xref: /openbmc/linux/net/sunrpc/sched.c (revision bfe655d1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/sched.c
4  *
5  * Scheduling for synchronous and asynchronous RPC requests.
6  *
7  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8  *
9  * TCP NFS related read + write fixes
10  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
11  */
12 
13 #include <linux/module.h>
14 
15 #include <linux/sched.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/mempool.h>
19 #include <linux/smp.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22 #include <linux/freezer.h>
23 #include <linux/sched/mm.h>
24 
25 #include <linux/sunrpc/clnt.h>
26 #include <linux/sunrpc/metrics.h>
27 
28 #include "sunrpc.h"
29 
30 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
31 #define RPCDBG_FACILITY		RPCDBG_SCHED
32 #endif
33 
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/sunrpc.h>
36 
37 /*
38  * RPC slabs and memory pools
39  */
40 #define RPC_BUFFER_MAXSIZE	(2048)
41 #define RPC_BUFFER_POOLSIZE	(8)
42 #define RPC_TASK_POOLSIZE	(8)
43 static struct kmem_cache	*rpc_task_slabp __read_mostly;
44 static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
45 static mempool_t	*rpc_task_mempool __read_mostly;
46 static mempool_t	*rpc_buffer_mempool __read_mostly;
47 
48 static void			rpc_async_schedule(struct work_struct *);
49 static void			 rpc_release_task(struct rpc_task *task);
50 static void __rpc_queue_timer_fn(struct work_struct *);
51 
52 /*
53  * RPC tasks sit here while waiting for conditions to improve.
54  */
55 static struct rpc_wait_queue delay_queue;
56 
57 /*
58  * rpciod-related stuff
59  */
60 struct workqueue_struct *rpciod_workqueue __read_mostly;
61 struct workqueue_struct *xprtiod_workqueue __read_mostly;
62 EXPORT_SYMBOL_GPL(xprtiod_workqueue);
63 
64 unsigned long
65 rpc_task_timeout(const struct rpc_task *task)
66 {
67 	unsigned long timeout = READ_ONCE(task->tk_timeout);
68 
69 	if (timeout != 0) {
70 		unsigned long now = jiffies;
71 		if (time_before(now, timeout))
72 			return timeout - now;
73 	}
74 	return 0;
75 }
76 EXPORT_SYMBOL_GPL(rpc_task_timeout);
77 
78 /*
79  * Disable the timer for a given RPC task. Should be called with
80  * queue->lock and bh_disabled in order to avoid races within
81  * rpc_run_timer().
82  */
83 static void
84 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
85 {
86 	if (list_empty(&task->u.tk_wait.timer_list))
87 		return;
88 	dprintk("RPC: %5u disabling timer\n", task->tk_pid);
89 	task->tk_timeout = 0;
90 	list_del(&task->u.tk_wait.timer_list);
91 	if (list_empty(&queue->timer_list.list))
92 		cancel_delayed_work(&queue->timer_list.dwork);
93 }
94 
95 static void
96 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
97 {
98 	unsigned long now = jiffies;
99 	queue->timer_list.expires = expires;
100 	if (time_before_eq(expires, now))
101 		expires = 0;
102 	else
103 		expires -= now;
104 	mod_delayed_work(rpciod_workqueue, &queue->timer_list.dwork, expires);
105 }
106 
107 /*
108  * Set up a timer for the current task.
109  */
110 static void
111 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
112 		unsigned long timeout)
113 {
114 	dprintk("RPC: %5u setting alarm for %u ms\n",
115 		task->tk_pid, jiffies_to_msecs(timeout - jiffies));
116 
117 	task->tk_timeout = timeout;
118 	if (list_empty(&queue->timer_list.list) || time_before(timeout, queue->timer_list.expires))
119 		rpc_set_queue_timer(queue, timeout);
120 	list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
121 }
122 
123 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
124 {
125 	if (queue->priority != priority) {
126 		queue->priority = priority;
127 		queue->nr = 1U << priority;
128 	}
129 }
130 
131 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
132 {
133 	rpc_set_waitqueue_priority(queue, queue->maxpriority);
134 }
135 
136 /*
137  * Add a request to a queue list
138  */
139 static void
140 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
141 {
142 	struct rpc_task *t;
143 
144 	list_for_each_entry(t, q, u.tk_wait.list) {
145 		if (t->tk_owner == task->tk_owner) {
146 			list_add_tail(&task->u.tk_wait.links,
147 					&t->u.tk_wait.links);
148 			/* Cache the queue head in task->u.tk_wait.list */
149 			task->u.tk_wait.list.next = q;
150 			task->u.tk_wait.list.prev = NULL;
151 			return;
152 		}
153 	}
154 	INIT_LIST_HEAD(&task->u.tk_wait.links);
155 	list_add_tail(&task->u.tk_wait.list, q);
156 }
157 
158 /*
159  * Remove request from a queue list
160  */
161 static void
162 __rpc_list_dequeue_task(struct rpc_task *task)
163 {
164 	struct list_head *q;
165 	struct rpc_task *t;
166 
167 	if (task->u.tk_wait.list.prev == NULL) {
168 		list_del(&task->u.tk_wait.links);
169 		return;
170 	}
171 	if (!list_empty(&task->u.tk_wait.links)) {
172 		t = list_first_entry(&task->u.tk_wait.links,
173 				struct rpc_task,
174 				u.tk_wait.links);
175 		/* Assume __rpc_list_enqueue_task() cached the queue head */
176 		q = t->u.tk_wait.list.next;
177 		list_add_tail(&t->u.tk_wait.list, q);
178 		list_del(&task->u.tk_wait.links);
179 	}
180 	list_del(&task->u.tk_wait.list);
181 }
182 
183 /*
184  * Add new request to a priority queue.
185  */
186 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
187 		struct rpc_task *task,
188 		unsigned char queue_priority)
189 {
190 	if (unlikely(queue_priority > queue->maxpriority))
191 		queue_priority = queue->maxpriority;
192 	__rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
193 }
194 
195 /*
196  * Add new request to wait queue.
197  *
198  * Swapper tasks always get inserted at the head of the queue.
199  * This should avoid many nasty memory deadlocks and hopefully
200  * improve overall performance.
201  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
202  */
203 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
204 		struct rpc_task *task,
205 		unsigned char queue_priority)
206 {
207 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
208 	if (RPC_IS_QUEUED(task))
209 		return;
210 
211 	INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
212 	if (RPC_IS_PRIORITY(queue))
213 		__rpc_add_wait_queue_priority(queue, task, queue_priority);
214 	else if (RPC_IS_SWAPPER(task))
215 		list_add(&task->u.tk_wait.list, &queue->tasks[0]);
216 	else
217 		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
218 	task->tk_waitqueue = queue;
219 	queue->qlen++;
220 	/* barrier matches the read in rpc_wake_up_task_queue_locked() */
221 	smp_wmb();
222 	rpc_set_queued(task);
223 
224 	dprintk("RPC: %5u added to queue %p \"%s\"\n",
225 			task->tk_pid, queue, rpc_qname(queue));
226 }
227 
228 /*
229  * Remove request from a priority queue.
230  */
231 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
232 {
233 	__rpc_list_dequeue_task(task);
234 }
235 
236 /*
237  * Remove request from queue.
238  * Note: must be called with spin lock held.
239  */
240 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
241 {
242 	__rpc_disable_timer(queue, task);
243 	if (RPC_IS_PRIORITY(queue))
244 		__rpc_remove_wait_queue_priority(task);
245 	else
246 		list_del(&task->u.tk_wait.list);
247 	queue->qlen--;
248 	dprintk("RPC: %5u removed from queue %p \"%s\"\n",
249 			task->tk_pid, queue, rpc_qname(queue));
250 }
251 
252 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
253 {
254 	int i;
255 
256 	spin_lock_init(&queue->lock);
257 	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
258 		INIT_LIST_HEAD(&queue->tasks[i]);
259 	queue->maxpriority = nr_queues - 1;
260 	rpc_reset_waitqueue_priority(queue);
261 	queue->qlen = 0;
262 	queue->timer_list.expires = 0;
263 	INIT_DEFERRABLE_WORK(&queue->timer_list.dwork, __rpc_queue_timer_fn);
264 	INIT_LIST_HEAD(&queue->timer_list.list);
265 	rpc_assign_waitqueue_name(queue, qname);
266 }
267 
268 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
269 {
270 	__rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
271 }
272 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
273 
274 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
275 {
276 	__rpc_init_priority_wait_queue(queue, qname, 1);
277 }
278 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
279 
280 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
281 {
282 	cancel_delayed_work_sync(&queue->timer_list.dwork);
283 }
284 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
285 
286 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
287 {
288 	freezable_schedule_unsafe();
289 	if (signal_pending_state(mode, current))
290 		return -ERESTARTSYS;
291 	return 0;
292 }
293 
294 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
295 static void rpc_task_set_debuginfo(struct rpc_task *task)
296 {
297 	static atomic_t rpc_pid;
298 
299 	task->tk_pid = atomic_inc_return(&rpc_pid);
300 }
301 #else
302 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
303 {
304 }
305 #endif
306 
307 static void rpc_set_active(struct rpc_task *task)
308 {
309 	rpc_task_set_debuginfo(task);
310 	set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
311 	trace_rpc_task_begin(task, NULL);
312 }
313 
314 /*
315  * Mark an RPC call as having completed by clearing the 'active' bit
316  * and then waking up all tasks that were sleeping.
317  */
318 static int rpc_complete_task(struct rpc_task *task)
319 {
320 	void *m = &task->tk_runstate;
321 	wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
322 	struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
323 	unsigned long flags;
324 	int ret;
325 
326 	trace_rpc_task_complete(task, NULL);
327 
328 	spin_lock_irqsave(&wq->lock, flags);
329 	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
330 	ret = atomic_dec_and_test(&task->tk_count);
331 	if (waitqueue_active(wq))
332 		__wake_up_locked_key(wq, TASK_NORMAL, &k);
333 	spin_unlock_irqrestore(&wq->lock, flags);
334 	return ret;
335 }
336 
337 /*
338  * Allow callers to wait for completion of an RPC call
339  *
340  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
341  * to enforce taking of the wq->lock and hence avoid races with
342  * rpc_complete_task().
343  */
344 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
345 {
346 	if (action == NULL)
347 		action = rpc_wait_bit_killable;
348 	return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
349 			action, TASK_KILLABLE);
350 }
351 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
352 
353 /*
354  * Make an RPC task runnable.
355  *
356  * Note: If the task is ASYNC, and is being made runnable after sitting on an
357  * rpc_wait_queue, this must be called with the queue spinlock held to protect
358  * the wait queue operation.
359  * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
360  * which is needed to ensure that __rpc_execute() doesn't loop (due to the
361  * lockless RPC_IS_QUEUED() test) before we've had a chance to test
362  * the RPC_TASK_RUNNING flag.
363  */
364 static void rpc_make_runnable(struct workqueue_struct *wq,
365 		struct rpc_task *task)
366 {
367 	bool need_wakeup = !rpc_test_and_set_running(task);
368 
369 	rpc_clear_queued(task);
370 	if (!need_wakeup)
371 		return;
372 	if (RPC_IS_ASYNC(task)) {
373 		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
374 		queue_work(wq, &task->u.tk_work);
375 	} else
376 		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
377 }
378 
379 /*
380  * Prepare for sleeping on a wait queue.
381  * By always appending tasks to the list we ensure FIFO behavior.
382  * NB: An RPC task will only receive interrupt-driven events as long
383  * as it's on a wait queue.
384  */
385 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
386 		struct rpc_task *task,
387 		unsigned char queue_priority)
388 {
389 	dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
390 			task->tk_pid, rpc_qname(q), jiffies);
391 
392 	trace_rpc_task_sleep(task, q);
393 
394 	__rpc_add_wait_queue(q, task, queue_priority);
395 
396 }
397 
398 static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
399 		struct rpc_task *task, unsigned long timeout,
400 		unsigned char queue_priority)
401 {
402 	if (time_is_after_jiffies(timeout)) {
403 		__rpc_sleep_on_priority(q, task, queue_priority);
404 		__rpc_add_timer(q, task, timeout);
405 	} else
406 		task->tk_status = -ETIMEDOUT;
407 }
408 
409 static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
410 {
411 	if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
412 		task->tk_callback = action;
413 }
414 
415 static bool rpc_sleep_check_activated(struct rpc_task *task)
416 {
417 	/* We shouldn't ever put an inactive task to sleep */
418 	if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
419 		task->tk_status = -EIO;
420 		rpc_put_task_async(task);
421 		return false;
422 	}
423 	return true;
424 }
425 
426 void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
427 				rpc_action action, unsigned long timeout)
428 {
429 	if (!rpc_sleep_check_activated(task))
430 		return;
431 
432 	rpc_set_tk_callback(task, action);
433 
434 	/*
435 	 * Protect the queue operations.
436 	 */
437 	spin_lock(&q->lock);
438 	__rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
439 	spin_unlock(&q->lock);
440 }
441 EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
442 
443 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
444 				rpc_action action)
445 {
446 	if (!rpc_sleep_check_activated(task))
447 		return;
448 
449 	rpc_set_tk_callback(task, action);
450 
451 	WARN_ON_ONCE(task->tk_timeout != 0);
452 	/*
453 	 * Protect the queue operations.
454 	 */
455 	spin_lock(&q->lock);
456 	__rpc_sleep_on_priority(q, task, task->tk_priority);
457 	spin_unlock(&q->lock);
458 }
459 EXPORT_SYMBOL_GPL(rpc_sleep_on);
460 
461 void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
462 		struct rpc_task *task, unsigned long timeout, int priority)
463 {
464 	if (!rpc_sleep_check_activated(task))
465 		return;
466 
467 	priority -= RPC_PRIORITY_LOW;
468 	/*
469 	 * Protect the queue operations.
470 	 */
471 	spin_lock(&q->lock);
472 	__rpc_sleep_on_priority_timeout(q, task, timeout, priority);
473 	spin_unlock(&q->lock);
474 }
475 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
476 
477 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
478 		int priority)
479 {
480 	if (!rpc_sleep_check_activated(task))
481 		return;
482 
483 	WARN_ON_ONCE(task->tk_timeout != 0);
484 	priority -= RPC_PRIORITY_LOW;
485 	/*
486 	 * Protect the queue operations.
487 	 */
488 	spin_lock(&q->lock);
489 	__rpc_sleep_on_priority(q, task, priority);
490 	spin_unlock(&q->lock);
491 }
492 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
493 
494 /**
495  * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
496  * @wq: workqueue on which to run task
497  * @queue: wait queue
498  * @task: task to be woken up
499  *
500  * Caller must hold queue->lock, and have cleared the task queued flag.
501  */
502 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
503 		struct rpc_wait_queue *queue,
504 		struct rpc_task *task)
505 {
506 	dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
507 			task->tk_pid, jiffies);
508 
509 	/* Has the task been executed yet? If not, we cannot wake it up! */
510 	if (!RPC_IS_ACTIVATED(task)) {
511 		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
512 		return;
513 	}
514 
515 	trace_rpc_task_wakeup(task, queue);
516 
517 	__rpc_remove_wait_queue(queue, task);
518 
519 	rpc_make_runnable(wq, task);
520 
521 	dprintk("RPC:       __rpc_wake_up_task done\n");
522 }
523 
524 /*
525  * Wake up a queued task while the queue lock is being held
526  */
527 static struct rpc_task *
528 rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
529 		struct rpc_wait_queue *queue, struct rpc_task *task,
530 		bool (*action)(struct rpc_task *, void *), void *data)
531 {
532 	if (RPC_IS_QUEUED(task)) {
533 		smp_rmb();
534 		if (task->tk_waitqueue == queue) {
535 			if (action == NULL || action(task, data)) {
536 				__rpc_do_wake_up_task_on_wq(wq, queue, task);
537 				return task;
538 			}
539 		}
540 	}
541 	return NULL;
542 }
543 
544 static void
545 rpc_wake_up_task_on_wq_queue_locked(struct workqueue_struct *wq,
546 		struct rpc_wait_queue *queue, struct rpc_task *task)
547 {
548 	rpc_wake_up_task_on_wq_queue_action_locked(wq, queue, task, NULL, NULL);
549 }
550 
551 /*
552  * Wake up a queued task while the queue lock is being held
553  */
554 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
555 {
556 	rpc_wake_up_task_on_wq_queue_locked(rpciod_workqueue, queue, task);
557 }
558 
559 /*
560  * Wake up a task on a specific queue
561  */
562 void rpc_wake_up_queued_task_on_wq(struct workqueue_struct *wq,
563 		struct rpc_wait_queue *queue,
564 		struct rpc_task *task)
565 {
566 	if (!RPC_IS_QUEUED(task))
567 		return;
568 	spin_lock(&queue->lock);
569 	rpc_wake_up_task_on_wq_queue_locked(wq, queue, task);
570 	spin_unlock(&queue->lock);
571 }
572 
573 /*
574  * Wake up a task on a specific queue
575  */
576 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
577 {
578 	if (!RPC_IS_QUEUED(task))
579 		return;
580 	spin_lock(&queue->lock);
581 	rpc_wake_up_task_queue_locked(queue, task);
582 	spin_unlock(&queue->lock);
583 }
584 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
585 
586 static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
587 {
588 	task->tk_status = *(int *)status;
589 	return true;
590 }
591 
592 static void
593 rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
594 		struct rpc_task *task, int status)
595 {
596 	rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
597 			task, rpc_task_action_set_status, &status);
598 }
599 
600 /**
601  * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
602  * @queue: pointer to rpc_wait_queue
603  * @task: pointer to rpc_task
604  * @status: integer error value
605  *
606  * If @task is queued on @queue, then it is woken up, and @task->tk_status is
607  * set to the value of @status.
608  */
609 void
610 rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
611 		struct rpc_task *task, int status)
612 {
613 	if (!RPC_IS_QUEUED(task))
614 		return;
615 	spin_lock(&queue->lock);
616 	rpc_wake_up_task_queue_set_status_locked(queue, task, status);
617 	spin_unlock(&queue->lock);
618 }
619 
620 /*
621  * Wake up the next task on a priority queue.
622  */
623 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
624 {
625 	struct list_head *q;
626 	struct rpc_task *task;
627 
628 	/*
629 	 * Service a batch of tasks from a single owner.
630 	 */
631 	q = &queue->tasks[queue->priority];
632 	if (!list_empty(q) && --queue->nr) {
633 		task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
634 		goto out;
635 	}
636 
637 	/*
638 	 * Service the next queue.
639 	 */
640 	do {
641 		if (q == &queue->tasks[0])
642 			q = &queue->tasks[queue->maxpriority];
643 		else
644 			q = q - 1;
645 		if (!list_empty(q)) {
646 			task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
647 			goto new_queue;
648 		}
649 	} while (q != &queue->tasks[queue->priority]);
650 
651 	rpc_reset_waitqueue_priority(queue);
652 	return NULL;
653 
654 new_queue:
655 	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
656 out:
657 	return task;
658 }
659 
660 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
661 {
662 	if (RPC_IS_PRIORITY(queue))
663 		return __rpc_find_next_queued_priority(queue);
664 	if (!list_empty(&queue->tasks[0]))
665 		return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
666 	return NULL;
667 }
668 
669 /*
670  * Wake up the first task on the wait queue.
671  */
672 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
673 		struct rpc_wait_queue *queue,
674 		bool (*func)(struct rpc_task *, void *), void *data)
675 {
676 	struct rpc_task	*task = NULL;
677 
678 	dprintk("RPC:       wake_up_first(%p \"%s\")\n",
679 			queue, rpc_qname(queue));
680 	spin_lock(&queue->lock);
681 	task = __rpc_find_next_queued(queue);
682 	if (task != NULL)
683 		task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
684 				task, func, data);
685 	spin_unlock(&queue->lock);
686 
687 	return task;
688 }
689 
690 /*
691  * Wake up the first task on the wait queue.
692  */
693 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
694 		bool (*func)(struct rpc_task *, void *), void *data)
695 {
696 	return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
697 }
698 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
699 
700 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
701 {
702 	return true;
703 }
704 
705 /*
706  * Wake up the next task on the wait queue.
707 */
708 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
709 {
710 	return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
711 }
712 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
713 
714 /**
715  * rpc_wake_up - wake up all rpc_tasks
716  * @queue: rpc_wait_queue on which the tasks are sleeping
717  *
718  * Grabs queue->lock
719  */
720 void rpc_wake_up(struct rpc_wait_queue *queue)
721 {
722 	struct list_head *head;
723 
724 	spin_lock(&queue->lock);
725 	head = &queue->tasks[queue->maxpriority];
726 	for (;;) {
727 		while (!list_empty(head)) {
728 			struct rpc_task *task;
729 			task = list_first_entry(head,
730 					struct rpc_task,
731 					u.tk_wait.list);
732 			rpc_wake_up_task_queue_locked(queue, task);
733 		}
734 		if (head == &queue->tasks[0])
735 			break;
736 		head--;
737 	}
738 	spin_unlock(&queue->lock);
739 }
740 EXPORT_SYMBOL_GPL(rpc_wake_up);
741 
742 /**
743  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
744  * @queue: rpc_wait_queue on which the tasks are sleeping
745  * @status: status value to set
746  *
747  * Grabs queue->lock
748  */
749 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
750 {
751 	struct list_head *head;
752 
753 	spin_lock(&queue->lock);
754 	head = &queue->tasks[queue->maxpriority];
755 	for (;;) {
756 		while (!list_empty(head)) {
757 			struct rpc_task *task;
758 			task = list_first_entry(head,
759 					struct rpc_task,
760 					u.tk_wait.list);
761 			task->tk_status = status;
762 			rpc_wake_up_task_queue_locked(queue, task);
763 		}
764 		if (head == &queue->tasks[0])
765 			break;
766 		head--;
767 	}
768 	spin_unlock(&queue->lock);
769 }
770 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
771 
772 static void __rpc_queue_timer_fn(struct work_struct *work)
773 {
774 	struct rpc_wait_queue *queue = container_of(work,
775 			struct rpc_wait_queue,
776 			timer_list.dwork.work);
777 	struct rpc_task *task, *n;
778 	unsigned long expires, now, timeo;
779 
780 	spin_lock(&queue->lock);
781 	expires = now = jiffies;
782 	list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
783 		timeo = task->tk_timeout;
784 		if (time_after_eq(now, timeo)) {
785 			dprintk("RPC: %5u timeout\n", task->tk_pid);
786 			task->tk_status = -ETIMEDOUT;
787 			rpc_wake_up_task_queue_locked(queue, task);
788 			continue;
789 		}
790 		if (expires == now || time_after(expires, timeo))
791 			expires = timeo;
792 	}
793 	if (!list_empty(&queue->timer_list.list))
794 		rpc_set_queue_timer(queue, expires);
795 	spin_unlock(&queue->lock);
796 }
797 
798 static void __rpc_atrun(struct rpc_task *task)
799 {
800 	if (task->tk_status == -ETIMEDOUT)
801 		task->tk_status = 0;
802 }
803 
804 /*
805  * Run a task at a later time
806  */
807 void rpc_delay(struct rpc_task *task, unsigned long delay)
808 {
809 	rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
810 }
811 EXPORT_SYMBOL_GPL(rpc_delay);
812 
813 /*
814  * Helper to call task->tk_ops->rpc_call_prepare
815  */
816 void rpc_prepare_task(struct rpc_task *task)
817 {
818 	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
819 }
820 
821 static void
822 rpc_init_task_statistics(struct rpc_task *task)
823 {
824 	/* Initialize retry counters */
825 	task->tk_garb_retry = 2;
826 	task->tk_cred_retry = 2;
827 	task->tk_rebind_retry = 2;
828 
829 	/* starting timestamp */
830 	task->tk_start = ktime_get();
831 }
832 
833 static void
834 rpc_reset_task_statistics(struct rpc_task *task)
835 {
836 	task->tk_timeouts = 0;
837 	task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
838 	rpc_init_task_statistics(task);
839 }
840 
841 /*
842  * Helper that calls task->tk_ops->rpc_call_done if it exists
843  */
844 void rpc_exit_task(struct rpc_task *task)
845 {
846 	task->tk_action = NULL;
847 	if (task->tk_ops->rpc_count_stats)
848 		task->tk_ops->rpc_count_stats(task, task->tk_calldata);
849 	else if (task->tk_client)
850 		rpc_count_iostats(task, task->tk_client->cl_metrics);
851 	if (task->tk_ops->rpc_call_done != NULL) {
852 		task->tk_ops->rpc_call_done(task, task->tk_calldata);
853 		if (task->tk_action != NULL) {
854 			/* Always release the RPC slot and buffer memory */
855 			xprt_release(task);
856 			rpc_reset_task_statistics(task);
857 		}
858 	}
859 }
860 
861 void rpc_signal_task(struct rpc_task *task)
862 {
863 	struct rpc_wait_queue *queue;
864 
865 	if (!RPC_IS_ACTIVATED(task))
866 		return;
867 	set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
868 	smp_mb__after_atomic();
869 	queue = READ_ONCE(task->tk_waitqueue);
870 	if (queue)
871 		rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS);
872 }
873 
874 void rpc_exit(struct rpc_task *task, int status)
875 {
876 	task->tk_status = status;
877 	task->tk_action = rpc_exit_task;
878 	rpc_wake_up_queued_task(task->tk_waitqueue, task);
879 }
880 EXPORT_SYMBOL_GPL(rpc_exit);
881 
882 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
883 {
884 	if (ops->rpc_release != NULL)
885 		ops->rpc_release(calldata);
886 }
887 
888 /*
889  * This is the RPC `scheduler' (or rather, the finite state machine).
890  */
891 static void __rpc_execute(struct rpc_task *task)
892 {
893 	struct rpc_wait_queue *queue;
894 	int task_is_async = RPC_IS_ASYNC(task);
895 	int status = 0;
896 
897 	dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
898 			task->tk_pid, task->tk_flags);
899 
900 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
901 	if (RPC_IS_QUEUED(task))
902 		return;
903 
904 	for (;;) {
905 		void (*do_action)(struct rpc_task *);
906 
907 		/*
908 		 * Perform the next FSM step or a pending callback.
909 		 *
910 		 * tk_action may be NULL if the task has been killed.
911 		 * In particular, note that rpc_killall_tasks may
912 		 * do this at any time, so beware when dereferencing.
913 		 */
914 		do_action = task->tk_action;
915 		if (task->tk_callback) {
916 			do_action = task->tk_callback;
917 			task->tk_callback = NULL;
918 		}
919 		if (!do_action)
920 			break;
921 		trace_rpc_task_run_action(task, do_action);
922 		do_action(task);
923 
924 		/*
925 		 * Lockless check for whether task is sleeping or not.
926 		 */
927 		if (!RPC_IS_QUEUED(task))
928 			continue;
929 
930 		/*
931 		 * Signalled tasks should exit rather than sleep.
932 		 */
933 		if (RPC_SIGNALLED(task))
934 			rpc_exit(task, -ERESTARTSYS);
935 
936 		/*
937 		 * The queue->lock protects against races with
938 		 * rpc_make_runnable().
939 		 *
940 		 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
941 		 * rpc_task, rpc_make_runnable() can assign it to a
942 		 * different workqueue. We therefore cannot assume that the
943 		 * rpc_task pointer may still be dereferenced.
944 		 */
945 		queue = task->tk_waitqueue;
946 		spin_lock(&queue->lock);
947 		if (!RPC_IS_QUEUED(task)) {
948 			spin_unlock(&queue->lock);
949 			continue;
950 		}
951 		rpc_clear_running(task);
952 		spin_unlock(&queue->lock);
953 		if (task_is_async)
954 			return;
955 
956 		/* sync task: sleep here */
957 		dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
958 		status = out_of_line_wait_on_bit(&task->tk_runstate,
959 				RPC_TASK_QUEUED, rpc_wait_bit_killable,
960 				TASK_KILLABLE);
961 		if (status < 0) {
962 			/*
963 			 * When a sync task receives a signal, it exits with
964 			 * -ERESTARTSYS. In order to catch any callbacks that
965 			 * clean up after sleeping on some queue, we don't
966 			 * break the loop here, but go around once more.
967 			 */
968 			dprintk("RPC: %5u got signal\n", task->tk_pid);
969 			set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
970 			rpc_exit(task, -ERESTARTSYS);
971 		}
972 		dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
973 	}
974 
975 	dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
976 			task->tk_status);
977 	/* Release all resources associated with the task */
978 	rpc_release_task(task);
979 }
980 
981 /*
982  * User-visible entry point to the scheduler.
983  *
984  * This may be called recursively if e.g. an async NFS task updates
985  * the attributes and finds that dirty pages must be flushed.
986  * NOTE: Upon exit of this function the task is guaranteed to be
987  *	 released. In particular note that tk_release() will have
988  *	 been called, so your task memory may have been freed.
989  */
990 void rpc_execute(struct rpc_task *task)
991 {
992 	bool is_async = RPC_IS_ASYNC(task);
993 
994 	rpc_set_active(task);
995 	rpc_make_runnable(rpciod_workqueue, task);
996 	if (!is_async)
997 		__rpc_execute(task);
998 }
999 
1000 static void rpc_async_schedule(struct work_struct *work)
1001 {
1002 	unsigned int pflags = memalloc_nofs_save();
1003 
1004 	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
1005 	memalloc_nofs_restore(pflags);
1006 }
1007 
1008 /**
1009  * rpc_malloc - allocate RPC buffer resources
1010  * @task: RPC task
1011  *
1012  * A single memory region is allocated, which is split between the
1013  * RPC call and RPC reply that this task is being used for. When
1014  * this RPC is retired, the memory is released by calling rpc_free.
1015  *
1016  * To prevent rpciod from hanging, this allocator never sleeps,
1017  * returning -ENOMEM and suppressing warning if the request cannot
1018  * be serviced immediately. The caller can arrange to sleep in a
1019  * way that is safe for rpciod.
1020  *
1021  * Most requests are 'small' (under 2KiB) and can be serviced from a
1022  * mempool, ensuring that NFS reads and writes can always proceed,
1023  * and that there is good locality of reference for these buffers.
1024  */
1025 int rpc_malloc(struct rpc_task *task)
1026 {
1027 	struct rpc_rqst *rqst = task->tk_rqstp;
1028 	size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
1029 	struct rpc_buffer *buf;
1030 	gfp_t gfp = GFP_NOFS;
1031 
1032 	if (RPC_IS_SWAPPER(task))
1033 		gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
1034 
1035 	size += sizeof(struct rpc_buffer);
1036 	if (size <= RPC_BUFFER_MAXSIZE)
1037 		buf = mempool_alloc(rpc_buffer_mempool, gfp);
1038 	else
1039 		buf = kmalloc(size, gfp);
1040 
1041 	if (!buf)
1042 		return -ENOMEM;
1043 
1044 	buf->len = size;
1045 	dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
1046 			task->tk_pid, size, buf);
1047 	rqst->rq_buffer = buf->data;
1048 	rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1049 	return 0;
1050 }
1051 EXPORT_SYMBOL_GPL(rpc_malloc);
1052 
1053 /**
1054  * rpc_free - free RPC buffer resources allocated via rpc_malloc
1055  * @task: RPC task
1056  *
1057  */
1058 void rpc_free(struct rpc_task *task)
1059 {
1060 	void *buffer = task->tk_rqstp->rq_buffer;
1061 	size_t size;
1062 	struct rpc_buffer *buf;
1063 
1064 	buf = container_of(buffer, struct rpc_buffer, data);
1065 	size = buf->len;
1066 
1067 	dprintk("RPC:       freeing buffer of size %zu at %p\n",
1068 			size, buf);
1069 
1070 	if (size <= RPC_BUFFER_MAXSIZE)
1071 		mempool_free(buf, rpc_buffer_mempool);
1072 	else
1073 		kfree(buf);
1074 }
1075 EXPORT_SYMBOL_GPL(rpc_free);
1076 
1077 /*
1078  * Creation and deletion of RPC task structures
1079  */
1080 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1081 {
1082 	memset(task, 0, sizeof(*task));
1083 	atomic_set(&task->tk_count, 1);
1084 	task->tk_flags  = task_setup_data->flags;
1085 	task->tk_ops = task_setup_data->callback_ops;
1086 	task->tk_calldata = task_setup_data->callback_data;
1087 	INIT_LIST_HEAD(&task->tk_task);
1088 
1089 	task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1090 	task->tk_owner = current->tgid;
1091 
1092 	/* Initialize workqueue for async tasks */
1093 	task->tk_workqueue = task_setup_data->workqueue;
1094 
1095 	task->tk_xprt = rpc_task_get_xprt(task_setup_data->rpc_client,
1096 			xprt_get(task_setup_data->rpc_xprt));
1097 
1098 	task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1099 
1100 	if (task->tk_ops->rpc_call_prepare != NULL)
1101 		task->tk_action = rpc_prepare_task;
1102 
1103 	rpc_init_task_statistics(task);
1104 
1105 	dprintk("RPC:       new task initialized, procpid %u\n",
1106 				task_pid_nr(current));
1107 }
1108 
1109 static struct rpc_task *
1110 rpc_alloc_task(void)
1111 {
1112 	return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
1113 }
1114 
1115 /*
1116  * Create a new task for the specified client.
1117  */
1118 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1119 {
1120 	struct rpc_task	*task = setup_data->task;
1121 	unsigned short flags = 0;
1122 
1123 	if (task == NULL) {
1124 		task = rpc_alloc_task();
1125 		flags = RPC_TASK_DYNAMIC;
1126 	}
1127 
1128 	rpc_init_task(task, setup_data);
1129 	task->tk_flags |= flags;
1130 	dprintk("RPC:       allocated task %p\n", task);
1131 	return task;
1132 }
1133 
1134 /*
1135  * rpc_free_task - release rpc task and perform cleanups
1136  *
1137  * Note that we free up the rpc_task _after_ rpc_release_calldata()
1138  * in order to work around a workqueue dependency issue.
1139  *
1140  * Tejun Heo states:
1141  * "Workqueue currently considers two work items to be the same if they're
1142  * on the same address and won't execute them concurrently - ie. it
1143  * makes a work item which is queued again while being executed wait
1144  * for the previous execution to complete.
1145  *
1146  * If a work function frees the work item, and then waits for an event
1147  * which should be performed by another work item and *that* work item
1148  * recycles the freed work item, it can create a false dependency loop.
1149  * There really is no reliable way to detect this short of verifying
1150  * every memory free."
1151  *
1152  */
1153 static void rpc_free_task(struct rpc_task *task)
1154 {
1155 	unsigned short tk_flags = task->tk_flags;
1156 
1157 	put_rpccred(task->tk_op_cred);
1158 	rpc_release_calldata(task->tk_ops, task->tk_calldata);
1159 
1160 	if (tk_flags & RPC_TASK_DYNAMIC) {
1161 		dprintk("RPC: %5u freeing task\n", task->tk_pid);
1162 		mempool_free(task, rpc_task_mempool);
1163 	}
1164 }
1165 
1166 static void rpc_async_release(struct work_struct *work)
1167 {
1168 	unsigned int pflags = memalloc_nofs_save();
1169 
1170 	rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1171 	memalloc_nofs_restore(pflags);
1172 }
1173 
1174 static void rpc_release_resources_task(struct rpc_task *task)
1175 {
1176 	xprt_release(task);
1177 	if (task->tk_msg.rpc_cred) {
1178 		put_cred(task->tk_msg.rpc_cred);
1179 		task->tk_msg.rpc_cred = NULL;
1180 	}
1181 	rpc_task_release_client(task);
1182 }
1183 
1184 static void rpc_final_put_task(struct rpc_task *task,
1185 		struct workqueue_struct *q)
1186 {
1187 	if (q != NULL) {
1188 		INIT_WORK(&task->u.tk_work, rpc_async_release);
1189 		queue_work(q, &task->u.tk_work);
1190 	} else
1191 		rpc_free_task(task);
1192 }
1193 
1194 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1195 {
1196 	if (atomic_dec_and_test(&task->tk_count)) {
1197 		rpc_release_resources_task(task);
1198 		rpc_final_put_task(task, q);
1199 	}
1200 }
1201 
1202 void rpc_put_task(struct rpc_task *task)
1203 {
1204 	rpc_do_put_task(task, NULL);
1205 }
1206 EXPORT_SYMBOL_GPL(rpc_put_task);
1207 
1208 void rpc_put_task_async(struct rpc_task *task)
1209 {
1210 	rpc_do_put_task(task, task->tk_workqueue);
1211 }
1212 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1213 
1214 static void rpc_release_task(struct rpc_task *task)
1215 {
1216 	dprintk("RPC: %5u release task\n", task->tk_pid);
1217 
1218 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
1219 
1220 	rpc_release_resources_task(task);
1221 
1222 	/*
1223 	 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1224 	 * so it should be safe to use task->tk_count as a test for whether
1225 	 * or not any other processes still hold references to our rpc_task.
1226 	 */
1227 	if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1228 		/* Wake up anyone who may be waiting for task completion */
1229 		if (!rpc_complete_task(task))
1230 			return;
1231 	} else {
1232 		if (!atomic_dec_and_test(&task->tk_count))
1233 			return;
1234 	}
1235 	rpc_final_put_task(task, task->tk_workqueue);
1236 }
1237 
1238 int rpciod_up(void)
1239 {
1240 	return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1241 }
1242 
1243 void rpciod_down(void)
1244 {
1245 	module_put(THIS_MODULE);
1246 }
1247 
1248 /*
1249  * Start up the rpciod workqueue.
1250  */
1251 static int rpciod_start(void)
1252 {
1253 	struct workqueue_struct *wq;
1254 
1255 	/*
1256 	 * Create the rpciod thread and wait for it to start.
1257 	 */
1258 	dprintk("RPC:       creating workqueue rpciod\n");
1259 	wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1260 	if (!wq)
1261 		goto out_failed;
1262 	rpciod_workqueue = wq;
1263 	/* Note: highpri because network receive is latency sensitive */
1264 	wq = alloc_workqueue("xprtiod", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_HIGHPRI, 0);
1265 	if (!wq)
1266 		goto free_rpciod;
1267 	xprtiod_workqueue = wq;
1268 	return 1;
1269 free_rpciod:
1270 	wq = rpciod_workqueue;
1271 	rpciod_workqueue = NULL;
1272 	destroy_workqueue(wq);
1273 out_failed:
1274 	return 0;
1275 }
1276 
1277 static void rpciod_stop(void)
1278 {
1279 	struct workqueue_struct *wq = NULL;
1280 
1281 	if (rpciod_workqueue == NULL)
1282 		return;
1283 	dprintk("RPC:       destroying workqueue rpciod\n");
1284 
1285 	wq = rpciod_workqueue;
1286 	rpciod_workqueue = NULL;
1287 	destroy_workqueue(wq);
1288 	wq = xprtiod_workqueue;
1289 	xprtiod_workqueue = NULL;
1290 	destroy_workqueue(wq);
1291 }
1292 
1293 void
1294 rpc_destroy_mempool(void)
1295 {
1296 	rpciod_stop();
1297 	mempool_destroy(rpc_buffer_mempool);
1298 	mempool_destroy(rpc_task_mempool);
1299 	kmem_cache_destroy(rpc_task_slabp);
1300 	kmem_cache_destroy(rpc_buffer_slabp);
1301 	rpc_destroy_wait_queue(&delay_queue);
1302 }
1303 
1304 int
1305 rpc_init_mempool(void)
1306 {
1307 	/*
1308 	 * The following is not strictly a mempool initialisation,
1309 	 * but there is no harm in doing it here
1310 	 */
1311 	rpc_init_wait_queue(&delay_queue, "delayq");
1312 	if (!rpciod_start())
1313 		goto err_nomem;
1314 
1315 	rpc_task_slabp = kmem_cache_create("rpc_tasks",
1316 					     sizeof(struct rpc_task),
1317 					     0, SLAB_HWCACHE_ALIGN,
1318 					     NULL);
1319 	if (!rpc_task_slabp)
1320 		goto err_nomem;
1321 	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1322 					     RPC_BUFFER_MAXSIZE,
1323 					     0, SLAB_HWCACHE_ALIGN,
1324 					     NULL);
1325 	if (!rpc_buffer_slabp)
1326 		goto err_nomem;
1327 	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1328 						    rpc_task_slabp);
1329 	if (!rpc_task_mempool)
1330 		goto err_nomem;
1331 	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1332 						      rpc_buffer_slabp);
1333 	if (!rpc_buffer_mempool)
1334 		goto err_nomem;
1335 	return 0;
1336 err_nomem:
1337 	rpc_destroy_mempool();
1338 	return -ENOMEM;
1339 }
1340