 331 spin_unlock_bh(&q->lock); 332 } 333 EXPORT_SYMBOL_GPL(rpc_sleep_on); 334 335 /** 336 * __rpc_do_wake_up_task - wake up a single rpc_task 337 * @queue: wait queue 338 * @task: task to be woken up 339 * 340 * Caller must hold queue->lock, and have cleared the task queued flag. 341 */ 342 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task) 343 { 344 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n", 345 task->tk_pid, jiffies); 346 347 /* Has the task been executed yet? If not, we cannot wake it up! */ 348 if (!RPC_IS_ACTIVATED(task)) { 349 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task); 350 return; 351 } 352 353 __rpc_remove_wait_queue(queue, task); 354 355 rpc_make_runnable(task); 356 357 dprintk("RPC: __rpc_wake_up_task done\n"); 358 } 359 360 /* 361 * Wake up a queued task while the queue lock is being held 362 */ 363 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task) 364 { 365 if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue) 366 __rpc_do_wake_up_task(queue, task); 367 } 368 369 /* 370 * Tests whether rpc queue is empty 371 */ 372 int rpc_queue_empty(struct rpc_wait_queue *queue) 373 { 374 int res; 375 376 spin_lock_bh(&queue->lock); 377 res = queue->qlen; 378 spin_unlock_bh(&queue->lock); 379 return res == 0; 380 } 381 EXPORT_SYMBOL_GPL(rpc_queue_empty); 382 383 /* 384 * Wake up a task on a specific queue 385 */ 386 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task) 387 { 388 spin_lock_bh(&queue->lock); 389 rpc_wake_up_task_queue_locked(queue, task); 390 spin_unlock_bh(&queue->lock); 391 } 392 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task); 393 394 /* 395 * Wake up the next task on a priority queue. 396 */ 397 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue) 398 { 399 struct list_head *q; 400 struct rpc_task *task; 401 402 /* 403 * Service a batch of tasks from a single owner. 404 */ 405 q = &queue->tasks[queue->priority]; 406 if (!list_empty(q)) { 407 task = list_entry(q->next, struct rpc_task, u.tk_wait.list); 408 if (queue->owner == task->tk_owner) { 409 if (--queue->nr) 410 goto out; 411 list_move_tail(&task->u.tk_wait.list, q); 412 } 413 /* 414 * Check if we need to switch queues. 415 */ 416 if (--queue->count) 417 goto new_owner; 418 } 419 420 /* 421 * Service the next queue. 422 */ 423 do { 424 if (q == &queue->tasks[0]) 425 q = &queue->tasks[queue->maxpriority]; 426 else 427 q = q - 1; 428 if (!list_empty(q)) { 429 task = list_entry(q->next, struct rpc_task, u.tk_wait.list); 430 goto new_queue; 431 } 432 } while (q != &queue->tasks[queue->priority]); 433 434 rpc_reset_waitqueue_priority(queue); 435 return NULL; 436 437 new_queue: 438 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0])); 439 new_owner: 440 rpc_set_waitqueue_owner(queue, task->tk_owner); 441 out: 442 rpc_wake_up_task_queue_locked(queue, task); 443 return task; 444 } 445 446 /* 447 * Wake up the next task on the wait queue. 448 */ 449 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue) 450 { 451 struct rpc_task *task = NULL; 452 453 dprintk("RPC: wake_up_next(%p \"%s\")\n", 454 queue, rpc_qname(queue)); 455 spin_lock_bh(&queue->lock); 456 if (RPC_IS_PRIORITY(queue)) 457 task = __rpc_wake_up_next_priority(queue); 458 else { 459 task_for_first(task, &queue->tasks[0]) 460 rpc_wake_up_task_queue_locked(queue, task); 461 } 462 spin_unlock_bh(&queue->lock); 463 464 return task; 465 } 466 EXPORT_SYMBOL_GPL(rpc_wake_up_next); 467 468 /** 469 * rpc_wake_up - wake up all rpc_tasks 470 * @queue: rpc_wait_queue on which the tasks are sleeping 471 * 472 * Grabs queue->lock 473 */ 474 void rpc_wake_up(struct rpc_wait_queue *queue) 475 { 476 struct rpc_task *task, *next; 477 struct list_head *head; 478 479 spin_lock_bh(&queue->lock); 480 head = &queue->tasks[queue->maxpriority]; 481 for (;;) { 482 list_for_each_entry_safe(task, next, head, u.tk_wait.list) 483 rpc_wake_up_task_queue_locked(queue, task); 484 if (head == &queue->tasks[0]) 485 break; 486 head--; 487 } 488 spin_unlock_bh(&queue->lock); 489 } 490 EXPORT_SYMBOL_GPL(rpc_wake_up); 491 492 /** 493 * rpc_wake_up_status - wake up all rpc_tasks and set their status value. 494 * @queue: rpc_wait_queue on which the tasks are sleeping 495 * @status: status value to set 496 * 497 * Grabs queue->lock 498 */ 499 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status) 500 { 501 struct rpc_task *task, *next; 502 struct list_head *head; 503 504 spin_lock_bh(&queue->lock); 505 head = &queue->tasks[queue->maxpriority]; 506 for (;;) { 507 list_for_each_entry_safe(task, next, head, u.tk_wait.list) { 508 task->tk_status = status; 509 rpc_wake_up_task_queue_locked(queue, task); 510 } 511 if (head == &queue->tasks[0]) 512 break; 513 head--; 514 } 515 spin_unlock_bh(&queue->lock); 516 } 517 EXPORT_SYMBOL_GPL(rpc_wake_up_status); 518 519 static void __rpc_queue_timer_fn(unsigned long ptr) 520 { 521 struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr; 522 struct rpc_task *task, *n; 523 unsigned long expires, now, timeo; 524 525 spin_lock(&queue->lock); 526 expires = now = jiffies; 527 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) { 528 timeo = task->u.tk_wait.expires; 529 if (time_after_eq(now, timeo)) { 530 dprintk("RPC: %5u timeout\n", task->tk_pid); 531 task->tk_status = -ETIMEDOUT; 532 rpc_wake_up_task_queue_locked(queue, task); 533 continue; 534 } 535 if (expires == now || time_after(expires, timeo)) 536 expires = timeo; 537 } 538 if (!list_empty(&queue->timer_list.list)) 539 rpc_set_queue_timer(queue, expires); 540 spin_unlock(&queue->lock); 541 } 542 543 static void __rpc_atrun(struct rpc_task *task) 544 { 545 task->tk_status = 0; 546 } 547 548 /* 549 * Run a task at a later time 550 */ 551 void rpc_delay(struct rpc_task *task, unsigned long delay) 552 { 553 task->tk_timeout = delay; 554 rpc_sleep_on(&delay_queue, task, __rpc_atrun); 555 } 556 EXPORT_SYMBOL_GPL(rpc_delay); 557 558 /* 559 * Helper to call task->tk_ops->rpc_call_prepare 560 */ 561 void rpc_prepare_task(struct rpc_task *task) 562 { 563 task->tk_ops->rpc_call_prepare(task, task->tk_calldata); 564 } 565 566 /* 567 * Helper that calls task->tk_ops->rpc_call_done if it exists 568 */ 569 void rpc_exit_task(struct rpc_task *task) 570 { 571 task->tk_action = NULL; 572 if (task->tk_ops->rpc_call_done != NULL) { 573 task->tk_ops->rpc_call_done(task, task->tk_calldata); 574 if (task->tk_action != NULL) { 575 WARN_ON(RPC_ASSASSINATED(task)); 576 /* Always release the RPC slot and buffer memory */ 577 xprt_release(task); 578 } 579 } 580 } 581 582 void rpc_exit(struct rpc_task *task, int status) 583 { 584 task->tk_status = status; 585 task->tk_action = rpc_exit_task; 586 if (RPC_IS_QUEUED(task)) 587 rpc_wake_up_queued_task(task->tk_waitqueue, task); 588 } 589 EXPORT_SYMBOL_GPL(rpc_exit); 590 591 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata) 592 { 593 if (ops->rpc_release != NULL) 594 ops->rpc_release(calldata); 595 } 596 597 /* 598 * This is the RPC `scheduler' (or rather, the finite state machine). 599 */ 600 static void __rpc_execute(struct rpc_task *task) 601 { 602 struct rpc_wait_queue *queue; 603 int task_is_async = RPC_IS_ASYNC(task); 604 int status = 0; 605 606 dprintk("RPC: %5u __rpc_execute flags=0x%x\n", 607 task->tk_pid, task->tk_flags); 608 609 BUG_ON(RPC_IS_QUEUED(task)); 610 611 for (;;) { 612 613 /* 614 * Execute any pending callback. 615 */ 616 if (task->tk_callback) { 617 void (*save_callback)(struct rpc_task *); 618 619 /* 620 * We set tk_callback to NULL before calling it, 621 * in case it sets the tk_callback field itself: 622 */ 623 save_callback = task->tk_callback; 624 task->tk_callback = NULL; 625 save_callback(task); 626 } 627 628 /* 629 * Perform the next FSM step. 630 * tk_action may be NULL when the task has been killed 631 * by someone else. 632 */ 633 if (!RPC_IS_QUEUED(task)) { 634 if (task->tk_action == NULL) 635 break; 636 task->tk_action(task); 637 } 638 639 /* 640 * Lockless check for whether task is sleeping or not. 641 */ 642 if (!RPC_IS_QUEUED(task)) 643 continue; 644 /* 645 * The queue->lock protects against races with 646 * rpc_make_runnable(). 647 * 648 * Note that once we clear RPC_TASK_RUNNING on an asynchronous 649 * rpc_task, rpc_make_runnable() can assign it to a 650 * different workqueue. We therefore cannot assume that the 651 * rpc_task pointer may still be dereferenced. 652 */ 653 queue = task->tk_waitqueue; 654 spin_lock_bh(&queue->lock); 655 if (!RPC_IS_QUEUED(task)) { 656 spin_unlock_bh(&queue->lock); 657 continue; 658 } 659 rpc_clear_running(task); 660 spin_unlock_bh(&queue->lock); 661 if (task_is_async) 662 return; 663 664 /* sync task: sleep here */ 665 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid); 666 status = out_of_line_wait_on_bit(&task->tk_runstate, 667 RPC_TASK_QUEUED, rpc_wait_bit_killable, 668 TASK_KILLABLE); 669 if (status == -ERESTARTSYS) { 670 /* 671 * When a sync task receives a signal, it exits with 672 * -ERESTARTSYS. In order to catch any callbacks that 673 * clean up after sleeping on some queue, we don't 674 * break the loop here, but go around once more. 675 */ 676 dprintk("RPC: %5u got signal\n", task->tk_pid); 677 task->tk_flags |= RPC_TASK_KILLED; 678 rpc_exit(task, -ERESTARTSYS); 679 } 680 rpc_set_running(task); 681 dprintk("RPC: %5u sync task resuming\n", task->tk_pid); 682 } 683 684 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status, 685 task->tk_status); 686 /* Release all resources associated with the task */ 687 rpc_release_task(task); 688 } 689 690 /* 691 * User-visible entry point to the scheduler. 692 * 693 * This may be called recursively if e.g. an async NFS task updates 694 * the attributes and finds that dirty pages must be flushed. 695 * NOTE: Upon exit of this function the task is guaranteed to be 696 * released. In particular note that tk_release() will have 697 * been called, so your task memory may have been freed. 698 */ 699 void rpc_execute(struct rpc_task *task) 700 { 701 rpc_set_active(task); 702 rpc_make_runnable(task); 703 if (!RPC_IS_ASYNC(task)) 704 __rpc_execute(task); 705 } 706 707 static void rpc_async_schedule(struct work_struct *work) 708 { 709 __rpc_execute(container_of(work, struct rpc_task, u.tk_work)); 710 } 711 712 /** 713 * rpc_malloc - allocate an RPC buffer 714 * @task: RPC task that will use this buffer 715 * @size: requested byte size 716 * 717 * To prevent rpciod from hanging, this allocator never sleeps, 718 * returning NULL if the request cannot be serviced immediately. 719 * The caller can arrange to sleep in a way that is safe for rpciod. 720 * 721 * Most requests are 'small' (under 2KiB) and can be serviced from a 722 * mempool, ensuring that NFS reads and writes can always proceed, 723 * and that there is good locality of reference for these buffers. 724 * 725 * In order to avoid memory starvation triggering more writebacks of 726 * NFS requests, we avoid using GFP_KERNEL. 727 */ 728 void *rpc_malloc(struct rpc_task *task, size_t size) 729 { 730 struct rpc_buffer *buf; 731 gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT; 732 733 size += sizeof(struct rpc_buffer); 734 if (size <= RPC_BUFFER_MAXSIZE) 735 buf = mempool_alloc(rpc_buffer_mempool, gfp); 736 else 737 buf = kmalloc(size, gfp); 738 739 if (!buf) 740 return NULL; 741 742 buf->len = size; 743 dprintk("RPC: %5u allocated buffer of size %zu at %p\n", 744 task->tk_pid, size, buf); 745 return &buf->data; 746 } 747 EXPORT_SYMBOL_GPL(rpc_malloc); 748 749 /** 750 * rpc_free - free buffer allocated via rpc_malloc 751 * @buffer: buffer to free 752 * 753 */ 754 void rpc_free(void *buffer) 755 { 756 size_t size; 757 struct rpc_buffer *buf; 758 759 if (!buffer) 760 return; 761 762 buf = container_of(buffer, struct rpc_buffer, data); 763 size = buf->len; 764 765 dprintk("RPC: freeing buffer of size %zu at %p\n", 766 size, buf); 767 768 if (size <= RPC_BUFFER_MAXSIZE) 769 mempool_free(buf, rpc_buffer_mempool); 770 else 771 kfree(buf); 772 } 773 EXPORT_SYMBOL_GPL(rpc_free); 774 775 /* 776 * Creation and deletion of RPC task structures 777 */ 778 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data) 779 { 780 memset(task, 0, sizeof(*task)); 781 atomic_set(&task->tk_count, 1); 782 task->tk_flags = task_setup_data->flags; 783 task->tk_ops = task_setup_data->callback_ops; 784 task->tk_calldata = task_setup_data->callback_data; 785 INIT_LIST_HEAD(&task->tk_task); 786 787 /* Initialize retry counters */ 788 task->tk_garb_retry = 2; 789 task->tk_cred_retry = 2; 790 791 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW; 792 task->tk_owner = current->tgid; 793 794 /* Initialize workqueue for async tasks */ 795 task->tk_workqueue = task_setup_data->workqueue; 796 797 if (task->tk_ops->rpc_call_prepare != NULL) 798 task->tk_action = rpc_prepare_task; 799 800 /* starting timestamp */ 801 task->tk_start = ktime_get(); 802 803 dprintk("RPC: new task initialized, procpid %u\n", 804 task_pid_nr(current)); 805 } 806 807 static struct rpc_task * 808 rpc_alloc_task(void) 809 { 810 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS); 811 } 812 813 /* 814 * Create a new task for the specified client. 815 */ 816 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data) 817 { 818 struct rpc_task *task = setup_data->task; 819 unsigned short flags = 0; 820 821 if (task == NULL) { 822 task = rpc_alloc_task(); 823 if (task == NULL) { 824 rpc_release_calldata(setup_data->callback_ops, 825 setup_data->callback_data); 826 return ERR_PTR(-ENOMEM); 827 } 828 flags = RPC_TASK_DYNAMIC; 829 } 830 831 rpc_init_task(task, setup_data); 832 if (task->tk_status < 0) { 833 int err = task->tk_status; 834 rpc_put_task(task); 835 return ERR_PTR(err); 836 } 837 838 task->tk_flags |= flags; 839 dprintk("RPC: allocated task %p\n", task); 840 return task; 841 } 842 843 static void rpc_free_task(struct rpc_task *task) 844 { 845 const struct rpc_call_ops *tk_ops = task->tk_ops; 846 void *calldata = task->tk_calldata; 847 848 if (task->tk_flags & RPC_TASK_DYNAMIC) { 849 dprintk("RPC: %5u freeing task\n", task->tk_pid); 850 mempool_free(task, rpc_task_mempool); 851 } 852 rpc_release_calldata(tk_ops, calldata); 853 } 854 855 static void rpc_async_release(struct work_struct *work) 856 { 857 rpc_free_task(container_of(work, struct rpc_task, u.tk_work)); 858 } 859 860 void rpc_put_task(struct rpc_task *task) 861 { 862 if (!atomic_dec_and_test(&task->tk_count)) 863 return; 864 /* Release resources */ 865 if (task->tk_rqstp) 866 xprt_release(task); 867 if (task->tk_msg.rpc_cred) 868 put_rpccred(task->tk_msg.rpc_cred); 869 rpc_task_release_client(task); 870 if (task->tk_workqueue != NULL) { 871 INIT_WORK(&task->u.tk_work, rpc_async_release); 872 queue_work(task->tk_workqueue, &task->u.tk_work); 873 } else 874 rpc_free_task(task); 875 } 876 EXPORT_SYMBOL_GPL(rpc_put_task); 877 878 static void rpc_release_task(struct rpc_task *task) 879 { 880 dprintk("RPC: %5u release task\n", task->tk_pid); 881 882 BUG_ON (RPC_IS_QUEUED(task)); 883 884 /* Wake up anyone who is waiting for task completion */ 885 rpc_mark_complete_task(task); 886 887 rpc_put_task(task); 888 } 889 890 int rpciod_up(void) 891 { 892 return try_module_get(THIS_MODULE) ? 0 : -EINVAL; 893 } 894 895 void rpciod_down(void) 896 { 897 module_put(THIS_MODULE); 898 } 899 900 /* 901 * Start up the rpciod workqueue. 902 */ 903 static int rpciod_start(void) 904 { 905 struct workqueue_struct *wq; 906 907 /* 908 * Create the rpciod thread and wait for it to start. 909 */ 910 dprintk("RPC: creating workqueue rpciod\n"); 911 wq = alloc_workqueue("rpciod", WQ_RESCUER, 0); 912 rpciod_workqueue = wq; 913 return rpciod_workqueue != NULL; 914 } 915 916 static void rpciod_stop(void) 917 { 918 struct workqueue_struct *wq = NULL; 919 920 if (rpciod_workqueue == NULL) 921 return; 922 dprintk("RPC: destroying workqueue rpciod\n"); 923 924 wq = rpciod_workqueue; 925 rpciod_workqueue = NULL; 926 destroy_workqueue(wq); 927 } 928 929 void 930 rpc_destroy_mempool(void) 931 { 932 rpciod_stop(); 933 if (rpc_buffer_mempool) 934 mempool_destroy(rpc_buffer_mempool); 935 if (rpc_task_mempool) 936 mempool_destroy(rpc_task_mempool); 937 if (rpc_task_slabp) 938 kmem_cache_destroy(rpc_task_slabp); 939 if (rpc_buffer_slabp) 940 kmem_cache_destroy(rpc_buffer_slabp); 941 rpc_destroy_wait_queue(&delay_queue); 942 } 943 944 int 945 rpc_init_mempool(void) 946 { 947 /* 948 * The following is not strictly a mempool initialisation, 949 * but there is no harm in doing it here 950 */ 951 rpc_init_wait_queue(&delay_queue, "delayq"); 952 if (!rpciod_start()) 953 goto err_nomem; 954 955 rpc_task_slabp = kmem_cache_create("rpc_tasks", 956 sizeof(struct rpc_task), 957 0, SLAB_HWCACHE_ALIGN, 958 NULL); 959 if (!rpc_task_slabp) 960 goto err_nomem; 961 rpc_buffer_slabp = kmem_cache_create("rpc_buffers", 962 RPC_BUFFER_MAXSIZE, 963 0, SLAB_HWCACHE_ALIGN, 964 NULL); 965 if (!rpc_buffer_slabp) 966 goto err_nomem; 967 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE, 968 rpc_task_slabp); 969 if (!rpc_task_mempool) 970 goto err_nomem; 971 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE, 972 rpc_buffer_slabp); 973 if (!rpc_buffer_mempool) 974 goto err_nomem; 975 return 0; 976 err_nomem: 977 rpc_destroy_mempool(); 978 return -ENOMEM; 979 } 980